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We consider a product of 2 × 2 random matrices which appears in the physics literature in the analysis of some 1D disordered models. These matrices depend on a parameter > 0 and on a positive random variable Z. Derrida and Hilhorst (J Phys A 16:2641, 1983, 3) conjecture that the corresponding characteristic exponent has a regular expansion with respect to up to and not further an order determined by the distribution of Z. We give a rigorous proof of that statement. We also study the singular term which breaks that expansion.

Introduction

Random matrix products appeared in the physics literature as a powerful tool to study disordered systems, ranging from Anderson model [START_REF] Bougerol | Products of random matrices with application to Schrödinger operators[END_REF][START_REF] Matsuda | Localization of Normal Modes and Energy Transport in the Disordered Harmonic Chain[END_REF] to disordered harmonic chains [START_REF] Dyson | The dynamics of a disordered linear chain[END_REF][START_REF] Schmidt | Disordered one-dimensional crystals[END_REF] or disordered Ising model (discussed below). Among that wide range of models, the present work focuses on a very specic one, introduced by B. Derrida and H. Hilhorst in [START_REF] Derrida | Singular behaviour of certain innite products of random 2×2 matrices[END_REF] to study the strong interaction limit of a 1D disordered Ising model.

Let (Z n ) be iid non-negative and non-deterministic random variables, with law µ. For > 0, consider the matrices M n, = 1 Z n Z n .

(1.1)

We will write Z for a random variable with law µ and M for the associated matrix. In fact, we will use Z instead of µ to formulate our assumptions and results. The (leading) Lyapunov exponent also called characteristic exponent is the growth rate of their product:

L( ) = L Z ( ) = lim n→+∞ 1 n log M n, • • • M 1, . (1.2) 
We will be particularly interested in the behaviour of L( ) in the limit → 0. 2 × 2 matrices of the form (1.1) have appeared several times to express the free energy of the disordered 1D Ising model [START_REF] Calan | On the distribution of a random variable occurring in 1d disordered systems[END_REF][START_REF] Crisanti | Products of Random Matrices in Statistical Physics[END_REF][START_REF] Derrida | Singular behaviour of certain innite products of random 2×2 matrices[END_REF][START_REF] Nieuwenhuizen | Exactly soluble random eld Ising models in one dimension[END_REF], where the limit → 0 represents a regim of very strong interactions. It is also used in the celebrated work by B. McCoy and T. T. Wu [START_REF] Mccoy | Theory of a Two-Dimensional Ising Model with Random Impurities. I. Thermodynamics[END_REF] to study a 2D

Ising model with 1D disorder, as well as in a similar model proposed by R. Shankar and G. Murthy [START_REF] Shankar | Nearest-neighbor frustrated random-bond model in d=2: Some exact results[END_REF] which includes frustrated interactions.

From a mathematical point of view, a wide literature proposed to study these models and more general matrix products. One should cite the seminal work by H. Furstenberg et al. [START_REF] Furstenberg | Non-commuting Random Products[END_REF][START_REF] Furstenberg | Products of random matrices[END_REF] and 

• If α ∈ {1, 2 
where the coecients ( k ) are the same positive rational functions of Z's moments as before; and C Z is still a positive constant.

2. If E[log Z] = 0 it is the α = 0 case then

L( ) = C Z log(1/ )
+ o (log 1/ ) -1 .

(1.5)

The same references motivate further comments.

Remark 1.3. The coecients ( k ) appearing in the conjecture can be computed recursively. For instance

1 = E[Z] 1 -E[Z] , 2 = (1 + E[Z]) 2 E[Z 2 ] + 2E[Z] 2 (1 -E[Z 2 ]) 2(1 -E[Z]) 2 (1 -E[Z 2 ]
) .

(1.6)

Precise recursive formulas will be derived in Section 3. However it is not clear that a simple closed formula for k can be derived. By contrast, apart from a few special situations, the calculation of the constant C Z is a very hard problem [5, 4.2.1]. On another note, in all the instances developed in Conjecture 1.2, the constant C Z should be replaced by a multiplicatively periodic function of if log Z is arithmetic. A precise computation of such a multiplicatively periodic function C Z is made in [START_REF] Derrida | Singular behaviour of certain innite products of random 2×2 matrices[END_REF] for a very specic (and singular) distribution of Z.

Remark 1.4. We discuss in this remark the instances which are excluded by the conjecture. The conjecture actually covers almost all the cases where E[log Z] 0 and P(Z > 1) > 0, except the one discussed in the item 4 of Remark 1.6.

1. The case E[log Z] > 0 (which corresponds to α < 0) boils down to E[log Z] < 0 by factorizing Z in the matrix M : L Z ( ) = E[log Z] + L 1/Z ( ).
Similarly, by conjugating by the matrix Diag(-1, 1), one observes that L is an even function: L( ) = L(-). It implies that the behaviour 2α is rather | | 2α , so it is actually singular even when α is a half-integer. Very little of Conjecture 1.2 has been made mathematically rigorous. To our knowledge only (1.3) has been successfully tackled [START_REF] Genovese | Singular behavior of the leading Lyapunov exponent of a product of random 2 × 2 matrices[END_REF], and only for α ∈ (0, 1). When α ∈ (0, 1), that is E[log Z] < 0 and E[Z] > 1, the singularity 2α happens to be the leading behaviour of L( ) and (1.3) takes the form:

L( ) ∼ 0 C Z 2α . (1.7)
This simplies in a substantial way the analysis: Derrida and Hilhorst in [START_REF] Derrida | Singular behaviour of certain innite products of random 2×2 matrices[END_REF] (see also [START_REF] Calan | On the distribution of a random variable occurring in 1d disordered systems[END_REF][START_REF] Derrida | Singular behaviour of certain innite products of random 2×2 matrices[END_REF][START_REF] Nieuwenhuizen | Exactly soluble random eld Ising models in one dimension[END_REF]) explicitly give, based on a two scale argument, a probability measure that is expected to be close, when is small, to the invariant probability for the action of M on the projective space P 1 (R) (that is, the distribution of X , in the next paragraph's notations). Then, they use this probability to compute the Lyapunov exponent. This two scale analysis is made rigourous by G. Genovese et al. [START_REF] Genovese | Singular behavior of the leading Lyapunov exponent of a product of random 2 × 2 matrices[END_REF], who show that this probability measure is indeed close to the invariant measure in a suitable norm, and this control is suciently strong to yield precisely (1.7). It appears to be rather challenging to follow the same steps for α 1: the guess for the invariant probability would have to be tuned to yield the α terms of the regular expansion and the singular 2α term. Even at a heuristic level, such a construction is lacking. Note, in particular, that in [START_REF] Derrida | Singular behaviour of certain innite products of random 2×2 matrices[END_REF], the α 1 case is treated in a expedite way, without reference to the invariant probability, and without capturing the singularity 2α .

