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Abstract. We are motivated by the problem of identifying potentially
nonlinear regression relationships between high-dimensional outputs and
high-dimensional inputs of heterogeneous data. This requires regression,
clustering, and model selection, simultaneously. In this framework, we
apply the mixture of experts models which are among the most popular
ensemble learning techniques developed in the field of neural networks. In
particular, we consider a more general case of mixture of experts models
characterized by multiple Gaussian experts whose means are polynomials
of the input variables and whose covariance matrices have block-diagonal
structures. More especially, each expert is weighted by a gating network
that is a softmax function of a polynomial of the input variables. These
models require several hyper-parameters, including the number of mix-
ture components, the complexity of the softmax gating networks and
Gaussian mean experts, and the hidden block-diagonal structures of the
covariance matrices. We provide a non-asymptotic theory for model selec-
tion of such complex hyper-parameters using the slope heuristic approach
in a penalized maximum likelihood estimation framework. Specifically,
we establish a non-asymptotic risk bound on the penalized maximum
likelihood estimation, which takes the form of an oracle inequality, given
lower bound assumptions on the penalty function.

Keywords: Dimensionality reduction · Low rank estimation · Mixture
of experts · Finite mixture regression · Non-asymptotic model selection
· Oracle inequality · Variable selection.
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1 Introduction

Mixture of experts (MoE) models, introduced by Jacobs et al. [16] are widely ap-
plied to decompose the prediction model through a combination of gating models
and expert models, both of which depend on the input variables. These flexi-
ble models are specific instances of conditional computation [3], where different
model experts are responsible for different regions of the input space. Thus, by
applying only a subset of parameters to each example, MoE can increase model
capacity while keeping training and inference costs roughly constant. For reviews
on this topic, we refer to [19, 25]. Furthermore, they have gained popularity due
to universal approximation properties in various special cases, including mix-
ture models [30, 28], mixture of regression models [15], and fully-parameterized
mixture of experts models [26, 27]. In high-dimensional multivariate multiple re-
gression for heterogeneous data, we refer to outputs Y ∈ Y ⊂ RQ as target or re-
sponse variables, and inputs X ∈ X ⊂ RP as explanatory or predictor variables,
where Q and P are both much larger than the sample size. Additionally, hid-
den interactions may exist in the graphical structure between response variables.
In such cases, regression, clustering, and model selection need to be performed
simultaneously. Consequently, we employ MoE models to identify potential non-
linear relationships between output and input variables in the high-dimensional
heterogeneous data. We assume that Y, conditional on X, follows a distribution
with the true but unknown probability density function s0(· | X = x). Motivated
by universal approximation theorems for MoE models, s0 can be estimated by

sψK
(y | x) =

K∑
k=1

gk(w(x))ϕ(y,vk(x),Σk(Bk)), with

gk(w(x)) =
exp(wk(x))∑K
l=1 exp(wl(x))

, for k = 1, . . . ,K. (1)

Here, on each cluster k ∈ {1, . . . ,K}, gk is called a softmax gating network
corresponding to the weight functions, w(x) = (w1(x), . . . , wK(x)), of x, and
ϕ(·,vk(x),Σk(Bk)) is a Gaussian expert with the mean function vk(x) and
covariance matrixΣk(Bk) depending on the block-diagonal structure Bk. We call
sψK

(y | x), defined as in (1), the softmax-gated block-diagonal MoE (SGaBloME)
models with unknown functional parameters ψK = (wk,vk,Σk(Bk))k∈{1,...,K}.
Furthermore, when the weights and the means of the SGaBloME model sψK

are the functions depending on polynomials of the input variables x which are
specified, for k ∈ {1, . . . ,K}, respectively, as

wk(x) = ωk0 +

DW∑
d=1

ωT
kdx

d, with ωk0 ∈ R, ωkd ∈ RP , (2)

vk(x) = υk0 +

DV∑
d=1

Υ kdx
d, with υk0 ∈ RQ, Υ kd ∈ RQ×P . (3)
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Here, ω0 = (ωk0)k∈{1,...,K}, ω = (ωk1, . . . ,ωkDW
)k∈{1,...,K} and υ0 = (υk0)k∈{1,...,K},

Υ = (Υ k1, . . . ,Υ kDV
)k∈{1,...,K} are K-tuples of unknown coefficients with the

maximum degrees DW and DV of polynomials for the weight and mean func-
tions, respectively, and xd = (xd

1, . . . , x
d
P ) is a vector of all components of x with

power d. Then we call an SGaBloME model sψK
defined by (1) with the weights

and mean experts specified as in (2)-(3) the polynomial SGaBloME model.

Motivation for block-diagonal covariance matrices. It is worth mentioning that
the block-diagonal covariance matrices Σ(B) =

(
Σk(Bk)

)
k∈{1,...,K} depend on

the block structures B = (Bk)k∈{1,...,K} that are the partitions of the outputs’
index set {1, . . . , Q} for each cluster. This structure is not only a trade-off be-
tween the model complexity and sparsity but is also motivated by some real-
world applications, where one wishes to perform prediction on data sets with
heterogeneous observations and graph-structured hidden interactions between
the outputs. A relevant example is the gene expression data where, subject to
phenotypic response, genes interact with only a few other genes, there are small
modules of correlated genes, see e.g. [14] for more details.

Motivation for polynomial regression. To solve the high-dimensional regression
problem, some authors applied SGaBloME models with certain simplifying as-
sumptions. More specifically, Devijver [13] focused on a mixture of Gaussian
linear regression models where the gating networks do not depend on the input
variables. On the other hand, Chamroukhi et al. [7] considered MoE for multiple
regression models with the univariate output variable, however, the weights and
means are linear functions of the inputs and thus the capacity of MoE models is
limited. In fact, in the context of convolutional neural networks, Chen et al. [8]
have empirically found that the mixture of linear experts performs better than
a single expert, but is still significantly worse than the mixture of non-linear ex-
perts. Within this framework, we are motivated to integrate nonlinearities into
SGaBloME models by defining the weights and mean experts as linear combi-
nations of bounded functions (LinBo) whose coefficients belong to a compact
set. Such a general setting may include the polynomial basis with a bounded in-
put domain, the suitable re-normalized wavelet dictionaries, or the Fourier basis
on an interval. If the dimensions of the inputs and outputs are not too large,
it is not necessary to select relevant variables and/or use rank sparse models.
Then we can work on the softmax-gated MoE models with the linear combina-
tions of bounded functions for weight and mean functions as in [24]. However,
to deal with high-dimensional data and simplify the interpretation of sparsity,
we consider a special case of LinBo-SGaBloME models to explore the presence
of nonlinearities that is the class of polynomial SGaBloME models defined by
(1)-(3). On the convergence rates of polynomial SGaBloME models, we refer to
[23] for a discussion of the optimal convergence rate of an MoE model where
each expert is associated with a polynomial regression model.

Model selection for polynomial SGaBloME models. The estimation of SGaBloME
models can be performed by using a well-known expectation-maximization (EM)
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algorithm [11], which obtains the global convergence in regression mixture mod-
els [18]. However, it crucially requires data-driven hyper-parameter choices, in-
cluding the number of mixture components, the degree of complexity of each
softmax gating network and each Gaussian expert mean function, and the hidden
block-diagonal structures of the covariance matrices. Hyper-parameter choices
from the data-driven learning algorithms belong to the class of model selection
problems that select the model with the lowest risk from the data. Typically,
penalization is one of the main strategies proposed for model selection that min-
imizes the sum of the empirical risk with a term of penalty so that the model
can be fitted to data while avoiding the overfitting problem.

Related works. Typically, model selection for MoE models is performed using the
asymptotic criteria [31, 4], whose uses in small samples are limited. Birgé et al. [5]
proposed a novel approach, called slope heuristic, supported by a non-asymptotic
oracle inequality via a general model selection theorem, see [2] and the references
therein for recent reviews. This method leads to an optimal data-driven choice
of multiplicative constants for penalties. In fact, oracle inequalities for the least
absolute shrinkage and selection operator (Lasso) [32] and general penalized max-
imum likelihood estimators were established in the spirit of the methods based
on concentration inequalities developed by [20]. These results include work on
the simplified assumptions of MoE models such as high-dimensional Gaussian
graphical models [14], Gaussian mixture model selection [21], and finite mixture
regression models [12, 13], or softmax-gated MoE models with linear combina-
tions of bounded functions for weight and mean functions without consideration
of variable selection in the high-dimensional setting [24].

1.1 Main contributions

In this work, we established an oracle inequality for model selection, as shown in
Theorem 1, under lower bound assumptions on penalty terms. This allows us to
obtain non-asymptotic risk bounds in the form of weak oracle inequalities allow-
ing the numbers of predictor and response variables that grow or are even much
larger than the sample size. More concretely, the constructed oracle inequality
shows that the performance of our penalized maximum likelihood estimations
is comparable to that of oracle models with sufficiently large constant multiples
of the penalties. The forms of these constants are only known up to multiplica-
tive constants and are proportional to the dimensions of the models. Moreover,
the flexibility of polynomial SGaBloME models requires the hyper-parameters
comprising the number of mixture components, the degree of polynomial mean
functions, and the potential hidden block-diagonal structures of the covariance
matrices of the multivariate output. Therefore, the aforementioned theoretical
justifications for the penalty shapes motivate the use of the heuristic slope cri-
terion to select these hyper-parameters of the models under consideration.

Notations. For any matrix A with the elements Aij , we denote |||A|||∞ =
maxi,j |Aij | the max-norm, and A·j the jth column, of A. Furthermore, the
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smallest and largest eigenvalues of A are denoted by eig(A) and Eig(A), respec-
tively. The notation A ≻ 0 indicates that A is positive definite. For any vector
a, we denote ∥a∥p the lp-norm of a for 0 < p ≤ ∞. We call dim(S) the total
number of parameters to be estimated or the dimension of a parametric model
S. If S is a finite set, we denote card(S) the cardinality, P(S) the set of all
subsets, and B(S) the set of all partitions, of S. The set of all natural numbers
without zero is denoted by N∗. For any K ∈ N∗, the notation [K] corresponds
to the set {1, . . . ,K}. Finally, we refer to a ∧ b as min{a, b} for a, b ∈ R.

