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Abstract
Mixture of experts (MoE) models are among the most popular and interesting combination tech-
niques, with great potential for improving the performance of machine learning and statistical learn-
ing systems. We are the first to consider a polynomial softmax-gated block-diagonal mixture of ex-
perts (PSGaBloME) model for the identification of potentially nonlinear regression relationships for
complex and high-dimensional heterogeneous data, where the number of explanatory and response
variables can be much larger than the sample size and possibly hidden graph-structured interac-
tions exist. These PSGaBloME models are characterized by several hyperparameters, including the
number of mixture components, the complexity of softmax gating networks and Gaussian mean
experts, and the hidden block-diagonal structures of covariance matrices. We contribute a non-
asymptotic theory for model selection of such complex hyperparameters with the help of the slope
heuristic approach in a penalized maximum likelihood estimation (PMLE) framework. In partic-
ular, we establish a non-asymptotic risk bound on the PMLE, which takes the form of an oracle
inequality, given lower bound assumptions on the penalty function. Furthermore, we propose two
Lasso–MLE–rank procedures, based on a new generalized expectation–maximization algorithm, to
tackle the estimation problem of the collection of PSGaBloME models.
Keywords: Mixture of experts, mixture of regressions, dimensionality reduction, low rank estima-
tion, non-asymptotic theory, concentration inequality, oracle inequality, variable selection.

1. Introduction

In this work, our primary objective is to identify potential complex non-linear relationships between
high-dimensional heterogeneous outputs (also referred to as target or response variables) and inputs
(also termed explanatory or predictor variables), where the number of explanatory and response
variables can be far greater than the sample size, and where there are possibly hidden interactions in
the graphical structure. This involves performing regression, clustering, and model selection, simul-
taneously. Mixture of experts (MoE) models, introduced by Jacobs et al. (1991); Jordan and Jacobs
(1994), are extremely well suited for the task, described. Indeed, these flexible models decompose
the prediction model by a combination of the gating models and expert models, both depending on
the input variables. Furthermore, the MoE is a specific instance of conditional computation Bengio
(2013), where different model experts are responsible for different regions of the input space. Thus,
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by applying only a subset of parameters to each example, the MoE can increase model capacity
while keeping training and inference costs roughly constant. In particular, it has been popularized
for its universal approximation properties in the context of mixture models (MM) (Genovese and
Wasserman, 2000; Rakhlin et al., 2005; Nguyen, 2013; Ho and Nguyen, 2016a,b; Nguyen et al.,
2020b, 2022), mixture of regressions (MoR) models (Do et al., 2022; Ho et al., 2022), and more
generally (Jiang and Tanner, 1999b; Norets, 2010; Nguyen et al., 2016, 2019, 2021). The reader
is referred to Yuksel et al. (2012); Masoudnia and Ebrahimpour (2014); Nguyen and Chamroukhi
(2018); Nguyen (2021) for reviews on this topic.

To the best of our knowledge, we are the first to propose one of the most general MoE models
for high-dimensional multivariate multiple regression, when the number of explanatory variables
can be much larger than the sample size, and when there are possibly hidden graphically structured
interactions between responses.

1.1. MoE models for heterogeneous complex data

Definition of MoE models. We are interested in estimating the law of a multivariate random
variable Y ∈ Y ⊂ RQ, conditionally on X ∈ X ⊂ RP . Here and subsequently, given any N ∈ N?,(
X[N ],Y[N ]

)
≡ (Xn,Yn)n∈[N ], [N ] := {1, . . . , N}, denotes a random sample, and x and y stand

for the observed values of the random variables X and Y, respectively. The following assumptions
will be needed throughout the paper. We assume that the covariates X are independent but not
necessarily identically distributed. The assumptions on the responses Y are stronger. Namely,
conditional on X[N ], Y[N ] are independent, and each Y follows a law with true (but unknown)
PDF s0 (· | X = x). Motivated by universal approximation theorems for MoEs, we propose the
softmax-gated block-diagonal MoE (SGaBloME) models to estimate s0:

sψK
(y | x) =

K∑
k=1

gk(w(x))φ(y,vk(x),Σk(Bk)), gk(w(x)) =
exp(wk(x))∑K
l=1 exp(wl(x))

, (1)

with unknown functional parameters ψK = (wk,vk,Σk(Bk))k∈[K]. Here we call gk a soft-max
gating network corresponding to the weight, w = (w1, . . . , wK), functions of x, and φ(·) a Gaus-
sian expert with the mean function vk, of x on cluster k-th. In particular, we define S a set of
polynomial SGaBloME (PSGaBloME) models with sψK

satisfying (1) and

wk(x) = ωk0 +

DW∑
d=1

ωTkdx
d, with ωk0 ∈ R, ωkd ∈ RP , (2)

vk(x) = υk0 +

DV∑
d=1

Υkdx
d, with υk0 ∈ RQ, Υkd ∈ RQ×P . (3)

Here, xd is a vector of all components of x with power d,DW andDV are the degrees of the weights
and means of x, respectively.

Motivation for block-diagonal covariance matrices. It is worth mentioning that the block-
diagonal covariance matrix Σk(Bk) depends on the block structure B = (Bk)k∈[K] partitioning
the output index set [Q] for each cluster. This structure is not only to trade-off between complexity
and sparsity, but is also motivated by some real applications, where one wants to perform predic-
tion on data sets with heterogeneous observations and hidden graph-structured interactions between

2



NON-ASYMPTOTIC MODEL SELECTION IN MOE VIA JOINT RANK AND VARIABLE SELECTION

outputs. For example, for gene expression datasets where, conditional on the phenotypic response,
genes only interact with a few other genes, i.e., there are small modules of correlated genes (see
e.g., Devijver et al., 2017; Devijver and Gallopin, 2018 for more details). Furthermore, Broto et al.
(2022) estimated a high-dimensional block-diagonal covariance matrix of Gaussian variables for es-
timating Shapley effects. While Andrade et al. (2020) proposed a robust Bayesian model selection
for variable clustering with the Gaussian graphical models.

Motivation for polynomial regression. With some restrictions on SGaBloME models, some au-
thors have developed methods to deal with high-dimensional regression problems. Notably, Devi-
jver (2017a) focused on a mixture of Gaussian linear regression (MoGLR) model, where the gating
networks gk are independent of the inputs for all subpopulations k ∈ [K]. Whereas Chamroukhi
and Huynh (2018, 2019) considered MoE for multiple regression models, but only with the univari-
ate target variable. In particular, in (1) they all consider only linear functions for wk and vk, which
limits the capacity of MoE models. For example, in the context of convolutional neural networks
(CNNs), Chen et al. (2022) has empirically found that the mixture of linear experts outperforms the
single expert, but is still significantly worse than the mixture of non-linear experts. This motivates
us to integrate nonlinearities into (1) by defining wk and vk as linear combinations of bounded
functions (LinBo). We call this model LinBoSGaBloME, it contains two special cases LinBoSGaME
and SGaME models without considering block-diagonal covariance matrices, where SGaME is an
affine instance. For a comprehensive classification and nomenclature of MoE models with soft-
max gating networks, please refer to Figure 1. If P and Q are not too large, we do not need to
select relevant variables and/or use rank sparse models. Then we can work on LinBoSGaME as
in Montuelle and Le Pennec (2014). However, to deal with high-dimensional data and to simplify
the interpretation of sparsity, we propose to use the PSGaBloME model. Note that this is one of
the simplest models among the class of LinBoSGaBloME to explore the presence of nonlinearities.
For example, Punzo (2014) considered polynomial Gaussian cluster-weighted MoE models, which
outperform the polynomial Gaussian MoR and allow for possible nonlinear dependencies in the ex-
pert components by considering a polynomial regression. For polynomial MoR, Fang et al. (2022)
considered a likelihood ratio test for determining if there is a higher-degree polynomial term in one
of the components, leading to a better model compared to linear MoR. In particular, on the con-
vergence rates of PSGaBloME models, we refer to Mendes and Jiang (2012) to discuss the optimal
convergence rate on a MoE structure where K experts experts, where each expert is associated with
a polynomial regression model of order DV .

Model selection problem for PSGaBloME. On the one hand, estimation in SGaBloME models
can be performed using a well-known expectation maximisation (EM) algorithm (Dempster et al.,
1977; McLachlan and Krishnan, 1997), which enjoys global convergence in the context of MoR
(Kwon et al., 2019; Klusowski et al., 2019). However, it crucially depends on and requires data-
driven hyper-parameter choices, including the number of mixture components (or clusters), the
degree of complexity of each soft-max gating network and each Gaussian expert mean function,
and the hidden block-diagonal structures of the covariance matrices. It is worth noting that the
hyper-parameter choice of data-driven learning algorithms belongs to the class of model selection
problems that have received much attention in statistics and machine learning over the last 50 years
(Akaike, 1974; Mallows, 1973; Burnham and Anderson, 2002; Massart, 2007; Arlot, 2019). More
precisely, given a set of models, how do we select the one with the lowest possible risk from the
data? It should be noted that penalisation is one of the main strategies proposed for model selection.
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The idea is to select the estimator that minimizes the sum of the empirical risk and some penalty
terms corresponding to the fit of the model to the data, while avoiding overfitting.

1.2. Related works

Generally, model selection for MoE models is commonly carried out using the Akaike informa-
tion criterion (AIC) (Akaike, 1974), the Bayesian information criterion (BIC) (Schwarz, 1978) or
the BIC-like approximation of the integrated classification likelihood (ICL-BIC) (Biernacki et al.,
2000). Nevertheless, an important limitation of these criteria is that they are only asymptotically
valid. In other words, there is no finite sample guarantee when using AIC, BIC or ICL-BIC to
choose between different levels of complexity. Therefore, their use in small samples is ad hoc. To
address such difficulties, a novel approach called the slope heuristic, supported by a non-asymptotic
oracle inequality via a general model selection theorem, was proposed in Birgé and Massart (2007).
This method leads to an optimal data-driven choice of multiplicative constants for penalties. See
Baudry et al. (2012); Arlot (2019) and the references therein for recent reviews and practical issues
related to the slope heuristic.

A number of oracle inequalities for the least absolute shrinkage and selection operator (Lasso)
(Tibshirani, 1996) and general penalized maximum likelihood estimators (PMLE) were established
in the spirit of the methods based on concentration inequalities developed in Massart (2007); Mas-
sart and Meynet (2011); Cohen and Le Pennec (2011, 2013). These results include work on high-
dimensional Gaussian graphical models (Devijver and Gallopin, 2018), Gaussian mixture model
selection (Maugis and Michel, 2011b,a; Maugis-Rabusseau and Michel, 2013), finite mixture re-
gression models (Meynet, 2013; Devijver, 2015b,a, 2017b,a) and LinBoSGaME models outside the
high dimensional setting (Montuelle and Le Pennec, 2014).

1.3. Main contributions

In this work, we establish an important oracle inequality, as shown in Theorem 1, which provides
non-asymptotic risk bounds, taking the form of a weak oracle inequalities, under lower-bound as-
sumptions on penalty terms. Our non-asymptotic risk bounds allow the number of observations N
to be fixed, while the dimensionality and cardinality of the models, characterised by the number of
covariates and the size of the response, are allowed to grow with N and can be much larger than N ,
unlike traditional criteria such as AIC, BIC or ICL-BIC, which are based on asymptotic theory or
Bayesian approaches.

Notably, our oracle inequality shows that the Jensen–Kullback–Leibler loss performance of our
PMLEs is comparable to that of oracle models, when we choose sufficiently large constant multiples
of the penalties. The shapes of these constants are only known up to multiplicative constants and
are proportional to the dimensions of the models. The aforementioned theoretical justifications for
the shapes of the penalties are the motivation for using the slope heuristic criterion to select several
hyperparameters. These comprise the number of mixture components, the degree of polynomial
mean functions, and the potential hidden block-diagonal structures of the covariance matrices of the
multivariate output.

Specifically, our oracle inequality, and its corresponding Lasso l2–MLE and Lasso l2–rank
procedures, help to partially answer the following two important questions in the area of high-
dimensional MoE models: (1) what is the number of mixture components K to choose, given the
sample size N ; and (2) is it better to use a few complex experts or a combination of many simple
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experts, given the total number of parameters? We point out that such problems are also addressed
in the work of (Mendes and Jiang, 2012, Proposition 1), where the authors provide some qualita-
tive guidance and only propose a practical method for choosing K and DV , using a complexity
penalty or cross-validation. Their approach is also unregularised and is therefore not suitable for the
high-dimensional setting.

Notations. Throughout this paper, {1, . . . , P} is abbreviated as [P ] for P ∈ N∗. For a matrix
A = (Ai,j) ∈ RP×Q with the elements Ai,j , we denote |||A|||∞ = maxi∈[P ],j∈[Q] |Ai,j | its max-
norm. Furthermore, m(A) and M(A) are denoted by the smallest and largest eigenvalues of A,
respectively. Similarly, for a vector a ∈ RP , ‖a‖p denotes the lp-norm of a for 0 < p ≤ ∞. For
a parametric model S, dim(S) refers to its dimension, i.e., the total number of parameters to be
estimated. If S is a finite set, we denote card(S) the cardinality, P(S) the set of all subsets, and
B(S) the set of all partitions, of S. Finally, we refer to a ∧ b as min{a, b} for a, b ∈ R.

Paper organization In Section 2 we discuss the construction of a collection of SGaBloME mod-
els. Then, in Section 3, our main theoretical result is given: a PMLE inequality for SGaBloME
models. Two practical procedures are then discussed in Section 4: Lasso l2–MLE and Lasso l2–
Rank for handling high-dimensional data, and their generalized EM algorithms can be found in
Section 5. All technical proofs and detailed algorithms not included in the main paper are relegated
to the Appendices A to D.

2. Collection of PSGaBloME models for high-dimensional data

When working with high-dimensional complex data, it is necessary to work with parsimonious
models by combining two well-known approaches: selecting relevant variables and ranking sparse
models.

2.1. Variable selection via selecting relevant variables

In this section, we focus on the set of indices of (X,Y) ≡ (Xp, Yq)p∈[P ],q∈[Q] so that they are
relevant via the notion of irrelevant indices. We call a couple (Xp, Yq) irrelevant if the elements
(Υkd)q,p = 0 and (ωkl)p = 0 for all k ∈ [K], d ∈ [DV ], l ∈ [DW ]. Hence, (Xp, Yq) is relevant if
they are not irrelevant. We denote I = {(p, q) ∈ [P ]× [Q] : (Xp, Yq) is irrelevant} the set of indices
of irrelevant couples, and the complement of I , called J = ([P ] × [Q]) \ I , is the set of indices of
relevant couples with J ∈ P([P×Q]). Furthermore, we call Jin = {p ∈ [P ] : ∃q ∈ [Q], (p, q) ∈ J}
the set of indices of relevant input variables.

Let us notice that, for all k ∈ [K], d ∈ [DV ], all the entries in the matrix Υkd belonging to
columns indexed by [P ] \ Jin equal to 0, in other words, Υkd has the relevant columns indexed
by Jin. Therefore, since Jin ⊆ {1, . . . , P} by definition, Υkd will have Q× card (Jin) regression
coefficients needed to be estimated, which are smaller thanQ×P when all variables are considered.
This leads to the number of parameters in regression matrices being then drastically reduced when
card (Jin)� P .

