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Regular expansion for the characteristic exponent of a product

of 2× 2 random matrices

Benjamin Havret∗

Abstract

We consider a product of 2× 2 random matrices which appears in the physics literature in the
analysis of some 1D disordered models. These matrices depend on a parameter ε > 0 and on a
positive random variable Z. Derrida and Hilhorst (J Phys A 16:2641, 1983, �3) conjecture that
the corresponding characteristic exponent has a regular expansion with respect to ε up to � and
not further � an order determined by the distribution of Z. We give a rigorous proof of that
statement. We also study the singular term which breaks that expansion.

Keywords : Product of random matrices, Lyapunov exponent, Disordered systems.
AMS subject classi�cation (2010 MSC) : 82B44, 60B20, 37H15.

1 Introduction

Random matrix products appeared in the physics literature as a powerful tool to study disordered
systems, ranging from Anderson model [1, 17] to disordered harmonic chains [8, 23] or disordered
Ising model (discussed below). Among that wide range of models, the present work focuses on a very
speci�c one, introduced by B. Derrida and H. Hilhorst in [6] to study the strong interaction limit of a
1D disordered Ising model.

Let (Zn) be iid non-negative and non-deterministic random variables, with law µ. For ε > 0,
consider the matrices

Mn,ε =

(
1 ε
εZn Zn

)
. (1.1)

We will write Z for a random variable with law µ and Mε for the associated matrix. In fact, we will
use Z instead of µ to formulate our assumptions and results. The (leading) Lyapunov exponent �
also called characteristic exponent � is the growth rate of their product:

L(ε) = LZ(ε) = lim
n→+∞

1

n
log ‖Mn,ε · · ·M1,ε‖ . (1.2)

We will be particularly interested in the behaviour of L(ε) in the limit ε→ 0.
2 × 2 matrices of the form (1.1) have appeared several times to express the free energy of the

disordered 1D Ising model [2, 5, 6, 19], where the limit ε → 0 represents a regim of very strong
interactions. It is also used in the celebrated work by B. McCoy and T. T. Wu [18] to study a 2D
Ising model with 1D disorder, as well as in a similar model proposed by R. Shankar and G. Murthy
[24] which includes frustrated interactions.

From a mathematical point of view, a wide literature proposed to study these models and more
general matrix products. One should cite the seminal work by H. Furstenberg et al. [9, 10] and
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Oseledec's theorem [20] (see [25] for a review). Looking at our own task, Furstenberg�Kesten theorem
[10] asserts that the limit (1.2) exists almost surely and is deterministic, as long as E[log+ ‖Mε‖]
is �nite (here E[log+ Z] < +∞ su�ces). When ε vanishes, the matrix Mn,ε tends to a diagonal
matrix and the Lyapunov exponent can be explicitly computed thanks to the law of large numbers:
L(0) = max(0,E[logZ]). However, diagonal matrices are a degenerate case in the theory developed by
H. Furstenberg et al. and one expects, in most cases, that ε 7→ L(ε) is singular around 0.

It is worth stressing from now that the diagonal matrix Mn,0 is still random. Therefore we are not
in the framework of weak disorder limits such as [3, 7, 22] in which the matrix Mn,0 is deterministic.
The main reference paper for our analysis is rather [6].

1.1 General conjecture and known results

The present work is motivated by the recent mathematical progress by Genovese et al. [12]. In
this paper some physical predictions, about the limiting behaviour of L(ε) when ε vanishes, mainly
stated in [6] (see also [2, 5, 19]), are proven. However the physical predictions go beyond. We now �rst
formulate these predictions in the form of conjectures, which detail the expected limiting behaviour
of L(ε), depending on the distribution of Z. Then we explain what has been proven and what our
contribution is.

De�nition 1.1. A real-valued random variable ξ is said to be arithmetic when there exists a constant
c > 0 such that c ξ ∈ Z ∪ {±∞} almost surely.

Conjecture 1.2. Assume that logZ is nonarithmetic.

1. Suppose in addition that there exists α ∈ (0,+∞) such that E[Zα] = 1.

• If α 6∈ {1, 2, . . .}, then, as ε goes to 0,

L(ε) =
bαc∑
k=1

(−1)k+1`kε
2k + (−1)dαe+1CZε

2α + o(ε2α), (1.3)

where, for k 6 bαc, `k is a positive rational function of E[Z], . . . ,E[Zk]; and CZ is a positive
real number.

• If α ∈ {1, 2, . . .}, then

L(ε) =
α−1∑
k=1

(−1)k+1`kε
2k + (−1)α+1CZε

2α log(1/ε) + o
(
ε2α log ε

)
, (1.4)

where the coe�cients (`k) are the same positive rational functions of Z's moments as before;
and CZ is still a positive constant.

2. If E[logZ] = 0 � it is the �α = 0� case � then

L(ε) = CZ
log(1/ε)

+ o
(
(log 1/ε)−1

)
. (1.5)

The same references motivate further comments.

Remark 1.3. The coe�cients (`k) appearing in the conjecture can be computed recursively. For instance

`1 =
E[Z]

1− E[Z]
, `2 =

(1 + E[Z])2E[Z2] + 2E[Z]2(1− E[Z2])

2(1− E[Z])2(1− E[Z2])
. (1.6)
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Precise recursive formulas will be derived in Section 3. However it is not clear that a simple closed
formula for `k can be derived. By contrast, apart from a few special situations, the calculation of the
constant CZ is a very hard problem [5, �4.2.1]. On another note, in all the instances developed in
Conjecture 1.2, the constant CZ should be replaced by a multiplicatively periodic function of ε if logZ
is arithmetic. A precise computation of such a multiplicatively periodic function CZ is made in [6] for
a very speci�c (and singular) distribution of Z.

Remark 1.4. We discuss in this remark the instances which are excluded by the conjecture. The
conjecture actually covers almost all the cases where E[logZ] 6 0 and P(Z > 1) > 0, except the one
discussed in the item 4 of Remark 1.6.

1. The case E[logZ] > 0 (which corresponds to α < 0) boils down to E[logZ] < 0 by factorizing Z in
the matrix Mε: LZ(ε) = E[logZ]+L1/Z(ε). Similarly, by conjugating by the matrix Diag(−1, 1),
one observes that L is an even function: L(ε) = L(−ε). It implies that the behaviour ε2α is
rather |ε|2α, so it is actually singular even when α is a half-integer.

2. If Z 6 1 almost surely (that is �α = +∞�), then L(ε) admits a regular expansion with respect to
ε2 up to any order. Is it smooth or analytic in a neighborhood of 0? The problem is still open,
except if Z ∈ [0, 1−η] almost surely, for some η ∈ (0, 1). If so then it is a consequence of a result
by D. Ruelle [21] that L(ε) is a real analytic function of ε around 0.

3. That same theorem of D. Ruelle also ensures that the Lyapunov exponent L(ε) is always an
analytic function of ε on (0,+∞).

Very little of Conjecture 1.2 has been made mathematically rigorous. To our knowledge only (1.3)
has been successfully tackled [12], and only for α ∈ (0, 1). When α ∈ (0, 1), that is E[logZ] < 0 and
E[Z] > 1, the singularity ε2α happens to be the leading behaviour of L(ε) and (1.3) takes the form:

L(ε) ∼
ε↘0

CZ ε
2α. (1.7)

This simpli�es in a substantial way the analysis: Derrida and Hilhorst in [6] (see also [2, 6, 19]) explicitly
give, based on a two scale argument, a probability measure that is expected to be close, when ε is
small, to the invariant probability for the action of Mε on the projective space P1(R) (that is, the
distribution of Xε, in the next paragraph's notations). Then, they use this probability to compute
the Lyapunov exponent. This two scale analysis is made rigourous by G. Genovese et al. [12], who
show that this probability measure is indeed close to the invariant measure in a suitable norm, and
this control is su�ciently strong to yield precisely (1.7). It appears to be rather challenging to follow
the same steps for α > 1: the guess for the invariant probability would have to be tuned to yield
the bαc terms of the regular expansion and the singular ε2α term. Even at a heuristic level, such a
construction is lacking. Note, in particular, that in [6], the α > 1 case is treated in a expedite way,
without reference to the invariant probability, and without capturing the singularity ε2α.

On the other hand, a weak disorder limit of the model has been investigated. In this limit, the
product of random matrices becomes a stochastic di�erential equation system. An exactly solvable
structure emerges from that SDE and the analog of (1.3) and (1.4) has been shown to hold (see [13]
for the case α ∈ (0, 2) and [4] for the general case). As pointed out in [4], it is rather remarkable that
the structure of (1.3) and (1.4) holds also in the weak disorder limit and this appears to be a rather
deep fact. Nonetheless, the fact that the conjecture holds in the weak disorder limit is far from being
a mathematical proof of the conjecture for products of matrices.