Paper organization. The rest of the paper is organized as follows. Section 2 is
devoted to the construction of a collection of polynomial SGaBloME models for
high-dimensional heterogeneous data. In Section 3, we state the main theoretical
results of oracle inequality for the penalized maximum likelihood estimations
under some conditions on the parameter space and input domain of the models.
Finally, Section 4 contains concluding remarks and future directions.

2 Collection of polynomial SGaBloME models

For high-dimensional data, it is necessary to work with parsimonious models by
combining two well-known approaches: selection of relevant variables and rank
sparse models. Within this framework, the collection of polynomial SGaBloME
models is then constructed.

2.1 Variable selection via selecting relevant variables

In this section, we introduce the index sets for the input and output variables
so that they are related to each other. This facilitates the variable selection
of the models in a highly dimensional framework. In particular, for every p ∈
[P ], q ∈ [Q], we call a couple (Xp, Yq) irrelevant if the elements (Υ kd)qp = 0 and
(ωkl)p = 0 for all cluster k ∈ [K] and degrees d ∈ [DV ], l ∈ [DW ]. Therefore,
the variables (Xp, Yq) are relevant if they are not irrelevant. Formally, we denote
I = {(p, q) ∈ [P ] × [Q] : (Xp, Yq) is irrelevant} the set of indices of irrelevant
couples, and the complement of I, called J = ([P ] × [Q]) \ I, is thus the set of
indices of relevant couples with J ∈ P([P ] × [Q]). In addition, we also denote
Jin = {p ∈ [P ] : ∃q ∈ [Q], (p, q) ∈ J} the set of indices of input variables that
are relevant to the outputs so that Jin ⊆ [P ].

We notice that, for every cluster k ∈ [K] and degree d ∈ [DV ], all entries
of Υ kd belonging to columns indexed by [P ] \ Jin equal to 0, in other words,
Υ kd has the relevant columns indexed by Jin. Hence, the matrix Υ kd will have
Q×card (Jin) coefficients to be estimated, which are smaller than Q×P when all
variables are considered. The number of parameters in the regression matrices is
therefore considerably reduced when the cardinality of Jin is much smaller than
the number of input variables P . The subsets J or Jin can be constructed by the
Lasso [32] and has been extended to deal with multiple multivariate regression
models for column sparsity using the Group-Lasso [33].
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2.2 Variable selection via rank sparse models

Anderson et al. [1] introduced rank sparse models in the regression framework
which is if regression matrices have low rank or at least can be well approximated
by low-rank matrices, then the corresponding regression models are said to be
rank sparse. In the polynomial SGaBloME models, we assume that for every
cluster k ∈ [K] and degree d ∈ [DV ], the matrix Υ kd has the associated rank Rkd

and therefore it is completely determined by Rkd× (P − (Q−Rkd)) coefficients,
which can be less than Q×P . Combined with the selection of relevant variables
method, we denote a rank matrix by R = (Rkd)k∈[K],d∈[DV ] with the element
Rkd ∈ [card (Jin) ∧Q] for each k ∈ [K], d ∈ [DV ].

2.3 Collection of polynomial SGaBloME models

So far, each polynomial SGaBloME model defined by (1)-(3) can be character-
ized by the set m = (K,DW , DV ,B, J,R) where K is the number of clusters,
DW and DV are the maximum degrees of polynomials of the weight and mean
functions, respectively, B is the set of the block-diagonal structures of the co-
variance matrices, J is the set of relevant variables, and R is the rank matrix of
coefficient matrices. Let Sm be a class of (conditional) densities of polynomial
SGaBloME models with respect to m, which is specified as

Sm =
{
sψm

≡ sψK
defined by (1)-(3) with

ψm = (ω0,ω,υ0,Υ ,Σ(B)) ∈ Ψm,

Ψm = RK ×WK×DW

J × RK×Q ×VK×DV

J,R ×ΩK
B , (4)

WJ = {α = (α1, . . . , αP ) ∈ RP : αj = 0, ∀j ∈ ([P ] \ Jin)},
VJ,R = {A ∈ RQ×P : A·j = 0, ∀j ∈ [P ] \ Jin and rank(A) = R ∈ R}

ΩB = {Σ(B) ∈ RQ×Q : Σ(B) ≻ 0 and Σ(B) depends on block B ∈ B}
}
,

for every m ∈ N∗×N∗×N∗×B([Q])K×P([P ]×[Q])×[card (Jin) ∧Q]
K×DV . The

collection of polynomial SGaBloME models defined in (4) is generally large and
therefore not feasible in practice. Therefore, we restrict the set of (K,DW , DV )
to a finite set of (K,DW ,DV ) where, for K∗, D∗

W , D∗
V ∈ N∗, K = [K∗], DW =

[D∗
W ], DV = [D∗

V ]. Accordingly, the collection of polynomial SGaBloME models
on the deterministic set of hyper-parameters can be defined as

S =
{
Sm defined by (4) such that m ∈ M, (5)

M = K ×DW ×DV × B([Q])K × P ([P ]× [Q])× [card (Jin) ∧Q]
K×DV

}
.

Furthermore, because the block structures are specified by the partitions of the
index set {1, . . . , Q}, the number of such structures follows the so-called Bell
number, which grows exponentially even for a moderate number of variables Q
and clusters K. Therefore, it is infeasible to consider an exhaustive exploration
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of the combination of all the partitions to detect the block structures for co-
variance matrices. Motivated by the recent work of [14], for a set of thresholds
E and on each cluster k ∈ [K], we restrict our attention to the sub-collection
Bk,E = (Bk,ϵ)ϵ∈E of B([Q]), where Bk,ϵ is the partition of the output variables cor-
responding to the block-diagonal structure of the adjacency matrix Ek,ϵ based
on the thresholded absolute values of the sample covariance matrix Sk. More
formally, for each ϵ ∈ E , (Ek,ϵ)qq′ = 1 if | (Sk)qq′ | > ϵ, otherwise it is equal to 0
for q, q′ ∈ [Q]. In fact, Mazumder et al. [22] have shown that the class of block-
diagonal structures detected by the graphical Lasso algorithm is identical to the
block-diagonal structures detected by the thresholding of the sample covariance
matrices, which supports our motivation for this restriction.

For the set of relevant variables, we focus on a random subset J of P ([P ]× [Q])
with the controlled size of J required in the high-dimension case. Accordingly,
the number of possible vectors of ranks is reduced by working on a random sub-
set of [card (Jin) ∧Q]

K×DV , which is denoted by R(K,J,DV ) depending on J ∈ J
with the dimension of K ∈ K and DV ∈ DV . As a result, the collection of polyno-
mial SGaBloME models based on a random sub-collection of hyper-parameters
can be specified as

S̃ =
{
Sm defined by (4) such that m ∈ M̃, (6)

M̃ = K ×DW ×DV × (Bk,E)k∈[K] × J ×R(K,J,DV )

}
.

3 Main theoretical results

In this section, we begin by introducing conditions on the parameter space of the
models and give an overview of loss functions that are useful for comparing two
(conditional) probability density functions. A general principle of penalized max-
imum likelihood estimation is also derived. Next, we show a finite sample oracle
inequality used to ensure that if we penalize the log-likelihood in an approximate
approach, we are able to select a model that is as good as the oracle.

3.1 Boundedness conditions on the parameter space

By motivation of integrating the nonlinearities into SGaBloME models discussed
in Section 1, we consider the class of linear combinations of bounded func-
tions for the weights and mean experts whose coefficients belong to compact
sets with a bounded input domain. More specifically, we let

(
X[N ],Y[N ]

)
=(

(X1,Y1) , . . . , (XN ,YN )
)

be N pairs of real-valued random variables (X,Y)
where the covariates X are assumed to belong to a hypercube, that is X = [0, 1]P .
Then, there exist the constants Cω, CΥ , cΣ , CΣ > 0 such that, for every k ∈ [K],

∥ωkd∥∞ ≤ Cω, |||Υ kl|||∞ ≤ CΥ , for every d ∈ [DW ], l ∈ [DV ], (7)
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moreover, the eigenvalues of the block-diagonal covariances of the Gaussian ex-
perts lie on a positive interval, that is

0 < cΣ ≤ eig (Σk (Bk)) ≤ Eig (Σk (Bk)) ≤ CΣ . (8)

This setting can be applied to the case of polynomial functions for the weights
of the softmax gates and the means of the Gaussian experts as we described in
(2)-(3). More generally, the oracle inequality provided by Theorem 1 still holds
for monomials of weights, allowing for the interaction between different inputs.

3.2 Loss function

To evaluate the maximum likelihood estimate, the Kullback-Leibler (KL) diver-
gence is the most natural loss function, which is generally defined by

KL(s, t) =

{∫
RD ln

(
s(x)
t(x)

)
s(x)dyx if sdx is absolutely continuous w.r.t. tdx,

+∞ otherwise,

where s(·) and t(·) are two density functions. In our work, we will apply the
tensorized KL divergence to capture the structure of the density functions con-
ditional on the random variables X, that is

KL⊗N(s, t) = EX[N]

[
1

N

N∑
n=1

KL (s (· | Xn) , t (· | Xn))

]
.

Another case of the tensorized KL divergence is the tensorized Jensen-KL di-
vergence [9], which is given, for any ρ ∈ (0, 1), by

JKL⊗N
ρ (s, t) = EX[N]

[
1

N

N∑
n=1

1

ρ
KL (s (·|Xn) , (1− ρ) s (· | Xn) + ρt (· | Xn))

]
.

A relationship between the tensorized KL and the tensorized Jensen-KL diver-
gence can be found in [10, Proposition 1].

3.3 Penalized maximum likelihood estimation (PMLE)

In the context of maximum likelihood estimation, given a collection Sm, we
aim to estimate s0 by the conditional density ŝm that minimizes the negative
log-likelihood (NLL) as

ŝm = arg min
sm∈Sm

N∑
n=1

− ln [sm (Yn | Xn)] .