On the other hand, a weak disorder limit of the model has been investigated. In this limit, the product of random matrices becomes a stochastic dierential equation system. An exactly solvable structure emerges from that SDE and the analog of (1.3) and (1.4) has been shown to hold (see [START_REF] Grabsch | One-dimensional disordered quantum mechanics and sinai diusion with random absorbers[END_REF] for the case α ∈ (0, 2) and [START_REF] Comets | Continuum limit of random matrix products in statistical mechanics of disordered systems[END_REF] for the general case). As pointed out in [START_REF] Comets | Continuum limit of random matrix products in statistical mechanics of disordered systems[END_REF], it is rather remarkable that the structure of (1.3) and (1.4) holds also in the weak disorder limit and this appears to be a rather deep fact. Nonetheless, the fact that the conjecture holds in the weak disorder limit is far from being a mathematical proof of the conjecture for products of matrices.

The main aim of our work is to approach (1.3) and (1.4). Our results are the following.

1. L( ) admits a regular expansion in powers of 2 , up to order 2 α , or 2(α-1) in the integer case (that is the regular part of (1.3) and (1.4)).

2. We prove that the next order term after this regular part, call it R( ), satises, as goes to 0, for instance in the non-integer case

2 α R( ) 2( α +1) .
(1.8) Since → L( ) is an even function, only even powers of are non-singular (see Remark 1.4 item 1). Hence, R( ) is necessarily singular. A quantitative and explicit control on this term is given, but it falls short to prove the expected 2α behavior of (1.3).

Assumptions and main result

We will work under the following assumptions, supposed to be satised in the whole paper.

Assumptions 1.5. The random variable Z is positive, non-deterministic, and

(a) E[log Z] < 0 (can be -∞); (b) There exists δ > 0 such that E[Z δ ] < +∞. Introduce A = {γ ∈ [0, +∞] such that E[Z γ ] < 1}, (1.9) 
and α = sup A ∈ (0, +∞].

(1.10)

The Assumptions 1.5, together with a convexity argument, ensure that A is an interval of positive length. Note that α = +∞ if and only if Z 1 almost surely. In any case A takes the following form: either E[Z α ] = 1 and then A = (0, α), or E[Z α ] < 1, and then A = (0, α]. In the latter case, necessarily, E[Z γ ] = +∞ for every γ > α. Here is the main result of this work.

Theorem A. There exist positive coecients ( k ), where k is a rational function of the moments E[Z], . . . , E[Z k ], such that the following expansions hold, as goes to 0.

1. If α = +∞ ( i.e., if Z 1 a.s.), then for every K 0,

L( ) = K k=1 (-1) k+1 k 2k + O( 2(K+1) ). (1.11) 2. If α ∈ {1, 2, . . .} and if E[Z α ] = 1, then L( ) = α-1 k=1 (-1) k+1 k 2k + (-1) α+1 R( ), (1.12)
where R( ) is nonnegative and 2α R( ) C 2α log(1/ ), (1.13) for some C > 0. The lower bound can be improved if, in addition, Z has a bounded support, to obtain, for some C c > 0, the sharper estimate c R( ) 2α log(1/ ) C.

(1.14)

3. If α ∈ (0, +∞)\{1, 2, . . .} and if there exists γ > α such that E[Z γ ] is nite, then

L( ) = α k=1 (-1) k+1 k 2k + (-1) α +1 R( ), (1.15) 
where R( ) is nonnegative and

2 α R( ) C 2α , (1.16) 
for some C > 0. The lower bound can be improved if, in addition, Z has a bounded support: in that case, there exists θ ∈ (α, α ) and c > 0 such that R( ) c 2θ .

Remark 1.6.

1. The constant θ is explicit:

θ = α -log E[Z α ] log Z ∞ .
2. When α is nite, the lower bounds of the error in (1.13) and (1.16) assert in particular that the regular expansions (1.12) and (1.15) cannot be continued beyond K = α -1: L( ) is singular.

3. When α is not an integer, the assumption there exists γ > α such that E[Z γ ] is nite can be replaced by the weaker assumption E[Z α log + Z] < +∞ (see Remark 5.4).

4. Suppose that α is nite and E[Z α ] < 1 (and E[Z γ ] = +∞ for every γ > α). Whether α is an integer or not, under some technical assumptions on the distribution of Z, the Lyapunov exponent is slightly regularized (see Remark 5.4 for a sketch of proof ):

L( ) = α k=1 (-1) k+1 k 2k + (-1) α +1 R( ), 2( α +1) R( ) 2α .
(1.17)

5. We mention that, when α ∈ (0, 1), Theorem A gives an estimate of L( ) which is rough, and of course strongly weaker than [START_REF] Genovese | Singular behavior of the leading Lyapunov exponent of a product of random 2 × 2 matrices[END_REF].

Strategy of the proof and structure of the paper

A classical result in the theory of product of random matrices ensures that the Lyapunov exponent can be written

L( ) = E[log(1 + 2 X )], (1.18) 
where X is an invariant measure for the random transformation, on [0, +∞), x → Z 1+x 1+ 2 x . In other words it satises

X (d) = Z 1 + X 1 + 2 X , (1.19) 
where Z is independent of X (on the right hand side). Existence and uniqueness of such a random variable X will be justied in Section 2, as well as formula (1.18). A very useful uniform stochastic dominance of the random variables (X ) >0 will also be proved.

From that point on, the work will only be based on formula (1.18) for the Lyapunov exponent and the xed point equation (1.19). Thanks to the former, the problem will readily boil down to studying X 's moments. That study can be split into two subproblems. We will know since Section 2 which ones of X 's moments are bounded as goes to 0 and which diverge. The two subproblems then are:

• Deriving a regular expansion for X 's bounded moments, involving an error in terms of a divergent moment of X (Sections 3 and 4);

• Estimating the divergence speed of X 's unbounded moments (Section 5).

The former point is addressed in Section 3. The analysis is based on a bootstrap procedure, based on recursive uses of the xed point equation (1.19). It gives more and more precise expansions of these moments. Eventually, it will provide the regular expansion (1.12) or (1.15) with an upper bound on the error R( ), involving a divergent moment of X . That work will be generalized in the appendix A, for matrices of size d, with more general entries.