The main aim of our work is to approach (1.3) and (1.4). Our results are the following.

1. L(ε) admits a regular expansion in powers of ε2, up to order ε2bαc, or ε2(α−1) in the integer case
(that is the regular part of (1.3) and (1.4)).

3



2. We prove that the next order term after this regular part, call it R(ε), satis�es, as ε goes to 0,
for instance in the non-integer case

ε2bαc � R(ε)� ε2(bαc+1). (1.8)

Since ε 7→ L(ε) is an even function, only even powers of ε are non-singular (see Remark 1.4
item 1). Hence, R(ε) is necessarily singular. A quantitative and explicit control on this term is
given, but it falls short to prove the expected ε2α behavior of (1.3).

1.2 Assumptions and main result

We will work under the following assumptions, supposed to be satis�ed in the whole paper.

Assumptions 1.5. The random variable Z is positive, non-deterministic, and

(a) E[logZ] < 0 (can be −∞);

(b) There exists δ > 0 such that E[Zδ] < +∞.

Introduce
A = {γ ∈ [0,+∞] such that E[Zγ ] < 1}, (1.9)

and
α = supA ∈ (0,+∞]. (1.10)

The Assumptions 1.5, together with a convexity argument, ensure that A is an interval of positive
length. Note that α = +∞ if and only if Z 6 1 almost surely. In any case A takes the following
form: either E[Zα] = 1 and then A = (0, α), or E[Zα] < 1, and then A = (0, α]. In the latter case,
necessarily, E[Zγ ] = +∞ for every γ > α. Here is the main result of this work.

Theorem A. There exist positive coe�cients (`k), where `k is a rational function of the moments
E[Z], . . . ,E[Zk], such that the following expansions hold, as ε goes to 0.

1. If α = +∞ ( i.e., if Z 6 1 a.s.), then for every K > 0,

L(ε) =
K∑
k=1

(−1)k+1`kε
2k +O(ε2(K+1)). (1.11)

2. If α ∈ {1, 2, . . .} and if E[Zα] = 1, then

L(ε) =
α−1∑
k=1

(−1)k+1`kε
2k + (−1)α+1R(ε), (1.12)

where R(ε) is nonnegative and

ε2α � R(ε) 6 Cε2α log(1/ε), (1.13)

for some C > 0. The lower bound can be improved if, in addition, Z has a bounded support, to
obtain, for some C > c > 0, the sharper estimate

c 6
R(ε)

ε2α log(1/ε)
6 C. (1.14)
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3. If α ∈ (0,+∞)\{1, 2, . . .} and if there exists γ > α such that E[Zγ ] is �nite, then

L(ε) =
bαc∑
k=1

(−1)k+1`kε
2k + (−1)dαe+1R(ε), (1.15)

where R(ε) is nonnegative and
ε2dαe � R(ε) 6 Cε2α, (1.16)

for some C > 0. The lower bound can be improved if, in addition, Z has a bounded support: in
that case, there exists θ ∈ (α, dαe) and c > 0 such that R(ε) > cε2θ.

Remark 1.6. 1. The constant θ is explicit: θ = dαe − log E[Zdαe]
log ‖Z‖∞ .

2. When α is �nite, the lower bounds of the error in (1.13) and (1.16) assert in particular that the
regular expansions (1.12) and (1.15) cannot be continued beyond K = dαe − 1: L(ε) is singular.

3. When α is not an integer, the assumption �there exists γ > α such that E[Zγ ] is �nite� can be
replaced by the weaker assumption �E[Zα log+ Z] < +∞� (see Remark 5.4).

4. Suppose that α is �nite and E[Zα] < 1 (and E[Zγ ] = +∞ for every γ > α). Whether α is
an integer or not, under some technical assumptions on the distribution of Z, the Lyapunov
exponent is slightly regularized (see Remark 5.4 for a sketch of proof):

L(ε) =
bαc∑
k=1

(−1)k+1`kε
2k + (−1)bαc+1R(ε), ε2(bαc+1) � R(ε)� ε2α. (1.17)

5. We mention that, when α ∈ (0, 1), Theorem A gives an estimate of L(ε) which is rough, and of
course strongly weaker than [12].

1.3 Strategy of the proof and structure of the paper

A classical result in the theory of product of random matrices ensures that the Lyapunov exponent
can be written

L(ε) = E[log(1 + ε2Xε)], (1.18)

where Xε is an invariant measure for the random transformation, on [0,+∞), x 7→ Z 1+x
1+ε2x . In other

words it satis�es

Xε
(d)
= Z

1 +Xε

1 + ε2Xε
, (1.19)

where Z is independent of Xε (on the right hand side). Existence and uniqueness of such a random
variable Xε will be justi�ed in Section 2, as well as formula (1.18). A very useful uniform stochastic
dominance of the random variables (Xε)ε>0 will also be proved.

From that point on, the work will only be based on formula (1.18) for the Lyapunov exponent and
the �xed point equation (1.19). Thanks to the former, the problem will readily boil down to studying
Xε's moments. That study can be split into two subproblems. We will know since Section 2 which
ones of Xε's moments are bounded as ε goes to 0 and which diverge. The two subproblems then are:

• Deriving a regular expansion forXε's bounded moments, involving an error in terms of a divergent
moment of Xε (Sections 3 and 4);

• Estimating the divergence speed of Xε's unbounded moments (Section 5).
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The former point is addressed in Section 3. The analysis is based on a bootstrap procedure, based
on recursive uses of the �xed point equation (1.19). It gives more and more precise expansions of these
moments. Eventually, it will provide the regular expansion (1.12) or (1.15) with an upper bound on
the error R(ε), involving a divergent moment of Xε. That work will be generalized in the appendix A,
for matrices of size d, with more general entries.

That same strategy, using a bootstrap procedure to obtain a more and more precise estimate of
Xε's moments, can also provide a lower bound on the error, involving a divergent truncated moment
of Xε: Section 4 will be devoted to that analysis.

At the end of these sections, the following theorem will be proved, which, unlike Theorem A, does
not require any extra assumption on Z (apart from Assumptions 1.5).

Theorem B. Fix B > 0, and an integer K ∈ A ∪ {0}. One has, for all ε > 0,

L(ε) =
K∑
k=1

(−1)k+1`kε
2k + (−1)K+2RK(ε), (1.20)

where, for all β ∈ (K,K + 1], and for some positive constants c and Cβ,

cε2(K+1)E[XK+1
ε 1ε2Xε6B ] 6 RK(ε) 6 Cβε

2βE[Xβ
ε ]. (1.21)

Remark 1.7. The coe�cients (`k) are the same as in Theorem A. The neat thing about that theorem
is that, unlike the lower bound (1.16) of Theorem A, the estimate (1.21) should be �sharp� in the
following sense. If one proves that, as ε goes to 0, P(Xε > cε−2) > Cε2α for some positive constants
c and C (the precise analysis of Mε's invariant measure conducted in [12] provides such an estimate
when α ∈ (0, 1)) then (1.21) becomes cε2α 6 RK(ε) 6 Cε2α (with a log correction if α is an integer). It
is the good order of ε predicted by Conjecture 1.2. Without such an estimate, (1.21) is not satisfactory
yet for it is not explicit enough.

To obtain the explicit bounds given in Theorem A, a study of the divergence speed of Xε's divergent
moments is needed. It is conducted in Section 5. The derivation of upper bounds is based a stochastic
dominance found in Section 2 (namely Xε 4 X0), and on renewal theory results describing the limiting
behaviour of the tail of X0. The lower bounds are only derived when Z is bounded. The analysis is
again based on a recursive use of the �xed point equation (1.19). It is the point where the sharpness
of the lower bound (1.21) of the singularity is lost. Theorem A is proved at the end of Section 5.

2 Existence and �rst properties of the invariant measure Xε

In this section we prove the existence of the random variables Xε and derive formula (1.18). A �rst
result on Xε's moments is also proved: it spells out which moments of Xε are bounded as ε goes to 0
and which diverge.

We start by introducing an invariant measure of the random matrix M0 (ε = 0). It will play a
central role to de�ne the random variables Xε and control their moments. First I need to �x a notation
for the stochastic dominance.

De�nition 2.1. The stochastic dominance will be denoted by 4. Formally, if X and Y are two real-
valued random variables, X 4 Y means that P(X > x) 6 P(Y > x) for every x ∈ R. Equivalently,
there exist two copies X̃ and Ỹ , of X and Y respectively, such that X̃ 6 Ỹ almost surely.