It is important to us to look for almost minimizer of this quantity and thereby
define an η-log-likelihood minimizer (LLM) that satisfies

N∑
n=1

− ln [ŝm (Yn | Xn)] ≤ inf
sm∈Sm

N∑
n=1

− ln [sm (Yn | Xn)] + η, (9)
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where the error term η > 0 is added to avoid any existence issue such as the
infimum may not be reached. See [6, Chapter 2], [10, 9, 24] for more details of this
literature. However, this approach underestimates the risk of the estimation and
leads to the selection of overly complex models. Therefore, a trade-off between
good data fit and model complexity can be found by adding an appropriate
penalty term pen(m). More concretely, for a given choice of pen(m), the selected
model Sm̂ is chosen as the one whose index m̂ is a η′-minimizer of the sum of
the NLL and penalty function, that is

N∑
n=1

− ln [ŝm̂ (Yn|Xn)] + pen (m̂) ≤ inf
m∈M

{
N∑

n=1

− ln [ŝm (Yn|Xn)] + pen(m)

}
+ η′,

(10)

for η′ > 0. We then call ŝm̂ the η′-PMLE that depends on both error terms η
and η′. From now on, the term selected model or best data-driven model is used
to indicate the model that satisfies (10).

3.4 Oracle inequality

In this section, we provide the construction of an oracle inequality that guaran-
tees a non-asymptotic theory for model selection in high-dimensional polynomial
SGaBloME models.

Theorem 1. Let
(
X[N ],Y[N ]

)
be a random sample of (X,Y) where Y|X arises

from the unknown conditional density s0. For every m = (K,DW , DV ,B, J,R) ∈
M, the model Sm can be specified by (4). Assume that there exists τ > 0 and
ϵKL > 0 such that, for all m ∈ M, one can find s̄m ∈ Sm such that

KL⊗N (s0, s̄m) ≤ inf
s∈Sm

KL⊗N (s0, s) +
ϵKL

N
, and s̄m ≥ e−τs0. (11)

Furthermore, we construct a random sub-collection S̃ of S such that every model
of S̃ depends on the sets of M̃ ⊂ M as in (5)-(6). Then, there is a constant
C such that, for any ρ ∈ (0, 1) and C1 > 1, there are two constants κ and
C2 depending only on ρ and C1 such that, for every m ∈ M, ξm ∈ R+, Ξ =∑

m∈M e−ξm < ∞ and

pen(m) ≥ κ [(C + lnN) dim(Sm) + (1 ∨ τ)ξm] ,

and the η′-PMLE ŝm̂ defined in (10) on the subset M̃ ⊂ M satisfies

EX[N],Y[N]

[
JKL⊗N

ρ (s0, ŝm̂)
]
≤ C1EX[N],Y[N]

[
inf

m∈M̃

(
inf

s∈Sm

KL⊗N (s0, s) + 2
pen(m)

N

)]

+ C2(1 ∨ τ)
Ξ2

N
+

η′ + η

N
. (12)
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Remarks. Theorem 1 guarantees that a penalized criterion leads to a good model
selection and that the penalty is only known up to multiplicative constants κ,
and is proportional to the dimensions of the models dim(Sm). In particular,
in the small and finite sample setting, these multiplicative constants can be
calibrated using the slope heuristic approach. We notice that (11) is not a strong
assumption and is satisfied in the case s0 is bounded with compact support. This
oracle inequality compares the performance of our PMLE with the best model in
the collection. However, Theorem 1 allows us to approximate well a rich class of
conditional PDFs if we use polynomials of weights and Gaussian expert means of
sufficient degrees, or enough clusters due to the universal approximation of MoE
models. This results in the term on the right of (12) being small, for DW ,DV

and K well chosen. It should be emphasized that Theorem 1 extends the main
result of [24], which is only valid for a full collection of LinBoSGaME models
in the low-dimensional setting. Furthermore, in the context of MoE models, our
non-asymptotic oracle inequality for SGaME models in Theorem 1 can be seen
as a complementary result to a classical asymptotic theory [17, Theorems 1, 2,
and 3], and an l1 oracle inequality that focuses on the properties of the Lasso
estimator rather than the model selection procedure [29].

Main challenges on the proof of Theorem 1. To prove Theorem 1 it is inspired by
[24] for handling LinBo-SGaME models, however, our method and most of the
technical details differ. This is because their approach is not directly applicable
to our high-dimensional SGaBloME models, due to restrictions on relevant pre-
dictor variables and rank reduction, and Gaussian experts with block-diagonal
covariance matrices. In particular, the main difficulty in proving our oracle in-
equality lies in bounding the bracketing entropy for the collections of SGaBloME
models. This requires several regularity assumptions, which are not easy to verify
due to the complexity of SGaBloME models and technical reasons. Therefore,
our proofs require the development of several new ideas. Furthermore, unlike
[24], which uses a model selection theorem for a deterministic collection of mod-
els from [10, 9], we need to find a way to use the model selection theorem for
MLE among a random sub-collection (cf. [12, Theorem 5.1] and [14, Theorem
7.3]). We refer readers to Sections S-1 and S-2 in the supplementary materials
for a sketch of proof and detailed proof of Theorem 1.

4 Conclusion and perspectives

We have studied PMLEs for polynomial SGaBloME models in high-dimensional
heterogeneous data. Our main contribution is to establish a non-asymptotic risk
bound in the form of an oracle inequality, provided that lower bounds of the
penalty hold. The future direction is to empirically evaluate our oracle inequal-
ity and to extend the current oracle inequality to more general settings where
Gaussian experts are replaced by elliptic distributions.
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In this supplementary material, we provide the proof sketch and the detailed
proof of Theorem 1 in Section S-1 and Section S-2 respectively. We then provide
proofs for the remaining technical results in Section S-3.

S-1 Proof sketch of Theorem 1

It is worth noting that to deal with random sub-collection, we need to use a
general model selection theorem for MLE under a random sub-collection (cf. [4,
Theorem 5.1] or [6, Theorem 7.3]). This is the extension of [3, Theorem 2], which
dealt with conditional density estimation but not random sub-collection, and [12,
Theorem 7.11], which only works for density estimation. We then explain how
we use Theorem S-1 to obtain the oracle inequality, Theorem 1. To do this, our
model collection must satisfy some regularity assumptions, which are proved in
Section S-3. The main difficulties in proving our oracle inequality lie in bounding
the bracketing entropy of the weights and means restricted to relevant variables,
as well as in rank sparse models, and in particular with block-diagonal covariance
matrices for the SGaBloME model. To overcome the first problem, we extend
and adapt the strategies of [14, 5]. For the second, we extend the recent novel
result on block-diagonal covariance matrices in [6] for Gaussian mixture models
from [9, 13].

General model selection theorem for MLE among a random sub-
collection. First, we impose a structural assumption on each model indexed
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by m ∈ M regarding the bracketing entropy, defined by (S-2), conditioned on
the model Sm w.r.t. a tensorized squared Hellinger (TSH) distance d2⊗n. In fact,
this is an extension of the squared Hellinger distance d2⊗n, as follows

d2⊗n(s, t) = EX[N]

[
1

N

N∑
n=1

d2 (s (· | Xn) , t (· | Xn))

]
. (S-1)

Recall that the bracketing entropy of a set S with respect to an arbitrary distance
d, denoted by H[·],d((δ, S)), is defined as the logarithm of the minimal number
N[·],d (δ, S) of brackets [t−, t+] covering S, such that d(t−, t+) ≤ δ. That is,

N[·],d (δ, S) := min

{
n ∈ N⋆ : ∃t−1 , t

+
1 , . . . , t

−
n , t

+
n s.t. d(t−k , t

+
k ) ≤ δ, S ⊂

n⋃
k=1

[
t−k , t

+
k

]}
,

(S-2)

where the term s ∈
[
t−k , t

+
k

]
is defined by t−k (x,y) ≤ s(x,y) ≤ t+k (x,y), ∀(x,y) ∈

X × Y. This leads to the following Assumption 1 (H).

Assumption 1 (H) For every model Sm in the collection S, there is a non-
decreasing function ϕm such that δ 7→ 1

δϕm(δ) is non-increasing on (0,∞) and
for every σ ∈ R+, ∫ σ

0

√
H[.],d⊗n (δ,Sm (s̃, σ))dδ ≤ ϕm(σ),

where Sm (s̃, σ) = {sm ∈ Sm : d⊗n (s̃, sm) ≤ σ}. The model complexity Dm of
Sm is then defined as Nσ2

m, where σm is the unique root of 1
σϕm(σ) =

√
Nσ.

This bracketing entropy integral, often call Dudley integral, plays an important
role in empirical processes theory (cf. [16, 8, 11]). Observe that the model com-
plexity does not depend on the bracketing entropies of the global models Sm,
but rather on those of smaller localized sets Sm (s̃, σ).

For technical reasons, a separability assumption, always satisfied in the set-
ting of this paper, is also required. Assumption 2 (Sep) is a mild condition,
which is classical in empirical process theory [16, 8] and allows us to work with
a countable subset.

Assumption 2 (Sep) For every model Sm, there exists some countable sub-
set S′

m of Sm and a set Y ′
m with ι (Y \ Y ′

m) = 0, where ι denotes Lebesgue
measure, such that for every t ∈ Sm, there exists some sequence (tk)k∈N⋆ of ele-

ments of S′
m, such that for every x ∈ X and every y ∈ Y ′

m, ln (tk (y|x))
k→+∞−−−−−→

ln (t (y|x)).

To control the complexity of our collection, we also need an information-theoretic
assumption. We assume the existence of a Kraft-type inequality for the collection
[12, 1].
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Assumption 3 (K) There is a family (ξm)m∈M of non-negative numbers and
a real number Ξ such that

∑
m∈M e−ξm ≤ Ξ < +∞.

We can now state the main result of [4, Theorem 5.1] for the model selection
theorem for MLE under a random sub-collection.