That same strategy, using a bootstrap procedure to obtain a more and more precise estimate of X 's moments, can also provide a lower bound on the error, involving a divergent truncated moment of X : Section 4 will be devoted to that analysis.

At the end of these sections, the following theorem will be proved, which, unlike Theorem A, does not require any extra assumption on Z (apart from Assumptions 1.5).

Theorem B. Fix B > 0, and an integer K ∈ A ∪ {0}. One has, for all > 0,

L( ) = K k=1 (-1) k+1 k 2k + (-1) K+2 R K ( ), (1.20) 
where, for all β ∈ (K, K + 1], and for some positive constants c and C β ,

c 2(K+1) E[X K+1 1 2 X B ] R K ( ) C β 2β E[X β ].
(1.21)

Remark 1.7. The coecients ( k ) are the same as in Theorem A. The neat thing about that theorem is that, unlike the lower bound (1.16) of Theorem A, the estimate (1.21) should be sharp in the following sense. If one proves that, as goes to 0, P(X c -2 ) C 2α for some positive constants c and C (the precise analysis of M 's invariant measure conducted in [START_REF] Genovese | Singular behavior of the leading Lyapunov exponent of a product of random 2 × 2 matrices[END_REF] provides such an estimate when α ∈ (0, 1)) then (1.21) becomes c 2α R K ( ) C 2α (with a log correction if α is an integer). It is the good order of predicted by Conjecture 1.2. Without such an estimate, (1.21) is not satisfactory yet for it is not explicit enough.

To obtain the explicit bounds given in Theorem A, a study of the divergence speed of X 's divergent moments is needed. It is conducted in Section 5. The derivation of upper bounds is based a stochastic dominance found in Section 2 (namely X X 0 ), and on renewal theory results describing the limiting behaviour of the tail of X 0 . The lower bounds are only derived when Z is bounded. The analysis is again based on a recursive use of the xed point equation (1.19). It is the point where the sharpness of the lower bound (1.21) of the singularity is lost. Theorem A is proved at the end of Section 5.

Existence and rst properties of the invariant measure X

In this section we prove the existence of the random variables X and derive formula (1.18). A rst result on X 's moments is also proved: it spells out which moments of X are bounded as goes to 0 and which diverge.

We start by introducing an invariant measure of the random matrix M 0 ( = 0). It will play a central role to dene the random variables X and control their moments. First I need to x a notation for the stochastic dominance.

Denition 2.1. The stochastic dominance will be denoted by . Formally, if X and Y are two realvalued random variables, X Y means that P(X x) P(Y x) for every x ∈ R. Equivalently, there exist two copies X and Ỹ , of X and Y respectively, such that X Ỹ almost surely.

Lemma 2.2. Fix a sequence (Z n ) of iid copies of Z. The series

X 0 = +∞ n=1 Z 1 • • • Z n (2.1)
converges almost surely. It is the unique random variable (in distribution) satisfying

X 0 (d) = Z(1 + X 0 ), (2.2) 
with Z independent of X 0 . Moreover E[log + X 0 ] is nite; and for every γ > 0,

E[X γ 0 ] < +∞ if and only if E[Z γ ] < 1. (2.3) Proof. Recall that E[log Z] < 0.
The almost sure convergence of the series follows from the law of large numbers, whereby

Z 1 • • • Z n = e nE[log Z]+o(n)
as n → +∞.

(2.4)

Of course

X 0 = +∞ n=1 Z 1 • • • Z n = Z 1 1 + +∞ n=2 Z 2 • • • Z n (2.5)
satises the identity (2.2). Let's turn to the uniqueness. If X0 is another random variable satisfy- ing (2.2), then, applying this identity N times we get

X0 (d) = N n=1 Z 1 • • • Z n + Z 1 • • • Z N X0 , (2.6) 
where Z 1 , . . . , Z N are iid copies of Z, independent of X0 . With (2.4), the last term vanishes (in distri- bution) as N goes to +∞, whereas the rst sum converges monotonically towards X 0 . So eventually, X0

= X 0 . The uniqueness is proved.

Now x γ > 0 such that E[Z γ ] < 1. We want to prove that E[X γ 0 ] is nite. If γ 1 we use Minkovsky's inequality: E[X γ 0 ] 1/γ +∞ n=1 E[(Z 1 • • • Z n ) γ ] 1/γ = +∞ n=0 E[Z γ ] n/γ .
(2.7)

Thus E[X γ 0 ] is nite. On the other hand, if γ ∈ (0, 1), then for all x, y 0, (x + y)

γ x γ + y γ . So E[X γ 0 ] +∞ n=0 E[Z γ ] n , (2.8) 
which is again nite. Now, if E[Z γ ] 1, then with the identity (2.2),

E[X γ 0 ] = E[Z γ ]E[(1 + X 0 ) γ ] E[(1 + X 0 ) γ ], (2.9 
)

which can hold only if E[X γ 0 ] = +∞ (or γ = 0). Eventually, pick γ ∈ A so that E[Z γ ] < 1.
With the foregoing, we then know that E[X γ 0 ] < +∞. Thus, by Jensen's inequality, E[log + X 0 ] is nite.

The next lemma provides the existence of the random variables X and the desired formula for the Lyapunov exponent.

Lemma 2.3. For all > 0, there exists a non-negative random variable X , unique in distribution, such that

X (d) = Z 1 + X 1 + 2 X , (2.10) 
with Z independent of X . Moreover, for every > 0, Z X X 0 . Furthermore,

L( ) = E[log(1 + 2 X )], (2.11) 
and L( ) is also the growth rate of the entries of M n, • • • M 1, : for every x, y ∈ R 2 with nonnegative entries, Proof. We begin with the proof of the existence, for which we use a standard procedure. Fix an iid sequence (Z n ) of copies of Z, set x 0 = 0 and dene recursively the random variables

1 n log x, M n, • • • M 1, y -→ n→+∞ L( ) a.
x n+1 = Z n+1 1 + x n 1 + 2 x n .
(2.13)

Denote by ν n the distribution of x n and consider the measure

ρ N = 1 N N -1 n=0 ν n .
Observe that for any n 0, x n is nonnegative and x n+1 Z n+1 (1 + x n ). Thus, by an easy induction,

0 x n n-1 k=0 Z n • • • Z n-k X 0 : (2.14)
the random variables x n are uniformly bounded by X 0 . Consequently the sequence (ρ N ) is tight. Pick a limit point ρ ∞ of that sequence and x a random variable X with distribution ρ ∞ . The limit distribution ρ ∞ must be invariant under the random transformation (2.13). In other words it must satisfy (2.10). The existence of an invariant measure supported on R + is proved. Incidentally we obtained X X 0 . As for the stochastic lower bound X Z, it directly follows from the identity (2.10).