The subset J can be constructed by the Lasso estimator, originally established by Tibshirani
(1996), is a classical choice and has been extended to deal with multiple multivariate regression
models for column sparsity using the Group-Lasso estimator (Yuan and Lin, 2006).
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2.2. Variable selection via rank sparse models

Anderson et al. (1998) introduced rank sparse models in the regression framework as follows: if
regression matrices have low rank, or at least can be well approximated by low-rank matrices, then
the corresponding regression models are said to be rank sparse. In the PSGaBloME model, we
assume that for k ∈ [K], d ∈ [DV ], the matrix Υkd has rank Rkd and is therefore completely
determined by Rkd (P − (Q−Rkd)) coefficients, which can be less than QP . Combined with
the selection of relevant variables, we denote a rank matrix by R = (Rkd)k∈[K],d∈[DV ] with the
elements Rkd ∈ [card (Jin) ∧Q] for each k ∈ [K], d ∈ [DV ].

2.3. Collection of PSGaBloME models

In fact, the class of conditional densities for PSGaBloME models, with relevant variables and rank
sparse models, is characterized by the sextuplets m = (K,DW , DV ,B, J,R). That includes the
number of clusters, K ∈ N∗, degrees of polynomials of weights, DW ∈ N∗, and of means, DV ∈
N∗, the partitions of output indices, B ∈ B([Q])K , the set of relevant indices of variables, J ∈
P([P ] × [Q]), and the ranks of coefficient matrices, R. For convenience, for any K,DW , DV , we
denote ω0 = (ωk0)k∈[K],ω = (ωkd)k∈[K],d∈[DW ], υ0 = (υk0)k∈[K], Υ = (Υkd)k∈[K],d∈[DV ],
Σ(B) = (Σk(Bk))k∈[K]. Then, more precisely, the class of conditional densities of PSGaBloME
models with respect to m, Sm, can be specified as

Sm =
{
sψm

≡ sψK
∈ S : ψm = (ω0,ω,υ0,Υ,Σ(B)) ∈ Ψm,

Ψm = RK ×WK×DW
J × RK×Q ×VK×DV

J,R ×ΩK
B

}
. (4)

Here, WJ is the set of vectors in RP restricted to the set of indices of relevant input variables
Jin, VJ,R the set of matrices with relevant columns indexed by Jin and ranks R, and ΩB the set
of positive definite block-diagonal matrices depending on partitions B. Note that the collection
of PSGaBloME models defined in (4) is generally large and therefore not tractable in practice.
This motivates us to restrict (K,DW , DV ) to the finite sets K = [K∗], DW = [D∗W ], DV =
[D∗V ] with K∗, D∗W , D

∗
V ∈ N∗. Furthermore, we focus on a (potentially random) subcollection

J of P ([P ]× [Q]) with the controlled size being required in high-dimension case. Moreover,
the number of possible vectors of ranks considered is reduced by working on a subset (potentially
random)R(K,J,DV ) of [card (Jin) ∧Q]KDV . Furthermore, we recall that B is selected among a list
of structures B([Q])K . It is worth mentioning that card (B([Q]))K , i.e. the power of Bell number, is
very large even for a moderate number of variablesQ and number of clustersK. This prevents us to
consider an exhaustive exploration of the set B([Q])K . Motivated by the recent work from Devijver
and Gallopin (2018), for each cluster k ∈ [K], we restrict our attention to the sub-collection Bk,E =
(Bk,ε)ε∈E of B([Q]). Here Bk,ε is the partition of the output variables corresponding to the block-

diagonal structure of the adjacency matrix Ek,ε =
(
I
{∣∣∣(Sk)q,q′∣∣∣ > ε

})
q,q′∈[Q]

, which is based on

the thresholded absolute value ε of the sample covariance matrix Sk in each cluster k ∈ [K]. It
is important to point out that the class of block-diagonal structures detected by the graphical Lasso
algorithm when the regularization parameter varies is identical to the block-diagonal structures Bk,E
detected by the thresholding of the sample covariance for each cluster k ∈ [K] (Mazumder and
Hastie, 2012).
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Finally, our collection of PSGaBloME models based on the deterministic and random subcol-
lections are defined, respectively, as, for Sm specified in (4),

S = {Sm : m ∈M} ,M = K ×DW ×DV × B([Q])K × P ([P ]× [Q])× [card (Jin) ∧Q]KDV ,

S̃ =
{
Sm : m ∈ M̃

}
,M̃ = K ×DW ×DV × (Bk,E)k∈[K] × J ×R(K,J,DV ). (5)

3. Main theoretical result

3.1. Boundedness conditions on the parameter space

In order to establish our oracle inequality, Theorem 1, we assume that X is a bounded set in RP and
make explicit some classical boundedness conditions on the parameter space. We further assume
that the covariates X belong to an hypercube, e.g., X = [0, 1]P , for the simplicity of notation. We
then assume that the coefficients from the weights of the softmax gating functions and the means of
the Gaussian experts belong to a compact set. Furthermore, the eigenvalues of the block-diagonal
covariances of the Gaussian experts lie on a positive interval. More precisely, there exist some for
constants Cω, CΥ, cΣ, CΣ > 0 such that

‖ωkd‖∞ ≤ Cω, |||Υkd|||∞ ≤ CΥ, 0 < cΣ ≤ m (Σk (Bk)) ≤M (Σk (Bk)) ≤ CΣ. (6)

Note that this is a fairly general and mild assumption. In particular, just to simplify the interpretation
of sparsity in the high-dimensional setting, the weights of softmax gating functions and the means of
Gaussian experts are considered to be polynomial functions of the explanatory variables. However,
our Theorem 1 still holds when the weights of softmax gating functions are monomial, allowing for
the interaction between different input variables.

To establish our oracle inequality, we need to introduce loss functions, which are useful for
comparing two conditional probability density functions. A general principle of penalised maximum
likelihood estimation (PMLE) is also derived.

3.2. Loss functions and penalized maximum likelihood estimator

In the maximum likelihood approach, the Kullback-Leibler (KL) divergence is the most natural loss
function, defined for two densities s and t. However, to capture the structure of the conditional
PDFs and the random covariates X[N ], we instead consider the tensorized KL (TKL) divergence:

KL⊗n(s, t) = EX[N ]

[
1

N

N∑
n=1

KL (s (· | Xn) , t (· | Xn))

]
. (7)

Furthermore, given any ρ ∈ (0, 1), a tensorized Jensen-KL (TJKL) divergence is given by

JKL⊗n
ρ (s, t) = EX[N ]

[
1

N

N∑
n=1

1

ρ
KL (s (· | Xn) , (1− ρ) s (· | Xn) + ρt (· | Xn))

]
. (8)

In the context of MLE, given the collection of conditional PDFs Sm, we aim to estimate s0 by
the conditional PDF ŝm that minimizes the negative log-likelihood (NLL). We should work with
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almost minimizer of this quantity and define an η-log-likelihood minimizer (LLM) as any ŝm that
satisfies:

N∑
n=1

− ln [ŝm (Yn | Xn)] ≤ inf
sm∈Sm

N∑
n=1

− ln [sm (Yn | Xn)] + η. (9)

However, this MLE underestimates the risk of the estimate and leads to the selection of models that
are too complex. In the context of the PMLE, it is hoped that by adding an appropriate penalty
pen(m), a trade-off can be made between good data fit and model complexity. For a given choice
of pen(m), the selected model Sm̂ is chosen as the one whose index is an η′-almost minimizer of
the sum of the NLL and this penalty:

N∑
n=1

− ln [ŝm̂ (Yn | Xn)] + pen (m̂) ≤ inf
m∈M

{
N∑
n=1

− ln [ŝm (Yn | Xn)] + pen(m)

}
+ η′. (10)

Note that ŝm̂ is then called the η′-PMLE and depends on the error terms η and η′. These error terms
are necessary to avoid any existence problem, e.g., the infimum may not be reached. Roughly
speaking, the Ekeland variational principle states that for any extended-valued lower semicontinu-
ous function which is bounded below, one can add a small perturbation to ensure the existence of
the minimum, see, e.g., (Borwein and Zhu, 2004, Chapter 2). From hereon in, the term selected
model or best data-driven model is used to indicate that it satisfies the definition in (10).

3.3. Oracle inequality

We state our first main contribution, Theorem 1, an oracle inequality that guarantees a non-asymptotic
theory for model selection in high-dimensional PSGaBloME, which is proved in Appendix A.

Theorem 1 Let
(
X[N ],Y[N ]

)
be the random sample arising from the unknown conditional density

s0. For each m = (K,DW , DV ,B, J,R) ∈ M, let Sm be define by (4). Assume that there exists
τ > 0 and εKL > 0 such that, for all m ∈M, one can find s̄m ∈ Sm such that

KL⊗n (s0, s̄m) ≤ inf
t∈Sm

KL⊗n (s0, t) +
εKL
N

, and s̄m ≥ e−τs0. (11)

Furthermore, we construct a random subcollection (Sm)
m∈M̃ of (Sm)m∈M as in (5). Then, there

is a constant C such that for any ρ ∈ (0, 1), and any C1 > 1, there are two constants κ and C2

depending only on ρ and C1 such that, for every index m ∈M, ξm ∈ R+, Ξ =
∑

m∈M e−ξm <∞
and

pen(m) ≥ κ [(C + lnN) dim(Sm) + (1 ∨ τ)ξm] ,

the η′-PMLE ŝm̂, defined in (10) on the subset M̃ ⊂M, satisfies

EX[N ],Y[N ]

[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1EX[N ],Y[N ]

[
inf

m∈M̃

(
inf
t∈Sm

KL⊗n (s0, t) + 2
pen(m)

N

)]

+ C2(1 ∨ τ)
Ξ2

N
+
η′ + η

N
.
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Remark 2 Theorem 1 guarantees that a penalized criterion leads to a good model selection and
that the penalty is only known up to multiplicative constants, e.g., κ, and is proportional to the
dimensions of the models dim(Sm). In particular, in the small and finite sample setting, these
multiplicative constants can be calibrated using the slope heuristic approach. Note that (11) is not
a strong assumption and is satisfied, for example, if s0 is bounded, with a compact support. This
oracle inequality compares the performance of our PMLE with the best model in the collection.
However, Theorem 1 allows us to approximate well a rich class of conditional PDFs if we use
polynomials of weights and Gaussian expert means of sufficient degree, or enough clusters due to
the universal approximation of MoE models. This results in the term on the right being small, for
DW ,DV and K well chosen.

It should be emphasised that Theorem 1 extends the main result of Montuelle and Le Pennec
(2014), which is only valid for a full collection of LinBoSGaME models in the low-dimensional
setting. Furthermore, in the context of MoE models, our non-asymptotic oracle inequality for
SGaME models in Theorem 1 can be seen as a complementary result to a classical asymptotic the-
ory (Khalili, 2010, Theorems 1, 2, and 3), and an l1 oracle inequality that focuses on the properties
of the Lasso estimator rather than the model selection procedure (Nguyen et al., 2020a).

Main challenges on the proof of Theorem 1. Our idea to prove Theorem 1 is inspired by
Montuelle and Le Pennec (2014) for handling LinBoSGaME models, but our strategy and most
of the technical details differ. This is because their approach is not directly applicable to our high-
dimensional SGaBloME models, due to restrictions on relevant predictor variables and rank reduc-
tion, and Gaussian experts with block-diagonal covariance matrices. In particular, the main diffi-
culty in proving our oracle inequality lies in bounding the bracketing entropy for our collections
of SGaBloME models. This requires several regularity assumptions, which are not easy to verify
due to the complexity of SGaBloME models and technical reasons. Therefore, our proofs require
the development of several new ideas. Furthermore, unlike Montuelle and Le Pennec (2014), which
uses a model selection theorem for a deterministic collection of models from (Cohen and Le Pennec,
2011, 2013), we need to find a way to use the model selection theorem for MLE among a random
subcollection (cf. (Devijver, 2015a, Theorem 5.1) and (Devijver and Gallopin, 2018, Theorem 7.3)).
The main reason is that our model collection constructed by our Lasso+l2–MLE and Lasso+l2–rank
procedures in Section 4 is usually random. In particular, our oracle inequality in Theorem 1 still
holds for any random subcollection ofM constructed by some suitable tools for PSGaBloME. This
reinforces our original contributions concerning the control of bracketing entropy of SGaBloME
models.

4. Practical procedures: Lasso+l2–MLE and Lasso+l2–Rank

In order to detect the block-diagonal structures, the relevant variables and the rank sparse models in
the multiple multivariate regression for high dimensional heterogeneous data using our SGaBloME
models, we need to extend the results from Khalili (2010); Stadler et al. (2010) to the multivariate re-
sponse Y, and the results from linear MoR of Devijver (2015a, 2017a,b) to polynomial SGaBloME
with arbitrary degrees of weights and means. This leads to our Lasso+l2-MLE and Lasso+l2-Rank
procedures. The former takes advantage of MLE, while the latter exploits the matrix structure of the
Cholesky decomposition through low-rank estimation. Both procedures involve three main steps.
First, for fixed (K,DW , DV ), we construct a collection of models with relevant variables indexed

9
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by J , where J is constructed by the l1 and l2 penalized functions in terms of weights and means.
Second, we refit the estimates by MLE for Lasso+l2-MLE, and by MLE under a rank constraint
for Lasso+l2-Rank, on the restricted set of relevant indices obtained from the first step. Finally,
Theorem 1 motivates the selection of the best data-driven model using a non-asymptotic approach
slope heuristic.

Identifiability of MoE models. Accounting for the identifiability of MoE models from Jiang
and Tanner (1999a); Hennig (2000), we parameterize the gating parameters via the constraints,
w.l.g., ωK = (ωK0, . . . ,ωKDW

) = 0, ω = (ωk)k∈[K−1], s.t., gK (x,ω) ≡ gK (w(x,ω)) =

1−
∑K−1

k=1 gk (w(x,ω)) with gk (w(x,ω)) = exp (wk(x;ωk)) /
[
1 +

∑K−1
i=1 exp (wi(x;ωi))

]
≡

gk (x,ω), for all k ∈ [K − 1].

4.1. Model collection construction

To reduce the complexity for practical procedures, we assume that Σk is a diagonal matrix for all
k ∈ [K]. However, the support of Theorem 1 for using the slope heuristic in Section 4.3 still
holds for any block-diagonal structures to which our procedure can be extended. For fixed K ∈ K,
DW ∈ DW and DV ∈ DV , the Lasso +l2–PMLEs for SGaBloME models can be computed as
follows:

ψ̂
Lasso +l2

(λ) = arg min
ψ∈Ψ(K,DW ,DV ,J,R)

{
− 1

N

N∑
n=1

ln (sψ (yn|xn)) + penλ(ψ)

}
, with (12)

penλ(ψ) =
K−1∑
k=1

DW∑
d=1

λ
[1]
kd ‖ωkd‖1 +

K∑
k=1

DV∑
d=1

λ
[2]
kd ‖QkΥkd‖1 +

λ[3]

2

K−1∑
k=1

DW∑
d=1

‖ωkd‖22 , (13)

where λ = (λ
[1]
1 , . . . ,λ

[1]
K−1,λ

[2]
1 , . . . ,λ

[2]
K , λ

[3]) is the vector of non-negative regularization param-

eters with λ[1]
k = (λ

[1]
k1, . . . , λ

[1]
kDW

), λ[2]
k = (λ

[2]
k1, . . . , λ

[2]
kDV

), and Q>k Qk = Σ−1
k is the Cholesky

decomposition of Σk, for every k ∈ [K]. Note that the first two terms of (13) are the usual Lasso
penalization, while the l2 penalty function for the weights in the last term is added to avoid wildly
large positive or negative estimates of the regression coefficients corresponding to the mixing pro-
portions. This behaviour can be observed in logistic and multinomial regression models when the
number of features is potentially large and highly correlated (e.g., Park and Hastie (2008); Bunea
(2008)). For given λ, we can then apply a generalized expectation maximization (EM) algorithm
(Dempster et al., 1977; McLachlan and Krishnan, 1997) for (12)–(13) to find the index set of rel-
evant variables J(K,DW ,DV ,λ), see Section 5. In particular, we proposed new methods by extend-
ing the works of Jordan and Jacobs (1994), Khalili (2010), Chamroukhi and Huynh (2018, 2019);
Huynh and Chamroukhi (2019) to multivariate responses.