Theorem S-1 Let (Xn,Yn)n∈[N ] be the observations coming from an unknown
conditional density s0. Let the model collection S = (Sm)m∈M be an at most
countable collection of conditional density sets. Assume that Assumption 1 (H),
Assumption 2 (Sep), and Assumption 3 (K) hold for every m ∈ M. Let ϵKL > 0,
and s̄m ∈ Sm, such that

KL⊗N (s0, s̄m) ≤ inf
t∈Sm

KL⊗N (s0, t) +
ϵKL

N
,

and let τ > 0, such that

s̄m ≥ e−τs0. (S-3)

Next, we introduce (Sm)
m∈M̃ a random sub-collection of (Sm)m∈M and consider

the collection (ŝm)
m∈M̃ of η-LLMs defined in (9). Then, for any ρ ∈ (0, 1), and

any C1 > 1, there are two constants κ0 and C2 depending only on ρ and C1,
such that, for every index m ∈ M,

pen(m) ≥ κ [Dm + (1 ∨ τ)ξm] , κ > κ0,

where the model complexity Dm is defined in Assumption 1, the η′-PMLE ŝm̂,
defined in (10) on the subset M̃ instead of M, satisfies

EX[N],Y[N]

[
JKL⊗N

ρ (s0, ŝm̂)
]
≤ C1EX[N],Y[N]

[
inf

m∈M̃

(
inf

t∈Sm

KL⊗N (s0, t) + 2
pen(m)

N

)]

+ C2(1 ∨ τ)
Ξ2

N
+

η′ + η

N
.

Strategy for the proof of Theorem 1 We will briefly show how Theorem S-1
can be used to prove Theorem 1. All we need to do is check that Assumption 3
(K), Assumption 2 (Sep) and Assumption 1 (H) hold for every m ∈ M. Ac-
cording to the result of [4, Section 5.3], Assumption 2 (Sep) holds if we consider
Gaussian densities, and the assumption defined by (S-3) is true if we further as-
sume that the true conditional density s0 is bounded and compactly supported.
Furthermore, since we have restricted to a finite collection of models, it is true
that there exists a family (ξm)m∈M and Ξ > 0 such that Assumption 3 (K)
is satisfied. Therefore, the remaining most difficult step of the proof for As-
sumption 1 (H) is presented in Section S-2. All technical results are moved to
Section S-3.
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S-2 Proof of Theorem 1

Note that the definition of model complexity in Assumption 1 (H) is related
to a classical entropy dimension of a compact set w.r.t. a Hellinger type diver-
gence d⊗n, thanks to the following Proposition S-1, which is established in [3,
Proposition 2].

Proposition S-1 If we have

H[.],d⊗n (δ,Sm) ≤ dim(Sm)

(
Cm + ln

(
1

δ

))
, for any δ ∈ (0,

√
2], then the function

ϕm (δ) = δ
√

dim (Sm)

(√
Cm +

√
π +

√
ln

(
1

min (δ, 1)

))

satisfies Assumption 1 (H). Furthermore, the unique solution δm of 1
δϕm (δ) =√

Nδ satisfies

Nδ2m ≤ dim(Sm)

2
(√

Cm +
√
π
)2

+

(
ln

N(√
Cm +

√
π
)2

dim (Sm)

)
+

 .

Then, we claim that Proposition S-1 implies Assumption 1 (H) because of the
fact that

H[.],d⊗n (δ,Sm) ≤ dim(Sm)

(
Cm + ln

(
1

δ

))
, (S-4)

where Cm is a constant depending on the model.
Next, recall that the definition from (4) is defined as follows:

Sm =
{
sψm

≡ sψK
∈ S : ψm = (ω0,ω,υ0,Υ ,Σ(B)) ∈ Ψm,

Ψm = RK ×WK×DW

J × RK×Q ×VK×DV

J,R ×ΩK
B

}
. (S-5)

Here, m = (K,DW , DV ,B, J,R), WJ is the set of vectors restricted to the set
of indices of relevant input variables Jin, VJ,R the set of matrices with relevant
columns indexed by Jin and ranks R, and ΩB the set of positive definite block-
diagonal matrices depending on partitions B.

If P and Q are not too large, we do not need to select relevant variables
and/or use rank sparse models. We can then work on the structures for means
and weights as in LinBoSGaME [14]. However, to deal with high-dimensional
data and to simplify the interpretation of sparsity, we propose to use monomials
for weights and polynomial regression models for the soft-max gating functions
and the means of Gaussian experts. It is worth mentioning that here we provide
a proof of a more general result compared to the model defined as in (4). More
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precisely, we replace the polynomial constructions for the weighting functions
with monomials that allow interactions between covariates as follows:

WK,DW
= {0} ⊗WK−1, W =

{
X ∋ x 7→

∑
α∈A

ωαx
α ∈ R : max

α∈A
|ωα| ≤ Cω

}
.

(S-6)

Here, note that the multi-index α = (αp)p∈[P ] , αp ∈ N⋆
⋃

{0} ≡ N,∀p ∈
[P ], is an P -tuple of nonnegative integers that satisfies xα =

∏P
p=1 x

αp
p and

|α| =
∑P

p=1 αp. Then, for all l ∈ [DW ], we define A =
⋃DW

l=0 A|l|, A|l| ={
α = (αp)p∈[P ] ∈ NP , |α| = l

}
. The number α is called the order or degree of

monomials xα. By using the well-known stars and bars methods, e.g., [7, Chap-
ter 2], the cardinality of the set A, denoted by card (A), equals

(
DW+P

P

)
. Note

that, for all d ∈ [DΥ ], we define xd as
(
xd
p

)
p∈[P ]

for the means, which are often
used for polynomial regression models. Here, AJ is the set of multi-index (vector)
in RP restricted to the set of indices of relevant input variables Jin, that is, AJ ={
α = (αt)t∈[p] ∈ A : αj > 0, j ∈ Jin

}
. Furthermore, given a regressor x, for all

l ∈ [DW ], p ∈ [P ], we define ω(p,l)
k =

{
ωkα ∈ R : α = (αp)p∈[P ] ∈ A|l|, αp > 0

}
.

We then generalize the definition of relevant variables for monomials as follows.
Note that we call a couple (Xp, Yq) irrelevant if the elements (Υ kd)qp = 0 and

ω
(p,l)
k = 0 for all k ∈ [K], d ∈ [DV ], l ∈ [DW ].

We also require some additional definitions of the following sets:

P(K,DW ,J) =
{
X ∋ x 7→ (gk (w(x)))k∈[K] : gk (w(x)) =

exp (wk(x))∑K
l=1 exp (wl(x))

,

w = (wk)k∈[K] ∈ W(K,DW ,J)

}
,

W(K,DW ,J) = {0} ⊗WK−1
J , V(K,DV ,J,R) = RK×Q ×VK×DV

J,R ,

WJ =

X ∋ x 7→ w (x) =

DW∑
|α|=0

ωαx
α : α ∈ AJ ,max

α∈A
|ωα| ≤ Cω

 ,

G(K,DV ,B,J,R) =
{
X × Y ∋ (x,y) 7→ (ϕ (y;vk(x),Σk (Bk)))k∈[K] :

v ∈ V(K,DV ,J,R),Σ(B) ∈ ΩK
B

}
.

We define the following distance over conditional densities:

sup
x

dy(s, t) = sup
x∈X

dy(s, t), where dy(s, t) =

(∫
Y

(√
s(y | x)−

√
t(y | x)

)2
dy

)1/2

.
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This leads straightforwardly to d2⊗n(s, t) ≤ supx dy(s, t). Then, we also define

sup
x

dk (g,g
′) = sup

x∈X

(
K∑

k=1

(√
gk(x)−

√
g′k(x)

)2
)1/2

,

for any gating functions g = (gk)k∈[K] and g′ = (g′k)k∈[K]. To this end, given any
densities s and t over X , the following distance, depending on y, is constructed
as follows:

sup
y

max
k

dx(s, t) = sup
y∈Y

max
k∈[K]

dx (sk(·,y), tk(·,y))

= sup
y∈Y

max
k∈[K]

(∫
X

(√
sk(x,y)−

√
tk(x,y)

)2
dx

)1/2

.

Moreover, given any g+,g− ∈ P(K,DW ,J) and ϕ+, ϕ− ∈ G(K,DV ,B,J,R), let us
define

d2P(K,DW ,J)

(
g+,g−) = EX[N]

[
1

N

N∑
n=1

d2k
(
g+ (Xn) ,g

−(Xn)
)]

,

d2G(K,DV ,B,J,R)

(
ϕ+, ϕ−) = EX[N]

[
1

N

N∑
n=1

K∑
k=1

d2y
(
ϕ+
k (·|Xn) , ϕ

−
k (·|Xn)

)]
.

Next (S-4) can be obtained by first decomposing the entropy term between
the softmax gating functions and the Gaussian experts via Lemma S-1, which
is immediately obtained from [14, Lemma 6], an extension of the results in [9,
Theorem 2], [10], [3, Lemma 7] and [2].

Lemma S-1 For all δ ∈ (0,
√
2], it holds that

H[·],d⊗n (δ,Sm) ≤ H[·],dP(K,DW ,J)

(
δ

2
,P(K,DW ,J)

)
+H[·],dG

(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
.

Then, we define the metric entropy of the set W(K,DW ,J): Hd∥sup∥∞
(δ,W(K,DW ,J)),

which measures the logarithm of the minimum number of spheres with radius
at most δ, corresponding to the distance d∥sup∥∞

needed to cover W(K,DW ,J),
where

d∥sup∥∞

(
(sk)k∈[K] , (tk)k∈[K]

)
= max

k∈[K]
sup
x∈X

∥sk(x)− tk(x)∥2 , (S-7)

for arbitrary K-tuples of the functions (sk)k∈[K] and (tk)k∈[K]. Here sk, tk : X ∋
x 7→ sk(x), tk(x) ∈ RP ,∀k ∈ [K], and given x ∈ X , k ∈ [K], ∥sk(x)− tk(x)∥2 is
the Euclidean distance in RP .