Lemma 2.2. Fix a sequence (Zn) of iid copies of Z. The series

X0 =

+∞∑
n=1

Z1 · · ·Zn (2.1)
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converges almost surely. It is the unique random variable (in distribution) satisfying

X0
(d)
= Z(1 +X0), (2.2)

with Z independent of X0. Moreover E[log+X0] is �nite; and for every γ > 0,

E[Xγ
0 ] < +∞ if and only if E[Zγ ] < 1. (2.3)

Proof. Recall that E[logZ] < 0. The almost sure convergence of the series follows from the law of
large numbers, whereby

Z1 · · ·Zn = enE[logZ]+o(n) as n→ +∞. (2.4)

Of course

X0 =

+∞∑
n=1

Z1 · · ·Zn = Z1

(
1 +

+∞∑
n=2

Z2 · · ·Zn

)
(2.5)

satis�es the identity (2.2). Let's turn to the uniqueness. If X̃0 is another random variable satisfy-
ing (2.2), then, applying this identity N times we get

X̃0
(d)
=

N∑
n=1

Z1 · · ·Zn + Z1 · · ·ZN X̃0, (2.6)

where Z1, . . . , ZN are iid copies of Z, independent of X̃0. With (2.4), the last term vanishes (in distri-
bution) as N goes to +∞, whereas the �rst sum converges monotonically towards X0. So eventually,

X̃0
(d)
= X0. The uniqueness is proved.
Now �x γ > 0 such that E[Zγ ] < 1. We want to prove that E[Xγ

0 ] is �nite. If γ > 1 we use
Minkovsky's inequality:

E[Xγ
0 ]

1/γ 6
+∞∑
n=1

E[(Z1 · · ·Zn)γ ]1/γ =

+∞∑
n=0

E[Zγ ]n/γ . (2.7)

Thus E[Xγ
0 ] is �nite. On the other hand, if γ ∈ (0, 1), then for all x, y > 0, (x+ y)γ 6 xγ + yγ . So

E[Xγ
0 ] 6

+∞∑
n=0

E[Zγ ]n, (2.8)

which is again �nite. Now, if E[Zγ ] > 1, then with the identity (2.2),

E[Xγ
0 ] = E[Zγ ]E[(1 +X0)

γ ] > E[(1 +X0)
γ ], (2.9)

which can hold only if E[Xγ
0 ] = +∞ (or γ = 0). Eventually, pick γ ∈ A so that E[Zγ ] < 1. With the

foregoing, we then know that E[Xγ
0 ] < +∞. Thus, by Jensen's inequality, E[log+X0] is �nite.

The next lemma provides the existence of the random variables Xε and the desired formula for the
Lyapunov exponent.

Lemma 2.3. For all ε > 0, there exists a non-negative random variable Xε, unique in distribution,
such that

Xε
(d)
= Z

1 +Xε

1 + ε2Xε
, (2.10)
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with Z independent of Xε. Moreover, for every ε > 0, Z 4 Xε 4 X0. Furthermore,

L(ε) = E[log(1 + ε2Xε)], (2.11)

and L(ε) is also the growth rate of the entries of Mn,ε · · ·M1,ε: for every ~x, ~y ∈ R2 with nonnegative
entries,

1

n
log 〈~x,Mn,ε · · ·M1,ε~y〉 −→

n→+∞
L(ε) a.s. and in L1. (2.12)

Remark 2.4. There could be other distributions, supported on R, satisfying (2.10). We only claim
uniqueness for non-negative invariant measure. However, if Z does not have a �nite support, then one
can prove, using classical results of products of random matrices (see [1, Chapter 3]), that there exists
a unique invariant measure on R. With Lemma 2.3, we know that it must be supported on R+.

In what follows, Xε will always denote the unique non-negative invariant random variable of
Lemma 2.3.

Proof. We begin with the proof of the existence, for which we use a standard procedure. Fix an iid
sequence (Zn) of copies of Z, set x0 = 0 and de�ne recursively the random variables

xn+1 = Zn+1
1 + xn
1 + ε2xn

. (2.13)

Denote by νn the distribution of xn and consider the measure ρN = 1
N

∑N−1
n=0 νn. Observe that for any

n > 0, xn is nonnegative and xn+1 6 Zn+1(1 + xn). Thus, by an easy induction,

0 6 xn 6
n−1∑
k=0

Zn · · ·Zn−k 4 X0 : (2.14)

the random variables xn are uniformly bounded by X0. Consequently the sequence (ρN ) is tight.
Pick a limit point ρ∞ of that sequence and �x a random variable Xε with distribution ρ∞. The
limit distribution ρ∞ must be invariant under the random transformation (2.13). In other words it
must satisfy (2.10). The existence of an invariant measure supported on R+ is proved. Incidentally
we obtained Xε 4 X0. As for the stochastic lower bound Xε < Z, it directly follows from the
identity (2.10).

To deal with the uniqueness, assume that X
(0)
ε and Y

(0)
ε are two such random variables and �x an

iid sequence (Zn) of copies of Z, independent of X
(0)
ε and Y

(0)
ε . We introduce, for n > 0,

X(n+1)
ε = Zn+1

1 +X
(n)
ε

1 + ε2X
(n)
ε

, Y (n+1)
ε = Zn+1

1 + Y
(n)
ε

1 + ε2Y
(n)
ε

. (2.15)

Observe that, almost surely,

|X(n+1)
ε − Y (n+1)

ε | = Zn+1
(1− ε2)|X(n)

ε − Y (n)
ε |

(1 + ε2X
(n)
ε )(1 + ε2Y

(n)
ε )

6 Zn+1|X(n)
ε − Y (n)

ε |. (2.16)

Thus, with (2.4), |X(n)
ε −Y (n)

ε | vanishes almost surely as n goes to +∞. On the other hand, note that,

with the construction (2.15), for all n > 0, X
(n)
ε

(d)
= X

(0)
ε and Y

(n)
ε

(d)
= Y

(0)
ε . The uniqueness follows.

Then ρN actually converges (without extraction) towards Xε's distribution.
We are left with the proof of formula (2.11). Thanks to a result by H. Hennion [14], since Mε's

entries are positive, the convergence (2.12) holds. On the other hand, for every n > 0,

Mn,ε · · ·M1,ε

(
1

εX
(0)
ε

)
=

[
n−1∏
k=0

(1 + ε2X(k)
ε )

](
1

εX
(n)
ε

)
(2.17)
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So, by taking the log and the expectation,

1

n
E[log ‖Mn,ε · · ·M1,ε

t(1, εX(0)
ε )‖] = E[log(1 + ε2Xε)] +

1

n
E[log ‖(1, εXε)‖]. (2.18)

Since E[log+Xε] 6 E[log+X0] is �nite (Lemma 2.2), the last term vanishes as n goes to +∞. On the
other hand, one has, for every n > 0,

(1, 0)Mn,ε · · ·M1,ε
t(1, 0) 6 ‖Mn,ε · · ·M1,ε

t(1, εX(0)
ε )‖ 6 ‖Mn,ε · · ·M1,ε‖(1 +X(0)

ε ). (2.19)

Since we know that both the lower and upper bounds goes to L(ε) (after taking log and expectation)
as n goes to +∞, almost surely and in L1, we get the result.

Remark 2.5. Formula (2.11) can also be proved with a classical result by H. Furstenberg and Y. Kifer
[11, Corollary of Theorem 3.10], which gives an explicit formula for the Lyapunov exponent in terms
of invariant measures as soon as M is an invertible random matrix of size d× d with no deterministic
proper invariant subspace. We could also have used the convergence ρn → L(Xε) to prove (2.11)
and (2.12) without using H. Hennion's results.

Remark 2.6. If one notes that the map ε 7→ 1+x
1+ε2x . is monotone, one obtains, with the previous

construction, that the random variables Xε are stochastically decreasing with ε: for all ε′ > ε > 0 one
has Xε′ 4 Xε 4 X0.

Lemma 2.7. Xε → X0 in distribution when ε→ 0.

Proof. The stochastic dominance Xε 4 X0 ensures that the family of random variables (Xε)ε>0 is
tight. Consider a limit point X̃0 of Xε as ε goes to 0. Since Xε satis�es the identity (2.10), the limit

point X̃0 must satisfy X̃0
(d)
= Z(1 + X̃0). That means, using Lemma 2.2, that X0 is the only possible

limit point of Xε as ε goes to 0. The convergence of Xε towards X0 (in distribution) follows.

Using classical integration theorems, one readily obtains the following limiting behaviour of Xε's
moments, or truncated moments, which will be needed in the proof of Theorem A.