To deal with the uniqueness, assume that X 

. We introduce, for n 0,

X (n+1) = Z n+1 1 + X (n) 1 + 2 X (n) , Y (n+1) = Z n+1 1 + Y (n) 1 + 2 Y (n) .
(2.15)

Observe that, almost surely,

|X (n+1) -Y (n+1) | = Z n+1 (1 -2 )|X (n) -Y (n) | (1 + 2 X (n) )(1 + 2 Y (n) ) Z n+1 |X (n) -Y (n) |.
(2.16) Thus, with (2.4), |X (n) -Y (n) | vanishes almost surely as n goes to +∞. On the other hand, note that, with the construction (2.15), for all n 0, X

(n) (d) = X (0) and Y (n) (d) = Y (0) 
. The uniqueness follows.

Then ρ N actually converges (without extraction) towards X 's distribution. We are left with the proof of formula (2.11). Thanks to a result by H. Hennion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF], since M 's entries are positive, the convergence (2.12) holds. On the other hand, for every n 0,

M n, • • • M 1, 1 X (0) = n-1 k=0 (1 + 2 X (k) ) 1 X (n) (2.17)
So, by taking the log and the expectation,

1 n E[log M n, • • • M 1, t (1, X (0) ) ] = E[log(1 + 2 X )] + 1 n E[log (1, X ) ]. (2.18) Since E[log + X ] E[log + X 0 ] is nite (Lemma 2.
2), the last term vanishes as n goes to +∞. On the other hand, one has, for every n 0,

(1, 0)M n, • • • M 1, t (1, 0) M n, • • • M 1, t (1, X (0) ) M n, • • • M 1, (1 + X (0)
).

( 

→ 1+x 1+ 2 x
. is monotone, one obtains, with the previous construction, that the random variables X are stochastically decreasing with : for all > 0 one has X X X 0 .

Lemma 2.7. X → X 0 in distribution when → 0.

Proof. The stochastic dominance X X 0 ensures that the family of random variables (X ) >0 is tight. Consider a limit point X0 of X as goes to 0. Since X satises the identity (2.10), the limit point X0 must satisfy X0 (d) = Z(1 + X0 ). That means, using Lemma 2.2, that X 0 is the only possible limit point of X as goes to 0. The convergence of X towards X 0 (in distribution) follows.

Using classical integration theorems, one readily obtains the following limiting behaviour of X 's moments, or truncated moments, which will be needed in the proof of Theorem A.

Corollary 2.8. For any γ > 0,

1. If E[Z γ ] < 1 then, as goes to 0, E[X γ ] = O(1). 2. If E[Z γ ] 1 then for any B > 0, E X γ 1 2 X B -→ →0 +∞. (2.20) Proof. Recall that E[X γ 0 ] is nite if and only if E[Z γ ] < 1 (Lemma 2.2). With the stochastic dominance X X 0 provided by Lemma 2.3, we get E[X γ ] = O(1) when E[Z γ ] < 1. On the other hand if E[Z γ ] 1, then E[X γ 0 ] = +∞ (Lemma 2.2)
. Since X X 0 , one can pick representatives X and X0 such that X X0 almost surely. It gives the lower bound

E X γ 1 2 X B E Xγ 1 2 X0 B (2.21)
for any B > 0. By Fatou's lemma and the convergence in distribution provided by Lemma 2.7, the latter lower bound goes to +∞ as goes to 0.

Regular expansion (Theorem B: upper bound)

In this section we prove the existence of a regular expansion for the Lyapunov exponent L( ).

We also lay out the method, which will be used twice more: for the generalization of this result in 

L( ) = K k=1 (-1) k+1 k 2k + O( 2β E[X β ]), (3.1) 
where, for k K, the coecient k is a positive rational function of

E[Z], . . . , E[Z k ]. Remark 3.2. With some extra eort, O( 2β E[X β ]) can be replaced by O(E[( 2 X ) β1 ∧ ( 2 X ) β2 ]) for any β 1 , β 1 ∈ [K, K +1].
It will only be needed to explain some generalizations discussed in Remark 1.6.

Proof. We use identity L(

) = E[log(1 + 2 X )] (Lemma 2.
3) and expand the logarithm. There exists C > 0 such that for all x 0,

log(1 + x) - K j=1 (-1) j+1 j x j Cx β . (3.2) Consequently L( ) = K j=1 (-1) j+1 j 2j E[X j ] + O 2β E[X β ] . (3.3) 
Lemma 3.3. For all l K, the following expansion holds,

E[X l ] = K-l k=0 (-1) k g l,k 2k + O( 2(β-l) E[X β ]), (3.4) 
where, for all l 1 and k 0, the coecient g l,k is a positive rational function of E[Z], . . . , E[Z l+k ].

We rst admit Lemma 3.3 and conclude the proof of Proposition 3.1. The substitution of (3.4)

into (3.3) yields L( ) = K j=1 K-j k=0 (-1) j+k+1 j 2(j+k) g j,k + O 2β E[X β ] . (3.5)
It can be rewritten

L( ) = K s=1 (-1) s+1 s 2s + O 2β E[X β ] , with s = K j=1 K-j k=0 g j,k j 1 j+k=s , (3.6)
and s is a positive rational function of E[Z], . . . , E[Z s ] by inspection.

We are left with the proof of Lemma 3.3, for which we briey explain the strategy. Write the identity

E[X k ] = E[Z k ]E 1 + X 1 + 2 X k . (3.7) 
Then by expanding the denominator one gets

E[X k ] = E[Z k ] n j=0 -k j 2j E (1 + X ) k X j + Remainder. (3.8) 
It gives a relation between the moments of X which will be used via a bootstrap procedure: the substitution of a regular expansion for X 's rst moments into (3.8) will provide a more precise expansion of E[X k ]. That new expansion will in turn be injected into (3.8) (for another k), to obtain a more precise regular expansion for that other moment, et caetera. Of course that procedure should be done in a specic order. Doing it rigorously will require a double induction, on k and the length of the expansions. Let's now proceed to the detailed proof.

Proof of Lemma 3.3. Set δ = β -K. We prove, using a course-of-values double induction with the lexicographic order on (m, j), that if j + m K, then E[X j ] has an expansion up to the order 2m :

E[X j ] = m k=0 (-1) k g j,k 2k + O 2(m+δ) E[X β ] , (3.9) 
where for every j 1 and k 0, the coecient g j,k is a positive rational function of

E[Z], . . . , E[Z j+k ].
Of course E[X 0 ] admits such an expansion, up to any order. All that remains is the inductive step. Fix l 1 and n 0 such that l + n K and suppose that (3.9) holds (A) for all j K and m (n -1) ∧ (K -j);

(B) for all j l -1, and m n.