4.2. Refitting

The Lasso+l2-MLE procedure. The MLE can be approximated as

ŝ(K,DW ,DV ,J) = arg min
s∈S(K,DW ,DV ,J)

{
− 1

N

N∑
n=1

ln (s (yn|xn))

}
, (14)

by using an EM algorithm for each model (K,DW , DV , J) ∈ K ×DW ×DV × J .
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The Lasso+l2-Rank procedure. We use the generalized EM algorithm to estimate the parameters
by MLE under a rank constraint R on the restricted set of relevant columns J .

4.3. Model selection

The third step is devoted to model selection. We follow the framework from Devijver (2017b,
Section 3) to select the refitted model rather than selecting the regularization parameter. Instead
of using the asymptotic criteria, we use the slope heuristic, which is a data-driven non-asymptotic
criterion for selecting the best model among a collection of models.

5. Generalized EM algorithm for the Lasso +l2 estimator

More often, it is difficult to obtain MLE estimators directly from the likelihood, especially of
SGaBloME models. However, in the EM framework, to alleviate this, the data are augmented by
imputing, for each incomplete observed data vector (xn,yn), a latent but unobserved variable that
indicates the allocation of the observed data in the context of the mixture model. More formally,
for each n ∈ [N ], let Zn = (Znk)k∈[K] be indicator binary-valued variables such that Znk = 1 if
(xn,yn) is generated from the k-th expert component, and Znk = 0 otherwise. Therefore, given
xn, Zn are IID variables followed by a multinomial distribution

Zn|xn ∼ Mult
(

1, (gk (xn,ω))k∈[K]

)
. (15)

We use the generalized EM, or GEM, algorithm to address the problem of an intractable maxi-
mization step in original EM algorithm. Specifically, in our work, this iterative algorithm primarily
consists of an expectation step (E-step), which computes the conditional expectation of the penalized
complete-data log-likelihood (PCDLL) given the observed data, and a maximization step (M-step),
which updates the parameters based on their changes in such a way as to increase their values, in-
stead of aiming to maximize the conditional expectation in E-step as in the original method. After
starting with initial values for parameters, it alternates between the E and M-steps until conver-
gence, e.g., when there is no longer significant change in the relative variation of the regularized
log-likelihood. Specifically, the EM algorithm for solving (14) first requires the construction of the
PCDLL based on the penalty function penλ(ψ) in (13) as follows:

PLc (ψ,Z) = Lc (ψ,Z)− penλ(ψ), (16)

where Lc (ψ,Z) the standard complete-data log-likelihood (CDLL), which is described as

Lc (ψ,Z) =
N∑
n=1

K∑
k=1

Znk ln [gk (xn;ω)φ (yn; vk(xn; Υk),Σk)] . (17)

5.1. E-step

The E-step computes the conditional expectation of the PCDLL (16), given the observed data
(xn,yn)n∈[N ] under the parameter vector ψ(t) at t-th iteration of the algorithm as follows

Open

(
ψ;ψ(t)

)
= E

[
Lc (ψ,Z) | (x1,y1) , . . . , (xN ,yN ) ,ψ(t)

]
− penλ(ψ)

=
N∑
n=1

K∑
k=1

E
[
Znk|xn,yn,ψ(t)

]
ln [gk (xn;ω)φ (yn; vk(xn; Υk),Σk)]− penλ(ψ).

11
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For convenience, we denote τ (t)
nk = E

[
Znk|xn,yn,ψ(t)

]
and compute it as

τ
(t)
nk =

gk
(
xn;ω(t)

)
φ
(
yn; vk(xn; Υ

(t)
k ),Σ

(t)
k

)
∑K

l=1 gl
(
xn;ω(t)

)
φ
(
yn; vl(xn; Υ

(t)
l ),Σ

(t)
l

) , for n ∈ [N ], k ∈ [K].

More importantly, it recognizes that τ (t)
nk is the posterior probability that the data point (xn,yn)

belongs to the kth expert. This step therefore only requires the computation of the conditional
component probabilities τ (t)

nk for n ∈ [N ] for each of the K experts.

5.2. Generalized M-step

The generalized M-step aims to update the parameters via improving the value of Open

(
ψ;ψ(t)

)
w.r.t. ψ, which can be decomposed into independent expressions for the gate and expert models:

Open

(
ψ;ψ(t)

)
= Open

(
ω;ψ(t)

)
+Open

(
Υ,Σ;ψ(t)

)
, with (18)

Open

(
ω;ψ(t)

)
=

N∑
n=1

K∑
k=1

τ
(t)
nk ln [gk (xn;ω)]−

K−1∑
k=1

DW∑
d=1

λ
[1]
kd ‖ωkd‖1 −

λ[3]

2

K−1∑
k=1

DW∑
d=1

‖ωkd‖22 ,

Open

(
Υ,Σ;ψ(t)

)
=

N∑
n=1

K∑
k=1

τ
(t)
nk ln [φ (yn; vk(xn; Υk),Σk)]−

K∑
k=1

DV∑
d=1

λ
[2]
kd ‖QkΥkd‖1 .

where Q>k Qk = Σ−1
k for k ∈ [K]. In this way, to maximize Open

(
ψ;ψ(t)

)
with respect to model

parametersψ in (18), the M-step can be performed independently for gate and expert parameters, as
in (Moerland, 1997; Peralta and Soto, 2014). Moreover, in our problem, each of these optimizations
has an additional term given by the respective regularization term, which is similar to a regularized
logistic regression in Lee et al. (2006).

The parameters ω are therefore updated separately by maximizing the following function

Open

(
ω;ψ(t)

)
=

N∑
n=1

K−1∑
k=1

τ
(t)
nkwk (xn;ωk)−

N∑
n=1

ln

[
1 +

K−1∑
k=1

exp (wk (xn;ωk))

]

−
K−1∑
k=1

DW∑
d=1

λ
[1]
kd ‖ωkd‖1 −

λ[3]

2

K−1∑
k=1

DW∑
d=1

‖ωkd‖22 , (19)

keeping in mind that wk (xn;ωk) is a polynomial specified by (1). For the polynomial mean Gaus-
sian experts and multiple responses, we propose several approaches for maximizing (19) such a
majorization–minimization (MM) algorithm and a coordinate ascent algorithm, see Appendix C for
more details. These approaches have some advantages since they do not use any approximate for
the penalty function, and have a separate structure that avoids matrix inversion. Finally, the update
for (Υ,Σ) from Open

(
Υ,Σ;ψ(t)

)
can be found in Appendix D.
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6. Conclusion and perspectives

We have studied the PMLEs for PSGaBloME in high-dimensional heterogeneous data. Our main
contribution is to establish a non-asymptotic risk bound in the form of an oracle inequality, provided
that lower bounds on the penalty hold. By providing some non-asymptotic theoretical foundations
for model selection techniques in this area, and proposing two Lasso–MLE–rank procedures based
on a new generalized expectation–maximization algorithm to tackle the problem of estimating a
collection of PSGaBloME models, our contributions will help to popularize PSGaBloME models
as well as slope heuristics. Finally, an important future direction for our work is to perform our pro-
cedures as an open-source package and implement them so that we can evaluate their performance
on synthetic and real data sets. Furthermore, it is interesting to extend the current oracle inequal-
ity, Theorem 1, to more general frameworks where Gaussian experts are replaced by the elliptic
distributions.
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Appendix A. Proof of Theorem 1

Sketch of the proof It is worth noting that because of the work on random subcollection, we
need to use a model selection theorem for MLE under a random subcollection (cf., Devijver (2015a,
Theorem 5.1) or Devijver and Gallopin (2018, Theorem 7.3)). This is the extension of Cohen and
Le Pennec (2011, Theorem 2), which dealt with conditional density estimation but not random
subcollection, and Massart (2007, Theorem 7.11), which only works for density estimation. We
then explain how we use Theorem 3 to obtain the oracle inequality, Theorem 1, in Appendix A.2.
To do this, our model collection must satisfy some regularity assumptions, which are proved in
Appendix B. The main difficulties in proving our oracle inequality lie in bounding the bracketing
entropy of the weights and means restricted to relevant variables, as well as in rank sparse models,
and in particular with block-diagonal covariance matrices for the SGaBloME model. To overcome
the first problem, we extend and adapt the strategies of Montuelle and Le Pennec (2014); Devijver
(2017a). For the second, we extend the recent novel result on block-diagonal covariance matrices in
Devijver and Gallopin (2018) for Gaussian mixture models from Genovese and Wasserman (2000);
Maugis and Michel (2011b).

A.1. Model selection theorem for MLE among a random subcollection

Before stating the general theorem, we need to make some necessary assumptions. We are working
in a more general context here, with (X,Y) ∈ X × Y , and (Sm)m∈M defining a model collection
indexed byM.

First, we impose a structural assumption on each model indexed by m ∈M regarding the brack-
eting entropy, defined by (21), conditioned on the model Sm w.r.t. a tensorized squared Hellinger
(TSH) distance d2⊗n. In fact, this is an extension of the squared Hellinger distance d2⊗n, as follows:

d2⊗n(s, t) = EX[N ]

[
1

N

N∑
n=1

d2 (s (· | Xn) , t (· | Xn))

]
. (20)

Recall that the bracketing entropy of a set S with respect to an arbitrary distance d, denoted by
H[·],d((δ, S)), is defined as the logarithm of the minimal number N[·],d (δ, S) of brackets [t−, t+]
covering S, such that d(t−, t+) ≤ δ. That is,

N[·],d (δ, S) := min

{
n ∈ N? : ∃t−1 , t

+
1 , . . . , t

−
n , t

+
n s.t d(t−k , t

+
k ) ≤ δ, S ⊂

n⋃
k=1

[
t−k , t

+
k

]}
, (21)

where the bracket s ∈
[
t−k , t

+
k

]
is defined by t−k (x,y) ≤ s(x,y) ≤ t+k (x,y), ∀(x,y) ∈ X × Y .

This leads to the following Assumption A.1 (H).

Assumption A.1 (H) For every model Sm in the collection S, there is a non-decreasing function
φm such that δ 7→ 1

δφm(δ) is non-increasing on (0,∞) and for every σ ∈ R+,∫ σ

0

√
H[.],d⊗n (δ,Sm (s̃, σ))dδ ≤ φm(σ),

where Sm (s̃, σ) = {Sm ∈ Sm : d⊗n (s̃,Sm) ≤ σ}. The model complexity Dm of Sm is then de-
fined as Nσ2

m, where σm is the unique root of 1
σφm(σ) =

√
Nσ.
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This bracketing entropy integral, often call Dudley integral, plays an important role in empirical
processes theory (cf., Van Der Vaart and Wellner, 1996; Van de Geer, 2000; Kosorok, 2007). Ob-
serve that the model complexity does not depend on the bracketing entropies of the global models
Sm, but rather on those of smaller localized sets Sm (s̃, σ).

For technical reasons, a seperability assumption, always satisfied in the setting of this paper,
is also required. Assumption A.2 (Sep) is a mild condition, which is classical in empirical process
theory (Van Der Vaart and Wellner, 1996; Van de Geer, 2000) and allows us to work with a countable
subset.

Assumption A.2 (Sep) For every model Sm, there exists some countable subset S′m of Sm and
a set Y ′m with ι (Y \ Y ′m) = 0, where ι denotes Lebesgue measure, such that for every t ∈ Sm,
there exists some sequence (tk)k∈N? of elements of S′m, such that for every x ∈ X and every

y ∈ Y ′m, ln (tk (y|x))
k→+∞−−−−→ ln (t (y|x)).

To control the complexity of our collection, we also need an information-theoretic assumption. We
assume the existence of a Kraft-type inequality for the collection (Massart, 2007; Barron et al.,
2008).

Assumption A.3 (K) There is a family (ξm)m∈M of non-negative numbers and a real number Ξ
such that ∑

m∈M
e−ξm ≤ Ξ < +∞.

We can now state the main result of (Devijver, 2015a, Theorem 5.1) for the model selection
theorem for MLE under a random subcollection.

Theorem 3 Let (Xn,Yn)n∈[N ] be the observations coming from an unknown conditional density
s0. Let the model collection S = (Sm)m∈M be an at most countable collection of conditional
density sets. Assume that Assumption A.1 (H), Assumption A.2 (Sep), and Assumption A.3 (K) hold
for every m ∈M. Let εKL > 0, and s̄m ∈ Sm, such that

KL⊗n (s0, s̄m) ≤ inf
t∈Sm

KL⊗n (s0, t) +
εKL
N

;

and let τ > 0, such that

s̄m ≥ e−τs0. (22)

Next, we introduce (Sm)
m∈M̃ a random subcollection of (Sm)m∈M and consider the collection

(ŝm)
m∈M̃ of η-LLMs defined in (9). Then, for any ρ ∈ (0, 1), and any C1 > 1, there are two

constants κ0 and C2 depending only on ρ and C1, such that, for every index m ∈M,

pen(m) ≥ κ [Dm + (1 ∨ τ)ξm] , κ > κ0,

where the model complexity Dm is defined in Assumption A.1, the η′-PMLE ŝm̂, defined in (10) on
the subset M̃ instead ofM, satisfies

EX[N ],Y[N ]

[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1EX[N ],Y[N ]

[
inf

m∈M̃

(
inf
t∈Sm

KL⊗n (s0, t) + 2
pen(m)

N

)]

+ C2(1 ∨ τ)
Ξ2

N
+
η′ + η

N
.
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In the next section, we show how Theorem 3 can be utilized to prove Theorem 1. In particular,
the penalty can be chosen roughly proportional to the intrinsic dimension of the model, and thus of
the order of the variance.

A.2. Detail of proof of Theorem 1

It should be stressed that all we need is to verify that Assumption A.3 (K), Assumption A.2 (Sep)
and Assumption A.1 (H) hold for every m ∈ M. According to the result from Devijver (2015a,
Section 5.3), Assumption A.2 (Sep) holds when we consider Gaussian densities and the assumption
defined by (22) is true if we assume further that the true conditional density s0 is bounded and
compactly supported. Furthermore, since we restricted to finite collection of models, it is true that
there exists a family (ξm)m∈M and Ξ > 0 such that Assumption A.3 (K) is satisfied. Therefore,
the remaining most difficult step of the proof of concept for Assumption A.1 (H) is presented in
Appendix A.2. All technical results are postponed to Appendix B.

Note that the definition of model complexity in Proposition Assumption A.1 (H) is related to a
classical entropy dimension of a compact set w.r.t. a Hellinger type divergence d⊗n, thanks to the
following Proposition 4, which is established in (Cohen and Le Pennec, 2011, Proposition 2).

