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ABSTRACT
Autonomous and electric robots appeared in agriculture to perform activities on the fields.

The management systems dedicated to farms thus need to integrate software for the scheduling of a
fleet of such robots. As agricultural systems are by nature subject to unpredictable events, it seems
necessary to provide a solution for online scheduling. As a first step toward a global solution, we
propose a model for a sub-problem that targets to provide the next route of each robot of the fleet
in order to satisfy a subset of the demands for activities on fields emitted by the farmers. In this
work, we present a mixed integer linear programming formulation for the sub-problem using the
prize-collecting concept called here Prize-Collecting Robot Scheduling Problem with Time Window
and Precedence Constraints. Specific constraints are introduced to ensure that PC-RSP provides
viable solutions for the targeted online process.
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1. Introduction
Recent advances in robotics bring autonomous, small and light robots to work in agricul-

ture Duckett et al. [2018]. Their introduction enables improving the efficiency of agricultural oper-
ations and reducing the environmental impacts Bochtis et al. [2014], like the decrease of wastes, the
focus on areas of great needs and potentially reducing fertilizer costs Blackmore et al. [2005]. The
traditional planning methods for agricultural operations need to be supplemented by new scheduling
features, like route planning and sequential task scheduling Bochtis et al. [2014] mainly to adapt
to the introduction of these robots. Lately, the farmers use Farm Management Information Sys-
tems (FMIS), sophisticated and complex systems to support production management Fountas et al.
[2015].

In this context, we consider a farm composed of plots, and a warehouse where a fleet of
robots is stored, set up (their tools, called here equipments, can be changed to enable a robot to
perform different tasks), and maintained. Each plot represents an area with cultivation activities,
and it is assumed here to have single entry and exit points. In each plot, a set of demands for
activities that must be performed by the robots is emitted by the farmers. These demands have
many requirements, which include: compatible robot - equipment pairing to perform the demand, a
demand has to be achieved by only one robot (set up with one equipment only), a time window in
which the activity must be performed, precedence constraints between demands, a priority level for
each demand, and a preference date for the activity to be started.

There are different types of robots and equipments, and their numbers are limited. Equip-
ments can only be installed or uninstalled at the warehouse, and the list of tools that are compatible
with each robot is known. The time to install or to uninstall an equipment on a robot depends on
both the types of the robot and the equipment. Robots can be set up with only one equipment at
a time and can thus perform only a set of activity kinds once outside the warehouse to satisfy de-
mands. We consider here electric robots operating on batteries. These batteries have to be recharged
periodically at the warehouse. Besides, each different configuration (i.e. a pair of robot and equip-
ment) has a specific battery discharging rate (assumed to be linear here) and performances (speeds
to move and work). The energy and time spent by each configuration to execute the demands, and
to move between locations, are deterministic and known beforehand (it can be provided by tools
like Cariou et al. [2017]).

The decision problem consists here in managing and scheduling the robots, set up with
equipment, to perform a set of demands in the farm. It is dynamic, i.e. new demands appear on
the fly. Moreover, the execution of the demands are subject to unpredictable events, like: breakage
of robot or equipment, unfavorable weather, unforeseen demands. Notice that the FMIS should
react to these unpredictable events by emitting new demands Bachelet et al. [2021]. Thus, the
problem needs to be handled by an online algorithm, because decisions must be made without the
full knowledge of the future Karp [1992].

To model this scheduling problem, we propose an online approach, the Robot Scheduling
Problem with Time Window and Precedence Constraints (RSP-TWP), a part of an ongoing project
Belhassena et al. [2021]. RSP-TWP is an iterative approach where the problem is decomposed
in a sequence of sub-problems named Prize-Collecting Robot Scheduling Problem with Time Win-
dow and Precedence Constraints (PC-RSP) presented here. PC-RSP generates a single route for
each robot in order to achieve some set of demands. A route is the trajectory of a robot (more
precisely a configuration) that leaves the warehouse, moves sequentially to several plots to handle
some demands before returning to the warehouse. In the global RSP-TWP problem, the PC-RSP
sub-problem is called each time a robot returns to the warehouse and recharges its battery, in order



to perform another trip with the same, or another equipment. As input, this problem needs mainly
the availability dates of robots and equipments for a new route, and the current set of unscheduled
demands.