We want to show that it also holds for (j, m) = (l, n). To this end, write

E[X l ] = E Z 1 + X 1 + 2 X l = E[Z l ] l r=0 l r E X r (1 + 2 X ) l . (3.10)
We want to expand the denominator with respect to . Let C > 0 be such that for any x 0 and l, m K,

1 (1 + x) l - m i=0 -l i x i Cx m+δ . (3.11) 
Thus, for every r l,

E X r (1 + 2 X ) l - n i=0 -l i 2i E[X i+r ] C 2(n+δ) E[X r+n+δ ] C 2(n+δ) max 0 k K E[X k+δ ]. (3.12) Actually max k K E[X k+δ ] = O(E[X β ]). (3.13) Indeed, if 1 k K -1, then E[Z k+δ ] < 1, so E[X k+δ ] E[X k+δ 0 ] < +∞ (Lemmas 2.2 and 2.3). On the other hand E[X K+δ ] = E[X β ] E[Z β ] > 0 (Lemma 2.
3). Thus, with (3.12) and (3.13), we can write, for every r l,

E X r (1 + 2 X ) l = n i=0 -l i 2i E[X i+r ] + O( 2(n+δ) E[X β ]). (3.14) 
And then, injecting it into (3.10), we get

E[X l ] = E[Z l ] l r=0 l r n i=0 -l i 2i E X i+r + O( 2(n+δ) E[X β ]). (3.15) 
We then isolate the term (i, r) = (0, l) that is E[Z l ]E[X l ] on the left-hand side and divide by

1 -E[Z l ], to get E[X l ] = E[Z l ] 1 -E[Z l ] 0 r l, 0 i n (i,r) =(0,l) l r -l i 2i E X i+r + O( 2(n+δ) E[X β ]). (3.16) 
We claim that the induction hypothesis provides expansions for all these terms, up to the required order. The induction hypothesis (3.9) on E[X i+r ] (induction hypothesis with j = i + r and m = n -i, which is contained in the item (B) if i = 0 and in the item (A) if i 1), states that

E[X i+r ] = n-i k=0 2k (-1) k g i+r,k + O 2(n-i+δ) E[X β ] .
(3.17)

We then inject it into (3.16). It yields

E[X l ] = E[Z l ] 1 -E[Z l ] 0 r l, 0 i n (i,r) =(0,l) l r -l i 2i n-i k=0 2k (-1) k g i+r,k + O 2(n+δ) E[X β ] . (3.18) 
One can already observe that it is a regular expansion of E[X l ] up to the order n, as expected. The following lines intend to derive a recursive formula for g l,k so as to check its sign. First note that -l i = (-1) i l + i -1 i .

(3.19)

Thus (3.18) becomes E[X l ] = E[Z l ] 1 -E[Z l ] 0 r l, 0 i n (i,r) =(0,l) 0 k n-i l r l + i -1 i 2(k+i) (-1) k+i g i+r,k + O 2(n+δ) E[X β ] . (3.20) 
Eventually, it can be written as

E[X l ] = n s=0 (-1) s g l,s 2s + O 2(n+δ) E[X β ] , (3.21) 
with, for every s n,

g l,s = E[Z l ] 1 -E[Z l ] 0 r l, 0 i n (i,r) =(0,l) 0 k n-i l r l + i -1 i g i+r,k 1 i+k=s . (3.22)
Thanks to the induction hypothesis, it is a positive rational function of E[Z], . . . , E[Z l+n ]. The inductive step is proved, and the lemma follows.

1 j l -1. We want to prove (4.6) for (j, m) = (l, n). For the sake of simplicity, the proof will only be written for n even (inequalities would be in the opposite direction if n is odd). First write the identity

E[X l ] = E Z 1 + X 1 + 2 X l = E[Z l ] l r=0 l r E X r (1 + 2 X ) l . (4.7) Using (4.4) we get, E[X l ] E[Z l ] l r=0 l r n-1 i=0 l + i -1 i (-1) i 2i E[X i+r ] + C(-1) n 2n E[X n+r 1 2 X B ] . (4.8) 
We subtract the term

E[Z l ]E[X l ] (term (i, r) = (0, l)) and divide by 1 -E[Z l ] (which is positive) to obtain E[X l ] E[Z l ] 1 -E[Z l ] 0 r l, 0 i n-1 (i,r) =(0,l) l r l + i -1 i (-1) i 2i E[X i+r ] + C(-1) n 2n E[X n+r 1 2 X B ] . (4.9) 
We use the induction hypothesis on E[X i+r ] (induction hypothesis (4.6) with j = i + r and m = n -i),

that is

E[X i+r ] - n-i-1 k=0 2k (-1) k g i+r,k C(-1) n-i 2(n-i) E[X r+n 1 2 X B ], (4.10) 
if n -i is even, and the opposite if it is odd. In any case, injecting these lower bounds into (4.9) yields the second line contains the 2n -terms which we want to bound from below:

E[X l ] E[Z l ] 1 -E[Z l ] 0 r l, 0 i n-1 (i,r) =(0,l) l r l + i -1 i (-1) i 2i n-i-1 k=0 2k (-1) k g i+r,k + C(-1) n 2n E[X n+r 1 2 X B ] + C(-1) n 2n E[X n+r 1 2 X B ] .
E[X l ] n-1 s=0 2s (-1) k g l,s + (-1) n 2n Q n , (4.12) 
with

Q n = E[Z l ] 1 -E[Z l ] 0 r l, 0 i n-1 (i,r) =(0,l) l r l + i -1 i C + C E[X n+r 1 2 X B ]. (4.13) 
Since all the terms in Q n are non-negative, it is larger than any of them

Q n E[Z l ] 1 -E[Z l ] CE X n+l 1 2 X B CE X n+l 1 2 X B . (4.14)
This concludes the proof of the inductive step and thus the proof of the lemma.

Proof. The identity X

(d) = Z 1+X 1+ 2 X yields, for γ 0, E[X γ ] = E[Z γ ]E 1 + X 1 + 2 X γ E[Z γ ]E (1 + X ) ∧ -2 γ E[Z γ ]E (1 + X 0 ) ∧ -2 γ .
(5.4)

It can be rewritten

E[X γ ] E[Z γ ] γ -2 0 
x γ-1 P(X 0 > x -1)dx + -2γ P(X 0 -2 -1) .