Based on this metric, one can first relate the bracketing entropy of P(K,DW ,J)

to Hd∥sup∥∞
(δ,W(K,DW ,J)), and then obtain the upper bound for its entropy

via Lemma S-2, which is proved in Section S-3.1.
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Lemma S-2 For all δ ∈ (0,
√
2],

H[·],dP(K,DW ,J)

(
δ

2
,P(K,DW ,J)

)
≤ Hd∥sup∥∞

(
3
√
3δ

8
√
K − 1

,W(K,DW ,J)

)

≤ dim
(
W(K,DW ,J)

)(
CW(K,DW ,J)

+ ln

(
8
√
K − 1

3
√
3δ

))
,

(S-8)

where dim
(
W(K,DW ,J)

)
= (K − 1) card (AJ), card (AJ) =

(
DW+card(Jin)

card(Jin)

)
and

CW(K,DW ,J)
= ln

(√
2 + CωDW

3
√
3

)
.

Lemma S-3 allows us to construct the Gaussian brackets to handle with the
entropy metric for Gaussian experts, which is established in Section S-3.2.

Lemma S-3 For all δ ∈ (0,
√
2],

H[·],dG
(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
≤ dim

(
G(K,DV ,B,J,R)

)(
CG(K,DV ,B,J,R)

+ ln

(
1

δ

))
.

(S-9)

Finally, (S-4) is proved via Lemmas S-1 to S-3. Indeed, with the fact that

dim(Sm) = dim
(
W(K,DW ,J)

)
+ dim

(
G(K,DV ,B,J,R)

)
,

it follows that

H[·],d⊗n (δ,Sm) ≤ H[·],dP(K,DW ,J)

(
δ

2
,P(K,DW ,J)

)
+H[·],dG

(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
≤ dim

(
W(K,DW ,J)

)(
CW(K,DW ,J)

+ ln

(
8
√
K − 1

3
√
3δ

))
+ dim

(
G(K,DV ,B,J,R)

)(
CG(K,DV ,B,J,R)

+ ln

(
1

δ

))
=: dim(Sm)

(
Cm + ln

(
1

δ

))
, where

Cm =
dim

(
W(K,DW ,J)

)
dim(Sm)

(
CW(K,DW ,J)

+ ln

(
8
√
K − 1

3
√
3

))
+

dim
(
G(K,DV ,B,J,R)

)
CG(K,DV ,B,J,R)

dim (Sm)

≤ CW(K,DW ,J)
+ ln

(
8
√
Kmax − 1

3
√
3

)
+ CG(K,DV ,B,J,R)

:= C.

It is interesting that the constant C does not depend on the dimension of
the model m thanks to the hypothesis that CW(K,DW ,J)

is common for every
model m in the collection. Therefore, Proposition S-1 implies that, given C =
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2
(√

C+
√
π
)2

, the model complexity Dm satisfies

Dm ≡ Nδ2m ≤ dim(Sm)

2
(√

C+
√
π
)2

+

ln
N(√

C+
√
π
)2

dim (Sm)


+


≤ dim(Sm) (C + lnN) .

To this end, Theorem S-1 implies that to a collection of PSGaBloME models S =
(Sm)m∈M with the penalty functions satisfies pen(m) ≥ κ [dim(Sm) (C + lnN) + (1 ∨ τ)ξm]
with κ > κ0 the oracle inequality of Theorem 1 holds.

S-3 Lemma proofs

S-3.1 Proof of Lemma S-2

It holds that

H[·],dP(K,DW ,J)

(
δ

2
,P(K,DW ,J)

)
≤ Hd∥sup∥∞

(
3
√
3δ

8
√
K − 1

,W(K,DW ,J)

)
.

Next, we need to find an upper bound of Hd∥sup∥∞

(
3
√
3δ

8
√
K−1

,W(K,DW ,J)

)
. Note

that for all w,v ∈ W(K,DW ,J), we obtain the following important inequality

d∥sup∥∞
(w,v) = max

k∈[K−1]
sup
x∈X

∣∣∣∣∣∣
DW∑
|α|=0

ωw
k,αx

α −
DW∑
|α|=0

ωv
k,αx

α

∣∣∣∣∣∣
≤ max

k∈[K−1]

DW∑
|α|=0

∣∣ωw
k,α − ωv

k,α

∣∣ sup
x∈X

xα ≤ card (AJ) max
k∈[K−1],α∈AJ

∣∣ωw
k,α − ωv

k,αx
α
∣∣ .
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Therefore, given the fact that card (AJ) =
(
DW+card(Jin)

card(Jin)

)
, for all δ ∈ (0,

√
2], it

holds that

H[·],dP(K,DW ,J)

(
δ

2
,P(K,DW ,J)

)
≤ Hd∥sup∥∞

(
3
√
3δ

8
√
K − 1

,W(K,DW ,J)

)

≤ H∥·∥∞

(
3
√
3δ

8
√
K − 1 card (AJ)

,
{
ω ∈ R(K−1) card(AJ ) : ∥ω∥∞ ≤ Cω

})

≤ (K − 1) card (AJ) ln

(
1 +

8
√
K − 1Cω card (AJ)

3
√
3δ

)
= (K − 1) card (AJ)

[
ln

(√
2 +

Cω card (AJ)

3
√
3

)
+ ln

(
8
√
K − 1

3
√
3δ

)]
= dim

(
W(K,DW ,J)

)(
CW(K,DW ,J)

+ ln

(
8
√
K − 1

3
√
3δ

))
.

S-3.2 Proof of Lemma S-3

It is worth noting that without restriction on relevant variables, rank sparse
models on the means and structures on covariance matrices of Gaussian experts
from the collection M, the upper bound of the bracketing entropy of Gaussian
experts from Lemma S-3 is directly implied from Proposition 2 and arguments
from Appendix B.2.3 of [14]. However, in order to overcome the much more
challenging problems with random subcollection based on relevant variables,
rank sparse models on the means and block-diagonal covariance matrices, we
have to reply on a much more constructive bracketing entropy in the spirits of
works developed in [13, 14, 4, 5, 6].

Given any k ∈ [K], we first define the following set and its corresponding
distance as

G(K,DV ,B,J,R) =
{
X × Y ∋ (x,y) 7→ ϕ

(
y;v(DV ,J,Rk)(x),Σk (Bk)

)
:

v(DV ,J,Rk) ∈ V(DV ,J,Rk),Σk (Bk) ∈ ΩBk

}
,

d2G(K,DV ,B,J,R)

(
ϕ+
k , ϕ

−
k

)
= EX[N]

[
1

N

N∑
n=1

d2
(
ϕ+
k (·|Xn) , ϕ

−
k (·|Xn)

)]
. (S-10)

We need to specific block-diagonal structures for Σk (Bk). To be more precise,
for k ∈ [K], we decompose Σk (Bk) into Gk blocks, Gk ∈ N⋆, and we denote by
d
[g]
k the set of variables into the gth group, for g ∈ [Gk], and by card

(
d
[g]
k

)
the

number of variables in the corresponding set. Then, we define Bk =
(
d
[g]
k

)
g∈[Gk]

to be a block structure for the cluster k, and B = (Bk)k∈[K] to be the output
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indexes into each group for each cluster. In this way, to construct the block-
diagonal covariance matrices, up to a permutation, we make the following defi-
nition: ΩK

B = (ΩBk
)k∈[K], for every k ∈ [K], for every k ∈ [K],

ΩK
B =


Σk (Bk) ∈ S++

Q

∣∣∣∣∣∣∣∣∣∣∣∣∣
Σk (Bk) = Pk


Σ

[1]
k 0 . . . 0

0 Σ
[2]
k . . . 0

0 0
. . . 0

0 0 . . . Σ
[Gk]
k

P−1
k ,

Σ
[g]
k ∈ S++

card
(
d
[g]
k

),∀g ∈ [Gk]


.

(S-11)

Here, Pk corresponds to the permutation leading to a block-diagonal matrix in
cluster k. It is worth pointing out that outside the blocks, all coefficients of the
matrix are zeros and we also authorize reordering of the blocks: e.g., {(1, 3) ; (2, 4)}
is identical to {(2, 4) ; (1, 3)}, and the permutation inside blocks: e.g., the par-
tition of 4 variables into blocks {(1, 3) ; (2, 4)} is the same as the partition
{(3, 1) ; (4, 2)}.

Then, it follows that G(K,DV ,B,J,R) =
∏K

k=1 G(DV ,Bk,J,Rk), where
∏

stands
for the Cartesian product, and Lemma S-4, established in S-3.2.

Lemma S-4 Given G(K,DV ,B,J,R) =
∏K

k=1 G(DV ,Bk,J,Rk), it holds that

H[·],dG
(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
≤

K∑
k=1

H[·],dG
(K,DV ,B,J,R)

(
δ

2
√
K

,G(K,DV ,B,J,R)

)
.

Next, we claim that Lemma S-3 is implied immediately via Lemma S-4 and the
following important Lemma S-5, which is proved in S-3.2.

Lemma S-5 For all δ ∈ (0,
√
2] and k ∈ [K], there exists a constant CG(K,DV ,B,J,R)

such that

H[·],dG
(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
≤ dim

(
G(K,DV ,B,J,R)

)(
CG(K,DV ,B,J,R)

+ ln

(
1

δ

))
.

(S-12)

To this end, by combining the previous two Lemmas S-4 and S-5, we have

H[·],dG
(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
≤

K∑
k=1

dim
(
G(K,DV ,B,J,R)

)(
CG(K,DV ,B,J,R)

+ ln
(√

K
)
+ ln

(
1

δ

))
= dim

(
G(K,DV ,B,J,R)

)(
CG(K,DV ,B,J,R)

+ ln

(
1

δ

))
.
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Here,

dim
(
G(K,DV ,B,J,R)

)
=

K∑
k=1

dim
(
G(K,DV ,B,J,R)

)
,

dim
(
G(K,DV ,B,J,R)

)
= dim

(
V(DV ,J,Rk)

)
+DBk

,

CG(K,DV ,B,J,R)
=

K∑
k=1

CG(K,DV ,B,J,R)
+ ln

(√
K
)
,

DBk
= dim (ΩBk

) =

Gk∑
g=1

card
(
b
(g)
k

)(
card

(
b
(g)
k

)
+ 1
)

2
.