We present here PC-RSP for which we propose a Mixed Integer Linear Programming
(MILP) formulation. The performance of solving this MILP is evaluated for different instances,
in order to show how this approach is amenable to be used in the perspective of the global online
approach RSP-TWP.

2. Related Work

According to Pinedo et al. [2015], two types of scheduling problems exist: static where
the schedule is not expected to change much over time, which can be considered to be the case
of the PC-RSP problem analyzed in this work, as it only provides the next routes of the robots;
and dynamic where the schedule is expected to change frequently, which is the case of the global
RSP-TWP problem that should deal with unpredictable events.

Allahverdi et al. [2008] propose a review on scheduling problems. Our problem can be
considered closely related to the job-shop problem, where the robots are the machines and the
demands are the jobs. It is possible to consider in this case that our problem contains setup times,
if we consider the travel times of the robots to move between the locations (warehouse and plots).
However, our problem could also be considered close to a Vehicle Scheduling Problem (VSP), that
is also known as Vehicle Routing Problem (VRP) Cordeau et al. [2002]. The robots are the vehicles
that need to be scheduled to satisfy demands.

In our problem, each demand has to be satisfied inside a certain time window. Kontoravdis
and Bard [1995] present solutions for a VRP with Time Windows (VRP-TW), but they aim at
minimizing the overall traveled distance and the number of used vehicles, and not to satisfy the
maximum number of clients, or demands in our case. They propose to solve the problem with a
Greedy Randomized Adaptive Search Procedure (GRASP). Tests on real instances were achieved,
and the results are competitive in time with exact methods and reached good solutions (i.e. that
handle all the demands with an acceptable number of vehicles and a reasonable traveled distance)
in almost all cases.

Bruglieri et al. [2015] consider a VRP-TW with the management of the energy of the
vehicles (E-VRP-TW) dealing with the challenging of robot battery energy administration too. They
handle the possibility of partial recharge of the vehicles’ batteries and propose a MILP formulation.
A Variable Neighborhood Search Branching (VNS-B) has been designed to obtain solutions of
good quality in reasonable computational times. Schneider et al. [2014] address the Electric VRP-
TW and Recharge Stations (E-VRP-TW-RS). In this problem, there are recharge stations where the
vehicles can refill their battery in the path of the route. A hybrid heuristic has been designed that
combines Variable Neighborhood Search (VNS) with Tabu Search (TS). The tests showed a high
performance and the positive effects of the hybridization of strategies.

The prize-collecting concept guides the design of the objective function of PC-RSP. This
approach is notably used for the Prize-Collecting Traveling Salesman Problem (PC-TSP), as pre-
sented in Fischetti and Toth [1988]. They search for a route for a vehicle to visit a subset of cities
and use the concept of prize to introduce a reward on cities that are visited. PC-TSP is simpler
in comparison to our PC-RSP problem, as we need to handle many robots and equipments to find
several routes, and we propose to introduce a prize associated to the achievement of a demand. A
branch-and-bound algorithm is proposed in Fischetti and Toth [1988] to solve optimally the PC-TSP
problem that showed good performances on most of the tested instances.



Stenger [2012] addresses the Prize-Collecting Vehicle Routing Problem with Non-Linear
cost (PC-VRP-NL) with the possibility of hiring outsource resources. This work also adapts the
strategy of prize-collecting to a real problem, which is similar to our work only in using prizes and
in the generation of routes. An integer linear model is presented like a VNS algorithm to solve the
problem. After tests on instances adapted from classical VRP instances, it was demonstrated that
the proposed VNS strategy exhibited a strong performance. Stenger et al. [2013] can be considered
the continuation of Stenger [2012], expanding the scope of PC-VRP-NL to the multi-depot case.
This work deals with different aspects that are not taken into account in our PC-RSP problem: a
non-linear objective function, multi-depot and the possibility of outsourcing the service to satisfy
its customers. It was proposed an Adaptive Variable Neighborhood Search (A-VNS) algorithm to
solve the problem, and benchmark instances, both for single-depot and multi-depot. In both cases,
it was observed good performance of the proposed algorithm.