Proposition 4 If we have

H[.],d⊗n (δ,Sm) ≤ dim(Sm)

(
Cm + ln

(
1

δ

))
, for any δ ∈ (0,

√
2], then the function

φm (δ) = δ
√

dim (Sm)

(√
Cm +

√
π +

√
ln

(
1

min (δ, 1)

))

satisfies Assumption A.1 (H). Furthermore, the unique solution δm of 1
δφm (δ) =

√
Nδ satisfies

Nδ2
m ≤ dim(Sm)

(
2
(√

Cm +
√
π
)2

+

(
ln

N(√
Cm +

√
π
)2

dim (Sm)

)
+

)
.

Then, we claim that Proposition 4 implies Assumption A.1 (H) because of the fact that

H[.],d⊗n (δ,Sm) ≤ dim(Sm)

(
Cm + ln

(
1

δ

))
, (23)

where Cm is a constant depending on the model.
Next, recall that the definition from (4) is defined as follows:

Sm =
{
sψm

≡ sψK
∈ S : ψm = (ω0,ω,υ0,Υ,Σ(B)) ∈ Ψm,

Ψm = RK ×WK×DW
J × RK×Q ×VK×DV

J,R ×ΩK
B

}
. (24)

Here, m = (K,DW , DV ,B, J,R). WJ is the set of vectors restricted to the set of indices of
relevant input variables Jin, VJ,R the set of matrices with relevant columns indexed by Jin and
ranks R, and ΩB the set of positive definite block-diagonal matrices depending on partitions B.

If P and Q are not too large, we do not need to select relevant variables and/or use rank sparse
models. We can then work on the structures for means and weights as in LinBoSGaME Montuelle
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and Le Pennec (2014). However, to deal with high-dimensional data and to simplify the interpreta-
tion of sparsity, we propose to use monomials for weights and polynomial regression models for the
soft-max gating functions and the means of Gaussian experts. It is worth mentioning that here we
provide a more general result compared to the model defined as in (4). More precisely, we replace
the polynomial constructions for the weighting functions with monomials that allow interactions
between covariates as follows:

WK,DW
= {0} ⊗WK−1, W =

{
X 3 x 7→

∑
α∈A

ωαxα ∈ R : max
α∈A
|ωα| ≤ Cω

}
. (25)

Here, note that the multi-index α = (αp)p∈[P ] , αp ∈ N?
⋃
{0} ≡ N, ∀p ∈ [P ], is an P -tuple of

nonnegative integers that satisfies xα =
∏P
p=1 x

αp
p and |α| =

∑P
p=1 αp. Then, for all l ∈ [DW ], we

define A =
⋃DW
l=0 A|l|, A|l| =

{
α = (αp)p∈[P ] ∈ NP , |α| = l

}
. The number α is called the order

or degree of monomials xα. By using the well-known stars and bars methods, e.g., Feller (1957,
Chapter 2), the cardinality of the setA, denoted by card (A), equals

(
DW +P
P

)
. Note that, for all d ∈

[DΥ], we define xd as
(
xdp
)
p∈[P ]

for the means, which are often used for polynomial regression mod-

els. Here,AJ is the set of multi-index (vector) in RP restricted to the set of indices of relevant input
variables Jin, that is, AJ =

{
α = (αt)t∈[p] ∈ A : αj > 0, j ∈ Jin

}
. Furthermore, given a regres-

sor x, for all l ∈ [DW ], p ∈ [P ], we define ω(p,l)
k =

{
ωkα ∈ R : α = (αp)p∈[P ] ∈ A|l|, αp > 0

}
.

We then generalize the definition of relevant variables for monomials as follows. We call a cou-
ple (Xp, Yq) irrelevant if the elements (Υkd)q,p = 0 and ω(p,l)

k = 0 for all k ∈ [K], d ∈ [DV ],
l ∈ [DW ].

We also require some additional definitions of the following sets:

P(K,DW ,J) =
{
X 3 x 7→ (gk (w(x)))k∈[K] : gk (w(x)) =

exp (wk(x))∑K
l=1 exp (wl(x))

,

w = (wk)k∈[K] ∈WK,DW ,J

}
,

W(K,DW ,J) = {0} ⊗WK−1
J , V(K,DV ,J,R) = RK×Q ×VK×DV

J,R ,

WJ =

X 3 x 7→ w (x) =

DW∑
|α|=0

ωαxα : α ∈ AJ ,max
α∈A
|ωα| ≤ Cω

 ,

G(K,DV ,B,J,R) =
{
X × Y 3 (x,y) 7→ (φ (y; vk(x),Σk (Bk)))k∈[K] :

v ∈ V(K,DV ,J,R),Σ(B) ∈ ΩK
B

}
.

We define the following distance over conditional densities:

sup
x
dy(s, t) = sup

x∈X
dy(s, t), where dy(s, t) =

(∫
Y

(√
s(y | x)−

√
t(y | x)

)2
dy

)1/2

.

This leads straightforwardly to d2⊗n(s, t) ≤ supx dy(s, t). Then, we also define

sup
x
dk
(
g,g′

)
= sup

x∈X

(
K∑
k=1

(√
gk(x)−

√
g′k(x)

)2
)1/2

,
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for any gating functions g = (gk)k∈[K] and g′ = (g′k)k∈[K]. To this end, given any densities s and t
over X , the following distance, depending on y, is constructed as follows:

sup
y

max
k

dx(s, t) = sup
y∈Y

max
k∈[K]

dx (sk(·,y), tk(·,y))

= sup
y∈Y

max
k∈[K]

(∫
X

(√
sk(x,y)−

√
tk(x,y)

)2
dx

)1/2

.

Moreover, given any g+,g− ∈ P(K,DW ,J) and φ+, φ− ∈ G(K,DV ,B,J,R), let us define

d2
P(K,DW ,J)

(
g+,g−

)
= EX[N ]

[
1

N

N∑
n=1

d2
k

(
g+ (Xn) ,g−(Xn)

)]
,

d2
G(K,DV ,B,J,R)

(
φ+, φ−

)
= EX[N ]

[
1

N

N∑
n=1

K∑
k=1

d2
y

(
φ+
k (·|Xn) , φ−k (·|Xn)

)]
.

Next (23) can be obtained by first decomposing the entropy term between the softmax gating
functions and the Gaussian experts via Lemma 5, which is immediately obtained from Montuelle
and Le Pennec (2014, Lemma 6), an extension of the results in Genovese and Wasserman (2000,
Theorem 2), Ghosal and van der Vaart (2001), Cohen and Le Pennec (2011, Lemma 7) and Cohen
and Le Pennec (2013).

Lemma 5 For all δ ∈ (0,
√

2], it holds that

H[·],d⊗n (δ,Sm) ≤ H[·],dP(K,DW ,J)

(
δ

2
,P(K,DW ,J)

)
+H[·],dG(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
.

Then, we define the metric entropy of the set W(K,DW ,J): Hd‖sup‖∞
(δ,W(K,DW ,J)), which

measures the logarithm of the minimum number of spheres with radius at most δ, corresponding to
the distance d‖sup‖∞ needed to cover W(K,DW ,J), where

d‖sup‖∞

(
(sk)k∈[K] , (tk)k∈[K]

)
= max

k∈[K]
sup
x∈X
‖sk(x)− tk(x)‖2 , (26)

for arbitraryK-tuples of the functions (sk)k∈[K] and (tk)k∈[K]. Here sk, tk : X 3 x 7→ sk(x), tk(x) ∈
RP ,∀k ∈ [K], and given x ∈ X , k ∈ [K], ‖sk(x)− tk(x)‖2 is the Euclidean distance in RP .

Based on this metric, one can first relate the bracketing entropy ofP(K,DW ,J) toHd‖sup‖∞
(δ,W(K,DW ,J)),

and then obtain the upper bound for its entropy via Lemma 6, which is proved in Appendix B.1.

Lemma 6 For all δ ∈ (0,
√

2],

H[·],dP(K,DW ,J)

(
δ

2
,P(K,DW ,J)

)
≤ Hd‖sup‖∞

(
3
√

3δ

8
√
K − 1

,W(K,DW ,J)

)

≤ dim
(
W(K,DW ,J)

)(
CW(K,DW ,J)

+ ln

(
8
√
K − 1

3
√

3δ

))
,

(27)

where dim
(
W(K,DW ,J)

)
= (K − 1) card (AJ), card (AJ) =

(DW +card(Jin)
card(Jin)

)
and CW(K,DW ,J)

=

ln
(√

2 + CωDW

3
√

3

)
.
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Lemma 7 allows us to construct the Gaussian brackets to handle with the entropy metric for
Gaussian experts, which is established in Appendix B.2.

Lemma 7 For all δ ∈ (0,
√

2],

H[·],dG(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
≤ dim

(
G(K,DV ,B,J,R)

)(
CG(K,DV ,B,J,R)

+ ln

(
1

δ

))
.

(28)

Finally, (23) is proved via Lemmas 5,6, and 7. Indeed, with the fact that dim(Sm) = dim
(
W(K,DW ,J)

)
+

dim
(
G(K,DV ,B,J,R)

)
, it follows that

H[·],d⊗n (δ,Sm) ≤ H[·],dP(K,DW ,J)

(
δ

2
,P(K,DW ,J)

)
+H[·],dG(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
≤ dim

(
W(K,DW ,J)

)(
CW(K,DW ,J)

+ ln

(
8
√
K − 1

3
√

3δ

))
+ dim

(
G(K,DV ,B,J,R)

)(
CG(K,DV ,B,J,R)

+ ln

(
1

δ

))
=: dim(Sm)

(
Cm + ln

(
1

δ

))
, where

Cm =
dim

(
W(K,DW ,J)

)
dim(Sm)

(
CW(K,DW ,J)

+ ln

(
8
√
K − 1

3
√

3

))
+

dim
(
G(K,DV ,B,J,R)

)
CG(K,DV ,B,J,R)

dim (Sm)

≤ CW(K,DW ,J)
+ ln

(
8
√
Kmax − 1

3
√

3

)
+ CG(K,DV ,B,J,R)

:= C.

It is interesting that the constant C does not depend on the dimension of the model m thanks
to the hypothesis that CW(K,DW ,J)

is common for every model m in the collection. Therefore,

Proposition 4 implies that, given C = 2
(√

C +
√
π
)2

, the model complexity Dm satisfies

Dm ≡ Nδ2
m ≤ dim(Sm)

2
(√

C +
√
π
)2

+

ln
N(√

C +
√
π
)2

dim (Sm)


+


≤ dim(Sm) (C + lnN) .

To this end, Theorem 3 implies that to a collection of PSGaBloME models S = (Sm)m∈M with
the penalty functions satisfies pen(m) ≥ κ [dim(Sm) (C + lnN) + (1 ∨ τ)ξm] with κ > κ0 the
oracle inequality of Theorem 1 holds.

Appendix B. Lemma proofs

B.1. Proof of Lemma 6

Following the same argument from the proof of (Montuelle and Le Pennec, 2014, Lemma 4), it
holds that

H[·],dP(K,DW ,J)

(
δ

2
,P(K,DW ,J)

)
≤ Hd‖sup‖∞

(
3
√

3δ

8
√
K − 1

,W(K,DW ,J)

)
.
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Next, we need to find an upper bound of Hd‖sup‖∞

(
3
√

3δ
8
√
K−1

,W(K,DW ,J)

)
. Note that for all w,v ∈

W(K,DW ,J), we obtain the following important inequality

d‖sup‖∞ (w,v) = max
k∈[K−1]

sup
x∈X

∣∣∣∣∣∣
DW∑
|α|=0

ωw
k,αxα −

DW∑
|α|=0

ωv
k,αxα

∣∣∣∣∣∣
≤ max

k∈[K−1]

DW∑
|α|=0

∣∣ωw
k,α − ωv

k,α

∣∣ sup
x∈X

xα ≤ card (AJ) max
k∈[K−1],α∈AJ

∣∣ωw
k,α − ωv

k,αxα
∣∣ .

Therefore, given the fact that card (AJ) =
(DW +card(Jin)

card(Jin)

)
, for all δ ∈ (0,

√
2], it holds that

H[·],dP(K,DW ,J)

(
δ

2
,P(K,DW ,J)

)
≤ Hd‖sup‖∞

(
3
√

3δ

8
√
K − 1

,W(K,DW ,J)

)

≤ H‖·‖∞

(
3
√

3δ

8
√
K − 1 card (AJ)

,
{
ω ∈ R(K−1) card(AJ ) : ‖ω‖∞ ≤ Cω

})

≤ (K − 1) card (AJ) ln

(
1 +

8
√
K − 1Cω card (AJ)

3
√

3δ

)
= (K − 1) card (AJ)

[
ln

(√
2 +

Cω card (AJ)

3
√

3

)
+ ln

(
8
√
K − 1

3
√

3δ

)]
= dim

(
W(K,DW ,J)

)(
CW(K,DW ,J)

+ ln

(
8
√
K − 1

3
√

3δ

))
.

B.2. Proof of Lemma 7

It is worth noting that without restriction on relevant variables, rank sparse models on the means
and structures on covariance matrices of Gaussian experts from the collectionM, the upper bound
of the bracketing entropy of Gaussian experts from Lemma 7 is directly implied from Proposition
2 and arguments from Appendix B.2.3 of Montuelle and Le Pennec (2014). However, in order to
overcome the much more challenging problems with random subcollection based on relevant vari-
ables, rank sparse models on the means and block-diagonal covariance matrices, we have to reply
on a much more constructive bracketing entropy in the spirits of works developed in Maugis and
Michel (2011b); Montuelle and Le Pennec (2014); Devijver (2015a, 2017a); Devijver and Gallopin
(2018).

Given any k ∈ [K], we first define the following set and its corresponding distance:

G(K,DV ,B,J,R) =
{
X × Y 3 (x,y) 7→ φ

(
y; v(DV ,J,Rk)(x),Σk (Bk)

)
:

v(DV ,J,Rk) ∈ V(DV ,J,Rk),Σk (Bk) ∈ ΩBk

}
, (29)

d2
G(K,DV ,B,J,R)

(
φ+
k , φ

−
k

)
= EX[N ]

[
1

N

N∑
n=1

d2
(
φ+
k (·|Xn) , φ−k (·|Xn)

)]
.

We need to specific block-diagonal structures for Σk (Bk). To be more precise, for k ∈ [K], we
decompose Σk (Bk) into Gk blocks, Gk ∈ N?, and we denote by d[g]

k the set of variables into the
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gth group, for g ∈ [Gk], and by card
(
d

[g]
k

)
the number of variables in the corresponding set. Then,

we define Bk =
(
d

[g]
k

)
g∈[Gk]

to be a block structure for the cluster k, and B = (Bk)k∈[K] to be

the output indexes into each group for each cluster. In this way, to construct the block-diagonal
covariance matrices, up to a permutation, we make the following definition: ΩK

B = (ΩBk
)k∈[K],

for every k ∈ [K], for every k ∈ [K],

ΩK
B =


Σk (Bk) ∈ S++

Q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Σk (Bk) = Pk


Σ

[1]
k 0 . . . 0

0 Σ
[2]
k . . . 0

0 0
. . . 0

0 0 . . . Σ
[Gk]
k

P−1
k ,

Σ
[g]
k ∈ S

++

card
(
d
[g]
k

),∀g ∈ [Gk]


. (30)

Here, Pk corresponds to the permutation leading to a block-diagonal matrix in cluster k. It is worth
pointing out that outside the blocks, all coefficients of the matrix are zeros and we also authorize
reordering of the blocks: e.g., {(1, 3) ; (2, 4)} is identical to {(2, 4) ; (1, 3)}, and the permutation
inside blocks: e.g., the partition of 4 variables into blocks {(1, 3) ; (2, 4)} is the same as the partition
{(3, 1) ; (4, 2)}.

Then, it follows that G(K,DV ,B,J,R) =
∏K
k=1 G(DV ,Bk,J,Rk), where

∏
stands for the Cartesian

product, and Lemma 8, established in B.2.1.

Lemma 8 Given G(K,DV ,B,J,R) =
∏K
k=1 G(DV ,Bk,J,Rk), it holds that

H[·],dG(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
≤

K∑
k=1

H[·],dG(K,DV ,B,J,R)

(
δ

2
√
K
,G(K,DV ,B,J,R)

)
.

Next, we claim that Lemma 7 is implied immediately via Lemma 8 and the following important
Lemma 9, which is proved in B.2.2.

Lemma 9 For all δ ∈ (0,
√

2] and k ∈ [K], there exists a constant CG(K,DV ,B,J,R)
such that

H[·],dG(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
≤ dim

(
G(K,DV ,B,J,R)

)(
CG(K,DV ,B,J,R)

+ ln

(
1

δ

))
.

(31)

To this end, by combining the previous two Lemmas 8 and 9, we have

H[·],dG(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
≤

K∑
k=1

dim
(
G(K,DV ,B,J,R)

)(
CG(K,DV ,B,J,R)

+ ln
(√

K
)

+ ln

(
1

δ

))
= dim

(
G(K,DV ,B,J,R)

)(
CG(K,DV ,B,J,R)

+ ln

(
1

δ

))
.
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Here,

dim
(
G(K,DV ,B,J,R)

)
=

K∑
k=1

dim
(
G(K,DV ,B,J,R)

)
,

dim
(
G(K,DV ,B,J,R)

)
= dim

(
V(DV ,J,Rk)

)
+DBk

,

CG(K,DV ,B,J,R)
=

K∑
k=1

CG(K,DV ,B,J,R)
+ ln

(√
K
)
,

DBk
= dim (ΩBk

) =

Gk∑
g=1

card
(
b
(g)
k

)(
card

(
b
(g)
k

)
+ 1
)

2
.

B.2.1. PROOF OF LEMMA 8

It is sufficient to verify that

N[·],dG(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
≤

K∏
k=1

N[·],dG(K,DV ,B,J,R)

(
δ

2
√
K
,G(K,DV ,B,J,R)

)
.

By (21), for each k ∈ [K], let
{[
φl,−k , φl,+k

]}
1≤l≤NG(K,DV ,B,J,R)

be a minimal covering of δk-

bracket for dG(K,DV ,B,J,R)
of G(K,DV ,B,J,R) with cardinalityN[·],dG(K,DV ,B,J,R)

(
δk,G(K,DV ,B,J,R)

)
=:

NG(K,DV ,B,J,R)
. By definition, we have

∀l ∈
[
NG(K,DV ,B,J,R)

]
, dG(K,DV ,B,J,R)

(
φl,−k , φl,+k

)
≤ δk.

This leads to the set
{∏K

k=1

[
φl,−k , φl,+k

]}
1≤l≤NG(K,DV ,B,J,R)

is a covering of δ/2-bracket for dG(K,DV ,B,J,R)

of G(K,DV ,B,J,R) with cardinality
∏K
k=1NG(K,DV ,B,J,R)

. Indeed, let any φ = (φk)k∈[K] ∈ G(K,DV ,B,J,R).

Consequently, for each k ∈ [K], φk ∈ G(K,DV ,B,J,R), and there exists l(k) ∈
[
NG(K,DV ,B,J,R)

]
,

such that

φ
l(k),−
k ≤ φk ≤ φ

l(k),+
k , d2

G(K,DV ,B,J,R)

(
φ
l(k),+
k , φ

l(k),−
k

)
≤ (δk)

2 .

Then, it follows that φ ∈ [φ−, φ+] ∈
{∏K

k=1

[
φl,−k , φl,+k

]}
1≤l≤NG(K,DV ,B,J,R)

, with φ− =
(
φ
l(k),−
k

)
k∈[K]

,

φ+ =
(
φ
l(k),+
k

)
k∈[K]

, which leads to
{∏K

k=1

[
φl,−k , φl,+k

]}
1≤l≤NG(K,DV ,B,J,R)

is a bracket covering

of G(K,DV ,B,J,R).
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Now, we want to verify that the size of this bracket is δ/2 via choosing δk = δ
2
√
K
, ∀k ∈ [K]. It

holds that

d2
G(K,DV ,B,J,R)

(
φ−, φ+

)
= EX[N ]

[
1

N

N∑
n=1

K∑
k=1

d2
(
φ
l(k),−
k (·|Xn) , φ

l(k),+
k (·|Xn)

)]

=

K∑
k=1

EX[N ]

[
1

N

N∑
n=1

d2
(
φ
l(k),−
k (·|Xn) , φ

l(k),+
k (·|Xn)

)]

=
K∑
k=1

d2
G(K,DV ,B,J,R)

(
φ
l(k),−
k , φ

l(k),+
k

)
≤ K

(
δ

2
√
K

)2

=

(
δ

2

)2

.

Finally, Lemma 8 is followed by the definition of a minimal δ/2-bracket covering number for
G(K,DV ,B,J,R).

B.2.2. PROOF OF LEMMA 9

We need to bound the bracketing entropy in (31). To do this, we need to construct an extension to
the multidimensional Gaussian mixture of Genovese and Wasserman (2000), defining a net over the
parameter space of Gaussian experts. Next, we aim to construct a bracket covering of G(K,DV ,B,J,R)

according to the tensorized Hellinger distance, dG(K,DV ,B,J,R)
based on Gaussian dilatations.

Step 1: Construction of a net for the block-diagonal covariance matrices. Firstly, for a given
matrix Σk(Bk) ∈ ΩBk

, k ∈ [K], we denote by Adj (Σk(Bk)) the adjacency matrix associated
to the covariance matrix Σk(Bk). Note that this matrix of size Q2 can be defined by a vector of
concatenated upper triangular vectors. We are going to make use of the result from Devijver and
Gallopin (2018) to handle the block-diagonal covariance matrices Σk (Bk), via its corresponding
adjacency matrix. To do this, we need to construct a discrete space for {0, 1}Q(Q−1)/2, which is a
one-to-one correspondence (bijection) with

ABk
= {ABk

∈ SQ ({0, 1}) : ∃Σk (Bk) ∈ ΩBk
s.t Adj (Σk (Bk)) = ABk

} ,

where SQ ({0, 1}) is the set of symmetric matrices of size Q taking values on {0, 1}.
Then, we want to deduce a discretization of the set of covariance matrices. Let h denotes

Hamming distance on {0, 1}Q(Q−1)/2 defined by

d(z, z′) =
N∑
n=1

I
{
z 6= z′

}
, for all z, z′ ∈ {0, 1}Q(Q−1)/2 .

Let {0, 1}Q(Q−1)/2
Bk

be the subset of {0, 1}Q(Q−1)/2 of vectors for which the corresponding graph

has structure Bk =
(
b
(g)
k

)
g∈[Gk]

. Then, given any ε > 0, Corollary 1 and Proposition 2 from

Supplementary Material A of Devijver and Gallopin (2018) lead to that there exists some subset R
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of {0, 1}Q(Q−1)/2, as well as its equivalent Adisc
Bk

for adjacency matrices satisfy

∥∥∥Σk (Bk)− Σ̃k (Bk)
∥∥∥2

2
≤ DBk

2
∧ ε2, ∀

(
Σk (Bk) , Σ̃k (Bk)

)
∈
(
S̃disc
Bk

(ε)
)2

s.t. Σk (Bk) 6= Σ̃k (Bk) ,

card
(
S̃disc
Bk

(ε)
)
≤

(⌊
2CΣ

ε

⌋
Q (Q− 1)

2DBk

)DBk

, (32)

DBk
= dim (ΩBk

) =

Gk∑
g=1

card
(
b
(g)
k

)(
card

(
b
(g)
k

)
− 1
)

2
, where (33)

S̃disc
Bk

(ε) =

{
Σk (Bk) ∈ S++

Q (R) : Adj (Σk (Bk)) ∈ Adisc
Bk

,

(Σk (Bk))i,j = σi,jε, σi,j ∈
[
−CΣ

ε
,
CΣ

ε

]⋂
Z

}
.

Therefore, by choosing ε2 ≤ DBk
2 , given Σk (Bk) ∈ ΩBk

, there exists Σ̃k (Bk) ∈ S̃disc
Bk

(ε), such
that ∥∥∥Σk (Bk)− Σ̃k (Bk)

∥∥∥2

2
≤ ε2. (34)

Based on Σ̃k (Bk), we can construct the following bracket covering of G(K,DV ,B,J,R) via defin-
ing suitable nets for the means of Gaussian experts. More precisely, given any δV(DV ,J,Rk)

> 0, we
claim that the set[l, u]

∣∣∣∣∣∣∣∣∣
l(x,y) = (1 + 2α)−DV φ

(
y; ṽ(DV ,J,Rk)(x), (1 + α)−1 Σ̃k (Bk)

)
,

u(x,y) = (1 + 2α)DV φ
(
y; ṽ(DV ,J,Rk)(x), (1 + α) Σ̃k (Bk)

)
,

ṽ(DV ,J,Rk) ∈ GV(DV ,J,Rk)

(
δV(DV ,J,Rk)

)
, Σ̃k (Bk) ∈ S̃disc

Bk
(ε)

 ,

is an δV(DV ,J,Rk)
-brackets set over G(K,DV ,B,J,R) where the constant α > 0 and function X 3

x 7→ ṽ(DV ,J,Rk) (x) and its corresponding spaceGV(DV ,J,Rk)

(
δV(DV ,J,Rk)

)
will be specified later.

Indeed, we consider any function X × Y 3 (x,y) 7→ f(x,y) = φ
(
y; v(DV ,J,Rk)(x),Σk (Bk)

)
that belongs to G(K,DV ,B,J,R), where v(DV ,J,Rk) ∈ V(DV ,J,Rk) and Σk (Bk) ∈ ΩBk

. According to
(34), there exists Σ̃k (Bk) ∈ S̃disc

Bk
(ε) such that

∥∥∥Σk (Bk)− Σ̃k (Bk)
∥∥∥2

2
≤ ε2.

Step 2: Construction of a net for the mean functions. We claim that given any δV(DV ,J,Rk)
> 0,

any v(DV ,J,Rk) ∈ V(DV ,J,Rk), there exist a minimal covering of δk-bracketGV(DV ,J,Rk)

(
δV(DV ,J,Rk)

)
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and a function ṽ(DV ,J,Rk) ∈ GV(DV ,J,Rk)

(
δV(DV ,J,Rk)

)
such that

sup
x∈X

∥∥ṽ(DV ,J,Rk)(x)− v(DV ,J,Rk)(x)
∥∥2

2
≤ δ2

V(DV ,J,Rk)
, (35)

card
(
GV(DV ,J,Rk)

(
δV(DV ,J,Rk)

))
≤

exp
(
CV(DV ,J,Rk)

)
δV(DV ,J,Rk)

dim
(
V(DV ,J,Rk)

)
. (36)

To accomplish this, we use the singular value decomposition of ΥRkd
kd =

∑Rkd
r=1(σkd)r(ukd)•,r(v

>
kd)r,•,

k ∈ [K], d ∈ [DV ], with (σkd)r, r ∈ [Rkd], denote the singular values of ΥRkd
kd , with cor-

responding orthogonal unit vectors ((ukd)•,r)r∈[Rkd] and
(
(v>kd)r,•

)
r∈[Rkd]

. Then, we construct

ṽ(DV ,J,Rk)(x) = Υ̃k0 +
∑DV

d=1 Υ̃
Rkd

kd xd, where υ̃k0 and Υ̃
Rkd

kd =
∑Rkd

r=1(σ̃kd)r(ũkd)•,r(ṽ
>
kd)r,•,

k ∈ [K], d ∈ [DV ], are determined so that (35) and (36) are satisfied. Note that for each k ∈
[K], d ∈ [DV ], it holds that

∥∥ṽ(DV ,J,Rk)(x)− v(DV ,J,Rk)(x)
∥∥

2
=

∥∥∥∥∥υ̃k0 − υk0 +

DV∑
d=1

(
Υ̃
Rkd

kd −ΥRkd
kd

)
xd

∥∥∥∥∥
2

≤ ‖υ̃k0 − υk0‖2 +

DV∑
d=1

∥∥∥(Υ̃
Rkd

kd −ΥRkd
kd

)
xd
∥∥∥

2

≤
√
Q ‖υ̃k0 − υk0‖∞ + P

√
Q

DV∑
d=1

∣∣∣∣∣∣∣∣∣Υ̃Rkd

kd −ΥRkd
kd

∣∣∣∣∣∣∣∣∣
∞

∥∥∥xd∥∥∥
∞

≤
√
Q ‖υ̃k0 − υk0‖∞ + P

√
Q

DV∑
d=1

∣∣∣∣∣∣∣∣∣Υ̃Rkd

kd −ΥRkd
kd

∣∣∣∣∣∣∣∣∣
∞
,

where we used the fact that for all d ∈ [DV ], x ∈ X ,
∥∥xd∥∥∞ ≤ 1 as X = [0, 1]P . Thus, (35) is

immediately followed if we now choose υ̃k0 and Υ̃
Rkd

kd such that

√
Q ‖υk0 − υ̃k0‖∞ ≤

δV(DV ,J,Rk)

2
, (37)∣∣∣∣∣∣∣∣∣ΥRkd

kd − Υ̃
Rkd

kd

∣∣∣∣∣∣∣∣∣
∞
≤
δV(DV ,J,Rk)

2DV P
√
Q
. (38)

Let us now see how to construct υ̃k0 to get (37). This task can be accomplished if for all k ∈ [K],
q ∈ [Q], we set

B = Z ∩

[⌊
−Au,v

2
√
Q

δV(DV ,J,Rk)

⌋
,

⌊
Au,v

2
√
Q

δV(DV ,J,Rk)

⌋]
,

(υ̃k0)q = arg min
b∈B

∣∣∣∣∣(υk0)q −
δV(DV ,J,Rk)

2
√
Q

b

∣∣∣∣∣ .
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Next, let us now see how to construct Υ̃
Rkd

kd to get (38). The boundedness assumption in (6)
implies that

∣∣∣∣∣∣∣∣∣ΥRkd
kd − Υ̃

Rkd

kd

∣∣∣∣∣∣∣∣∣
∞

= max
q∈[Q],p∈[P ]

∣∣∣∣∣
Rkd∑
r=1

[
(σkd)r(ukd)q,r(v

>
kd)r,p − (σ̃kd)r(ũkd)q,r(ṽ

>
kd)r,p

]∣∣∣∣∣
= max

q∈[Q],p∈[P ]

∣∣∣∣∣
Rkd∑
r=1

[
((σkd)r − (σ̃kd)r) (ukd)q,r(v

>
kd)r,p

− (σ̃kd)r ((ũkd)q,r − (ukd)q,r) (ṽ>kd)r,p

− (σ̃kd)r(ukd)q,r

(
(v>kd)r,p − (ṽ>kd)r,p

)]∣∣∣∣∣
≤ max

r∈[Rkd]
|(σkd)r − (σ̃kd)r| max

q∈[Q],p∈[P ]

Rkd∑
r=1

∣∣∣(ukd)q,r(v>kd)r,p∣∣∣
+ max
q∈[Q],r∈[Rkd]

|(ũkd)q,r − (ukd)q,r|max
p∈[P ]

Rkd∑
r=1

∣∣∣(σ̃kd)r(ṽ>kd)r,p∣∣∣
+ max
r∈[Rkd],p∈[P ]

∣∣∣(v>kd)r,p − (ṽ>kd)r,p

∣∣∣max
q∈[Q]

Rkd∑
r=1

|(σ̃kd)r(ukd)q,r|

≤ RkdA2
u,v max

r∈[Rkd]
|(σkd)r − (σ̃kd)r|

+RkdAu,vAσ

(
max

q∈[Q],r∈[Rkd]
|(ũkd)q,r − (ukd)q,r|

+ max
r∈[Rkd],p∈[P ]

∣∣∣(v>kd)r,p − (ṽ>kd)r,p

∣∣∣) .

Therefore, (38) is immediately implied if we now choose (σ̃kd)r, (ũkd)q,r and (ṽ>kd)r,p such that

max
r∈[Rkd]

|(σkd)r − (σ̃kd)r| ≤
δV(DV ,J,Rk)

6RkdA2
u,vDV P

√
Q
,

max
q∈[Q],r∈[Rkd]

|(ũkd)q,r − (ukd)q,r| ≤
δV(DV ,J,Rk)

6RkdAu,vAσDV P
√
Q
,

max
r∈[Rkd],p∈[P ]

∣∣∣(v>kd)r,p − (ṽ>kd)r,p

∣∣∣ ≤ δV(DV ,J,Rk)

6RkdAu,vAσDV P
√
Q
.
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This task can be accomplished as follows: for all r ∈ [Rkd], p ∈ [P ], q ∈ [Q], set

S = Z ∩

[
0,

⌊
Aσ

6RkdA
2
u,vDV P

√
Q

δV(DV ,J,Rk)

⌋]
,

(σ̃kd)r = arg min
ζ∈S

∣∣∣∣∣(σkd)r − δV(DV ,J,Rk)

6RkdA2
u,vDV P

√
Q
ζ

∣∣∣∣∣ ,
U = Z ∩

[⌊
−Au,v

6RkdAu,vAσDV P
√
Q

δV(DV ,J,Rk)

⌋
,

⌊
Au,v

6RkdAu,vAσDV P
√
Q

δV(DV ,J,Rk)

⌋]
,

(ũkd)q,r = arg min
µ∈U

∣∣∣∣∣(ukd)q,r − δV(DV ,J,Rk)

6RkdAu,vAσDV P
√
Q
µ

∣∣∣∣∣ ,
(ṽ>kd)r,p = arg min

υ∈U

∣∣∣∣∣(v>kd)r,p − δV(DV ,J,Rk)

6RkdAu,vAσDV P
√
Q
υ

∣∣∣∣∣ .
Note that, according to Strang (2019, I.8), we only need to determine the vectors

(
((ũkd)q,r)q∈[Q−r]

)
r∈[Rkd]

and
(

((ṽkd)r,p)j∈[card(Jin)−r]

)
r∈[Rkd]

since the remaining elements of such vectors belong to the

the nullspace of ΥRkd
kd and ΥRkd>

kd . The number of total free parameters in the previous two vectors
are

Rkd∑
r=1

(Q− r) = Rkd

(
2Q−Rkd − 1

2

)
,

Rkd∑
r=1

(card (Jin)− r) = Rkd

(
2 card (Jin)−Rkd − 1

2

)
.

To this end, for all k ∈ [K], d ∈ [DV ], and q ∈ [Q], we let

(Υ̃
Rkd

kd )q,p =

{∑Rkd
r=1(σ̃kd)r(ũkd)q,r(ṽ

>
kd)r,p if p ∈ Jin,

0 if p ∈ [P ] \ Jin.

In particular, (36) is proved by the following entropy controlling

card
(
GV(DV ,J,Rk)

(
δV(DV ,J,Rk)

))
≤

[
4Au,v

√
Q

δV(DV ,J,Rk)

]Q DV∏
d=1

[
6RkdAσA

2
u,vDV P

√
Q

δV(DV ,J,Rk)

]Rkd
[

12RkdAσA
2
u,vDV P

√
Q

δV(DV ,J,Rk)

]Rkd(q+card(Jin)−Rkd−1)

=

exp
(
CV(DV ,J,Rk)

)
δV(DV ,J,Rk)

dim
(
V(DV ,J,Rk)

)
, where

dim
(
V(DV ,J,Rk)

)
= Q+

DV∑
d=1

Rkd (Q+ card (Jin)−Rkd) , CV(DV ,J,Rk)
=

ln
(
C(DV ,J,Rk)

)
dim

(
V(DV ,J,Rk)

) ,
and C(DV ,J,Rk) =

[
4Au,v

√
Q
]Q [

12RkdAσA
2
u,vDV P

√
Q
]∑DV

d=1Rkd(Q+card(Jin)−Rkd)
2−

∑DV
d=1Rkd .
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Step 3: Upper bound of the number of the bracketing entropy for G(K,DV ,B,J,R). Next, in
order to evaluate the ratio of two Gaussian densities, we make use of Lemma 10.

Lemma 10 (Proposition C.1 from Maugis and Michel (2011b)) Let φ (·;µ1,Σ1) and φ (·;µ2,Σ2)
be two Gaussian densities. If Σ2 −Σ1 is a positive definite matrix then for all y ∈ RQ,

φ (y;µ1,Σ1)

φ (y;µ2,Σ2)
≤

√
|Σ2|
|Σ1|

exp

[
1

2
(µ1 − µ2)> (Σ2 −Σ1)−1 (µ1 − µ2)

]
.

Then, Lemma 11 allows us to fulfill the assumptions of Lemma 10.

Lemma 11 (Similar to Lemma B.8 from Maugis and Michel (2011b)) Assume that 0 < ε <
c2
Σ/9, and set α = 3

√
ε/cΣ. Then, for every k ∈ [K], (1 + α) Σ̃k (Bk)−Σk (Bk) and Σk (Bk)−

(1 + α)−1 Σ̃k (Bk) are both positive definite matrices. Moreover, for all y ∈ RQ,

y>
[
(1 + α) Σ̃k (Bk)−Σk (Bk)

]
y ≥ ε ‖y‖22 , y>

[
Σk (Bk)− (1 + α)−1 Σ̃k (Bk)

]
y ≥ ε ‖y‖22 .

Proof For all y 6= 0, since sup
λ∈vp(Σk(Bk)−Σ̃k(Bk)) |λ| =

∥∥∥Σk (Bk)− Σ̃k (Bk)
∥∥∥

2
≤ ε, −ε ≥

−cΣ/3, and α = 3ε/cΣ, it follow that

y>
[
(1 + α) Σ̃k (Bk)−Σk (Bk)

]
y = (1 + α) y>

[
Σ̃k (Bk)−Σk (Bk)

]
y + αy>Σk (Bk) y

≥ − (1 + α)
∥∥∥Σ̃k (Bk)−Σk (Bk)

∥∥∥
2
‖y‖22 + αcΣ ‖y‖22

≥ (αcΣ − (1 + α) ε) ‖y‖22 = (αcΣ − αε− ε) ‖y‖22

≥
(

2

3
αcΣ − ε

)
‖y‖22 = ε ‖y‖22 > 0,

and

y>
[
Σk (Bk)− (1 + α)−1 Σ̃k (Bk)

]
y

= (1 + α)−1 y>
[
Σk (Bk)− Σ̃k (Bk)

]
y +

(
1− (1 + α)−1

)
y>Σk (Bk) y

≥
(
αcΣ − ε
1 + α

)
‖y‖22 =

2ε

1 + α
‖y‖22 ≥ ε ‖y‖

2
2 > 0.

By using Lemma 10 and the same argument as in the proof of Lemma B.9 from Maugis and Michel
(2011b), given 0 < ε < cΣ/3, where ε is chosen later, and α = 3ε/cΣ, we obtain

max

{
l(x,y)

f(x,y)
,
f(x,y)

u(x,y)

}
≤ (1 + 2α)−

Q
2 exp

(∥∥v(DV ,J,Rk)(x)− ṽ(DV ,J,Rk)(x)
∥∥2

2

2ε

)
. (39)

33



NGUYEN NGUYEN NGUYEN CHAMROUKHI

Because ln (·) is a non-decreasing function, ln (1 + 2α) ≥ α,∀α ∈ [0, 1]. Combined with (35)
where δ2

V(DV ,J,Rk)
= Qαε, we conclude that

max

{
ln

(
l(x,y)

f(x,y)

)
, ln

(
f(x,y)

u(x,y)

)}
≤ −Q

2
ln (1 + 2α) +

δ2
V(DV ,J,Rk)

2ε
≤ −Q

2
α+

δ2
V(DV ,J,Rk)

2ε
= 0.

This means that l(x,y) ≤ f(x,y) ≤ u(x,y),∀(x,y) ∈ X × Y . Hence, it remains to bound the
size of bracket [l, u] w.r.t. dG(K,DV ,B,J,R)

.

To this end, we aim to verify that d2
G(K,DV ,B,J,R)

(l, u) ≤ δ
2 . To accomplish this, we make use of

Lemma 12.

Lemma 12 (Proposition C.3 from Maugis and Michel (2011b)) Let φ (·;µ1,Σ1) and φ (·;µ2,Σ2)
be two Gaussian densities with full rank covariance. It holds that

d2 (φ (·;µ1,Σ1) , φ (·;µ2,Σ2))

= 2

{
1− 2q/2 |Σ1Σ2|−1/4

∣∣Σ−1
1 + Σ−1

2

∣∣−1/2
exp

[
−1

4
(µ1 − µ2)> (Σ1 + Σ2)−1 (µ1 − µ2)

]}
.

Therefore, using the fact that cosh(t) = e−t+et

2 , Lemma 12 leads to, for all x ∈ X ,

d2(l(x, ·), u(x, ·)) =

∫
Y

[
l(x,y) + u(x,y)− 2

√
l(x,y)u(x,y)

]
dy

= (1 + 2α)−Q + (1 + 2α)Q − 2

+ d2
(
φ
(
·; ṽ(DV ,J,Rk)(x), (1 + α)−1 Σ̃k (Bk)

)
, φ
(
·; ṽ(DV ,J,Rk)(x), (1 + α) Σ̃k (Bk)

))
= 2 cosh [Q ln (1 + 2α)]− 2

+ 2

[
1− 2Q/2

[
(1 + α)−1 + (1 + α)

]−Q/2 ∣∣∣Σ̃k (Bk)
∣∣∣−1/2 ∣∣∣Σ̃k (Bk)

∣∣∣1/2]
= 2 cosh [Q ln (1 + 2α)]− 2 + 2− 2 [cosh (ln (1 + α))]−Q/2

= 2g (Q ln (1 + 2α)) + 2h (ln (1 + α)) ,

where g(t) = cosh(t)− 1 = e−t+et

2 − 1, and h(t) = 1− cosh(t)−Q/2. The upper bounds of terms
g and h separately imply that, for all y ∈ Y ,

d2(l(x, ·), u(x, ·)) ≤ 2

(
2 cosh

(
1√
6

)
α2Q2 +

1

4
α2Q2

)
≤ 6α2Q2 =

δ2

4
,
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where we choose α = 3ε
cΣ
, ε = δcΣ

6
√

6Q
, ∀δ ∈ (0, 1], Q ∈ N?, cΣ > 0, which appears in (39) and

satisfies α = δ
2
√

6Q
and 0 < ε < cΣ

3 . Indeed, studying functions g and h yields

g′(t) = sinh(t),g′′(t) = cosh(t) ≤ cosh(c), ∀t ∈ [0, c], c ∈ R+,

h′(t) =
Q

2
cosh(t)−Q/2−1 sinh(t),

h′′(t) =
Q

2

(
−Q

2
− 1

)
cosh(t)−Q/2−2 sinh2(t) +

Q

2
cosh(t)−Q/2

=
Q

2

(
1−

(
Q

2
+ 1

)(
sinh(t)

cosh(t)

)2
)

cosh(t)−Q/2 ≤ Q

2
,

where we used the fact that cosh(t) ≥ 1. Then, since g(0) = 0,g′(0) = 0, h(0) = 0, h′(0) = 0, by
applying Taylor’s Theorem, it is true that

g(t) = g(t)− g(0)− g′(0)t = R0,1(t) ≤ cosh(c)
t2

2
, ∀t ∈ [0, c],

h(t) = h(t)− h(0)− h′(0)t = R0,1(t) ≤ Q

2

t2

2
≤ Q2

2

t2

2
,∀t ≥ 0.

We wish to find an upper bound for t = Q ln (1 + 2α), Q ∈ N?, α = δ
2
√

6Q
, δ ∈ (0, 1]. Since ln(·)

is an increasing function, then we have

t = Q ln

(
1 +

δ√
6Q

)
≤ Q ln

(
1 +

1√
6Q

)
≤ Q 1√

6Q
=

1√
6
,∀δ ∈ (0, 1],

since ln
(

1 + 1√
6Q

)
≤ 1√

6Q
, ∀Q ∈ N?. Then, since ln (1 + 2α) ≤ 2α,∀α ≥ 0,

g (Q ln (1 + 2α)) ≤ cosh

(
1√
6

)
(Q ln (1 + 2α))2

2
≤ cosh

(
1√
6

)
Q2

2
4α2,

h (ln (1 + α)) ≤ Q2

2

(ln (1 + α))2

2
≤ Q2α2

4
.

Next, note that the set of δ/2-brackets [l, u] over G(K,DV ,B,J,R) is totally defined by the pa-

rameter spaces S̃disc
Bk

(ε) and GV(DV ,J,Rk)

(
δV(DV ,J,Rk)

)
. This leads to an upper bound of the δ/2-

bracketing entropy of G(K,DV ,B,J,R) is evaluated from an upper bound of the two set cardinalities.
Hence, given any δ > 0, by choosing ε = δcΣ

6
√

6Q
, α = 3ε

cΣ
= δ

2
√

6Q
, and δ2

V(DV ,J,Rk)
= Qαε =
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Q δ
2
√

6Q

δcΣ
6
√

6Q
= δ2cΣ

72Q , it holds that

N[·],dG(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
≤ card

(
S̃disc
Bk

(ε)
)
× card

(
GV(DV ,J,Rk)

(
δV(DV ,J,Rk)

))

≤

(⌊
2CΣ

ε

⌋
Q (Q− 1)

2DBk

)DBk

exp
(
CV(DV ,J,Rk)

)
δV(DV ,J,Rk)

dim
(
V(DV ,J,Rk)

)
(using (33) and (36))

≤

(
2CΣ6

√
6Q

δcΣ

Q (Q− 1)

2DBk

)DBk

6
√

2Q exp
(
CV(DV ,J,Rk)

)
δ
√
cΣ

dim
(
V(DV ,J,Rk)

)

=

(
6
√

6CΣQ
2 (Q− 1)

cΣDBk

)DBk

6
√

2Q exp
(
CV(DV ,J,Rk)

)
√
cΣ

dim
(
V(DV ,J,Rk)

)(
1

δ

)DBk
+dim

(
V(DV ,J,Rk)

)
.

To this end, note that dim
(
G(K,DV ,B,J,R)

)
= DBk

+ dim
(
V(DV ,J,Rk)

)
, we obtain

H[·],dG(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

)
= ln

(
N[·],dG(K,DV ,B,J,R)

(
δ

2
,G(K,DV ,B,J,R)

))

≤ DBk
ln

(
6
√

6CΣQ
2 (Q− 1)

cΣDBk

)
+ dim

(
V(DV ,J,Rk)

)
ln

6
√

2Q exp
(
CV(DV ,J,Rk)

)
√
cΣ


+
(
DBk

+ dim
(
V(DV ,J,Rk)

))
ln

(
1

δ

)
= dim

(
G(K,DV ,B,J,R)

)(
CG(K,DV ,B,J,R)

+ ln

(
1

δ

))
,

where CG(K,DV ,B,J,R)
=

DBk
ln

(
6
√
6CΣQ2(Q−1)

cΣDBk

)
+dim

(
V(DV ,J,Rk)

)
ln

 6
√
2Q exp

(
CV(DV ,J,Rk)

)
√

CΣ


dim

(
G(K,DV ,B,J,R)

) .

Appendix C. Update for the gating network

C.1. MM algorithm for updating the gating network

The task of determining the maximizers of (19) may be complicated by various factors that fall
outside the scope of traditional optimization. Such factors include the lack of differentiability of the
objective functions Open

(
ω;ψ(t)

)
or difficulty in obtaining closed-form solutions to the first-order

condition (FOC) equation ∇ωOpen

(
ω;ψ(t)

)
= 0, where ∇ω is the gradient operator with respect
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to ω. To overcome such difficulties, De Leeuw (1977) presented an MM algorithm for multidimen-
sional scaling contemporary with the classic Dempster et al. (1977) paper on EM algorithms, then
Hunter and Lange (2000) proposed the MM algorithm framework to solve the quantile regression
via iterative minimization of surrogate functions. MM algorithms are particularly attractive due to
the monotonicity and thus stability of their objective sequences as well as the global convergence
of their limits, in general settings. A comprehensive treatment of the theory and implementation
of MM algorithms for various general problems can be found in Hunter and Lange (2004); Lange
(2016); Nguyen (2017), in particular for Lasso-penalized mixture of linear regression models in
Lloyd-Jones et al. (2018).

Definition 13 (Philosophy of the MM algorithm, e.g., Hunter and Lange (2004); Nguyen (2017))
Let θ(r) a fixed value of the parameter θ, and let G

(
θ; θ(r)

)
represent a real-value function of θ

whose form depends on θ(r). The function G
(
θ; θ(r)

)
is said to minorize F (θ) at the point θ(r) if

and only if for all θ, it holds that

F (θ) ≥ G
(
θ; θ(r)

)
, F

(
θ(r)
)
≥ G

(
θ; θ(r)

)
. (40)

In other words, the surface θ 7→ G
(
θ; θ(r)

)
lies below the surface F (θ) and is tangent to it at the

point θ = θ(r). Suppose we wish to obtain

θ̂ = arg max
θ∈Θ

F (θ), (41)

for some difficulty to manipulate objective function F , where Θ is a subset of some Euclidean space.
In the maximization step of the MM algorithm, we maximize the surrogate function G

(
θ; θ(r)

)
,

rather than the function F (θ) itself. Let θ(0) be some initial value and θ(r) be the r-th iterate. We
say that θ(r+1) is the (r + 1)-th iterate of an MM algorithm if it satisfies

θ(r+1) = arg max
θ∈Θ

G
(
θ; θ(r)

)
. (42)

By Definition 13, we can deduce the monotonicity property of all MM algorithms. Indeed, we can
show that the MM algorithm forces F (θ) uphill, because (42) and (40) imply that

F (θ(r)) = G
(
θ(r); θ(r)

)
≤ G

(
θ(r+1); θ(r)

)
≤ F (θ(r)). (43)

If G
(
θ; θ(r)

)
is well constructed, then we can avoid matrix inversion when maximizing it. Next, we

devise the surrogate function for Open

(
ω;ψ(t)

)
via Lemma 14.

Lemma 14 The objective function Open

(
ω;ψ(t)

)
is minorized at ω(r) by

G
(
ω;ω(r),ψ(t)

)
=

N∑
n=1

K−1∑
k=1

τ
(t)
nkwk (xn;ωk) +H

(
ω;ω(r)

)

−
K−1∑
k=1

DW∑
d=1

λ
[1]
kd ‖ωkd‖1 −

λ[3]

2

K−1∑
k=1

DW∑
d=1

‖ωkd‖22 , (44)
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wherewk (xn;ωk) is specified in (2) andH
(
ω;ω(r)

)
minorizes−

∑N
n=1 ln

[
1 +

∑K−1
k=1 exp (wk (xn;ωk))

]
and is defined as follows

N∑
n=1

−K−1∑
k=1

gk
(
xn;ω(r)

)∑DW
d=0

∑P
p=1 exp

[
(PDW + 1)

(
ωkdp − ω

(r)
kdp

)
xdnp

]
PDW + 1

− lnC(r)
n +

C
(r)
n − 1

C
(r)
n

 .
Proof Firstly, we claim that if ω > 0, then the function − ln (1 + ω) can be minorized by

− ln
(

1 + ω(r)
)
− ω − ω(r)

1 + ω(r)
, at ω(r) > 0. (45)

One of the virtues of applying inequality (45) in defining a surrogate function is that it elimi-
nates the log terms w.r.t. model parameters. Then, by (45), − ln

[
1 +

∑K−1
k=1 exp (wk (xn;ωk))

]
is

minorized by

− ln

[
1 +

K−1∑
k=1

exp
(
w

(r)
k (xn)

)]
−

∑K−1
k=1

[
exp (wk (xn;ωk))− exp

(
w

(r)
k (xn)

)]
1 +

∑K−1
k=1 exp

(
w

(r)
k (xn)

)
= − lnC(r)

n −
K−1∑
k=1

exp
(
w

(r)
k (xn)

)
exp

(
wk (xn;ωk)− w

(r)
k (xn)

)
C

(r)
n

+
C

(r)
n − 1

C
(r)
n

.

Here,C(r)
n = 1+

∑K−1
k=1 exp

(
w

(r)
k (xn)

)
. Now we wish to apply the weighted arithmetic-geometric

mean inequality to the exponential functions exp
(
wk (xn;ωk)− w

(r)
k (xn)

)
to separate parame-

ters. This feature is critically important in high-dimensional problems because it reduces optimiza-
tion over xn in potential large p-dimension to a sequence of one-dimensional optimizations over
each component xnp, n ∈ [N ], p ∈ [P ].

In fact, by the weighted arithmetic-geometric mean inequality,

exp
(
wk (xn;ωk)− w

(r)
k (xn)

)
= exp

(
ωk0 − ω

(r)
k0 +

DW∑
d=1

(
ωkd − ω

(r)
kd

)>
xdn

)

= exp

ωk0 − ω
(r)
k0 +

DW∑
d=1

P∑
p=1

(
ωkdp − ω

(r)
kdp

)
xdnp


≤ exp (PDW + 1)

PDW + 1

DW∑
d=0

P∑
p=1

exp
[(
ωkdp − ω

(r)
kdp

)
xdnp

]
, (46)

where ω(r)
k0p = ω

(r)
k0 , ωk0p = ωk0, x

0
np = 1, for all p ∈ [P ] and the equality holds when

(
ωk0, (ωkd)d∈[DW ]

)
=

(
ω

(r)
k0 ,
(
ω

(r)
kd

)
d∈[DW ]

)
.
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Therefore, −
∑N

n=1 ln
[
1 +

∑K−1
k=1 exp (wk (xn;ωk))

]
is minorized by H

(
ω;ω(r)

)
, defined

as follows:

N∑
n=1

−K−1∑
k=1

exp
(
w

(r)
k (xn)

)∑DW
d=0

∑P
p=1 exp

[
(PDW + 1)

(
ωkdp − ω

(r)
kdp

)
xdnp

]
C

(r)
n (PDW + 1)

− lnC(r)
n +

C
(r)
n − 1

C
(r)
n


=

N∑
n=1

−K−1∑
k=1

gk
(
xn;ω(r)

)∑DW
d=0

∑P
p=1 exp

[
(PDW + 1)

(
ωkdp − ω

(r)
kdp

)
xdnp

]
PDW + 1

− lnC(r)
n +

C
(r)
n − 1

C
(r)
n

 .

Lemma 14 allows us to maximize Open

(
ω;ψ(t)

)
via its surrogate function G

(
ω;ω(r),ψ(t)

)
,

which benefits the elimination the log terms w.r.t. model parameters and avoiding matrix inver-
sion in high-dimensional problems via separating of parameters. Next, we aim to decompose
G
(
ω;ω(r),ψ(t)

)
according to parameters as follows:

G
(
ω;ω(r),ψ(t)

)
= G

(
ωk0;ω(r),ψ(t)

)
+

K∑
k=1

DW∑
d=1

P∑
p=1

G
(
ωkdp;ω

(r),ψ(t)
)

+ I(ω(r)), (47)

where I(ω(r)) is a function of ω(r). For every k ∈ [K − 1], p ∈ [P ], d ∈ {0} ∪ [DW ], we have that

G
(
ωk0;ω(r),ψ(t)

)
=

N∑
n=1

τ
(t)
nk ωk0 −

N∑
n=1

gk
(
xn;ω(r)

)
exp

[
(PDW + 1)

(
ωk0 − ω

(r)
k0

)]
PDW + 1

, (48)

and

G
(
ωkdp;ω

(r),ψ(t)
)

=
N∑
n=1

τ
(t)
nk x

d
npωkdp −

N∑
n=1

gk
(
xn;ω(r)

)
exp

[
(PDW + 1)xdnp

(
ωkdp − ω

(r)
kdp

)]
PDW + 1

− λ[1]
kd |ωkdp| −

λ[3]

2
ω2
kdp. (49)

Then, by maximizing (48), we can update the ωk0 via solving the first-order condition

∇ωk0
G
(
ωk0;ω(r),ψ(t)

)
=

N∑
n=1

τ
(t)
nk − (PDW + 1) exp

[
(PDW + 1)

(
ωk0 − ω

(r)
k0

)] ∑N
n=1 gk

(
xn;ω(r)

)
PDW + 1

.

Then, by solving∇ωk0
G
(
ωk0;ω

(r)
k ,ψ(t)

)
= 0, we obtain that

ω
(r+1)
k0 = ω

(r)
k0 +

1

PDW + 1
ln

[ ∑N
n=1 τ

(t)
nk∑N

n=1 gk
(
xn;ω(r)

)] . (50)
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Remark that G
(
ωkdp;ω

(r),ψ(t)
)

is a concave and univariate function w.r.t. ωkdp. Therefore, we
can maximize it globally w.r.t. each coefficient ωkdp separately and then avoid matrix inversion.
Indeed, note that

G
(
ωkdp;ω

(r),ψ(t)
)

= U
(
ωkdp;ω

(r),ψ(t)
)
− λ[1]

kd |ωkdp|

=


U
(
ωkdp;ω

(r),ψ(t)
)
− λ[1]

kdωkdp, if ωkdp > 0,

U
(

0;ω(r),ψ(t)
)
, if ωkdp = 0,

U
(
ωkdp;ω

(r),ψ(t)
)

+ λ
[1]
kdωkdp, if ωkdp < 0,

where

U
(
ωkdp;ω

(r),ψ(t)
)

=
N∑
n=1

τ
(t)
nk x

d
npωkdp

−
N∑
n=1

gk
(
xn;ω(r)

)
exp

[
(PDW + 1)xdnp

(
ωkdp − ω

(r)
kdp

)]
PDW + 1

− λ[3]

2
ω2
kdp.

Remark that G
(
·;ω(r),ψ(t)

)
is a smooth concave function on both R+ and R−. We therefore can

use a one-dimensional generalized Newton-Raphson (GNR) algorithm to find the global maximizers
of these functions and compare with G

(
0;ω(r),ψ(t)

)
so that we have

ω
(r+1)
kdp = arg max

ωkdp

G
(
ωkdp;ω

(r),ψ(t)
)
. (51)

After starting from an initial value s = 0, ω(0)
kdp = ω

(r)
kdp, at each iteration s of the GNR, according

to the following updating rule:

ω
(s+1)
kdp = ω

(s)
kdp −

∂2G
(
ωkdp;ω

(r),ψ(t)
)

∂2ωkdp

−1 ∣∣∣∣∣
ω
(s)
kdp

∂G
(
ωkdp;ω

(r),ψ(t)
)

∂ωkdp

∣∣∣∣∣
ω
(s)
kdp

. (52)

Here, the scalar gradient and Hessian are respectively given by:

∂G
(
ωkdp;ω

(r),ψ(t)
)

∂ωkdp
=


∂U(ωkdp;ω(r),ψ(t))

∂ωkdp
− λ[1]

kd, if ωkdp > 0,

∂U(ωkdp;ω(r),ψ(t))
∂ωkdp

+ λ
[1]
kd, if ωkdp < 0,

∂2G
(
ωkdp;ω

(r),ψ(t)
)

∂2ωkdp
=
∂2U

(
ωkdp;ω

(r),ψ(t)
)

∂2ωkdp
, if ωkdp 6= 0. (53)

Note that we have

∂U
(
ωkdp;ω

(r),ψ(t)
)

∂ωkdp
=

N∑
n=1

τ
(t)
nk x

d
np −

N∑
n=1

xdnpgk

(
xn;ω(r)

)
exp

[
(PDW + 1)xdnp

(
ωkdp − ω

(r)
kdp

)]
− λ[3]ωkdp,

∂2U
(
ωkdp;ω

(r),ψ(t)
)

∂2ωkdp
= − (PDW + 1)

N∑
n=1

xd2
npgk

(
xn;ω(r)

)
exp

[
(PDW + 1)xdnp

(
ωkdp − ω

(r)
kdp

)]
− λ[3].
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C.2. Coordinate ascent algorithm for updating the gating network

Motivated by Tseng (1988, 2001), we aim to use the coordinate ascent algorithm to update the
parameters ω =

(
ωk0, (ωkd)d∈[DW ]

)
k∈[K]

of the gating networks. This is an iterative method so

that we fix most elements of the vector of parameters at their values from the current iteration, and
solve univariate optimization problems in a loop to the remaining elements. In this way, it allows us
to solve more easily than the full problem based on the fact that each such task has lower dimensions
in the optimization problems.

We first update to ωk0 by using a univariate Newton-Raphson algorithm. In particular, starting
with initial values ω(r=0)

k0 = ω
(t)
k0 at tth step in M-step, we attempt to construct a sequence of ω(r>0)

k0

that converges towards a maximizer of the objective function of ωk0, that is,

ω
(r)
k0 = arg max

ωk0

Open

(
ωk0;ψ(t)

)
where

Open

(
ωk0;ψ(t)

)
=

N∑
n=1

τ
(t)
nk

(
ωk0 +

DW∑
d=1

ω>kdx
d
n

)
−

N∑
n=1

ln

[
1 +

K−1∑
k=1

exp

(
ωk0 +

DW∑
d=1

ω>kdx
d
n

)]
,

which is independent of the regularized part. Here, we apply the generalized Newton-Raphson
(GNR) method for updating ω(r)

k0 at step r of the coordinate ascent algorithm based on the second-

order Taylor series approximation of Open

(
ωk0 + h; ψ(t)

)
with h sufficiently close to zero. More

specifically, at each rth step, GNR algorithm iteratively improves the approximation of ωk0 by

ω
(r, s+1)
k0 = ω

(r, s)
k0 −

∂2Open

(
ωk0;ψ(t)

)
∂2ωk0

−1 ∣∣∣∣∣
ω
(s)
k0

∂Open

(
ωk0;ψ(t)

)
∂ωk0

∣∣∣∣∣
ω
(s)
k0

,

with ω
(r, s=0)
k0 = ω

(r)
k0 . Essentially, it requires the expressions of the gradient and Hessian of

Open

(
·,ψ(t)

)
with respect to ωk0 that can be computed respectively as follows

∂Open

(
ωk0;ψ(t)

)
∂ωk0

=
N∑
n=1

τ
(t)
nk −

N∑
n=1

exp
(
ωk0 +

∑DW
d=1 ω

>
kdx

d
n

)
Cn (ωk0)

,

∂2Open

(
ωk0;ψ(t)

)
∂2ωk0

= −
N∑
n=1

exp
(
ωk0 +

∑DW
d=1 ω

>
kdx

d
n

) [
Cn (ωk0)− exp

(
ωk0 +

∑DW
d=1 ω

>
kdx

d
n

)]
Cn (ωk0)2 ,

where Cn (ωk0) = 1 +

K−1∑
u=1

exp

(
ωu0 +

DW∑
d=1

ω>udx
d
n

)
.

Similarly, for parameter vector ωkd, d 6= 0, the coefficient ωkdp can be updated at step rth by

ω
(r)
kdp = arg max

ωkdp

Open

(
ωkd;ψ

(t)
)
,
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where

Open

(
ωkd;ψ

(t)
)

= U
(
ωkdp;ψ

(t)
)
− λ[1]

kd |ωkdp| =


U
(
ωkdp;ψ

(t)
)
− λ[1]

kdωkdp, if ωkdp > 0,

U
(

0;ψ(t)
)
, if ωkdp = 0,

U
(
ωkdp;ψ

(t)
)

+ λ
[1]
kdωkdp, if ωkdp < 0,

with

U
(
ωkdp;ψ

(t)
)

=

N∑
n=1

τ
(t)
nk

(
ωk0 +

DW∑
d=1

ω>kdx
d
n

)
−

N∑
n=1

ln

[
1 +

K−1∑
k=1

exp

(
ωk0 +

DW∑
d=1

ω>kdx
d
n

)]
− λ[3]

2
ω2
kdp.

With a similar approach, at each step rth of the coordinate ascent algorithm, GNR approximately
updates ωkdp by

ω
(r, s+1)
kdp = ω

(r, s)
kdp −

∂2Open

(
ωkd;ψ

(t)
)

∂2ωkdp

−1 ∣∣∣∣∣
ω
(s)
kdp

∂Open

(
ωkd;ψ

(t)
)

∂ωkdp

∣∣∣∣∣
ω
(s)
kdp

, (54)

with the initial value ω(r, s=0)
kdp = ω

(r)
kdp. It is essential to require the expressions of the first and

second orders gradient of Open

(
·;ψ(t)

)
with respect to ωkdp, in particular, that are

∂Open

(
ωkd;ψ

(t)
)

∂ωkdp
=


∂U(ωkdp;ψ(t))

∂ωkdp
− λ[1]

kd, if ωkdp > 0,

∂U(ωkdp;ψ(t))
∂ωkdp

+ λ
[1]
kd, if ωkdp < 0,

∂2Open

(
ωkd;ψ

(t)
)

∂2ωkdp
=
∂2U

(
ωkdp;ψ

(t)
)

∂2ωkdp
, if ωkdp 6= 0. (55)

where

∂U
(
ωkdp;ψ

(t)
)

∂ωkdp
=

N∑
n=1

τ
(t)
nk x

d
np −

N∑
n=1

xdnp exp
(
ωk0 +

∑DW
d=1 ω

>
kdx

d
n

)
Cn (ωkdp)

− λ[3]ωkdp,

∂2U
(
ωkdp;ψ

(t)
)

∂2ωkdp
= −

N∑
n=1

xd2
np exp

(
ωk0 +

∑DW
d=1 ω

>
kdx

d
n

) [
Cn (ωkdp)− exp

(
ωk0 +

∑DW
d=1 ω

>
kdx

d
n

)]
Cn (ωkdp)

2 − λ[3],

Cn (ωkdp) = 1 +
K−1∑
u=1

exp

(
ωu0 +

DW∑
d=1

ω>udx
d
n

)
.

Appendix D. Updating the Gaussian expert networks

For the penalized MoE models with univariate response variables, performing the update for the
Gaussian expert networks’ parameters corresponds to solvingK separated weighted Lasso problems
(see Chamroukhi and Huynh (2019, Section 3.3.3) for more details). However, for multivariate
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cases, generalizing the approach from Devijver (2017b), we propose a new method to deal with the
following complex objective function

Open

(
Υ,Σ,ψ(t)

)
=

N∑
n=1

K∑
k=1

τ
(t)
nk ln [φ (yn; vk(xn; Υk),Σk)]−

K∑
k=1

DV∑
d=1

λ
[2]
kd ‖Γkd‖1

=
N∑
n=1

K∑
k=1

τ
(t)
nk ln

[
1

(2π)q/2 det (Σk)
1/2

exp

(
−

(yn − vk(xn; Υk))
>Σ−1

k (yn − vk(xn; Υk))

2

)]

−
K∑
k=1

DV∑
d=1

λ
[2]
kd ‖Γkd‖1

=

N∑
n=1

K∑
k=1

τ
(t)
nk ln

det (Qk)

(2π)q/2
exp

−
(
Qkyn −

∑DV
d=0 Γkdx

d
n

)> (
Qkyn −

∑DV
d=0 Γkdx

d
n

)
2




−
K∑
k=1

DV∑
d=1

λ
[2]
kd ‖Γkd‖1

= Open

(
Γ,Q;ψ(t)

)
. (56)

where Γkd = QkΥkd with Q>k Qk = Σ−1
k so that Γk0 = Qkυk0 ∈ RQ×1, x0

n ≡ 11×1. By

(56), optimizing Open

(
Υ,Σ;ψ(t)

)
w.r.t. (Υ,Σ) is equivalent to maximize the objective function

Open

(
Γ,Q;ψ(t)

)
w.r.t. (Γ,Q) = (Γk,Qk)k∈[K] = (Γkd,Qk)k∈[K],d∈({0}∪[DV ]).

Similar to Section C.2 for the gating network, we apply the block coordinate ascent algorithm
to update (Γ,Q) of the expert networks. For all n ∈ [N ], k ∈ [K], let

(
y

(t)
nk ,x

(t)
nk

)
=

√
τ

(t)
nk (yn,xn) ∈ RQ × RP , and N

(t)
k =

N∑
n=1

τ
(t)
nk . (57)

Then, Open

(
Γ,Q;ψ(t)

)
can be decoupled for each components into k distinct optimization prob-

lems of the form

Open

(
Γk,Qk;ψ

(t)
)

=

N∑
n=1

τ
(t)
nk

Q∑
q=1

ln
(

(Qk)q,q

)
− 1

2

N∑
n=1

τ
(t)
nk

(
Qkyn −

DV∑
d=0

Γkdx
d

)>(
Qkyn −

DV∑
d=0

Γkdx
d

)
−

DV∑
d=1

λ
[2]
kd ‖Γkd‖1

= N
(t)
k

Q∑
q=1

ln
(

(Qk)q,q

)
− 1

2

N∑
n=1

(
Qky

(t)
nk −

DV∑
d=0

Γkdx
(t) d
nk

)>(
Qky

(t)
nk −

DV∑
d=0

Γkdx
(t) d
nk

)
−

DV∑
d=1

λ
[2]
kd ‖Γkd‖1

= N
(t)
k

Q∑
q=1

ln
(

(Qk)q,q

)
− 1

2

N∑
n=1

Q∑
q=1

(
(Qk)q,q y

(t)
nkq −

√
τ

(t)
nkΓk0 −

DV∑
d=1

(Γkd)q,∗x
(t) d
nk

)2

−
DV∑
d=1

λ
[2]
kd ‖Γkd‖1 .

(58)
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The last equality is based on the fact that Σk is the diagonal matrix for all cluster k by assumption,
therefore, Qk is also a diagonal matrix. With respect to (Qk)q,q, the optimization of (58) is the

closed-form solutions to the FOC equation∇(Qk)q,q
Open

(
Γk,Qk;ψ

(t)
)

= 0 which is

N
(t)
k

(Qk)q,q
−

N∑
n=1

y
(t)
nkq

(
(Qk)q,q y

(t)
nkq −

√
τ

(t)
nkΓk0 −

DV∑
d=1

(Γkd)q,∗x
(t) d
nk

)
= 0

⇐⇒
N∑
n=1

y
(t) 2
nkq (Qk)

2
q,q −

N∑
n=1

y
(t)
nkq

(√
τ

(t)
nkΓk0 −

DV∑
d=1

(Γkd)q,∗x
(t) d
nk

)
(Qk)q,q −N

(t)
k = 0, (59)

which is a quadratic equation of (Qk)q,q. Moreover, based on the fact that (Qk)q,q > 0, we get that

(Qk)q,q =

∑N
n=1 y

(t)
nkq

(√
τ

(t)
nkΓk0 −

∑DV
d=1(Γkd)q,∗x

(t) d
nk

)
+
√

∆k,q

2
∑N

n=1 y
(t) 2
nkq

, (60)

where

∆k,q =

[
N∑
n=1

y
(t)
nkq

(√
τ

(t)
nkΓk0 −

DV∑
d=1

(Γkd)q,∗x
(t) d
nk

)]2

+ 4N
(t)
k

N∑
n=1

y
(t) 2
nkq . (61)

Similarly, with respect to (Γkd)q,p, the optimization of (58) is the closed-form solutions to the

FOC equation∇(Γkd)q,p
Open

(
Γk,Qk;ψ

(t)
)

= 0. More precisely, for d = 0, we have

N∑
n=1

√
τ

(t)
nk

Q∑
q=1

(
(Qk)q,q y

(t)
nkq −

√
τ

(t)
nkΓk0 −

DV∑
d=1

(Γkd)q,∗x
(t) d
nk

)
= 0,

⇐⇒
N∑
n=1

τ
(t)
nk

Q∑
q=1

Γk0 =
N∑
n=1

√
τ

(t)
nk

Q∑
q=1

(
(Qk)q,q y

(t)
nkq −

DV∑
d=1

(Γkd)q,∗x
(t) d
nk

)

⇐⇒Γk0 =

∑N
n=1

√
τ

(t)
nk

∑Q
q=1

(
(Qk)q,q y

(t)
nkq −

∑DV
d=1(Γkd)q,∗x

(t) d
nk

)
Q
∑N

n=1 τ
(t)
nk

. (62)

For every d ∈ [DV ],

N∑
n=1

x
(t) d
nkp

(
(Qk)q,q y

(t)
nkq −

√
τ

(t)
nkΓk0 −

DV∑
d=1

(Γkd)q,∗x
(t) d
nk

)
− λ[2]

kd sign
(

(Γkd)q,p

)
= 0,

⇐⇒
N∑
n=1

(
x

(t) d
nkp

)2
(Γkd)q,p =

N∑
n=1

x
(t) d
nkp

(Qk)q,q y
(t)
nkq −

√
τ

(t)
nkΓk0 −

DV∑
i=1,i 6=d

P∑
j=1,j 6=p

(Γki)q,jx
(t) i
nkj


− λ[2]

kd sign
(

(Γkd)q,p

)
. (63)
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Here, sign(·) is the sign function. Therefore, we obtain

(Γkd)q,p =
(Γ̃

(t)

kd )q,p − λ[2]
kd sign

(
(Γkd)q,p

)
∑N

n=1

(
x

(t) d
nkp

)2 =



(Γ̃
(t)
kd )q,p−λ[2]kd∑N
n=1

(
x
(t) d
nkp

)2 if (Γ̃
(t)

kd )q,p > λ
[2]
kd,

(Γ̃
(t)
kd )q,p+λ

[2]
kd∑N

n=1

(
x
(t) d
nkp

)2 if (Γ̃
(t)

kd )q,p < −λ[2]
kd,

0 if − λ[2]
kd ≤ (Γ̃

(t)

kd )q,p ≤ λ[2]
kd.

(64)

where

(Γ̃
(t)

kd )q,p =
N∑
n=1

x
(t) d
nkp

(Qk)q,q y
(t)
nkq −

√
τ

(t)
nkΓk0 −

DV∑
i=1,i 6=d

P∑
j=1,j 6=p

(Γki)q,jx
(t) i
nkj

 . (65)

In summary, the updated formulas are as follows:

Σ
(ite+1)
k =

[
Q

(ite+1)>
k Q

(ite+1)
k

]−1
, Υ

(ite+1)
kd =

[
Q

(ite+1)
k

]−1
Γ

(ite+1)
kd ,

(Qk)
(ite+1)
q,q =

∑N
n=1 y

(t)
nkq

(√
τ

(t)
nkΓ

(t)
k0 −

∑DV
d=1(Γkd)

(t)
q,∗x

(t) d
nk

)
+
√

∆
(t)
k,q

2
∑N

n=1 y
(t) 2
nkq

,

Γ
(ite+1)
k0 =

∑N
n=1

√
τ

(t)
nk

∑Q
q=1

(
(Qk)

(t)
q,q y

(t)
nkq −

∑DV
d=1(Γkd)

(t)
q,∗x

(t) d
nk

)
Q
∑N

n=1 τ
(t)
nk

(Γkd)
(ite+1)
q,p =



(Γ̃
(t)
kd )q,p−λ[2]kd∑N
n=1

(
x
(t) d
nkp

)2 if (Γ̃
(t)

kd )q,p > λ
[2]
kd,

(Γ̃
(t)
kd )q,p+λ

[2]
kd∑N

n=1

(
x
(t) d
nkp

)2 if (Γ̃
(t)

kd )q,p < −λ[2]
kd,

0 if − λ[2]
kd ≤ (Γ̃

(t)

kd )q,p ≤ λ[2]
kd,

.

Here,

∆
(t)
k,q =

[
N∑
n=1

y
(t)
nkq

(√
τ

(t)
nkΓ

(t)
k0 −

DV∑
d=1

(Γkd)
(t)
q,∗x

(t) d
nk

)]2

+ 4N
(t)
k

N∑
n=1

y
(t) 2
nkq ,

(Γ̃
(t)
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Appendix E. A comprehensive classification and nomenclature of MoE models with
softmax gating networks.
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SGaME: Softmax-Gated MoE

PSGaBloME: Polynomial Softmax-Gated Block-diagonal MoE

LinBoSGaME: Linear-combination-of-Bounded-functions Softmax-Gated MoE

LinBoSGaBloME: Linear-combination-of-Bounded-functions Softmax-Gated Block-diagonal MoE

Figure 1: A comprehensive classification and nomenclature of MoE models with softmax gating
networks.
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