Proof of Lemma S-4 It is sufficient to verify that

N[·],dG
(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
≤

K∏
k=1

N[·],dG
(K,DV ,B,J,R)

(
δ

2
√
K

,G(K,DV ,B,J,R)

)
.

By (S-2), for each k ∈ [K], let
{[

ϕl,−
k , ϕl,+

k

]}
1≤l≤NG

(K,DV ,B,J,R)

be a mini-

mal covering of δk-bracket for dG(K,DV ,B,J,R)
of G(K,DV ,B,J,R) with cardinality

N[·],dG
(K,DV ,B,J,R)

(
δk,G(K,DV ,B,J,R)

)
=: NG(K,DV ,B,J,R)

. By definition, we have

∀l ∈
[
NG(K,DV ,B,J,R)

]
, dG(K,DV ,B,J,R)

(
ϕl,−
k , ϕl,+

k

)
≤ δk.

This leads to the set
{∏K

k=1

[
ϕl,−
k , ϕl,+

k

]}
1≤l≤NG

(K,DV ,B,J,R)

is a covering of δ/2-

bracket for dG(K,DV ,B,J,R)
of G(K,DV ,B,J,R) with cardinality

∏K
k=1 NG(K,DV ,B,J,R)

.
Indeed, let any ϕ = (ϕk)k∈[K] ∈ G(K,DV ,B,J,R). Consequently, for each k ∈

[K], ϕk ∈ G(K,DV ,B,J,R), and there exists l(k) ∈
[
NG(K,DV ,B,J,R)

]
, such that

ϕ
l(k),−
k ≤ ϕk ≤ ϕ

l(k),+
k , d2G(K,DV ,B,J,R)

(
ϕ
l(k),+
k , ϕ

l(k),−
k

)
≤ (δk)

2
.

Then, it follows that ϕ ∈ [ϕ−, ϕ+] ∈
{∏K

k=1

[
ϕl,−
k , ϕl,+

k

]}
1≤l≤NG

(K,DV ,B,J,R)

, with

ϕ− =
(
ϕ
l(k),−
k

)
k∈[K]

, ϕ+ =
(
ϕ
l(k),+
k

)
k∈[K]

, which leads to
{∏K

k=1

[
ϕl,−
k , ϕl,+

k

]}
1≤l≤NG

(K,DV ,B,J,R)

is a bracket covering of G(K,DV ,B,J,R).
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Now, we want to verify that the size of this bracket is δ/2 via choosing
δk = δ

2
√
K
,∀k ∈ [K]. It holds that

d2G(K,DV ,B,J,R)

(
ϕ−, ϕ+

)
= EX[N]

[
1

N

N∑
n=1

K∑
k=1

d2
(
ϕ
l(k),−
k (·|Xn) , ϕ

l(k),+
k (·|Xn)

)]

=

K∑
k=1

EX[N]

[
1

N

N∑
n=1

d2
(
ϕ
l(k),−
k (·|Xn) , ϕ

l(k),+
k (·|Xn)

)]

=

K∑
k=1

d2G(K,DV ,B,J,R)

(
ϕ
l(k),−
k , ϕ

l(k),+
k

)
≤ K

(
δ

2
√
K

)2

=

(
δ

2

)2

.

Finally, Lemma S-4 is followed by the definition of a minimal δ/2-bracket cov-
ering number for G(K,DV ,B,J,R).

Proof of Lemma S-5 We need to bound the bracketing entropy in (S-12). To
do this, we need to construct an extension to the multidimensional Gaussian
mixture of [9], defining a net over the parameter space of Gaussian experts.
Next, we aim to construct a bracket covering of G(K,DV ,B,J,R) according to the
tensorized Hellinger distance, dG(K,DV ,B,J,R)

based on Gaussian dilatations.

Step 1: Construction of a net for the block-diagonal covariance matrices. Firstly,
for a given matrix Σk(Bk) ∈ ΩBk

, k ∈ [K], we denote by Adj (Σk(Bk)) the
adjacency matrix associated to the covariance matrix Σk(Bk). Note that this
matrix of size Q2 can be defined by a vector of concatenated upper triangular
vectors. We are going to make use of the result from [6] to handle the block-
diagonal covariance matrices Σk (Bk), via its corresponding adjacency matrix.
To do this, we need to construct a discrete space for {0, 1}Q(Q−1)/2, which is a
one-to-one correspondence (bijection) with

ABk
= {ABk

∈ SQ ({0, 1}) : ∃Σk (Bk) ∈ ΩBk
s.t Adj (Σk (Bk)) = ABk

} ,

where SQ ({0, 1}) is the set of symmetric matrices of size Q taking values on
{0, 1}.

Then, we want to deduce a discretization of the set of covariance matrices.
Let h denotes Hamming distance on {0, 1}Q(Q−1)/2 defined by

d(z, z′) =

N∑
n=1

I {z ̸= z′} , for all z, z′ ∈ {0, 1}Q(Q−1)/2
.

Let {0, 1}Q(Q−1)/2
Bk

be the subset of {0, 1}Q(Q−1)/2 of vectors for which the cor-

responding graph has structure Bk =
(
b
(g)
k

)
g∈[Gk]

. Then, given any ϵ > 0,

Corollary 1 and Proposition 2 from Supplementary Material A of [6] lead to
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that there exists some subset R of {0, 1}Q(Q−1)/2, as well as its equivalent Adisc
Bk

for adjacency matrices satisfy∥∥∥Σk (Bk)− Σ̃k (Bk)
∥∥∥2
2
≤ DBk

2
∧ ϵ2,∀

(
Σk (Bk) , Σ̃k (Bk)

)
∈
(
S̃disc
Bk

(ϵ)
)2

s.t. Σk (Bk) ̸= Σ̃k (Bk) ,

card
(
S̃disc
Bk

(ϵ)
)
≤

(⌊
2CΣ
ϵ

⌋
Q (Q− 1)

2DBk

)DBk

, (S-13)

DBk
= dim (ΩBk

) =

Gk∑
g=1

card
(
b
(g)
k

)(
card

(
b
(g)
k

)
− 1
)

2
,

(S-14)

where

S̃disc
Bk

(ϵ) =

{
Σk (Bk) ∈ S++

Q (R) : Adj (Σk (Bk)) ∈ Adisc
Bk

,

(Σk (Bk))i,j = σi,jϵ, σi,j ∈
[
−CΣ
ϵ

,
CΣ
ϵ

]⋂
Z

}
.

Therefore, by choosing ϵ2 ≤ DBk

2 , given Σk (Bk) ∈ ΩBk
, there exists Σ̃k (Bk) ∈

S̃disc
Bk

(ϵ), such that ∥∥∥Σk (Bk)− Σ̃k (Bk)
∥∥∥2
2
≤ ϵ2. (S-15)

Based on Σ̃k (Bk), we can construct the following bracket covering of G(K,DV ,B,J,R)

via defining suitable nets for the means of Gaussian experts. More precisely, given
any δV(DV ,J,Rk)

> 0, we claim that the set[l, u]

∣∣∣∣∣∣∣∣∣
l(x,y) = (1 + 2α)

−DV ϕ
(
y; ṽ(DV ,J,Rk)(x), (1 + α)

−1
Σ̃k (Bk)

)
,

u(x,y) = (1 + 2α)
DV ϕ

(
y; ṽ(DV ,J,Rk)(x), (1 + α) Σ̃k (Bk)

)
,

ṽ(DV ,J,Rk) ∈ GV(DV ,J,Rk)

(
δV(DV ,J,Rk)

)
, Σ̃k (Bk) ∈ S̃disc

Bk
(ϵ)

 ,

is an δV(DV ,J,Rk)
-brackets set over G(K,DV ,B,J,R) where the constant α > 0 and

function X ∋ x 7→ ṽ(DV ,J,Rk) (x) and its corresponding space GV(DV ,J,Rk)

(
δV(DV ,J,Rk)

)
will be specified later. Indeed, we consider any function X × Y ∋ (x,y) 7→
f(x,y) = ϕ

(
y;v(DV ,J,Rk)(x),Σk (Bk)

)
that belongs to G(K,DV ,B,J,R), where

v(DV ,J,Rk) ∈ V(DV ,J,Rk) and Σk (Bk) ∈ ΩBk
. According to (S-15), there exists

Σ̃k (Bk) ∈ S̃disc
Bk

(ϵ) such that∥∥∥Σk (Bk)− Σ̃k (Bk)
∥∥∥2
2
≤ ϵ2.
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Step 2: Construction of a net for the mean functions. We claim that given any
δV(DV ,J,Rk)

> 0, any v(DV ,J,Rk) ∈ V(DV ,J,Rk), there exist a minimal covering of

δk-bracket GV(DV ,J,Rk)

(
δV(DV ,J,Rk)

)
and a function ṽ(DV ,J,Rk) ∈ GV(DV ,J,Rk)

(
δV(DV ,J,Rk)

)
such that

sup
x∈X

∥∥ṽ(DV ,J,Rk)(x)− v(DV ,J,Rk)(x)
∥∥2
2
≤ δ2V(DV ,J,Rk)

, (S-16)

card
(
GV(DV ,J,Rk)

(
δV(DV ,J,Rk)

))
≤

exp
(
CV(DV ,J,Rk)

)
δV(DV ,J,Rk)

dim
(
V(DV ,J,Rk)

)
.