(5.5)

With γ = α, Lemma 5.1 gives upper bounds for these two terms:

-2α P(X 0 -2 -1) = O(1)
and -2 0

x α-1 P(X 0 > x -1)dx = O(log(1/ )).

(5.6) Lemma 5.3. Fix γ > α and assume that E[Z γ ] is nite. Then, as goes to 0, E[X γ ] = O( 2α-2γ ).

(5.7)

Proof. We reuse inequality (5.5). Lemma 5.1, which applies here, yields

-2γ P(X 0 -2 -1) = O( 2α-2γ ) and -2 0 x γ-1 P(X 0 > x -1)dx = O( 2α-2γ
).

( 

5.2

Lower bounds when Z is bounded

We start with a quite general, albeit quite complex, lower bound for X 's moments.

Lemma 5.5. Fix γ 1, C > 0, B > 1 and N ∈ N and set τ

= γ B-1 B B-1 + C . One has E[X γ ] N k=1 E [Z γ 1 Z B ] k exp -τ 2 B k P(X C).
(5.9)

Proof. Let X (N ) be a copy of X and (Z k ) be iid copies of Z, independent of X

(N )

. Dene recursively, for 0 k N -1,

X (k) = Z k+1 1 + X (k+1)
1 + 2 X (k+1) .

(5.10)

For every k N , one has X (k) (d) = X . On the other hand, one can derive the following lower bounds:

(X (0) ) γ = Z γ 1 (1 + X (1) ) γ (1 + 2 X (1) ) γ Z γ 1 (1 + 2 X (1) ) γ + Z γ 1 (1 + 2 X (1) ) γ (X (1) ) γ .
(5.11)

Here the condition γ 1 is used through the convexity inequality (1 + x) γ 1 + x γ . Then, inductively,

(X (0) ) γ Z γ 1 (1 + 2 X (1) ) γ + Z γ 1 (1 + 2 X (1) ) γ Z γ 2 (1 + 2 X (2) ) γ + • • • + N j=1 Z γ j (1 + 2 X (j) ) γ .
(5.12)

By taking the expectation we get

E[X γ ] N k=1 E   k j=1 Z γ j (1 + 2 X (j) ) γ   . (5.13) If X (k) 
C and Z k B, then, with denition (5.10), X

(k-1) B(1+C). So, inductively, if X (k) 
C, and Z 0 , . . . , Z k B, then, for every j k,

X (k-j) j i=1 B i + B j C B j B B -1 + C = B j σ, (5.14) 
with σ = B B-1 + C. Thus, k j=1 Z γ j (1 + 2 X (j) ) γ   k j=1 Z γ j 1 Zj B (1 + σ 2 B k-j ) γ   1 X (k) C . (5.15) We compute k j=1 1 (1 + σ 2 B k-j ) γ exp   -σγ 2 k j=1 B k-j   exp - σγ B -1 2 B k = exp -τ 2 B k .
(5.16)

Taking the expectation in (5.15) and using that X

and Z 1 , . . . , Z k are independent, we obtain

E   k j=1 Z γ j (1 + 2 X (j) ) γ   E [Z γ 1 Z B ] k exp -τ 2 B k P(X C).
(5.17)

The conclusion follows by injecting this lower bound into (5.13).

One could expect to use that general lower bound for any given Z. However it only gives satisfactory results when Z is bounded. In that case we can get rid of the indicator 1 Z≤B in (5.9). -2 , which holds for every x 0.

Lemma 5.6 justies that we only study X 's moments instead of its truncated moments: as long as B is chosen larger than Z L ∞ one has E X K+1 1 2 X B = E X K+1 .

(5.18)

In the next two lemmas we give a lower bound for X 's moments when Z is bounded. In that instance, note that E[Z α ] = 1: the set A cannot takes the form A = (0, α]. Lemma 5.7 will be used if α is an integer, and Lemma 5.9 when α is not an integer. However, both of them hold true regardless of the nature of α.

Lemma 5.7. For α 1, if Z has a bounded support then, for some c > 0, and suciently small, E[X α ] c log(1/ ). (5.20)

First note that, thanks to Lemma 2.7, P(X C) -→ P(X 0 C), (5.24)

Choosing again N = 2 1 log B log 1 , we obtain E[X γ ] E [Z γ ] N exp (-τ ) P(X C) c -2η .

Proof of Theorem A

We recall here the upper and lower bounds provided by Theorem B:

c 2(K+1) E[X K+1 1 2 X B ] R K ( ) C β 2β E[X β ],
(5.25)

If α = +∞ then R K ( ) C K+1 2(K+1) E[X K+1 ] 2(K+1) E[X K+1 0 ] (Lemma 2.3). Since E[X K+1 0 ] is nite (Lemma 2.
2), the result (1.11) follows.

From now on we suppose that α is nite and E[Z α ] = 1 and we set K = α -1. By Corollary 2.8, R( ) c 2(K+1) E[X K+1 1 2 X B ] 2(K+1) .

(5.26)

If α is an integer then the lower and upper bounds given by (1.13) or (1.14) follow from Lemmas 5.2 and 5.7. If α is not an integer then the lower and upper bounds (1.16) given by Theorem A are a consequence of Lemmas 5.3 (with γ such that E[Z γ ] < +∞) and 5.9 (with γ = K + 1).

1 )

 1 , . . .}, then, as goes to 0, -1) α +1 C Z 2α + o( 2α ), (1.3) where, for k α , k is a positive rational function of E[Z], . . . , E[Z k ]; and C Z is a positive real number. • If α ∈ {1, 2, . . .}, then L( α+1 C Z 2α log(1/ ) + o 2α log ,

  are two such random variables and x an iid sequence (Z n ) of copies of Z, independent of X (0) and Y

Appendix A and in Section 4

 4 to obtain the lower bound of the error. It is based on the study of a regular expansion for the moments of X which are bounded as goes to 0. Let us rst state the main result of the section. Proposition 3.1. Pick an integer K ∈ A ∪ {0}, and x β ∈ [K, K + 1]. The following expansion holds when goes to 0,

(4. 11 )

 11 The rst line corresponds to the regular part already found in Lemma 3.3 equations (3.21) and (3.22);

Lemma 5 . 6 .

 56 If Z has a bounded support then X -2 Z L ∞ almost surely. Proof. It is an immediate consequence of the invariance identity X (d) = Z 1+X 1+ 2 X and of the inequal- ity 1+x 1+ 2 x

( 5 . 19 )

 519 Proof. Recall that since Z is bounded, E[Z α ] = 1. Choose γ = α and B = Z ∞ in Lemma 5.5 to get E[X α ] N k=1 E [Z α ] k exp -τ 2 B k P(X C) N exp -τ 2 B N P(X C).