The multi-vehicle version of the Time-Dependent Prize-Collecting Arc Routing Problem
(TD-PC-ARP) is presented in Black et al. [2013]. This work not only implements the strategy of
prizes, but also includes the modeling of time, like in our problem, but without time windows for
each demand. Two metaheuristics are presented, one based on VNS and the other one on TS. VNS
had better performance on small instances and TS on large ones. Li and Tian [2016] proposes a
Two-Level Self-Adaptive Variable Neighborhood Search (TL-SA-VNS) algorithm to address the
PC-VRP problem. They deal with the concept of prizes to satisfy clients and the generation of
routes, but not with batteries, configuration of robots and equipments as we need to. They pro-
pose MILP to generate lower bounds for the problem, and a self-adaptive strategy to analyze the
neighborhood to increase the probability of finding better solutions, and thus better upper bounds.
The proposed metaheuristic showed better performances (i.e. lower gaps on obtained solutions)
than Multi-Start Iteration Local Search (MS-ILS), Multi-Start Local Search (MS-LS), and Particle
Swarm Optimization (PSO).

Tang and Wang [2006] also addresses the PC-VRP problem, but with new constraints
and an objective function that is a combination of factors. The objective takes into account the
minimization of the number of used vehicles and the overall traveled distance, and the maximization
of the number of visited customers. In our model, the objective considers only one factor, the
number of handled demands, pondered by their priority and the proximity of their scheduled starting
date with their preference date. This adapted PC-VRP is solved with an Iterated Local Search
(ILS) algorithm based on a Very Large-Scale Neighborhood (VLSN) using cyclic transfer. This
algorithm is compared with another ILS approach and a Multi-Start based on VLSN. It shows good
performances by providing better solutions than the two other ones for the tested instances.

3. MILP Formulation
We propose here a MILP for the PC-RSP problem. Let D be the set of demands for

activities (n = |D|), R the set of robots and E the set of equipments. The objective is to schedule
the next route of each robot in R, while addressing some of the demands in their time window
and satisfying the precedence constraints between demands. The robots leave the warehouse fully
charged and must return to the warehouse at the end of each route, respecting the battery capacity.
Besides, in its current route, the robot is equipped with one single equipment from E that is used to
serve all the demands in that route. Each demand has a preferred date to be served and a priority. The
objective is to find a schedule where demands are carried out as close as possible to their preferred
date, and favoring the demands according to their priority. We propose to model this objective with
triangular prize functions.

As PC-RSP is foreseen to be part of an online process, it needs the availability date ar ∈ R



of each robot r ∈ R, meaning when robot r will be back at the warehouse and ready for a new route
(i.e. fully recharged and unequipped) each time it is called. The model also requires the availability
date be ∈ R of each equipment e ∈ E and an up-to-date set of demands (i.e. the yet unscheduled
demands in the global online process).

Henceforth, we use the following terminology in this paper. A plot is an area of open
land, especially one planted with crops or pasture, typically bounded by hedges or fences, with
specific entry and exit points. It can also be called field or area. We consider here a single entry and
exit point. The warehouse is the place where robots are recharged, and equipment are set up and
removed from the robots. A location can be a plot or the warehouse. A farm is a set of locations,
here we consider a single warehouse with several plots. An activity is an operation performed by a
robot on a plot, such as irrigation, plowing, spraying, sowing, etc. A demand is a request for robots
to perform an activity on a plot, and describes all the requirements to carry out this activity (e.g. the
configurations able to carry out the activity, time window in which the activity must be achieved,
etc.). An equipment is installed on a robot to make it ready to carry out a given kind of activity.
It can also be called a tool. A configuration is a pair of compatible robot and equipment. A route
is a circuit starting at the warehouse where a robot is first set up with one equipment and refilled,
then sent successively to several plots to perform the same activity to satisfy many demands, and
ultimately returns to the warehouse to uninstall the equipment from the robot.