Corollary 2.8. For any γ > 0,

1. If E[Zγ ] < 1 then, as ε goes to 0, E[Xγ
ε ] = O(1).

2. If E[Zγ ] > 1 then for any B > 0,

E
[
Xγ
ε 1ε2Xε6B

]
−→
ε→0

+∞. (2.20)

Proof. Recall that E[Xγ
0 ] is �nite if and only if E[Z

γ ] < 1 (Lemma 2.2). With the stochastic dominance
Xε 4 X0 provided by Lemma 2.3, we get E[Xγ

ε ] = O(1) when E[Zγ ] < 1. On the other hand if
E[Zγ ] > 1, then E[Xγ

0 ] = +∞ (Lemma 2.2). Since Xε 4 X0, one can pick representatives X̃ε and X̃0

such that X̃ε 6 X̃0 almost surely. It gives the lower bound

E
[
Xγ
ε 1ε2Xε6B

]
> E

[
X̃γ
ε 1ε2X̃06B

]
(2.21)

for any B > 0. By Fatou's lemma and the convergence in distribution provided by Lemma 2.7, the
latter lower bound goes to +∞ as ε goes to 0.
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3 Regular expansion (Theorem B: upper bound)

In this section we prove the existence of a regular expansion for the Lyapunov exponent L(ε).
We also lay out the method, which will be used twice more: for the generalization of this result in
Appendix A and in Section 4 to obtain the lower bound of the error. It is based on the study of a
regular expansion for the moments of Xε which are bounded as ε goes to 0. Let us �rst state the main
result of the section.

Proposition 3.1. Pick an integer K ∈ A ∪ {0}, and �x β ∈ [K,K + 1]. The following expansion
holds when ε goes to 0,

L(ε) =
K∑
k=1

(−1)k+1`kε
2k +O(ε2βE[Xβ

ε ]), (3.1)

where, for k 6 K, the coe�cient `k is a positive rational function of E[Z], . . . ,E[Zk].

Remark 3.2. With some extra e�ort, O(ε2βE[Xβ
ε ]) can be replaced by O(E[(ε2Xε)

β1 ∧ (ε2Xε)
β2 ]) for

any β1, β1 ∈ [K,K+1]. It will only be needed to explain some generalizations discussed in Remark 1.6.

Proof. We use identity L(ε) = E[log(1 + ε2Xε)] (Lemma 2.3) and expand the logarithm. There exists
C > 0 such that for all x > 0, ∣∣∣∣∣∣log(1 + x)−

K∑
j=1

(−1)j+1

j
xj

∣∣∣∣∣∣ 6 Cxβ . (3.2)

Consequently

L(ε) =
K∑
j=1

(−1)j+1

j
ε2jE[Xj

ε ] +O
(
ε2βE[Xβ

ε ]
)
. (3.3)

Lemma 3.3. For all l 6 K, the following expansion holds,

E[X l
ε] =

K−l∑
k=0

(−1)kgl,kε2k +O(ε2(β−l)E[Xβ
ε ]), (3.4)

where, for all l > 1 and k > 0, the coe�cient gl,k is a positive rational function of E[Z], . . . ,E[Zl+k].

We �rst admit Lemma 3.3 and conclude the proof of Proposition 3.1. The substitution of (3.4)
into (3.3) yields

L(ε) =
K∑
j=1

K−j∑
k=0

(−1)j+k+1

j
ε2(j+k)gj,k +O

(
ε2βE[Xβ

ε ]
)
. (3.5)

It can be rewritten

L(ε) =
K∑
s=1

(−1)s+1`sε
2s +O

(
ε2βE[Xβ

ε ]
)
, with `s =

K∑
j=1

K−j∑
k=0

gj,k
j

1j+k=s, (3.6)

and `s is a positive rational function of E[Z], . . . ,E[Zs] by inspection.

We are left with the proof of Lemma 3.3, for which we brie�y explain the strategy. Write the
identity

E[Xk
ε ] = E[Zk]E

[(
1 +Xε

1 + ε2Xε

)k]
. (3.7)

10



Then by expanding the denominator one gets

E[Xk
ε ] = E[Zk]

n∑
j=0

(
−k
j

)
ε2jE

[
(1 +Xε)

kXj
ε

]
+ Remainder. (3.8)

It gives a relation between the moments of Xε which will be used via a bootstrap procedure: the sub-
stitution of a regular expansion for Xε's �rst moments into (3.8) will provide a more precise expansion
of E[Xk

ε ]. That new expansion will in turn be injected into (3.8) (for another k), to obtain a more
precise regular expansion for that other moment, et cætera. Of course that procedure should be done
in a speci�c order. Doing it rigorously will require a double induction, on k and the length of the
expansions. Let's now proceed to the detailed proof.

Proof of Lemma 3.3. Set δ = β − K. We prove, using a course-of-values double induction with the
lexicographic order on (m, j), that if j +m 6 K, then E[Xj

ε ] has an expansion up to the order ε2m:

E[Xj
ε ] =

m∑
k=0

(−1)kgj,kε2k +O
(
ε2(m+δ)E[Xβ

ε ]
)
, (3.9)

where for every j > 1 and k > 0, the coe�cient gj,k is a positive rational function of E[Z], . . . ,E[Zj+k].
Of course E[X0

ε ] admits such an expansion, up to any order. All that remains is the inductive step.
Fix l > 1 and n > 0 such that l + n 6 K and suppose that (3.9) holds

(A) for all j 6 K and m 6 (n− 1) ∧ (K − j);

(B) for all j 6 l − 1, and m 6 n.

We want to show that it also holds for (j,m) = (l, n). To this end, write

E[X l
ε] = E

[(
Z

1 +Xε

1 + ε2Xε

)l]
= E[Zl]

l∑
r=0

(
l

r

)
E

[
Xr
ε

(1 + ε2Xε)l

]
. (3.10)

We want to expand the denominator with respect to ε. Let C > 0 be such that for any x > 0 and
l,m 6 K, ∣∣∣∣∣ 1

(1 + x)l
−

m∑
i=0

(
−l
i

)
xi

∣∣∣∣∣ 6 Cxm+δ. (3.11)

Thus, for every r 6 l,∣∣∣∣∣E
[

Xr
ε

(1 + ε2Xε)l

]
−

n∑
i=0

(
−l
i

)
ε2iE[Xi+r

ε ]

∣∣∣∣∣ 6 Cε2(n+δ)E[Xr+n+δ
ε ] 6 Cε2(n+δ) max

06k6K
E[Xk+δ

ε ]. (3.12)

Actually
max
k6K

E[Xk+δ
ε ] = O(E[Xβ

ε ]). (3.13)

Indeed, if 1 6 k 6 K − 1, then E[Zk+δ] < 1, so E[Xk+δ
ε ] 6 E[Xk+δ

0 ] < +∞ (Lemmas 2.2 and 2.3). On
the other hand E[XK+δ

ε ] = E[Xβ
ε ] > E[Zβ ] > 0 (Lemma 2.3). Thus, with (3.12) and (3.13), we can

write, for every r 6 l,

E

[
Xr
ε

(1 + ε2Xε)l

]
=

n∑
i=0

(
−l
i

)
ε2iE[Xi+r

ε ] +O(ε2(n+δ)E[Xβ
ε ]). (3.14)

11



And then, injecting it into (3.10), we get

E[X l
ε] = E[Zl]

l∑
r=0

(
l

r

) n∑
i=0

(
−l
i

)
ε2iE

[
Xi+r
ε

]
+O(ε2(n+δ)E[Xβ

ε ]). (3.15)

We then isolate the term �(i, r) = (0, l)� � that is E[Zl]E[X l
ε] � on the left-hand side and divide by

1− E[Zl], to get

E[X l
ε] =

E[Zl]

1− E[Zl]

∑
06r6l, 06i6n

(i,r)6=(0,l)

(
l

r

)(
−l
i

)
ε2iE

[
Xi+r
ε

]
+O(ε2(n+δ)E[Xβ

ε ]). (3.16)

We claim that the induction hypothesis provides expansions for all these terms, up to the required
order. The induction hypothesis (3.9) on E[Xi+r

ε ] (induction hypothesis with j = i+ r and m = n− i,
which is contained in the item (B) if i = 0 and in the item (A) if i > 1), states that

E[Xi+r
ε ] =

n−i∑
k=0

ε2k(−1)kgi+r,k +O
(
ε2(n−i+δ)E[Xβ

ε ]
)
. (3.17)

We then inject it into (3.16). It yields

E[X l
ε] =

E[Zl]

1− E[Zl]

∑
06r6l, 06i6n

(i,r)6=(0,l)

(
l

r

)(
−l
i

)(
ε2i

n−i∑
k=0

ε2k(−1)kgi+r,k +O
(
ε2(n+δ)E[Xβ

ε ]
))

. (3.18)

One can already observe that it is a regular expansion of E[X l
ε] up to the order n, as expected. The

following lines intend to derive a recursive formula for gl,k so as to check its sign. First note that(
−l
i

)
= (−1)i

(
l + i− 1

i

)
. (3.19)

Thus (3.18) becomes

E[X l
ε] =

E[Zl]

1− E[Zl]

∑
06r6l, 06i6n

(i,r)6=(0,l)
06k6n−i

(
l

r

)(
l + i− 1

i

)
ε2(k+i)(−1)k+igi+r,k +O

(
ε2(n+δ)E[Xβ

ε ]
)
. (3.20)

Eventually, it can be written as

E[X l
ε] =

n∑
s=0

(−1)sgl,sε2s +O
(
ε2(n+δ)E[Xβ

ε ]
)
, (3.21)

with, for every s 6 n,

gl,s =
E[Zl]

1− E[Zl]

∑
06r6l, 06i6n

(i,r) 6=(0,l)
06k6n−i

(
l

r

)(
l + i− 1

i

)
gi+r,k1i+k=s. (3.22)

Thanks to the induction hypothesis, it is a positive rational function of E[Z], . . . ,E[Zl+n]. The induc-
tive step is proved, and the lemma follows.
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4 Theorem B: lower bound on the error

We prove here the lower bound on the error given in Theorem B, formula (1.21). We already
saw in Proposition 3.1's proof, when we studied the signs before the coe�cients `k or gl,k, that when
expanding the algebraic fractions (1 + ε2Xε)

−r, the term ε2n always comes with the sign (−1)n. The
same occurs for the error, at each step, at the order εK+1: it comes with the sign (−1)K+1. As a
result, the error terms, which invariably accumulate with the same sign, e�ectively add up and cannot
o�set one another. In practice, these error terms can also be bounded from below. It yields the next
result.

Proposition 4.1. Fix an integer K ∈ A ∪{0} and B > 0. There exists c > 0 such that, for all ε > 0,

(−1)K+2

[
L(ε)−

K∑
k=1

(−1)k+1`kε
2k

]
> cε2(K+1)E[XK+1

ε 1ε2Xε6B ], (4.1)

where the coe�cients (`k) are the same as in Proposition 3.1.

Unsurprisingly, a similar scheme as in Proposition 3.1's proof will be used. We will proceed to
a double induction, corresponding to an underlying bootstrap procedure. The only actual di�erence
compared to Section 3 is that the estimate (3.11) is replaced by the lower bound

1

(1 + x)m
−

r∑
i=0

(
−m
i

)
xi > C(−x)r+11x6B . (4.2)

We begin with the equivalent of Lemma 3.3 in this new perspective.

Lemma 4.2. Fix an integer K ∈ A ∪ {0} and B > 0. There exists c > 0 such that for all 1 6 l 6 K,
and 0 6 n 6 K − l, the following holds, for the same real coe�cients (gl,k) as in Lemma 3.3

E[X l
ε]−

n∑
k=0

(−1)kgl,kε2k
{
> c(−1)n+1ε2(n+1)E[X l+n

ε 1ε2Xε6B ] if n+ 1 is even,

6 c(−1)n+1ε2(n+1)E[X l+n
ε 1ε2Xε6B ] if n+ 1 is odd.

(4.3)

Proof. If K = 0 the statement is empty, so suppose K > 1. It will be useful to recall formula (3.19).
Fix B > 0. There exists C > 0 such that for all 1 6 l 6 K + 1 and n 6 K + 1, and for all x > 0,

1

(1 + x)l
−
n−1∑
i=0

(
l + i− 1

i

)
(−x)i

{
> C(−x)n1x6B if n is even,

6 C(−x)n1x6B if n is odd.
(4.4)

As in Lemma 3.3, we carry out a proof by course-of-values double induction. More precisely, set

C̃ := C min
16l6K

E[Zl]

1− E[Zl]
. (4.5)

We prove that if j > 1, m > 0 and j +m 6 K + 1 then

E[Xj
ε ]−

m−1∑
k=0

ε2k(−1)kgj,k > C̃(−1)mε2mE[Xj+m
ε 1ε2Xε6B ] (4.6)

if m is even; and the same with an inequality in the opposite direction if m is odd. The base case
m = 0 is immediate. For the inductive step, we �x l > 1, n > 1 such that l + n 6 K + 1 and we
suppose that (4.6) holds for all (j,m) with m 6 n− 1 and 1 6 j 6 K + 1−m, and for all (j, n) with
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1 6 j 6 l − 1. We want to prove (4.6) for (j,m) = (l, n). For the sake of simplicity, the proof will
only be written for n even (inequalities would be in the opposite direction if n is odd). First write the
identity

E[X l
ε] = E

[(
Z

1 +Xε

1 + ε2Xε

)l]
= E[Zl]

l∑
r=0

(
l

r

)
E

[
Xr
ε

(1 + ε2Xε)l

]
. (4.7)

Using (4.4) we get,

E[X l
ε] > E[Zl]

l∑
r=0

{(
l

r

) n−1∑
i=0

(
l + i− 1

i

)
(−1)iε2iE[Xi+r

ε ] + C(−1)nε2nE[Xn+r
ε 1ε2Xε6B ]

}
. (4.8)

We subtract the term E[Zl]E[X l
ε] (term (i, r) = (0, l)) and divide by 1 − E[Zl] (which is positive) to

obtain

E[X l
ε] >

E[Zl]

1− E[Zl]

∑
06r6l, 06i6n−1

(i,r)6=(0,l)

(
l

r

){(
l + i− 1

i

)
(−1)iε2iE[Xi+r

ε ]

+ C(−1)nε2nE[Xn+r
ε 1ε2Xε6B ]

}
.

(4.9)

We use the induction hypothesis on E[Xi+r
ε ] (induction hypothesis (4.6) with j = i+r and m = n− i),

that is

E[Xi+r
ε ]−

n−i−1∑
k=0

ε2k(−1)kgi+r,k > C̃(−1)n−iε2(n−i)E[Xr+n
ε 1ε2Xε6B ], (4.10)

if n− i is even, and the opposite if it is odd. In any case, injecting these lower bounds into (4.9) yields

E[X l
ε] >

E[Zl]

1− E[Zl]

∑
06r6l, 06i6n−1

(i,r) 6=(0,l)

(
l

r

){(
l + i− 1

i

)(
(−1)iε2i

n−i−1∑
k=0

ε2k(−1)kgi+r,k

+ C̃(−1)nε2nE[Xn+r
ε 1ε2Xε6B ]

)
+ C(−1)nε2nE[Xn+r

ε 1ε2Xε6B ]

}
.

(4.11)

The �rst line corresponds to the regular part already found in Lemma 3.3 equations (3.21) and (3.22);
the second line contains the ε2n-terms which we want to bound from below:

E[X l
ε] >

n−1∑
s=0

ε2s(−1)kgl,s + (−1)nε2nQn, (4.12)

with

Qn =
E[Zl]

1− E[Zl]

∑
06r6l, 06i6n−1

(i,r)6=(0,l)

(
l

r

){(
l + i− 1

i

)
C̃ + C

}
E[Xn+r

ε 1ε2Xε6B ]. (4.13)

Since all the terms in Qn are non-negative, it is larger than any of them

Qn >
E[Zl]

1− E[Zl]
CE

[
Xn+l
ε 1ε2Xε6B

]
> C̃E

[
Xn+l
ε 1ε2Xε6B

]
. (4.14)

This concludes the proof of the inductive step and thus the proof of the lemma.
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Proof of Proposition 4.1. Let c′ = c′(B,K) > 0 be such that for all x > 0,

log(1 + x) >
K∑
l=1

(−x)l+1

l
+ c′(−x)K+21x6B (4.15)

if K is even; and the same with an inequality in the opposite direction if K is odd. For the sake of
simplicity we suppose that K is even in what follows. Writing L(ε) = E log(1 + ε2Xε), we get

L(ε) >
K∑
l=1

(−1)l+1

l
ε2lE[X l

ε] + c′(−1)K+2ε2(K+1)E[XK+1
ε 1ε2Xε6B ], (4.16)

and Lemma 4.2 provides a lower bound for each term in the sum: for every 1 6 l 6 K,

(−1)l+1ε2lE[X l
ε] > (−1)l+1ε2l

K−l∑
k=0

ε2k(−1)kgl,k + c(−1)l+1(−1)K+1−lε2(K+1)E[XK+1
ε 1ε2Xε6B ]. (4.17)

The conclusion results from the latter two inequalities.