( 5 .

 5 21) which is positive if C is large enough. Choosing N = N = 2 1 log B log 1 , we obtain E[X α ] N exp(-τ )P(X C) c log(1/ ).

(5. 22 )

 22 Remark 5.8. If Z is not bounded but E[Z κ ] < +∞ for some κ > α then, with another choice of B and N , one can get the slightly weaker lower bound E[X α ] c log(1/ ) log log(1/ ) .

Lemma 5 . 9 .

 59 If Z is bounded, and if γ 1 is such that E[Z γ ] > 1, then, for some c > 0, and for suciently small,E[X γ ] c -2η , where η = log E[Z γ ] log Z ∞ ∈ (0, γ -α).

(5. 23 )

 23 Proof. Set B = Z L ∞ in Lemma 5.5 to get E[X γ ] N k=1 E [Z γ ] k exp -τ 2 B k P(X C) E [Z γ ] N exp -τ 2 B N P(X C).

  s. and in L 1 .Remark 2.4. There could be other distributions, supported on R, satisfying (2.10). We only claim uniqueness for non-negative invariant measure. However, if Z does not have a nite support, then one can prove, using classical results of products of random matrices (see[START_REF] Bougerol | Products of random matrices with application to Schrödinger operators[END_REF] Chapter 3]), that there exists a unique invariant measure on R. With Lemma 2.3, we know that it must be supported on R + .In what follows, X will always denote the unique non-negative invariant random variable of Lemma 2.3.

	(2.12)

  .[START_REF] Nieuwenhuizen | Exactly soluble random eld Ising models in one dimension[END_REF] Since we know that both the lower and upper bounds goes to L( ) (after taking log and expectation) as n goes to +∞, almost surely and in L 1 , we get the result.Remark 2.5. Formula (2.11) can also be proved with a classical result by H. Furstenberg and Y. Kifer[11, Corollary of Theorem 3.10], which gives an explicit formula for the Lyapunov exponent in terms of invariant measures as soon as M is an invertible random matrix of size d × d with no deterministic proper invariant subspace. We could also have used the convergence ρ n → L(X ) to prove(2.11) 

and (2.12) without using H. Hennion's results. Remark 2.6. If one notes that the map
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Theorem B: lower bound on the error

We prove here the lower bound on the error given in Theorem B, formula (1.21). We already saw in Proposition 3.1's proof, when we studied the signs before the coecients k or g l,k , that when expanding the algebraic fractions (1 + 2 X ) -r , the term 2n always comes with the sign (-1) n . The same occurs for the error, at each step, at the order K+1 : it comes with the sign (-1) K+1 . As a result, the error terms, which invariably accumulate with the same sign, eectively add up and cannot oset one another. In practice, these error terms can also be bounded from below. It yields the next result.

Proposition 4.1. Fix an integer K ∈ A ∪ {0} and B > 0. There exists c > 0 such that, for all > 0, (-1) K+2 L( )

where the coecients ( k ) are the same as in Proposition 3.1.

Unsurprisingly, a similar scheme as in Proposition 3.1's proof will be used. We will proceed to a double induction, corresponding to an underlying bootstrap procedure. The only actual dierence compared to Section 3 is that the estimate (3.11) is replaced by the lower bound

We begin with the equivalent of Lemma 3.3 in this new perspective.

Lemma 4.2. Fix an integer K ∈ A ∪ {0} and B > 0. There exists c > 0 such that for all 1 l K, and 0 n K -l, the following holds, for the same real coecients (g l,k ) as in Lemma 3.3

Proof. If K = 0 the statement is empty, so suppose K 1. It will be useful to recall formula (3.19). Fix B > 0. There exists C > 0 such that for all 1 l K + 1 and n K + 1, and for all x 0,

As in Lemma 3.3, we carry out a proof by course-of-values double induction. More precisely, set

We prove that if j 1, m 0 and j

if m is even; and the same with an inequality in the opposite direction if m is odd. The base case m = 0 is immediate. For the inductive step, we x l 1, n 1 such that l + n K + 1 and we suppose that (4.6) holds for all (j, m) with m n -1 and 1 j K + 1 -m, and for all (j, n) with Proof of Proposition 4.1. Let c = c (B, K) > 0 be such that for all x 0, log

if K is even; and the same with an inequality in the opposite direction if K is odd. For the sake of simplicity we suppose that K is even in what follows. Writing L( ) = E log(1 + 2 X ), we get

and Lemma 4.2 provides a lower bound for each term in the sum: for every 1 l K,

The conclusion results from the latter two inequalities.

5 Limiting behaviour of X 's divergent moments First note that Theorem B is an immediate consequence of Propositions 3.1 and 4.1. The goal of this section is to obtain estimates of the error R K ( ), for which we now have

In order to give explicit estimates of R K ( ) in terms of powers of , one needs to understand the limiting behaviour of X 's moments (or truncated moments). The issue was partially addressed by Corollary 2.8, which pinpointed the regimes of convergence or divergence of these moments. Namely

In the following section we address the issue of the divergence speed when E[Z γ ] 1.

The rst paragraph, based on renewal theory results, describing the heavy tail of X 0 , will provide upper bounds for X 's divergent moments. The second paragraph will give lower bounds for these moments under the restriction that Z is bounded.

Upper bounds

We will need the following result, which combine results by H. Kesten and A. K. Grincevi£ius depending if log Z has an arithmetic support or not (see [START_REF]Implicit renewal theory in the arithmetic case[END_REF]Theorems 1,[START_REF] Campanino | Anomalies in the one-dimensional anderson model at weak disorder[END_REF] for a review).

Lemma 5.

(5.

2)

It readily gives the next two results. They provide explicit upper bounds for the speed of divergence of X 's moments. If you believe Conjecture 1.2, these upper bounds (except the rst one when E[Z α ] < 1) are of the good order of . The rst one will be used for α ∈ {1, 2, . . .} whereas the second will be needed when α is not an integer.

Lemma 5.2. If E[Z α log + Z] < +∞, then, as goes to 0,

(5.3)

A Generalization to higher dimension

The techniques developed in the previous sections are suciently robust to be used in more general settings. We apply them to a square matrix of size d + 1 which is a perturbation of a matrix alike Diag(1, Z), which still have a preferred direction. Since the proofs are only slightly dierent from the previous sections, they will be only sketched in this appendix. We will just point out the arguments that must be adapted and many details will be omitted.