(S-17)

To accomplish this, we use the singular value decomposition of ΥRkd

kd =∑Rkd

r=1(σkd)r(ukd)•,r(v
⊤
kd)r,•, k ∈ [K], d ∈ [DV ], with (σkd)r, r ∈ [Rkd], de-

note the singular values of ΥRkd

kd , with corresponding orthogonal unit vectors
((ukd)•,r)r∈[Rkd]

and
(
(v⊤

kd)r,•
)
r∈[Rkd]

. Then, we construct ṽ(DV ,J,Rk)(x) = Υ̃ k0+∑DV

d=1 Υ̃
Rkd

kd xd, where υ̃k0 and Υ̃
Rkd

kd =
∑Rkd

r=1(σ̃kd)r(ũkd)•,r(ṽ
⊤
kd)r,•, k ∈ [K], d ∈

[DV ], are determined so that (S-16) and (S-17) are satisfied. Note that for each
k ∈ [K], d ∈ [DV ], it holds that

∥∥ṽ(DV ,J,Rk)(x)− v(DV ,J,Rk)(x)
∥∥
2
=

∥∥∥∥∥υ̃k0 − υk0 +

DV∑
d=1

(
Υ̃

Rkd

kd − ΥRkd

kd

)
xd

∥∥∥∥∥
2

≤ ∥υ̃k0 − υk0∥2 +
DV∑
d=1

∥∥∥(Υ̃Rkd

kd − ΥRkd

kd

)
xd
∥∥∥
2

≤
√
Q ∥υ̃k0 − υk0∥∞ + P

√
Q

DV∑
d=1

∣∣∣∣∣∣∣∣∣Υ̃Rkd

kd − ΥRkd

kd

∣∣∣∣∣∣∣∣∣
∞

∥∥xd
∥∥
∞

≤
√
Q ∥υ̃k0 − υk0∥∞ + P

√
Q

DV∑
d=1

∣∣∣∣∣∣∣∣∣Υ̃Rkd

kd − ΥRkd

kd

∣∣∣∣∣∣∣∣∣
∞
,

where we used the fact that for all d ∈ [DV ], x ∈ X ,
∥∥xd

∥∥
∞ ≤ 1 as X = [0, 1]

P .

Thus, (S-16) is immediately followed if we now choose υ̃k0 and Υ̃
Rkd

kd such that

√
Q ∥υk0 − υ̃k0∥∞ ≤

δV(DV ,J,Rk)

2
, (S-18)∣∣∣∣∣∣∣∣∣ΥRkd

kd − Υ̃
Rkd

kd

∣∣∣∣∣∣∣∣∣
∞

≤
δV(DV ,J,Rk)

2DV P
√
Q

. (S-19)
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Let us now see how to construct υ̃k0 to get (S-18). This task can be accomplished
if for all k ∈ [K], q ∈ [Q], we set

B = Z ∩

[⌊
−Au,v

2
√
Q

δV(DV ,J,Rk)

⌋
,

⌊
Au,v

2
√
Q

δV(DV ,J,Rk)

⌋]
,

(υ̃k0)q = argmin
b∈B

∣∣∣∣∣(υk0)q −
δV(DV ,J,Rk)

2
√
Q

b

∣∣∣∣∣ .

Next, let us now see how to construct Υ̃
Rkd

kd to get (S-19). The boundedness
assumption in (7) implies that

∣∣∣∣∣∣∣∣∣ΥRkd

kd − Υ̃
Rkd

kd

∣∣∣∣∣∣∣∣∣
∞

= max
q∈[Q],p∈[P ]

∣∣∣∣∣
Rkd∑
r=1

[
(σkd)r(ukd)q,r(v

⊤
kd)r,p − (σ̃kd)r(ũkd)q,r(ṽ

⊤
kd)r,p

]∣∣∣∣∣
= max

q∈[Q],p∈[P ]

∣∣∣∣∣
Rkd∑
r=1

[
((σkd)r − (σ̃kd)r) (ukd)q,r(v

⊤
kd)r,p

− (σ̃kd)r ((ũkd)q,r − (ukd)q,r) (ṽ
⊤
kd)r,p

− (σ̃kd)r(ukd)q,r
(
(v⊤

kd)r,p − (ṽ⊤
kd)r,p

) ]∣∣∣∣∣
≤ max

r∈[Rkd]
|(σkd)r − (σ̃kd)r| max

q∈[Q],p∈[P ]

Rkd∑
r=1

∣∣(ukd)q,r(v
⊤
kd)r,p

∣∣
+ max

q∈[Q],r∈[Rkd]
|(ũkd)q,r − (ukd)q,r|max

p∈[P ]

Rkd∑
r=1

∣∣(σ̃kd)r(ṽ
⊤
kd)r,p

∣∣
+ max

r∈[Rkd],p∈[P ]

∣∣(v⊤
kd)r,p − (ṽ⊤

kd)r,p
∣∣max
q∈[Q]

Rkd∑
r=1

|(σ̃kd)r(ukd)q,r|

≤ RkdA
2
u,v max

r∈[Rkd]
|(σkd)r − (σ̃kd)r|

+RkdAu,vAσ

(
max

q∈[Q],r∈[Rkd]
|(ũkd)q,r − (ukd)q,r|

+ max
r∈[Rkd],p∈[P ]

∣∣∣(v⊤
kd)r,p − (ṽ⊤

kd)r,p

∣∣∣) .
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Therefore, (S-19) is immediately implied if we now choose (σ̃kd)r, (ũkd)q,r and
(ṽ⊤

kd)r,p such that

max
r∈[Rkd]

|(σkd)r − (σ̃kd)r| ≤
δV(DV ,J,Rk)

6RkdA2
u,vDV P

√
Q
,

max
q∈[Q],r∈[Rkd]

|(ũkd)q,r − (ukd)q,r| ≤
δV(DV ,J,Rk)

6RkdAu,vAσDV P
√
Q
,

max
r∈[Rkd],p∈[P ]

∣∣(v⊤
kd)r,p − (ṽ⊤

kd)r,p
∣∣ ≤ δV(DV ,J,Rk)

6RkdAu,vAσDV P
√
Q
.

This task can be accomplished as follows: for all r ∈ [Rkd], p ∈ [P ], q ∈ [Q], set

S = Z ∩

[
0,

⌊
Aσ

6RkdA
2
u,vDV P

√
Q

δV(DV ,J,Rk)

⌋]
,

(σ̃kd)r = argmin
ζ∈S

∣∣∣∣∣(σkd)r −
δV(DV ,J,Rk)

6RkdA2
u,vDV P

√
Q
ζ

∣∣∣∣∣ ,
U = Z ∩

[⌊
−Au,v

6RkdAu,vAσDV P
√
Q

δV(DV ,J,Rk)

⌋
,

⌊
Au,v

6RkdAu,vAσDV P
√
Q

δV(DV ,J,Rk)

⌋]
,

(ũkd)q,r = argmin
µ∈U

∣∣∣∣∣(ukd)q,r −
δV(DV ,J,Rk)

6RkdAu,vAσDV P
√
Q
µ

∣∣∣∣∣ ,
(ṽ⊤

kd)r,p = argmin
υ∈U

∣∣∣∣∣(v⊤
kd)r,p −

δV(DV ,J,Rk)

6RkdAu,vAσDV P
√
Q
υ

∣∣∣∣∣ .
Note that, according to [15, I.8], we only need to determine the vectors(

((ũkd)q,r)q∈[Q−r]

)
r∈[Rkd]

and
(
((ṽkd)r,p)j∈[card(Jin)−r]

)
r∈[Rkd]

since the remain-

ing elements of such vectors belong to the the nullspace of ΥRkd

kd and ΥRkd⊤
kd . The

number of total free parameters in the previous two vectors are

Rkd∑
r=1

(Q− r) = Rkd

(
2Q−Rkd − 1

2

)
,

Rkd∑
r=1

(card (Jin)− r) = Rkd

(
2 card (Jin)−Rkd − 1

2

)
.

To this end, for all k ∈ [K], d ∈ [DV ], and q ∈ [Q], we let

(Υ̃
Rkd

kd )q,p =

{∑Rkd

r=1(σ̃kd)r(ũkd)q,r(ṽ
⊤
kd)r,p if p ∈ Jin,

0 if p ∈ [P ] \ Jin.
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In particular, (S-17) is proved by the following entropy controlling

card
(
GV(DV ,J,Rk)

(
δV(DV ,J,Rk)

))
≤

[
4Au,v

√
Q

δV(DV ,J,Rk)

]Q DV∏
d=1

[
6RkdAσA

2
u,vDV P

√
Q

δV(DV ,J,Rk)

]Rkd
[
12RkdAσA

2
u,vDV P

√
Q

δV(DV ,J,Rk)

]Rkd(q+card(Jin)−Rkd−1)

=

exp
(
CV(DV ,J,Rk)

)
δV(DV ,J,Rk)

dim
(
V(DV ,J,Rk)

)
, where

dim
(
V(DV ,J,Rk)

)
= Q+

DV∑
d=1

Rkd (Q+ card (Jin)−Rkd) , CV(DV ,J,Rk)
=

ln
(
C(DV ,J,Rk)

)
dim

(
V(DV ,J,Rk)

) ,
and C(DV ,J,Rk) =

[
4Au,v

√
Q
]Q [

12RkdAσA
2
u,vDV P

√
Q
]∑DV

d=1 Rkd(Q+card(Jin)−Rkd)

2−
∑DV

d=1 Rkd .

Step 3: Upper bound of the number of the bracketing entropy for G(K,DV ,B,J,R).
Next, in order to evaluate the ratio of two Gaussian densities, we make use
of Lemma S-6.

Lemma S-6 (Proposition C.1 from [13]) Let ϕ (·;µ1,Σ1) and ϕ (·;µ2,Σ2)
be two Gaussian densities. If Σ2 −Σ1 is a positive definite matrix then for all
y ∈ RQ,

ϕ (y;µ1,Σ1)

ϕ (y;µ2,Σ2)
≤

√
|Σ2|
|Σ1|

exp

[
1

2
(µ1 − µ2)

⊤
(Σ2 −Σ1)

−1
(µ1 − µ2)

]
.

Then, Lemma S-7 allows us to fulfill the assumptions of Lemma S-6.

Lemma S-7 (Similar to Lemma B.8 from [13]) Assume that 0 < ϵ < c2Σ/9,
and set α = 3

√
ϵ/cΣ. Then, for every k ∈ [K], (1 + α) Σ̃k (Bk) −Σk (Bk) and

Σk (Bk) − (1 + α)
−1
Σ̃k (Bk) are both positive definite matrices. Moreover, for

all y ∈ RQ,

y⊤
[
(1 + α) Σ̃k (Bk)−Σk (Bk)

]
y ≥ ϵ ∥y∥22 , y⊤

[
Σk (Bk)− (1 + α)

−1
Σ̃k (Bk)

]
y ≥ ϵ ∥y∥22 .