5 Limiting behaviour of Xε's divergent moments

First note that Theorem B is an immediate consequence of Propositions 3.1 and 4.1. The goal of
this section is to obtain estimates of the error RK(ε), for which we now have

cε2(K+1)E[XK+1
ε 1ε2Xε6B ] 6 RK(ε) 6 Cβε

2βE[Xβ
ε ]. (5.1)

In order to give explicit estimates of RK(ε) in terms of powers of ε, one needs to understand the
limiting behaviour of Xε's moments (or truncated moments). The issue was partially addressed by
Corollary 2.8, which pinpointed the regimes of convergence or divergence of these moments. Namely
E[Xγ

ε ] is bounded as ε goes to 0 if E[Zγ ] < 1 and diverges if E[Zγ ] > 1. In the following section we
address the issue of the divergence speed when E[Zγ ] > 1.

The �rst paragraph, based on renewal theory results, describing the heavy tail of X0, will provide
upper bounds for Xε's divergent moments. The second paragraph will give lower bounds for these
moments under the restriction that Z is bounded.

5.1 Upper bounds

We will need the following result, which combine results by H. Kesten and A. K. Grincevi£ius
depending if logZ has an arithmetic support or not (see [16, Theorems 1, 3] for a review).

Lemma 5.1. If E[Zα log+ Z] < +∞, then, as x goes to +∞,

P(X0 > x) = O(x−α). (5.2)

It readily gives the next two results. They provide explicit upper bounds for the speed of divergence
of Xε's moments. If you believe Conjecture 1.2, these upper bounds (except the �rst one when
E[Zα] < 1) are of the good order of ε. The �rst one will be used for α ∈ {1, 2, . . .} whereas the second
will be needed when α is not an integer.

Lemma 5.2. If E[Zα log+ Z] < +∞, then, as ε goes to 0,

E[Xα
ε ] = O (log(1/ε)) . (5.3)
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Proof. The identity Xε
(d)
= Z 1+Xε

1+ε2Xε
yields, for γ > 0,

E[Xγ
ε ] = E[Zγ ]E

[(
1 +Xε

1 + ε2Xε

)γ]
6 E[Zγ ]E

[(
(1 +Xε) ∧ ε−2

)γ]
6 E[Zγ ]E

[(
(1 +X0) ∧ ε−2

)γ]
.

(5.4)

It can be rewritten

E[Xγ
ε ] 6 E[Zγ ]

(
γ

∫ ε−2

0

xγ−1P(X0 > x− 1)dx+ ε−2γP(X0 > ε−2 − 1)

)
. (5.5)

With γ = α, Lemma 5.1 gives upper bounds for these two terms:

ε−2αP(X0 > ε−2 − 1) = O(1) and

∫ ε−2

0

xα−1P(X0 > x− 1)dx = O(log(1/ε)). (5.6)

Lemma 5.3. Fix γ > α and assume that E[Zγ ] is �nite. Then, as ε goes to 0,

E[Xγ
ε ] = O(ε2α−2γ). (5.7)

Proof. We reuse inequality (5.5). Lemma 5.1, which applies here, yields

ε−2γP(X0 > ε−2 − 1) = O(ε2α−2γ) and

∫ ε−2

0

xγ−1P(X0 > x− 1)dx = O(ε2α−2γ). (5.8)

Remark 5.4. If E[Zα log+ Z] < +∞, the same techniques yields E[(ε2Xε)
α ∧ (ε2Xε)

dαe] = o(ε2α). So,
with Remark 3.2, we get a proof of the result claimed in Remark 1.6, item 3. Similarly using again
the upper bound on the error provided by Remark 3.2, one obtains (1.17). To this end, an alternative
version of Lemma 5.1 should be used: when E[Zα] < 1, and under some extra technical assumptions,
one has P(X0 > x) = o(x−α) (see [15, Theorem 1.3] and [16, Theorem 8]).

5.2 Lower bounds when Z is bounded

We start with a quite general, albeit quite complex, lower bound for Xε's moments.

Lemma 5.5. Fix γ > 1, C > 0, B > 1 and N ∈ N and set τ = γ
B−1

(
B
B−1 + C

)
. One has

E[Xγ
ε ] >

N∑
k=1

E [Zγ1Z6B ]
k
exp

(
−τε2Bk

)
P(Xε 6 C). (5.9)

Proof. Let X
(N)
ε be a copy of Xε and (Zk) be iid copies of Z, independent of X

(N)
ε . De�ne recursively,

for 0 6 k 6 N − 1,

X(k)
ε = Zk+1

1 +X
(k+1)
ε

1 + ε2X
(k+1)
ε

. (5.10)
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For every k 6 N , one has X
(k)
ε

(d)
= Xε. On the other hand, one can derive the following lower bounds:

(X(0)
ε )γ = Zγ1

(1 +X
(1)
ε )γ

(1 + ε2X
(1)
ε )γ

>
Zγ1

(1 + ε2X
(1)
ε )γ

+
Zγ1

(1 + ε2X
(1)
ε )γ

(X(1)
ε )γ . (5.11)

Here the condition γ > 1 is used through the convexity inequality (1+x)γ > 1+xγ . Then, inductively,

(X(0)
ε )γ >

Zγ1

(1 + ε2X
(1)
ε )γ

+
Zγ1

(1 + ε2X
(1)
ε )γ

Zγ2

(1 + ε2X
(2)
ε )γ

+ · · ·+
N∏
j=1

Zγj

(1 + ε2X
(j)
ε )γ

. (5.12)

By taking the expectation we get

E[Xγ
ε ] >

N∑
k=1

E

 k∏
j=1

Zγj

(1 + ε2X
(j)
ε )γ

 . (5.13)

If X
(k)
ε 6 C and Zk 6 B, then, with de�nition (5.10), X

(k−1)
ε 6 B(1+C). So, inductively, if X

(k)
ε 6 C,

and Z0, . . . , Zk 6 B, then, for every j 6 k,

X(k−j)
ε 6

j∑
i=1

Bi +BjC 6 Bj
(

B

B − 1
+ C

)
= Bjσ, (5.14)

with σ = B
B−1 + C. Thus,

k∏
j=1

Zγj

(1 + ε2X
(j)
ε )γ

>

 k∏
j=1

Zγj 1Zj6B

(1 + σε2Bk−j)γ

1
X

(k)
ε 6C

. (5.15)

We compute

k∏
j=1

1

(1 + σε2Bk−j)γ
> exp

−σγε2 k∑
j=1

Bk−j

 > exp

(
− σγ

B − 1
ε2Bk

)
= exp

(
−τε2Bk

)
. (5.16)

Taking the expectation in (5.15) and using that X
(k)
ε and Z1, . . . , Zk are independent, we obtain

E

 k∏
j=1

Zγj

(1 + ε2X
(j)
ε )γ

 > E [Zγ1Z6B ]
k
exp

(
−τε2Bk

)
P(Xε 6 C). (5.17)

The conclusion follows by injecting this lower bound into (5.13).

One could expect to use that general lower bound for any given Z. However it only gives satisfac-
tory results when Z is bounded. In that case we can get rid of the indicator 1Z≤B in (5.9).

Lemma 5.6. If Z has a bounded support then Xε 6 ε−2‖Z‖L∞ almost surely.

Proof. It is an immediate consequence of the invariance identity Xε
(d)
= Z 1+Xε

1+ε2Xε
and of the inequal-

ity 1+x
1+ε2x 6 ε−2, which holds for every x > 0.
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Lemma 5.6 justi�es that we only study Xε's moments instead of its truncated moments: as long as
B is chosen larger than ‖Z‖L∞ one has

E
[
XK+1
ε 1ε2Xε6B

]
= E

[
XK+1
ε

]
. (5.18)

In the next two lemmas we give a lower bound for Xε's moments when Z is bounded. In that instance,
note that E[Zα] = 1: the set A cannot takes the form A = (0, α]. Lemma 5.7 will be used if α is an
integer, and Lemma 5.9 when α is not an integer. However, both of them hold true regardless of the
nature of α.

Lemma 5.7. For α > 1, if Z has a bounded support then, for some c > 0, and ε su�ciently small,

E[Xα
ε ] > c log(1/ε). (5.19)

Proof. Recall that since Z is bounded, E[Zα] = 1. Choose γ = α and B = ‖Z‖∞ in Lemma 5.5 to get

E[Xα
ε ] >

N∑
k=1

E [Zα]
k
exp

(
−τε2Bk

)
P(Xε 6 C) > N exp

(
−τε2BN

)
P(Xε 6 C). (5.20)

First note that, thanks to Lemma 2.7,

P(Xε 6 C) −→ P(X0 6 C), (5.21)

which is positive if C is large enough. Choosing N = Nε = b2 1
logB log 1

ε c, we obtain

E[Xα
ε ] > Nε exp(−τ)P(Xε 6 C) > c log(1/ε). (5.22)

Remark 5.8. If Z is not bounded but E[Zκ] < +∞ for some κ > α then, with another choice of Bε
and Nε, one can get the slightly weaker lower bound E[Xα

ε ] > c log(1/ε)
log log(1/ε) .