3.1. Parameters

The battery capacity of robot r ∈ R is given by cr ∈ R. The recharging rate of robot
r ∈ R is given by ρr ∈ R. It is assumed that this rate is the same regardless the battery charge. The
equipments compatible with robot r ∈ R are given by E(r) and the robots that are compatible with
equipment e ∈ E are given by R(e).

As a demand is associated with a plot, we propose to model a set of demands as a graph
where nodes represent demands (and consequently locations). LetG = (V,A) be the corresponding
directed graph where V = D∪{0}∪{n+1}, where 0 and n+1 both represent the (same) warehouse.
It is assumed that each route begins at 0 and ends at n + 1. The set of nodes A = {(i, j) : i, j ∈
D, i ̸= j} ∪ {(0, j) : j ∈ D} ∪ {(i, n+ 1) : i ∈ D} and A = {(i, j) : i, j ∈ D, i ̸= j}.

The time for robot r ∈ R, if installed with an equipment e ∈ E, to carry out demand
i ∈ D is given by δrei ∈ R. δre0 is the time to install equipment e ∈ E(r) on robot r ∈ R at the
warehouse and δren+1 is the time to uninstall the equipment e ∈ E(r) from the robot r ∈ R at the
warehouse. Earliest starting date for serving demand i ∈ D is li ∈ R, preferred starting date for
serving demand i ∈ D is fi ∈ R and the latest starting date for serving demand i ∈ D is ui ∈ R.

The subset of demands that precede demand j ∈ D is Pj ⊂ D, i.e. a robot can start j only
after all demands i ∈ Pj are achieved. The priority of demand i ∈ D in comparison with the other
demands is given by ψi ∈ R. This is the way to allow the farmer to express the relative importance
of the demands.

The set of configurations that can carry out demand i ∈ D is Ci ⊆ R × E. The config-
urations that go out of the warehouse (C0) and back to the warehouse (Cn+1) are assumed to be:
C0 = Cn+1 = C, where C =

⋃
i∈D Ci is the set of all valid configurations. Cij = Ci ∩ Cj , for all

(i, j) ∈ A. The time for configuration (r, e) ∈
⋃

i∈D Ci to move from location i ∈ V to location
j ∈ V is dreij ∈ R. The energy spent by configuration (r, e) ∈

⋃
i∈D Ci to move from location

i ∈ V to location j ∈ V is ereij ∈ R. The energy spent by configuration (r, e) ∈
⋃

i∈D Ci to carry
out demand i ∈ D is ϵrei ∈ R. We also set ϵrt0 = 0 for all (r, e) ∈ C0, and ϵrtn+1 = 0 for all
(r, e) ∈ Cn+1.



3.2. Decision Variables (Discrete)
We define the decision variables x, such that xreij = 1 if configuration (r, e) ∈ Cij carries

out demand i ∈ D ∪ {0} and then moves to location j ∈ D ∪ {n+ 1}, xreij = 0 otherwise.

3.3. Auxiliary Variables (Continuous)
We define the auxiliary variables z, y and w. zi = 1 if demand i ∈ D is served, or zi = 0

otherwise. yre = 1 if robot r ∈ R uses equipment e ∈ E(r) to serve the demands assigned to
a route, or yre = 0 otherwise. These variables do not need to be integer because their values are
induced by x. wre

i ∈ R is the date when configuration (r, e) ∈ Ci starts the activity of demand
i. In the case (r, e) does not carry out i, wre

i = 0. This is not necessarily the date when r arrives
at i, because it might need to wait for the opening of the time window of i to start performing the
activity.

3.4. Objective Function
We define a prize functionZi for each demand i ∈ D that depends on the datewi when the

activity starts, wi =
∑

(r,e)∈Ci
wre
i . h−i is how much the service of demand i ∈ D will be advanced

relatively to its preferred date, such that h−i = max(0, fi − wi). h+i is how much the service of
demand i ∈ D will be delayed relatively to its preferred date, such that h+i = max(0, wi − fi).
They are meaningful only if demand i is carried out. The maximum value of Zi is ψi (the priority
of demand i) when wi = fi (the preferred date) and linearly decreases with wi moving away from
fi to reach 0 when reaching the limits (li and ui). The objective is thus to maximize the sum of the
prize functions Zi as expressed by (1).

maxZ =
∑
i∈D

ψi

(
zi −

h−i
fi − li

−
h+i

ui − fi

)
(1)

3.5. Constraints ∑
(i,j)∈A

∑
(r,e)∈Cij

xreij = zi ∀i ∈ D (2)

∑
e∈E(r)

yre ≤ 1 ∀r ∈ R (3)

∑
r∈R(e)

yre ≤ 1 ∀e ∈ E (4)

∑
(ℓ,j)∈A

xreℓj −
∑

(i,ℓ)∈A

xreiℓ =


yre, if ℓ = 0

0, ∀ ℓ ∈ D

−yre, if ℓ = n+ 1

∀ℓ ∈ D,∀(r, e) ∈
⋃
k∈D

Ck (5)

∑
(i,j)∈A

∑
(r,e)∈Ci

(ϵrei + ereij )x
re
ij ≤ cr ∀r ∈ R (6)

zi ≥ zj ∀j ∈ D,∀i ∈ Pj (7)∑
(r,e)∈Ci

(
wre
i +

∑
(i,ℓ)∈A

δrei x
re
iℓ

)
≤

∑
(r,e)∈Cj

wre
j +Maij(1− zj) ∀j ∈ D,∀i ∈ Pj (8)

wre
i + δrei + dreij ≤ wre

j +Mbreij (1− xreij ) ∀(i, j) ∈ A,∀(r, e) ∈ Cij (9)



li
∑

(i,j)∈A:(r,e)∈Cij

xreij ≤ wre
i ≤ ui

∑
(i,j)∈A:(r,e)∈Cij

xreij ∀i ∈ D,∀(r, e) ∈ Ci (10)

h−i ≥ fizi −
∑

(r,e)∈Ci

wre
i ∀i ∈ D (11)

h+i ≥
∑

(r,e)∈Ci

wre
i − fi ∀i ∈ D (12)

wre
0 ≥ beyre ∀(r, e) ∈ C (13)

wre
0 ≥ aryre ∀(r, e) ∈ C (14)

xreij ∈ {0, 1} ∀(i, j) ∈ A,∀(i, j) ∈ A, ∀(r, e) ∈ Cij (15)

0 ≤ zi ≤ 1 ∀i ∈ D (16)

0 ≤ yre ≤ 1 ∀(r, e) ∈ C (17)

h−i ≥ 0 ∀i ∈ D (18)

h+i ≥ 0 ∀i ∈ D (19)

Constraints to manage the robots and equipments are given by constraints (2) to (4). Constraints
(2) require that a demand must be served by at most one robot. Constraints (3), together with
(5), ensure that a scheduled robot uses the same equipment to serve all the demands on its route.
Constraints (4) manage the availability of each equipment. Constraints to model the routes of the
robots, dealing with their energy and the time windows of the demands are given by (5) to (10).
The flow conservation constraints (5) impose that the route of each robot begins and ends at the
warehouse. Constraints (6) enforce that each robot has enough energy to serve all the demands on
its route and to return to the warehouse. Constraints (7) and (8) impose the precedence between
demands. Subtour elimination constraints (9) link variables w and x. Constants Maij and Mbreij
are defined in Section 3.7. The restrictions on time windows are imposed by (10). They also ensure
that any robot waits until the opening of the time window of a demand before starting the activity.
The variables h− and h+ - used in the objective function - are determined by constraints (11) and
(12), respectively. The domain of variables w is also lower bounded by ar and be, any time a robot
r or an equipment e is used in a route by constraints (13) and (14), respectively. The domain of
variables x, z, y, h−, and h+ are defined by constraints (15) to (19).

3.6. Towards Online Scheduling
As explained previously, PC-RSP will be called iteratively during the online process. We

propose to add constraints (20) to (26) in order to enforce that each non-scheduled demand can be
carried out in the next iteration of PC-RSP (not necessarily all of them simultaneously) if the sched-
ule defined by variables x is performed as expected. For this, the following continuous auxiliary
variables are defined: λe ∈ R that is the next date when equipment e ∈ E will be available (i.e.
when returning to the warehouse); µr ∈ R that is the next date when robot r ∈ R will be available
(i.e. when returning to the warehouse); and γrei , such that γrei = 1 if configuration (r, e) ∈ Ci could
handle demand i ∈ D in the next iteration (i.e. next time PC-RSP will be called), assuming that the
schedule defined by variables x will be performed as expected, and γrei = 0 otherwise.

λe ≥ wre
i + δrei + drei,n+1 + δren+1 − (1− xrei,n+1)Mcrei ∀i ∈ D,∀(r, e) ∈ Ci (20)



µr ≥ wre
i + δrei + drei,n+1 + δren+1 − (1− xrei,n+1)Mdrei ∀i ∈ D,∀(r, e) ∈ Ci (21)

ξr =
∑

(0,j)∈A:(r,e)∈C0j

(ϵre0 + ere0j)x
re
0j +

∑
(i,j)∈A:(r,e)∈Cij

(ϵrei + ereij )x
re
ij

+
∑

(i,n+1)∈A:(r,e)∈Ci,n+1

(ϵrei + erei,n+1 + ϵren+1)x
re
j,n+1 ∀r ∈ R

(22)

µr ≥ wre
i + δrei + drei,n+1 +

ξr

ρr
− (1− xrei,n+1)Merei ∀i ∈ D,∀(r, e) ∈ Ci (23)

λe + δre0 + dre0i ≤ ui + (1− γrei )Mf rei ∀i ∈ D,∀(r, e) ∈ Ci (24)

µr + δre0 + dre0i ≤ ui + (1− γrei )Mgrei ∀i ∈ D,∀(r, e) ∈ Ci (25)∑
∀(r,e)∈Ci

γrei ≥ 1− zi ∀i ∈ D (26)

λe ≥ be ∀e ∈ E (27)

µr ≥ ar ∀r ∈ R (28)

γreij ∈ {0, 1} ∀(i, j) ∈ A, ∀(r, e) ∈ Cij (29)

Constraints (20) determine a lower bound of when equipment e will be available after being used
in a scheduled route (i.e. when it will be available for the next route). Constraints (21) determine a
lower bound of when robot r will be available for the next route, considering the time to uninstall an
equipment from it. Constraints (22) compute the total energy ξr of robot r to perform the scheduled
route. Constraints (23) determine a lower bound of when robot r will be available for the next
iteration, considering the time to recharge the battery. Constraints (24) bound λe if equipment e is
able to satisfy demand i in the next iteration. Constraint (25) bound µr if robot r is able to satisfy
demand i in the next iteration. Constraints (26) ensure that any non-scheduled demand can be
carried out in the next iteration, at least by one available configuration. The domains of variables λ
and µ are lower bounded by constraints (27) and (28) respectively. And the domain of the variables
γ is defined by constraints (29).
3.7. Constants

Maij = ui + max
(r,e)∈Ci

(δrei ) ∀j ∈ D,∀i ∈ Pj (30)

Mbreij > uj ∀(0, j) ∈ A,∀(r, e) ∈ C0j

Mbreij = ui + δrei + dreij ∀(i, j) ∈ A : i ̸= 0, ∀(r, e) ∈ Cij
(31)

Mcrei = ui + drei,n+1 + δren+1 ∀i ∈ D,∀(r, e) ∈ Ci (32)

Mdrei = ui + drei,n+1 + δren+1 ∀i ∈ D,∀(r, e) ∈ Ci (33)

Merei = ui + drei,n+1 +
cr

ρr
∀i ∈ D,∀(r, e) ∈ Ci (34)

Mf rei = δre0 +dre0i+ max
j∈D,ṙ∈R:∀(ṙ,e)∈Cj

(
be+uj+δ

ṙe
j +dṙej,n+1+δ

ṙe
n+1

)
∀i ∈ D,∀(r, e) ∈ Ci (35)

Mgrei = δre0 +dre0i + max
j∈D,ė∈E:∀(r,ė)∈Cj

(
ar+uj+δ

rė
j +drėj,n+1+δ

rė
n+1+

cr

ρr

)
∀i ∈ D,∀(r, e) ∈ Ci

(36)
Equations (30) to (36) define the constants Maij , Mbreij , Mcrei , Mdrei , Merei , Mf rei and

Mgrei used in some constraints presented previously. They are set here to have a complementary
slack as small as possible in the model.



4. Instances Generation
In order to generate complex instances for the PC-RSP problem, the data of Solomon’s in-

stances for the VRP-TW problem (Solomon [1987]) were used, those instances have 100 customers
organized in clusters. The instances are grouped in two kinds of clusters, C1 and C2, where C1
instances have clusters more dense than those in C2. Customers’ time windows are used for the
demands and the deposit becomes the warehouse.

The robot set is composed of 3 robots, one of each kind,R = {1, 2, 3}, and the equipment
set is composed of 3 equipments, one of each kind, E = {a, b, c}. With these two sets, 6 possible
configurations are created, C = {(1, a), (1, b), (2, a), (2, c), (3, b), (3, c)}.

cr is equal to the vehicle’s capacity from Solomon’s instances. ρr is equal to cr divided by
8 hours. ar and be are set to 0. G = (V,A) is the graph from Solomon’s instances. Ci is randomly
built from C, such that |Ci| = 3. δrei is the service time from Solomon’s instances. δre0 and δren+1

are set to 5 minutes. dreij are the distances from Solomon’ instances. ereij is set to 0. ϵrei is the weight
(demand) of each customer from Solomon’s instances. There is no precedence between demands.

In order to compute the preferred date and time window of each demand in the generated
instances, it is necessary to build a viable solution (without time window constraints) for the prob-
lem, i.e. a set of routes for configurations that satisfies all the demands. From this solution, fi is set
to the time a configuration starts to carry out demand i, and randomly li is set to fi − U [0, 24] and
ui to fi + U [0, 24]. ψi is randomly set to U [1, 100].

5. Computational Results

Instances Upper bound Lower bound Relative gap
Percentage of

satisfied demands
InstancePCRSP-C101 3315.00 688.42 382% 12%
InstancePCRSP-C102 3271.00 197.07 1560% 3%
InstancePCRSP-C103 3310.00 198.25 1570% 4%
InstancePCRSP-C104 3566.00 612.22 482% 9%
InstancePCRSP-C105 3215.50 20.00 15977% 1%
InstancePCRSP-C106 3431.00 152.00 2157% 2%
InstancePCRSP-C107 3375.00 695.32 385% 10%
InstancePCRSP-C108 3245.89 332.08 877% 7%
InstancePCRSP-C109 3324.67 0.00 * 0%
InstancePCRSP-C201 4984.00 39.00 12679% 1%
InstancePCRSP-C202 5200.00 211.00 2364% 6%
InstancePCRSP-C203 5151.00 0.00 * 0%
InstancePCRSP-C204 5559.00 120.67 4507% 3%
InstancePCRSP-C205 5034.00 0.00 * 0%
InstancePCRSP-C206 5539.00 0.00 * 0%
InstancePCRSP-C207 5378.00 76.00 6976% 2%
InstancePCRSP-C208 4972.00 91.00 5364% 1%

Table 1: Results of MILP solving with execution time limit of 300 seconds.

* Not possible to calculate the gap, lower bound set to 0.



Instances Upper bound Lower bound Relative gap
Percentage of

satisfied demands
InstancePCRSP-C101 3315.00 918.74 261% 19%
InstancePCRSP-C102 3271.00 699.85 367% 10%
InstancePCRSP-C103 3309.00 439.86 652% 8%
InstancePCRSP-C104 3557.00 1262.27 182% 17%
InstancePCRSP-C105 3215.50 388.00 729% 6%
InstancePCRSP-C106 3431.00 930.28 269% 15%
InstancePCRSP-C107 3364.50 1228.87 174% 20%
InstancePCRSP-C108 3245.89 999.74 225% 19%
InstancePCRSP-C109 3324.00 737.02 351% 13%
InstancePCRSP-C201 4984.00 776.90 542% 17%
InstancePCRSP-C202 5200.00 935.42 456% 17%
InstancePCRSP-C203 5151.00 587.55 777% 10%
InstancePCRSP-C204 5559.00 559.58 893% 10%
InstancePCRSP-C205 5034.00 116.00 4240% 3%
InstancePCRSP-C206 5539.00 668.57 728% 12%
InstancePCRSP-C207 5378.00 210.00 2461% 3%
InstancePCRSP-C208 4972.00 994.34 400% 18%

Table 2: Results of MILP solving with execution time limit of 3600 seconds.

Tables 1 and 2 show results of solving the MILP model for PC-RSP with a time limit of
respectively 300 and 3600 seconds. The first field is the name of the instances in Solomon’s set.
The next two fields are the upper bound and the lower bound, i.e. the so far best integer solution
found. The fourth field is the relative gap between the two bounds. The last field is the percentage
of demands satisfied by the best found solution.

In Table 1, we can observe that it was not possible to find a viable solution for 3 instances
in C2 and 1 instance in C1 within the time limit. In Table 2, a viable solution is found for all the
instances within the time limit. The gaps are smaller in C1 than in C2 in Table 1. And the gaps are
mostly smaller in C1 than in C2 in Table 2. This suggests that the density of the clusters is a factor
that makes the problem harder to be solved.

The comparison between Table 1 and Table 2 shows an improvement in the lower bounds
with the increase of the time limit of execution. The improvement in the upper bound is very small,
indicating that the linear relaxation of the model is not very good. The improvement of the gap of
all instances can be observed, influenced mostly by lower bound improvement.

The tests were made on an Intel Xeon E5405 at 2.0 GHz, 16 GB of 667 MHz DDR2 RAM
memory, and 4 cores (hyper-threading not activated). CPLEX 20.1 was used for linear program
solving.

6. Conclusion
We proposed here a MILP formulation for the problem that we called Prize-Collecting

Robot Scheduling Problem with Time Windows and Precedence Constraints (PC-RSP). This prob-
lem is to find the next route for each robot of a fleet, in order to satisfy some demands for activities
on plots in a farm. It is part of a more global problem, the Robot Scheduling Problem with Time Win-
dow and Precedence Constraints Problem (RSP-TWP) that targets to produce a complete schedule
to satisfy all the demands for activities in a given period of time.



To solve this problem, we consider solving PC-RSP repeatedly. Moreover, as agricultural
systems are by nature subject to unpredictable events, we have foreseen to also use PC-RSP in a
global online scheduling process. It is therefore necessary to solve PC-RSP within a short time, we
assess less than 5 minutes.

As one can observe in Table 1, the proposed MILP for PC-RSP does not make possible to
get a viable solution for all the instances within this time limit, showing the necessity of studying
heuristics in future works to solve PC-RSP. However, from these results, it appears that the structure
of the graph representing the locations of the farm has an impact on the difficulty to solve the
problem. Studies to improve the model in order to find better upper bounds more rapidly should be
done to solve PC-RSP more efficiently with MILP. After these studies, a method to solve PC-RSP
for the global RSP-TWP problem will be considered.
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