Proof. For all y ̸= 0, since supλ∈vp(Σk(Bk)−Σ̃k(Bk)) |λ| =
∥∥∥Σk (Bk)− Σ̃k (Bk)

∥∥∥
2
≤

ϵ, −ϵ ≥ −cΣ/3, and α = 3ϵ/cΣ , it follow that

y⊤
[
(1 + α) Σ̃k (Bk)−Σk (Bk)

]
y = (1 + α)y⊤

[
Σ̃k (Bk)−Σk (Bk)

]
y + αy⊤Σk (Bk)y

≥ − (1 + α)
∥∥∥Σ̃k (Bk)−Σk (Bk)

∥∥∥
2
∥y∥22 + αcΣ ∥y∥22

≥ (αcΣ − (1 + α) ϵ) ∥y∥22 = (αcΣ − αϵ− ϵ) ∥y∥22

≥
(
2

3
αcΣ − ϵ

)
∥y∥22 = ϵ ∥y∥22 > 0,
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and

y⊤
[
Σk (Bk)− (1 + α)

−1
Σ̃k (Bk)

]
y

= (1 + α)
−1

y⊤
[
Σk (Bk)− Σ̃k (Bk)

]
y +

(
1− (1 + α)

−1
)
y⊤Σk (Bk)y

≥
(
αcΣ − ϵ

1 + α

)
∥y∥22 =

2ϵ

1 + α
∥y∥22 ≥ ϵ ∥y∥22 > 0.

By using Lemma S-6 and the same argument as in the proof of Lemma B.9 from
[13], given 0 < ϵ < cΣ/3, where ϵ is chosen later, and α = 3ϵ/cΣ , we obtain

max

{
l(x,y)

f(x,y)
,
f(x,y)

u(x,y)

}
≤ (1 + 2α)

−Q
2 exp

(∥∥v(DV ,J,Rk)(x)− ṽ(DV ,J,Rk)(x)
∥∥2
2

2ϵ

)
.

(S-20)

Because ln (·) is a non-decreasing function, ln (1 + 2α) ≥ α,∀α ∈ [0, 1]. Com-
bined with (S-16) where δ2V(DV ,J,Rk)

= Qαϵ, we conclude that

max

{
ln

(
l(x,y)

f(x,y)

)
, ln

(
f(x,y)

u(x,y)

)}
≤ −Q

2
ln (1 + 2α) +

δ2V(DV ,J,Rk)

2ϵ
≤ −Q

2
α+

δ2V(DV ,J,Rk)

2ϵ
= 0.

This means that l(x,y) ≤ f(x,y) ≤ u(x,y),∀(x,y) ∈ X ×Y. Hence, it remains
to bound the size of bracket [l, u] w.r.t. dG(K,DV ,B,J,R)

.

To this end, we aim to verify that d2G(K,DV ,B,J,R)
(l, u) ≤ δ

2 . To accomplish
this, we make use of Lemma S-8.

Lemma S-8 (Proposition C.3 from [13]) Let ϕ (·;µ1,Σ1) and ϕ (·;µ2,Σ2)
be two Gaussian densities with full rank covariance. It holds that

d2 (ϕ (·;µ1,Σ1) , ϕ (·;µ2,Σ2))

= 2

{
1− 2q/2 |Σ1Σ2|−1/4 ∣∣Σ−1

1 +Σ−1
2

∣∣−1/2
exp

[
−1

4
(µ1 − µ2)

⊤
(Σ1 +Σ2)

−1
(µ1 − µ2)

]}
.

Therefore, using the fact that cosh(t) = e−t+et

2 , Lemma S-8 leads to, for all
x ∈ X ,

d2(l(x, ·), u(x, ·)) =
∫
Y

[
l(x,y) + u(x,y)− 2

√
l(x,y)u(x,y)

]
dy

= (1 + 2α)
−Q

+ (1 + 2α)
Q − 2

+ d2
(
ϕ
(
·; ṽ(DV ,J,Rk)(x), (1 + α)

−1
Σ̃k (Bk)

)
, ϕ
(
·; ṽ(DV ,J,Rk)(x), (1 + α) Σ̃k (Bk)

))
= 2 cosh [Q ln (1 + 2α)]− 2

+ 2

[
1− 2Q/2

[
(1 + α)

−1
+ (1 + α)

]−Q/2 ∣∣∣Σ̃k (Bk)
∣∣∣−1/2 ∣∣∣Σ̃k (Bk)

∣∣∣1/2]
= 2 cosh [Q ln (1 + 2α)]− 2 + 2− 2 [cosh (ln (1 + α))]

−Q/2

= 2g (Q ln (1 + 2α)) + 2h (ln (1 + α)) ,
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where g(t) = cosh(t) − 1 = e−t+et

2 − 1, and h(t) = 1 − cosh(t)−Q/2. The upper
bounds of terms g and h separately imply that, for all y ∈ Y,

d2(l(x, ·), u(x, ·)) ≤ 2

(
2 cosh

(
1√
6

)
α2Q2 +

1

4
α2Q2

)
≤ 6α2Q2 =

δ2

4
,

where we choose α = 3ϵ
cΣ

, ϵ = δcΣ
6
√
6Q

, ∀δ ∈ (0, 1], Q ∈ N⋆, cΣ > 0, which appears

in (S-20) and satisfies α = δ
2
√
6Q

and 0 < ϵ < cΣ
3 . Indeed, studying functions g

and h yields

g′(t) = sinh(t),g′′(t) = cosh(t) ≤ cosh(c),∀t ∈ [0, c], c ∈ R+,

h′(t) =
Q

2
cosh(t)−Q/2−1 sinh(t),

h′′(t) =
Q

2

(
−Q

2
− 1

)
cosh(t)−Q/2−2 sinh2(t) +

Q

2
cosh(t)−Q/2

=
Q

2

(
1−

(
Q

2
+ 1

)(
sinh(t)

cosh(t)

)2
)
cosh(t)−Q/2 ≤ Q

2
,

where we used the fact that cosh(t) ≥ 1. Then, since g(0) = 0,g′(0) = 0, h(0) =
0, h′(0) = 0, by applying Taylor’s Theorem, it is true that

g(t) = g(t)− g(0)− g′(0)t = R0,1(t) ≤ cosh(c)
t2

2
,∀t ∈ [0, c],

h(t) = h(t)− h(0)− h′(0)t = R0,1(t) ≤
Q

2

t2

2
≤ Q2

2

t2

2
,∀t ≥ 0.

We wish to find an upper bound for t = Q ln (1 + 2α), Q ∈ N⋆, α = δ
2
√
6Q

,
δ ∈ (0, 1]. Since ln(·) is an increasing function, then we have

t = Q ln

(
1 +

δ√
6Q

)
≤ Q ln

(
1 +

1√
6Q

)
≤ Q

1√
6Q

=
1√
6
,∀δ ∈ (0, 1],

since ln
(
1 + 1√

6Q

)
≤ 1√

6Q
, ∀Q ∈ N⋆. Then, since ln (1 + 2α) ≤ 2α,∀α ≥ 0,

g (Q ln (1 + 2α)) ≤ cosh

(
1√
6

)
(Q ln (1 + 2α))

2

2
≤ cosh

(
1√
6

)
Q2

2
4α2,

h (ln (1 + α)) ≤ Q2

2

(ln (1 + α))
2

2
≤ Q2α2

4
.

Next, note that the set of δ/2-brackets [l, u] over G(K,DV ,B,J,R) is totally de-

fined by the parameter spaces S̃disc
Bk

(ϵ) and GV(DV ,J,Rk)

(
δV(DV ,J,Rk)

)
. This leads

to an upper bound of the δ/2-bracketing entropy of G(K,DV ,B,J,R) is evaluated
from an upper bound of the two set cardinalities. Hence, given any δ > 0, by
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choosing ϵ = δcΣ
6
√
6Q

, α = 3ϵ
cΣ

= δ
2
√
6Q

, and δ2V(DV ,J,Rk)
= Qαϵ = Q δ

2
√
6Q

δcΣ
6
√
6Q

=

δ2cΣ
72Q , it holds that

N[·],dG
(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
≤ card

(
S̃disc
Bk

(ϵ)
)
× card

(
GV(DV ,J,Rk)

(
δV(DV ,J,Rk)

))

≤

(⌊
2CΣ
ϵ

⌋
Q (Q− 1)

2DBk

)DBk

exp
(
CV(DV ,J,Rk)

)
δV(DV ,J,Rk)

dim
(
V(DV ,J,Rk)

)
(using (S-14) and (S-17))

≤

(
2CΣ6

√
6Q

δcΣ

Q (Q− 1)

2DBk

)DBk

6
√
2Q exp

(
CV(DV ,J,Rk)

)
δ
√
cΣ

dim
(
V(DV ,J,Rk)

)

=

(
6
√
6CΣQ2 (Q− 1)

cΣDBk

)DBk

6
√
2Q exp

(
CV(DV ,J,Rk)

)
√
cΣ

dim
(
V(DV ,J,Rk)

)(
1

δ

)DBk
+dim

(
V(DV ,J,Rk)

)
.

To this end, note that dim
(
G(K,DV ,B,J,R)

)
= DBk

+dim
(
V(DV ,J,Rk)

)
, we obtain

H[·],dG
(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
= ln

(
N[·],dG

(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

))

≤ DBk
ln

(
6
√
6CΣQ2 (Q− 1)

cΣDBk

)
+ dim

(
V(DV ,J,Rk)

)
ln

6
√
2Q exp

(
CV(DV ,J,Rk)

)
√
cΣ


+
(
DBk

+ dim
(
V(DV ,J,Rk)

))
ln

(
1

δ

)
= dim

(
G(K,DV ,B,J,R)

)(
CG(K,DV ,B,J,R)

+ ln

(
1

δ

))
,

where CG(K,DV ,B,J,R)
=

DBk
ln

(
6
√

6CΣQ2(Q−1)

cΣDBk

)
+dim

(
V(DV ,J,Rk)

)
ln

 6
√

2Q exp

(
CV

(DV ,J,Rk)

)
√

CΣ


dim

(
G(K,DV ,B,J,R)

) .
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