Lemma 5.9. If Z is bounded, and if γ > 1 is such that E[Zγ ] > 1, then, for some c > 0, and for ε
su�ciently small,

E[Xγ
ε ] > cε−2η, where η =

log E[Zγ ]

log ‖Z‖∞
∈ (0, γ − α). (5.23)

Proof. Set B = ‖Z‖L∞ in Lemma 5.5 to get

E[Xγ
ε ] >

N∑
k=1

E [Zγ ]
k
exp

(
−τε2Bk

)
P(Xε 6 C) > E [Zγ ]

N
exp

(
−τε2BN

)
P(Xε 6 C). (5.24)

Choosing again Nε = b2 1
logB log 1

ε c, we obtain E[Xγ
ε ] > E [Zγ ]

Nε exp (−τ) P(Xε 6 C) > cε−2η.

5.3 Proof of Theorem A

We recall here the upper and lower bounds provided by Theorem B:

cε2(K+1)E[XK+1
ε 1ε2Xε6B ] 6 RK(ε) 6 Cβε

2βE[Xβ
ε ], (5.25)

If α = +∞ then RK(ε) 6 CK+1ε
2(K+1)E[XK+1

ε ] 6 ε2(K+1)E[XK+1
0 ] (Lemma 2.3). Since E[XK+1

0 ] is
�nite (Lemma 2.2), the result (1.11) follows.

From now on we suppose that α is �nite and E[Zα] = 1 and we set K = dαe− 1. By Corollary 2.8,

R(ε) > cε2(K+1)E[XK+1
ε 1ε2Xε6B ]� ε2(K+1). (5.26)

If α is an integer then the lower and upper bounds given by (1.13) or (1.14) follow from Lemmas 5.2
and 5.7. If α is not an integer then the lower and upper bounds (1.16) given by Theorem A are a
consequence of Lemmas 5.3 (with γ such that E[Zγ ] < +∞) and 5.9 (with γ = K + 1).
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A Generalization to higher dimension

The techniques developed in the previous sections are su�ciently robust to be used in more general
settings. We apply them to a square matrix of size d + 1 which is a perturbation of a matrix alike
Diag(1, Z), which still have a preferred direction. Since the proofs are only slightly di�erent from the
previous sections, they will be only sketched in this appendix. We will just point out the arguments
that must be adapted and many details will be omitted.

We now consider the (d+ 1)× (d+ 1) matrix

Mε =

(
1 εLε
εCε Nε

)
, (A.1)

where Lε and Cε are random vectors of size d, and Nε is a random matrix, of size d× d. We are still
interested in the Lyapunov exponent, de�ned by the limit

L(ε) = lim
n→+∞

1

n
log ‖Mn,ε · · ·M1,ε‖ , (A.2)

where (Mk,ε)k>1 are iid copies ofMε. This limit exists almost surely and is deterministic (see again [10])
as soon as for every ε > 0, E[log+ ‖Mε‖] < +∞.

We derive in this section a regular expansion for L(ε), alike the expansion provided by Proposi-
tion 3.1 in the previous setting. However, no lower bound on the error will be given here. We start by
deriving a formula alike �L(ε) = E[log(1 + ε2Xε)]� (Lemma A.3).

In the whole section ‖ · ‖ will denote a given norm on Rd or Rd+1, as well as the induced operator
norm on Md(R) or Md+1(R). On another note, if x, y ∈ Rd, we will write x 6 y if the inequal-
ity holds coordinatewise. Similarly the stochastic dominance 4 will be extended to random vectors:
X 4 Y means that there exists a copy X̃ of X and a copy Ỹ of Y satisfying X̃ 6 Ỹ almost surely
(coordinatewise).

Let's introduce the assumptions under which we will work in the section. Observe that under these
assumptions, the condition E[log+ ‖Mε‖] < +∞ is ful�lled so the Lyapunov exponent is well de�ned.

Assumptions A.1. We assume that the following holds, for every ε ∈ (0, ε0).

(a) The random matrix Mε has non-negative entries. And, almost surely, there exists N > 1 such
that the product MN,ε · · ·M1,ε has positive entries.

(b) There exists δε > 0 such that E[‖Nε‖δε ] < 1 and E[‖Cε‖δε ] < +∞.

(c) E[log+ ‖Lε‖] < +∞.

Before deriving the formula for the Lyapunov exponent, we introduce the random vector Yε, which
will play the same role as X0 in our new setting (except that here it will depend on ε). Namely it will
be used through stochastic dominances.

Lemma A.2. Fix ε ∈ (0, ε0) and let (Nε,k, Cε,k) be iid copies of (Nε, Cε). The series

Yε =

+∞∑
n=0

Nε,1 . . . Nε,n−1Cε,n (A.3)

converges almost surely. Moreover E[log+ ‖Yε‖] is �nite. If, in addition,

lim sup
ε→0

E[‖Nε‖β ] < 1 and lim sup
ε→0

E[‖Cε‖β ] < +∞, (A.4)
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then E[‖Yε‖β ] = O(1) as ε goes to 0.

Proof. Since all the entries ofMε are non-negative, the sum (A.3) is always de�ned. A priori, some of its
entries could be +∞. Denote by Yε the random vector de�ned by this in�nite sum. Using Minkowski's
inequality or another convexity inequality as for Lemma 2.2, one proves, under Assumption A.1 (b),
that E[‖Yε‖δε ] is �nite. So Yε's entries are almost surely �nite. With the same technique, we prove the
rest of the lemma.

The next lemma provides the desired formula for L(ε).

Lemma A.3. There exists a random vector Xε ∈ Rd, with non-negative entries, satisfying(
1
εXε

)
(d)
=

(
1 εLε
εCε Nε

)(
1
εXε

)
in the projective space Pd(R), (A.5)

or equivalently,

Xε
(d)
=

Cε +NεXε

1 + ε2LεXε
, (A.6)

where Cε, Nε and Lε are the blocks of the random matrix Mε, independent of Xε. One has Xε 4 Yε.
Moreover the Lyapunov exponent can be written as

L(ε) = E[log(1 + ε2LεXε)]. (A.7)

And for every ~x, ~y ∈ Rd+1
+ ,

L(ε) = lim
n→∞

1

n
log 〈~x,Mn,ε · · ·M1,ε~y〉 . (A.8)

Proof. The method is the same as in Lemma 2.3's proof for 2 × 2 matrices. We �x iid copies (Mε,n)
of Mε and set x0 = 0Rd . Then de�ne inductively, for n > 0, the random variables

xn+1 =
Cε,n +Nε,nxn
1 + ε2Lε,nxn

. (A.9)

Observe that since all the vectors have non-negative entries, one can write, coordinatewise,

xn+1 6 Cε,n +Nε,nxn. (A.10)

So, by an easy induction, xn 4 Yε for every n > 0. The end of the proof is the same as for Lemma 2.3.
We do not reiterate all the details here. Just note that we do not claim the uniqueness of a non-
negative solution to (A.6) and that Assumption A.1 (a) is a su�cient condition for H. Hennion's result
to apply.

To state our main result, and more precisely to formulate its premises, some multi-index notations
will be required, which we set in the next lines. The norm of a multi-index λ ∈ Nd will be denoted
by |λ|:

|λ| := λ1 + . . . λd. (A.11)

For every l > 0, there are
(
l+d−1
d−1

)
multi-indices with norm l: it is the number of (weak) compositions

of l into d non-negative integers. For a vector x ∈ Rd and a multi-index λ ∈ Nd, we de�ne the
multi-index power

xλ = xλ1
1 × · · · × x

λd
d . (A.12)

Similarly, for a matrix A ∈Md(R) and a multi-index ω ∈ Nd2 'Md(N), de�ne

Aω =
∏
i,j

(Ai,j)
ωi,j and |ω| =

∑
i,j

ωi,j . (A.13)
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There should be no confusion with a standard matrix power since ω is a multi-index.
For l > 0, consider the square matrix G(l) with size

(
l+d−1
d−1

)
, whose elements are

G
(l)
λ,λ′ =

∑
ω∈Nd2∑
j ωi,j=λi∑
i ωi,j=λ

′
j

lim
ε→0

E [Nωε ] , for λ,λ′ ∈ Nd such that |λ| = |λ′| = l. (A.14)

Note that all the multi-indices ω in the sum have norm |ω| = l. The matrix G(l) will play a similar
role as E[Zl] in this generalized context. Of course these matrices, which require the existence of
limε→0 E [Nωε ], are not always de�ned.

We have set enough notations to state the generalization of Proposition 3.1, giving a regular
expansion of the Lyapunov exponent L(ε).

Proposition A.4. Fix K > 0 and β ∈ (K,K + 1]. Suppose that

1. For all multi-indices λ,µ ∈ Nd, ω ∈ Nd2 such that l = |λ|+ |µ|+ |ω| 6 K, E[Lλε C
µ
ε N

ω
ε ] is �nite

and admits a regular expansion, as ε goes to 0, up to the order 2(K − l):

E[Lλε C
µ
ε N

ω
ε ] =

2(K−l)∑
r=0

cλ,µ,ω,rε
r +O(ε2(β−l)); (A.15)

2. For all 1 6 l 6 K, the matrix I −G(l) is invertible;

3. lim supε→0 E[‖Lε‖β ] is �nite.

Then there exist real coe�cients q2, . . . q2K such that, as ε goes to 0,

L(ε) =
2K∑
k=2

qkε
k +O(ε2βE[1 + ‖Xε‖β ]). (A.16)

Remark A.5. For Proposition A.4 to be usable, one needs to control E[‖Xε‖β ]. With Lemmas A.2
and A.3, one has E[‖Xε‖β ] = O(1) as ε goes to 0 as soon as (A.4) hold.

Remark A.6. One could be surprised that the upper bound involves E[1+‖Xε‖β ] instead of E[‖Xε‖β ].
Such a caution was not necessary in the previous context since the latter was bounded form below as
ε goes to 0. Here, a priori, it could happen that E[‖Xε‖β ] vanishes as ε goes to 0.

Remark A.7. The existence of G(l), for l 6 K, is ensured by the assumption (A.15), which gives
limε→0 E[N

ω
ε ] = c0,0,ω,0. The invertibility of I −G(l) is the counterpart of the assumption �E[Zl] < 1�

in Proposition 3.1.

Proof. The same proof as for Proposition 3.1 works: one expands the logarithm:

E[log(1 + ε2LεXε)] =

K∑
k=0

(−1)k+1

k
ε2kE[(LεXε)

k] +O(ε2βE[(LεXε)
β ])

=

K∑
k=0

(−1)k+1

k
ε2k

∑
16r1,...,rk6d

E

[
k∏
i=1

L(ri)
ε

]
E

[
k∏
i=1

X(ri)
ε

]
+O(ε2βE[(LεXε)

β ]),

(A.17)
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where x(r) stands for the rth coordinate of x. Note that

E[(LεXε)
β ] 6 E[‖Lε‖β ]E[‖Xε‖β ] 6 CE[‖Xε‖β ], (A.18)

and that for any r1, . . . , rk there exists λ ∈ Nd, with norm k such that E
[∏k

i=1X
(ri)
ε

]
= E[Xλε ]. Thus

we need expansions for Xε's moments. They are given by the next lemma. By substituting the regular
expansion (A.19), given in Lemma A.8, in the expansion (A.17) of L(ε), the proof of Proposition A.4
will be complete.

Lemma A.8. Under Proposition A.4's premises, for all l 6 K, and λ ∈ Nd, such that |λ| = l, the
following expansion holds, for some real coe�cients (gλ,k):

E[Xλε ] =

2(K−l)∑
k=0

εkgλ,k +O(ε2(β−l)E[1 + ‖Xε‖β ]). (A.19)

Sketch of proof of Lemma A.8. We can follow the same proof as for Lemma 3.3. We go back to that
proof to understand how the present one must be adjusted. The only point which merits special
attention is the line (3.16) where the term E[Zl]E[X l

ε] is isolated on the left-hand side. That line could
be summarized as follow: we wrote

E[X l
ε] = E[Zl]E[X l

ε] + (♦l), (A.20)

where (♦l) stands for all the terms in the expansion of E[X l
ε] for which the induction hypothesis

provided an expansion up to the required order. To be explicit,

(♦l) = E[Zl]
∑

06j6l, 06i6n
(i,j)6=(0,l)

(
l

j

)(
−l
i

)
ε2iE

[
Xi+j
ε

]
+O(ε2(n+δ)E[Xβ

ε ]). (A.21)

Then we could conclude by writing

E[X l
ε] =

1

1− E[Zl]
(♦l), (A.22)

and applying the induction hypothesis. That is where was used the condition �E[Zl] < 1� (actually
E[Zl] 6= 1 was enough), and this is where will be used the invertibility of 1−G(l).

In our generalized setting, we still carry out an induction on (n, l = |λ|) (equipped with the
lexicographic order). For the inductive step, there are a lot of multi-indices with given norm l. They
will be solved simultaneously, by writing a joint system satis�ed by all these multi-indices moments
E[Xλε ] with |λ| = l. To this end, use the identity

E[Xλε ] = E

[(
Cε +NεXε

1 + ε2LεXε

)λ]
= E

[
(Cε +NεXε)

λ

(1 + ε2LεXε)l

]
. (A.23)

Then develop the denominator

E[Xλε ] = E

(Cε +NεXε)
λ

 n∑
j=0

(
−l
j

)
ε2j(LεXε)

j + ε2(n+δ)O((LεXε)
n+δ)

 . (A.24)

Eventually, after manipulation, that moment takes the form

E[Xλε ] =
∑

λ′:|λ′|=l

G
(l)
λ,λ′E[X

λ′

ε ] + (♦λ), (A.25)
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where, again, (♦λ) stands for all the term in the expansion of E[Xλε ] for which the induction hypothesis,
and the premise (A.15) of Proposition A.4, provide an expansion up to the required order. Then, since
I −G(l) is invertible, one can solve that joint system satis�ed by the family (E[Xλε ]):

E[Xλε ] =
[
(I −G(l))−1(♦)

]
λ
=

∑
λ′:|λ′|=l

(
(I −G(l))−1

)
λ,λ′

(♦λ′). (A.26)

That concludes the proof of the induction step and thus the proof of the lemma.

Remark A.9. The same methods as in Section 4 can produce the lower bound on the error

(−1)K+2RK(ε) > cε2(K+1)E
[
(LεXε)

K+11LεXε6B
]
+O(ε2(K+1)), (A.27)

as long as (A.15) holds with β = K + 1.

Application to a 1D Ising model The product of random matrices considered in the �rst sections
appeared in [6] to express the free energy of the nearest-neighbour Ising model on the line with
inhomogeneous magnetic �eld. The generalization considered in this appendix allows �nite range
interactions to be included. Let us be more precise. Consider the Ising model on TN := Z/NZ, with
homogeneous interactions up to the distance d and inhomogeneous magnetic �eld (hk). It is the spin
model with con�gurations∗ σ ∈ {0, 1}TN whose Hamiltonian is

H(σ) =
∑
k∈TN

(
hkσk +

d∑
l=1

αl1σk 6=σk+l

)
. (A.28)

The magnetic �eld (hk)k∈TN is supposed to be iid. Thanks to a transfer matrix approach, the free
energy in the thermodynamic limit can be expressed through a random matrix products:

f(T ) = lim
N→+∞

1

N
log Tr

(
N∏
n=1

An

)
, (A.29)

where An is a 2d× 2d sparse matrix (two non-zero entries on each line and each column) whose entries
are the following. If τ , υ ∈ {0, 1}d, which represent the partial con�guration (σn, . . . , σn+d−1) and its
shift (σn+1, . . . , σn+d), then

An(τ , υ) = exp

(
− 1

T
τ1hn −

1

T

d∑
l=1

αlτlυl

)
1τ2=υ1,...,τd−1=υd . (A.30)

One can check that Assumption A.1 (a) holds with N = d. Proposition A.4 provides an expansion for
the free energy f(T ) when the coupling constants αl tend to be very large. Set Zn = exp(−hn/T ) and
εl = exp(−αl/T ) for every l 6 d. The parameters εl vanish when the coupling constants αl tend to be
very large. Then An is a random perturbation of Diag(1, 0, . . . , 0, Zn) if one writes the con�gurations
τ , υ in lexicographic order. Thus, Proposition A.4 yields

f(T ) =
∑

λ∈Nd:|λ|<β

cλε
λ1
1 · · · ε

λd
d +O

(
d∑
l=1

εβl

)
, (A.31)

as soon as E[Zβ ] < 1 (note that β is not the inverse temperature here).

Remark A.10. Similarly, the results apply for an Ising model on a strip of �nite width s (i.e. [N ]× [s]),
or a cylinder ([N ] × Z/sZ) with an inhomogeneous magnetic �eld and �nite-range interactions, with
free, �xed or periodic boundary conditions.

∗We choose {0, 1}TN instead of {−1, 1}TN to simplify the formulas. They are equivalent by easy manipulations.
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