We now consider the (d + 1)

where L and C are random vectors of size d, and N is a random matrix, of size d × d. We are still interested in the Lyapunov exponent, dened by the limit

where (M k, ) k 1 are iid copies of M . This limit exists almost surely and is deterministic (see again [START_REF] Furstenberg | Products of random matrices[END_REF])

as soon as for every > 0, E[log + M ] < +∞. We derive in this section a regular expansion for L( ), alike the expansion provided by Proposition 3.1 in the previous setting. However, no lower bound on the error will be given here. We start by deriving a formula alike L(

In the whole section

• will denote a given norm on R d or R d+1 , as well as the induced operator norm on M d (R) or M d+1 (R). On another note, if x, y ∈ R d , we will write x y if the inequality holds coordinatewise. Similarly the stochastic dominance will be extended to random vectors: X Y means that there exists a copy X of X and a copy Ỹ of Y satisfying X Ỹ almost surely (coordinatewise).

Let's introduce the assumptions under which we will work in the section. Observe that under these assumptions, the condition E[log + M ] < +∞ is fullled so the Lyapunov exponent is well dened.

Assumptions A.1. We assume that the following holds, for every ∈ (0, 0 ).

(a) The random matrix M has non-negative entries. And, almost surely, there exists N

Before deriving the formula for the Lyapunov exponent, we introduce the random vector Y , which will play the same role as X 0 in our new setting (except that here it will depend on ). Namely it will be used through stochastic dominances.

Lemma A.2. Fix ∈ (0, 0 ) and let (N ,k , C ,k ) be iid copies of (N , C ). The series

as goes to 0.

Proof. Since all the entries of M are non-negative, the sum (A.3) is always dened. A priori, some of its entries could be +∞. Denote by Y the random vector dened by this innite sum. Using Minkowski's inequality or another convexity inequality as for Lemma 2. The next lemma provides the desired formula for L( ).

Lemma A.3. There exists a random vector X ∈ R d , with non-negative entries, satisfying 1 X

in the projective space P d (R),

or equivalently,

where C , N and L are the blocks of the random matrix M , independent of X . One has X Y .

Moreover the Lyapunov exponent can be written as

And for every x, y ∈ R d+1

Proof. The method is the same as in Lemma 2.3's proof for 2 × 2 matrices. We x iid copies (M ,n ) of M and set x 0 = 0 R d . Then dene inductively, for n 0, the random variables

(A.9)

Observe that since all the vectors have non-negative entries, one can write, coordinatewise,

x n+1 C ,n + N ,n x n .

(A.10) So, by an easy induction, x n Y for every n 0. The end of the proof is the same as for Lemma 2.3.

We do not reiterate all the details here. Just note that we do not claim the uniqueness of a nonnegative solution to (A.6) and that Assumption A.1 (a) is a sucient condition for H. Hennion's result to apply.

To state our main result, and more precisely to formulate its premises, some multi-index notations will be required, which we set in the next lines. The norm of a multi-index λ ∈ N d will be denoted by |λ|:

For every l 0, there are l+d-1 d-1

multi-indices with norm l: it is the number of (weak) compositions of l into d non-negative integers. For a vector x ∈ R d and a multi-index λ ∈ N d , we dene the multi-index power

(A.12)

Similarly, for a matrix

(A i,j ) ωi,j and |ω| = i,j ω i,j .

(A.13)

There should be no confusion with a standard matrix power since ω is a multi-index. For l 0, consider the square matrix G (l) with size l+d-1 d-1 , whose elements are

Note that all the multi-indices ω in the sum have norm |ω| = l. The matrix G (l) will play a similar role as E[Z l ] in this generalized context. Of course these matrices, which require the existence of lim →0 E [N ω ], are not always dened.

We have set enough notations to state the generalization of Proposition 3.1, giving a regular expansion of the Lyapunov exponent L( ).

Proposition A.4. Fix K 0 and β ∈ (K,

and admits a regular expansion, as goes to 0, up to the order 2(K -l):

2. For all 1 l K, the matrix I -G (l) is invertible;

Then there exist real coecients q 2 , . . . q 2K such that, as goes to 0, Remark A.6. One could be surprised that the upper bound involves

Such a caution was not necessary in the previous context since the latter was bounded form below as goes to 0. Here, a priori, it could happen that E[ X β ] vanishes as goes to 0.

Remark A.7. The existence of G (l) , for l K, is ensured by the assumption (A.15), which gives

Proof. The same proof as for Proposition 3.1 works: one expands the logarithm:

where x (r) stands for the r th coordinate of x. Note that

and that for any r 1 , . . . , r k there exists λ ∈

Thus we need expansions for X 's moments. They are given by the next lemma. By substituting the regular expansion (A. [START_REF] Nieuwenhuizen | Exactly soluble random eld Ising models in one dimension[END_REF]), given in Lemma A.8, in the expansion (A.17) of L( ), the proof of Proposition A.4 will be complete.

Lemma A.8. Under Proposition A.4's premises, for all l K, and λ ∈ N d , such that |λ| = l, the following expansion holds, for some real coecients (g λ,k ):

Sketch of proof of Lemma A.8. We can follow the same proof as for Lemma 3.3. We go back to that proof to understand how the present one must be adjusted. The only point which merits special attention is the line (3.16) where the term E[Z l ]E[X l ] is isolated on the left-hand side. That line could be summarized as follow: we wrote

where (♦ l ) stands for all the terms in the expansion of E[X l ] for which the induction hypothesis provided an expansion up to the required order. To be explicit,

Then we could conclude by writing

and applying the induction hypothesis. That is where was used the condition E[Z l ] < 1 (actually E[Z l ] = 1 was enough), and this is where will be used the invertibility of 1 -G (l) . In our generalized setting, we still carry out an induction on (n, l = |λ|) (equipped with the lexicographic order). For the inductive step, there are a lot of multi-indices with given norm l. They will be solved simultaneously, by writing a joint system satised by all these multi-indices moments E[X λ ] with |λ| = l. To this end, use the identity

Then develop the denominator

Eventually, after manipulation, that moment takes the form

where, again, (♦ λ ) stands for all the term in the expansion of E[X λ ] for which the induction hypothesis, and the premise (A.15) of Proposition A.4, provide an expansion up to the required order. Then, since I -G (l) is invertible, one can solve that joint system satised by the family (E[X λ ]):

That concludes the proof of the induction step and thus the proof of the lemma.

Remark A.9. The same methods as in Section 4 can produce the lower bound on the error 

(A.28)

The magnetic eld (h k ) k∈T N is supposed to be iid. Thanks to a transfer matrix approach, the free energy in the thermodynamic limit can be expressed through a random matrix products: