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Abstract: Being one of the major energy consumers, cooking is a necessary part of daily life. Non
renewable cooking fuel sources, such as wood or cow dung cause hazardous pollution and a poor
ecosystem worldwide. Over the past few decades, solar-powered cooking has undergone numerous
improvements. Solar cooking has been predominantly used as a substitute for reducing oil and gas
dependence, increasing environmental sustainability, and reducing global warming threats. This
paper talks about the recent development of the box-type solar cooker. The paper discusses the
principles and classifications of various parameters that affect the performance, energy, and exergy
related to the solar cooking system. In line with the sustainable development goals of the UN agenda
2030 and especially the heed to the accomplishment of SDG 7 and SDG 13, various economic factors,
such as the payback period (PP), net present value (NPV), benefit–cost (B–C) ratios, internal rate
of return (IRR), levelized cost of heat (LCOH), and levelized cost of cooking a meal (LCCM) have
been discussed. The environmental analysis has also been presented to show the overall benefit
of solar cooking. The review also focuses on the current development of a box-type solar cooker,
its components, and its heat transfer characteristic. Various geometrical modifications, the use of
reflectors, and transparent insulating materials that improve cooking have been discussed. The
concept of energy storage in the form of Phase change material (Latent heat storage) with the latest
studied designs improvements of solar cookers has been obtained to be efficient, which also help
in late-evening cooking. It can be said that with better policy implications, the social and economic
acceptability of the solar cooker can be achieved.

Keywords: solar cooker; box-type solar cooker; PCM; energy analysis; environmental analysis;
economic analysis

1. Introduction

Energy requirements for cooking in developing countries cover approximately 36%
of the total energy requirement [1], which is significant in terms of providing a clean and
green renewable energy-based comprehensive solution. The energy crisis and dependence
on non-renewable resources, such as wood, oil, and gas, for cooking are the major reason
for pollution, global warming, and severe health hazards to humans.

The most dominantly available renewable energy source on earth is sunshine, and
quantum progress has been made to tap into this green energy option. The government
of India took over a journey under the National Solar Mission (NSM) on 11 January 2010
toward active involvement from the states to envisage sustainable ecological growth and
encompass the energy security needs of the country [2,3]. The amount of energy incident
over India’s land is approximately 5000 trillion kWh in a year, and in general, most parts
receive 4–7 kWh per sq. m per day [4].
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Under the umbrella of Sustainable Development Goals (SDGs) set by the United
Nations in 2015, SDG 7 and SDG 13 account for affordable and clean energy and climate
action, respectively [5]. Now provision of cost-effective and economical solar energy
appliances, such as solar cookers (SC), in rural areas may harness both these goals. Solar
energy can be used for maintaining adequate energy loads outside and inside of a building
by designing energy-efficient buildings envelop [6]. Further, SDG 2 discusses the food
security [7] with the aim of zero hunger, which can be realized by harnessing solar energy [6]
usage in solar pumps, dryers, solar winnowers, etc., thereby enabling farmers with higher
income and productivity.

Solar energy can be utilized efficiently in daylight when the quantum of sunrays is
available, but there is a limitation in its usage during late-evening cooking. Challenges
to the usage of solar energy include the fickle nature of sunshine, convenience, seasonal
sunshine variations, diurnal availability of solar radiations, user exposure to severe solar
radiations, and adjustment to the fast urban lifestyle [8–12].

The solar cooker is a fantastic eco-friendly appliance that exploits solar energy and
focuses sun rays on an insulated pot wall for transmitting heat for cooking food, pas-
teurization, sterilization, and different end uses. Box-type solar cookers have numerous
advantages associated with highly nutritious food, one-time subsidized cost, almost no
maintenance and running cost, long-term usability, etc. [13]. Hence all of the above has
been focused on as part of the research in this paper. Nevertheless, solar cooker without
any thermal heat storage system generally faces limitations in cooking during off-sunshine
periods. Therefore, the excess energy generated during low demand can be kept in a
thermal energy storage system (TES), and the same may be retrieved during high-demand
periods. Thermal energy can be utilized by increasing the temperature of the solid or liquid
storage as specific heat or in the form of latent heat by melting or freezing the solid or
liquid storage. Further energy systems can also use chemical storage methods [14,15].

As part of the study research work, comprehensive data has been collected from
previous studies taken up to date with box-type solar cookers for evening cooking. Studies
where simple and affordable solar cooking was carried out without the use of phase-change
materials (PCM) have been discussed first. The modifications in geometry or additional
reflectors and design improvements have only been accounted for in the first part of this
paper. Further solar cooking with PCM enabling evening cooking has been discussed,
which also shows the evolution of design development along with PCM in various studies.
Solar cookers can be used outside in the direct open sun as well as inside with the help
of indirect ways of cooking. Solar cookers with concentrators can be integrated within
buildings [16] in such a way that cooking can be done inside the room with a SC installed
as a window attachment.

This study has identified the overall design and development done in the evening
SCs by different standalone approaches. As part of the study, it is configured that these
standalone design improvements can be consolidated along with parametric and perfor-
mance measurement calculations, thereby synergizing toward designing any cost-effective
model of SC with the provision of evening cooking. This paper is unique because of its
inclusive review of energy, exergy, economic and environmental analysis of box type, and
recommendation of the suitable phase change material that can be used in storage-based
solar cookers to enable evening cooking.

2. Types of Solar Cookers

Figure 1 shows the typical classification of SCs. Solar cookers are divided into two
categories, i.e., direct and indirect cooking. Direct cooking SCs have sunrays focused
straight onto the receiving area where the cooking pot is kept; however, a transient fluid
transports heat from the collector to the cooking unit for indirect solar cookers.
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Figure 1. Classification of solar cooker. The temperature attained in the box type is medium (approx. 
120 °C) [17] and very high in concentrating type (approx. 290 °C); however, indirect cooker has a 
high temperature but with a control option. Reprinted/adapted with permission from Ref. [18], 2018, 
Elsevier. 

2.1. Direct Solar Cookers 
Direct SCs are quite frequently used for cooking due to the small cost of materials 

and ease of construction. The two most common among them are box-type SC and con-
centrating SC. 

2.1.1. Box-Type Solar Cookers 
Box-type SC consists of single or multiple glasses covers over an insulated container. 

The container is painted black on the inside to maximize heat absorption. Norms behind 
the working of SC is the greenhouse effect, wherein the container is transparent to the 
small wavelength radiation but opaque to the longer wavelength radiation from hot ob-
jects and the heating effect is created due to the longer wavelength radiations. A box-type 
SC can consist of four cooking vessels inside the box. The schematic of the box-type SC is 
shown in Figure 2. In recent years, much technological advancement has improved the 
design and working efficiency of box-type SCs. The box-type SCs come in several modifi-
cations. In recent years, several solar cookers have been developed that come with and 
without reflectors (single, double, three, four, or even eight). 

The key reasons for the preference for box-type solar cookers over other cooker types 
are that they are user-friendly, easy to build, easy to use and operate, safe, and require 
little attention. They employ both direct and diffused solar radiation and do not require 
constant tracking of the sun. However, the main disadvantage of box-type SC is the long 
hours of cooking. Heat losses make these cookers challenging to operate in off-sunshine 
hours and windy conditions. They cannot generate high temperatures and so cannot be 
used for frying and roasting [19–21]. 

Figure 1. Classification of solar cooker. The temperature attained in the box type is medium (approx.
120 ◦C) [17] and very high in concentrating type (approx. 290 ◦C); however, indirect cooker has
a high temperature but with a control option. Reprinted/adapted with permission from Ref. [18],
2018, Elsevier.

2.1. Direct Solar Cookers

Direct SCs are quite frequently used for cooking due to the small cost of materi-
als and ease of construction. The two most common among them are box-type SC and
concentrating SC.

2.1.1. Box-Type Solar Cookers

Box-type SC consists of single or multiple glasses covers over an insulated container.
The container is painted black on the inside to maximize heat absorption. Norms behind
the working of SC is the greenhouse effect, wherein the container is transparent to the small
wavelength radiation but opaque to the longer wavelength radiation from hot objects and
the heating effect is created due to the longer wavelength radiations. A box-type SC can
consist of four cooking vessels inside the box. The schematic of the box-type SC is shown
in Figure 2. In recent years, much technological advancement has improved the design
and working efficiency of box-type SCs. The box-type SCs come in several modifications.
In recent years, several solar cookers have been developed that come with and without
reflectors (single, double, three, four, or even eight).
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Figure 2. Schematic of box-type solar cooker.

The key reasons for the preference for box-type solar cookers over other cooker types
are that they are user-friendly, easy to build, easy to use and operate, safe, and require
little attention. They employ both direct and diffused solar radiation and do not require
constant tracking of the sun. However, the main disadvantage of box-type SC is the long
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hours of cooking. Heat losses make these cookers challenging to operate in off-sunshine
hours and windy conditions. They cannot generate high temperatures and so cannot be
used for frying and roasting [19–21].

2.1.2. Concentrating Solar Cookers

Concentrating solar cookers employ optics to concentrate the sunrays on the receiver
of the cooking unit, where they generate a very high temperature. It typically uses a
parabolic concentrator, a cooking vessel at the center, and a stand with adjustable support
so that the concentrator faces the sun, as represented in Figure 3.
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Figure 3. Concentrating solar cooker.

In concentrating SC, the temperature is very high, which is suitable for frying, baking,
boiling, and roasting. With parabolic dish cookers, the temperature reaches between 350 ◦C
and 400 ◦C. The cooking can be achieved in a short period. The major disadvantage
of concentrating cookers is their cost, size, and risk of fire and burns. It also involves
continuous tracking of the sun and careful attention to prevent food burning [18]. A
particular type of lens called the Fresnel lens has been used as it can concentrate sunlight
precisely to a focused area and can be made from plastic, sustaining wear and tear for long
durations against UV rays and abrasions.

A Fresnel lens of 0.90 m × 1.20 m and 2 mm can concentrate sunlight 1229 times [22].
Although for high temperatures initially, Schaeffer Concentrator [23] was used, which
needed a rotation mechanism for focusing sunrays, Fresnel lens application in fixed stoves
provided a simple solution for high temperature applications.

2.2. Indirect Solar Cookers

The indirect solar cookers utilize thermal heat from the heat-transfer fluid, such as
thermal oils and molten salts, which come from the focus point of the reflector. This heat
is then transported to cooking vessels for cooking purposes. For indirect SCs, the heat
collection and cooking sections are separated. The heat collection unit is placed outside or
on the roof, while the cooking unit is inside or in the kitchen. Various types of collectors,
such as flat-plate collectors or parabolic-trough collectors, are used for heat collection, as
presented in Figure 4.
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tube collector.

The main advantage of indirect SCs is that they can be easily integrated with a thermal
energy storage unit that promotes cooking during off-sunshine hours. The cooking unit is
placed indoors, so the food remains hygienic and free from dirt and contamination. These
cookers can operate from intermediate to high-temperature ranges suitable for frying meat
and cooking vegetables. However, the major disadvantage of these cookers is heat loss from
the thermal transfer fluid while carrying heat from the collection unit to the cooking unit.
The construction of these cookers is expensive and difficult to operate and maintain [24].

3. Performance Evaluation of Box-Type Solar Cookers

The performance evaluation of the SC can be undertaken by calculating the first
(F1) and the second figure of merit (F2) according to criteria set by the Bureau of Indian
Standards (BIS).

The F1 can be calculated by obtaining the stagnation temperature of the cooker at no
load state. It is the ratio of the optical efficiency, which can be equated with the rise in
temperature of the absorber plate to the heat loss factor. This is mathematically represented
as [25–27]:

F1 =
η

ULS
=

Tb − Ta

H
(1)

Where η is the optical efficiency, ULs is the heat loss factor, Tb is the stagnation tem-
perature of the absorber plate, Ta is the ambient temperature, and H is the solar radiation
when the steady conditions are reached.

F2 can be obtained in the full load condition using 2 kg of water, which is heated
and boiled. The F2 can then be calculated by measuring the ambient temperature, water
temperature, solar radiation, and wind speed. This can be mathematically calculated
as [27,28]:

F2 =
F1mwcpw

Aτ
ln

[
1 − Tw1−Ta

F1H

]
[
1 − Tw2−Ta

F1 H

] (2)

where mw is the mass of water, Cpw is the specific heat of water, A is the aperture area of SC,
Tw1 is the lower level of water temperature, Tw2 is the upper level of water temperature,
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τ is the time interval when the temperature of water rises from Tw1 to Tw2, and H is the
average solar radiation of water temperature rise from Tw1 to Tw2.

The average power delivered by the cooker during the boiling process can be obtained
by the below equation [28]:

P =
mwCpw(Tw2 − Tw1)

τ
(3)

4. Energy and Exergy Analysis for Box-Type Solar Cookers
4.1. Heat Transfer in a Box-Type Solar Cooker

For a simple SC with one flat cover glass, internal walls, and a thermal insulator pot
that contains product for cooking, the heat transfer can be understood with the help of the
following sample model in Figure 5. Furthermore, the energy and exergy analysis can be
carried out based on the temperature of the load achieved in the pot in this sample cooker.
The temperature calculations have been done in detail in the research [29]; however, only a
sketch has been elaborated for easy comprehension.
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The energy balance equation for the upper surface where sunlight is directly ex-
posed as:

(
MCp

)
gu

dTgu

dt
= αgu AguS + (Qc + Qr)gl−gu − Qc.gu−am − Qr.gu−sky (4)

where
Qc;gl−gu = hc,gl−gu Agu

(
Tgl − Tgu

)
(5)

Qr;gl−gu = hr;gl−gu Agu

(
Tgl − Tgu

)
(6)

Qc;gu−am = hc,gu−am Agu
(
Tgu − Tam

)
(7)

Qr;gu−sky = hr,gu−sky Agu

(
Tgu − Tsky

)
(8)
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The heat transfer equations for all the surfaces after combining individual expressions
have been detailed as follows:

1. For energy balance at the upper glass surface:

(
MCp

)
gudTgu/dt = αgu AguS +

(
hr,gl−gu + hc,gl−gu

)
Agu

(
Tgl − Tgu

)
− hc,gu−am Agu

(
Tgu − Tma

)
−hr,gu−sky Agu

(
Tgu − Tsky

) (9)

2. For sun radiation available on the upper glass aperture surface:

So = IG + IbFmr AmrCos φ (10)

3. For energy balance at the lower glass surface:(
MCp

)
gldTgl/dt = τguαgl AglS + hc,a−gl Agl

(
Ta − Tgl

)
+ hr,vc−glnAvb

(
Tv − Tgl

)
+hr,ab−gl

(
Agl

−nAvb
)(

Tab − Tgl

)
−
(

hr,gl−gu + hc,gl−gu

)
Agl

(
Tgl − Tgu

) (11)

4. For inside the vessel/pot and net energy balance for the vessel/pot:(
MCp

)
vdTv/dt = τguαglαv AvbSn + UvbnAvb(Tab − Tv)− hcv− f nAv

(
Tv − Tf

)
− hr,v−glnAvb

(
Tv

−Tgl
)
− hc,v−anAv(Tv − Ta)

(12)

5. For energy balance at the absorber base:

(
MCp

)
abdTab/dt = τguαglαab Ae f f S + hr,ab−gl(Aab − nAvb)

(
Tab − Tgl

)
− hc,ab−a(Aab − nAvb)(Tab − Ta)− Uab Aab(Tab

−Tam)− Usw Aab(Tab − Tam)− UvbnAab(Tab − Tv)
(13)

6. For energy balance of air inside the chamber:(
MCp

)
adTa/dt = hc,ab−a(Aab − nAvb)(Tab − Ta) + hc,vc−anAv(Tv − Ta)− hc,a−gl Agl

(
Ta − Tgl

)
(14)

4.2. Energy Analysis

The temperature achieved in the solar cooker can be calculated by the above-mentioned
equations. So total energy received by the water kept in the pot of the above sample solar
cooker when the temperature increased from Tw1 to Tw2 is given by [18]:

Eo = mwCpw(Tw2 − Tw1) (15)

The total energy supplied to the water kept inside the SC is given by:

Ei = Hexp A(∆texp) (16)

where Hexp, is the average solar radiation during the experiment and ∆texp is the time
interval of the experiment.

Therefore, the efficiency of SC is described as the ratio of energy gained by water to
the energy supplied to the water, and its formula is given by [25]:

ηE =
Eo

Ei
=

mwCpw(Tw2 − Tw1)

Hexp A
(
∆texp

) (17)

4.3. Exergy Analysis

Exergy is the qualitative aspect of energy, defined by the thermodynamic laws as the
maximum amount of work that can be derived from any thermal system. The efficiency
based on the idea of exergy is the true measure of the thermal performance of the thermal
system [19].
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The thermal exergy (ε) of water kept in the pot of the above sample solar cooker at a
temperature of Tw1 can be given by:

εTw1=mw Cpw (Tw1 − Ta)− Taln
Tw1

Ta
(18)

When the temperature of the water rises from Tw1 to Tw2, the exergy gain (∆εw) can be
given by:

∆εw = ε(Tw2)− ε(Tw1) (19)

Therefore, the exergy output (Θo) from the SC is defined as:

Θo =
mwCpw

[
(Tw2 − Tw1)− Ta In Tw2

Tw1

]
∆t

(20)

The exergy available via the beam and the diffused component of the solar radiation
can be found by superposition and can be expressed as:

Θin = Ib

(
1 − 4Ta

3Ts

)
+ Id

(
1 − 4Ta

3Ts

)
(21)

The exergy input (Θin) to the solar cooker can be expressed as:

Θin = Is

[
1 − 4Ta

3Ts
+

1
3

(
Ta

Ts

)4
]

A (22)

where Ib is the beam solar radiation, Id is the diffused solar radiation, Ts is the surface
temperature of the sun, and Is is the solar radiation.

The exergy efficiency (Ψ) of the SC is described as the ratio of output exergy (due to
the rise in the exergy of water due to a rise in temperature) to the input exergy and given
as [19,30]:

Ψ =
Output exergy (Θo)

Input exergy (Θin)
=

mwCpw

[
(Tw2−Tw1)−Ta In Tw2

Tw1

]
∆t

Is

[
1 − 4Ta

3Ts
+ 1

3

(
Ta
Ts

)4
]

A
(23)

5. Economic Analysis
5.1. Payback Period

The economic analysis of the SC is undertaken in terms of the amount of money it
can save while using the solar cooker in place of the LPG. This saving is then utilized to
calculate the payback period, which is the time taken to recover the initial investment. To
calculate the payback period, the amount of savings is first calculated, which can be given
by the following equation [18]:

SPM = Pr·MLPG·CLPG (24)

Where, SPM is the saving per month, Pr is the percentage of time LPG is used, MLPG
is the mass of LPG consumed per month, and CLPG is the cost of LPG per kg.

Therefore, the payback period (PP) can be found as [31]:

PP =
Total cost o f the cooker

SPM
(25)

5.2. Net Present Value (NPV)

NPV is used to evaluate the viability of any investment in a project. It is the difference
between all the present values of the cash inflow and the cash outflow during a time period.
The positive and large value of NPV is desirable for investment. The greater the value of
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NPV, the more profitable is the project, which can bring more significant returns. The NPV
is given by the following equation [21,32]:

NPV = (Ca,m − CO&M)[
(1 + d)n − 1

d(1 + d)n ] +
Csc

(1 + d)n − Ci,sc (26)

Where Ca,m is the yearly savings, Co,m is the operation and maintenance cost, Csc is the
salvage value of the box-type SC, Ci,sc is the capital cost, d is the discount rate, and n is the
number of years.

5.3. Benefit–Cost Ratio (B–C Ratio)

The B–C ratio is an essential parameter for the financial well-being of a project. The
value of all the benefits from a project in monetary terms should be greater than all the costs
to have a financially viable project. This means that the value of B–C should be greater than
one. The mathematical expression of the B–C ratio can be given by [32]:

B − C =
Ca,m

[
(1+d)n−1
d((1+d)n

]
+ Cs,c

(1+d)n

Co,m

[
(1+d)n−1
d((1+d)n

]
+ Ci,sc

(27)

5.4. Internal Rate of Return (IRR)

IRR is the discount rate at which NPV becomes zero. The higher the value of IRR, the
more attractive is the investment. It is estimated using the following equation [32]

NPV = 0 = (Ca,m − CO&M)[
(1 + IRR)n − 1
IRR(1 + IRR)n ] +

Csc

(1 + IRR)n − Ci,sc (28)

5.5. Levelized Cost of Heat (LCOH)

LCOH is the cost of heat generated by the thermal system, which helps to compare
different thermal technologies for heat and power generation. It depends on locations,
technologies, receivers, and other economic parameters. The LCOH is calculated in $/kWh.
It is given by [25]:

LCOH =
Ci,sc + ∑n

t−1
Co,m

(1+r)t

∑n
t−1

Et
(1+r)t

(29)

where Et is the energy saved.
The energy produced by the solar cooker can be given by the following expression [25]:

Energy produced by the solar cooker
= Solar radiation

(
kWh
m2

)
× aperture area o f the cooker

(
m2)

×e f f iciency o f the solar cooker (%)

(30)

5.6. Levelized Cost of Cooking a Meal (LCCM)

LCCM is a crucial constraint for the economic analysis of a solar cooker. It is a
frequently used model by energy practitioners to assess the different cooking solutions
according to the different accepted metrics. The mathematical expression of the LCCM can
be given by [25,26]:

LCCM =
Ci,sc + ∑n

t−1
Co,m

(1+r)t

∑n
t−1

Mlt
(1+r)t

(31)

where Mlt is the amount of the meal cooked per year.
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6. Environmental Analysis

The environmental analysis of solar cookers can be performed regarding the amount
of CO2 emissions it can inhibit from going into the environment. The CO2 emitted from the
traditional cooking method that uses liquefied petroleum gas (LPG) composed of propane
and butane can be quantified using the following stoichiometric calculation:

C3H8 + 5(O2 + 3 .76 N2) = 3CO2 + 4H2O + 18.8N2

2C4H10 + 13 (O2 + 3.76 N2) = 8CO2 + 10H2O + 48.88N2

The calculation shows that for each 1 kg of propane and butane burnt, 3 kg to 3.0345 kg
of CO2 are released into the environment. To analyze the environmental effect of cooking,
a study was undertaken by Herez et al. [18] to quantify the amount of CO2 generated from
cooking at home, at a snack bar, at a hotel, and in a restaurant. The result of the study is
shown in Table 1. The estimates showed that 60.55, 908.28, 3996.43, and 6055.20 kg CO2 is
generated per month in a typical home, snack bar, hotel, and restaurant, respectively.

Table 1. Quantity of CO2 released into the environment from the LPG. Reprinted/adapted with
permission from Ref. [18], 2018, Elsevier.

Quantity of
LPG

(kg/Month)

Quantity of
Propane

(kg/Month)

Quantity of
Butane

(kg/Month)

Quantity of CO2
Generated from

Propane
(kg/Month)

Quantity of CO2
Generated from

Butane
(kg/Month)

Total Quantity
of CO2 from

LPG
(kg/Month)

Home 20 4 16 12 48.55 60.55
Snack 300 60 240 180 728.28 908.28
Hotel 1320 264 1056 792 3204.43 3996.43

Restaurant 2000 400 1600 1200 4855.20 6055.20

The amount of CO2 that can be reduced using a box-type solar cooker can be calculated
using the following equation [18]:

Qred,CO2=Pr·Qtotal,CO2 (32)

where Qred,CO2 is the quantity of CO2 reduced while using a box-type SC in place of a
conventional LPG, Qtotal,CO2 is the total quantity of CO2 produced (in kg/month) when
using conventional LPG, and Pr is the percentage of the time a solar cooker is used.

Here, it is important to note that 30.27, 454.14, 1998.21, and 3027.6 kg/month of CO2
can be reduced at home, snack bar, hotel, and restaurant if the SC is used 50% of the time.
When the SC is used the whole time, 60.55, 908.28, 3996.43, and 6055.20 kg/month of
CO2, respectively, can be prevented from releasing into the environment. It is important
to note that the fuel used in calculating CO2 reduction is LPG, which is not universal.
Many countries use natural gas as an option, and similar calculations can be shown against
natural gas or any other gas used as fuel to calculate the quantity of reduced CO2.

7. Box-Type Solar Cooker without Thermal Energy Storage

Box-type SC is shaped in the form of a box with insulation in one or multiple layers in
the form of glass covers and side plates, so that with the greenhouse effect, heating can be
generated, and this heat can be used for cooking. Initially, the solar cooker was made of a
simple box with wooden walls and a glass lid, in which the cooking vessel was kept, and
the bottom plate was made of insulating material. Subsequently, as a design improvement,
a reflector with a hinge joint was added to one edge of a wall to reflect solar radiation
and increase the amount of radiated heat on the receiver. Afterward, multiple reflectors
were added to the box to escalate the amount of solar radiation and to enhance direct solar
radiation; a mechanism of movement of the reflector was also added. Further, the number
of reflectors increased from four to six and more in the form of a multi-faced cone which
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can direct more radiation to the vessel. So, development has been done by adding multiple
glass panels and reflectors, starting with the simple box solar cookers. This continuous
improvement in the initial design has been carried out over the years to increase in situ heat
content. A systematic development for improving solar cookers [8] is detailed in Figure 6.
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Figure 6. Pictures of solar cooker developed: (a) Simple box with glazed glass lid and insulated
bottom; (b) Single-reflector box-type solar cooker; (c) Twin-reflector solar cooker; (d) Simple four-
faced-reflector solar cooker; (e) Four-faced-reflector solar cooker with Swinging rack; (f) Multi-faced
conical reflector solar cooker. Reprinted/adapted with permission from [8], 2010, Elsevier.

Harmim et al. [16] experimented with a box-type SC by mounting fins for heat transfer
and compared the difference between experiments with and without fins. The main
reason for this study was to explore the possibility of reducing cooking time by a simple
modification and changing the geometry of the box design. The use of fins noticed more
heat transfer, and it was found that the base plate equipped with fins had a stagnation
temperature of more than 7% as compared to the ordinary base plate. Using fins reduced
the time taken to boil sample water, and the same water boiled in less time (by 12%) for the
case with fins as compared to the case without fins. So, it was observed that fins played
a significant role in heat transfer for box cookers, and accordingly, it was recommended
for future designs. The sketch of the experiment and pictures of the actual set-up and the
finned plate is shown in Figure 7.

Harmim et al. [33] designed a box-type SC with an asymmetric parabolic concentrator
with two opposite surfaces to focus solar energy directly on the box. The experiment set
picture is enclosed in Figure 8. Based on the thermal simulation analysis, it was found that
evening cooking can also be conducted with this CPC setup, and the same was validated
by the study of the cooker performance, rated using the first and the second figures of
merit. The solar cooker design had insulation on the double-glazed box walls, and the two
reflectors were placed so that all the sunlight was directed to a transparent glass beside
which a plate for heat absorption was placed.

Harmim et al. [34] developed a novel SC that could be installed into a building along
with the reflectors and did not need sun-tracking. The design was constructed using in-
house items detailed in Figure 9. Various tests were conducted without any load during
extreme seasons, and the temperature achieved was 166 ◦C and 165 ◦C in the summer and
winter seasons, respectively. Furthermore, the temperature reached without a reflector was
127.7 ◦C during winter. The power rating noted during the experiment was 78.9 W.
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Misra and Aseri [35] used convection in heating the box-type solar cooker vide an
experiment in which a fan was placed in situ with the pot. The experiment results bestowed
that there was a significant improvement in the thermal performance of box-type SC by
applying the convention. Further, there was also a considerable reduction in the cooking
time, about 30.6%.

Folaranmi [36] made an SC with double glazing along with a reflector. The box-type
SC used for the experiment had an aluminum absorber plate painted matt black. The
bottom and sides were covered with fiberglass and insulated with wool with a 50 mm
thickness and a value of k as 0.052 W/m◦C. As a result of the experiment, it was evident
that a non-tracking solar concentrator could give efficient heating for cooking by improving
upon significant heat collection.
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A long-term experiment was conducted by Soria-Verdugo [37] in various countries.
A calculation of convective coefficients for various components of the solar cooker was
made via a heat transfer model. The solar cooker was used at various locations in different
countries, and the number of days when the temperature was more than 100 ◦C was
summed up for analysis. Further, a calculation for the amount of wood saved by the use of
this setup was done. Based on the outcome of experimental data, it was evident that as an
alternative to wood, solar radiation-based cooking had a high perspective, especially for
developing countries.

Mahavar et al. [38], in 2015, developed a lightweight, small size, convenient design,
budget polymeric glaze single-family solar cooker (SFSC) weighing only 0.8 kg (Figure 10).
The cooker was tested under different conditions around the year on different days, and
specific performance parameters were calculated. The values of the first and the second
figures of merit indicated that SC could provide afternoon and evening cooking on the
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same sunny day. The standard parameters for assessing a solar cooker, such as cooking
power at various temperature differences and coefficient of heat loss, were compared with
many benchmark models, and the value was found to be better. Year-long good solar
cooker performance was achieved by cooking several food items around the year. Based
on the study, such a glazed solar cooker could be recommended for cooking consecutive
meals on sunny days for a small family of two people.
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Saxena and Agarwal [39] developed a unique new box cooker (Figure 11) integrated
with a trapezoidal duct and convective heating. The purpose was to augment the rate
of heat transmission and to reduce the cooking time and efficient heat utilization in an
environment of low ambient heat conditions. Convective heating was done through a
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200 W halogen lamp attached at one end of the trapezoidal duct, and a forced convection air
heating was given by a 10 W fan placed at the small cross-sectional end of the trapezoidal
duct. Further, numerous small hollow balls of copper were placed inside the chamber,
where hot air was blown, and sunlight was focused on the heating. These hollow copper
balls became heated and helped to enhance heat transfer, thereby improving thermal
performance. Tests were conducted to calculate the standard parameters of performance of
any SC, such as thermal efficiency, figures of merit (F1 and F2), etc., and encouraging results
were found. The use of a concentrator along with a solar cooker gave thermal efficiency of
45.11%, which is better than SC without a concentrator.
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Kolhe et al. [40] experimented with an octagonal box-type SC based on focusing sun-
rays on the vessels directly with eight reflecting surfaces. The edges of the mirror form an
octagonal (Figure 12) whose length was calculated through trigonometric computation,
and, accordingly, the area of the bottom octagon was achieved. The basic reflection princi-
ples were used for calculating the angle for collecting the maximum amount of sun rays.
Many experiments were done for calculating various thermodynamic analyses, and the
parameters calculated were as follows: the first figure of merit as 0.3027; the second figure
of merit as 0.607; the power of cooking as 19.767 W., and efficiency as 38.36%. An octagonal
design was used to achieve more heat in the focused area concerning simple SC developed
to date. With more reformed octagonal SC, an increase in cooking power of 23.52% and an
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increase in efficiency of 26.55% were achieved. Further, the heating rate achieved by this
geometric modification was higher than in old conventional designs.
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Engoor et al. [41] did a comparison study using a Fresnel lens magnifier (Figure 13) and
calculated the difference in power enhancement for the magnifier cases with and without a
lens, respectively. With the Fresnel lens, there was an increase in cooking power noticed
from 43.83 W to 46.87 W, against a temperature difference of 50 ◦C. Overall parameters
were found to improve with magnifiers, such as concentration, the ratio increased by 48.7%,
and energy efficiency increased from 29.6% to 32.4%. So, it was concluded that the Fresnel
lens magnifier could increase the overall efficiency of a typical SC.

Khallaf et al. [42], in 2020, developed a novel design SC (Figure 14) named Quonset so-
lar cooker (QSC). The cooker body was configured with internal reflectors in two chambers
for double cooking. The overall perspective of designing QSC was to design and fabricate
an SC for use in low and intermediate-temperature cooking, and accordingly, thermal anal-
ysis was also carried out. Further, a mathematical model was offered to validate thermal
analysis through parametric analysis. A proper agreement between the experiment and
the mathematical model was achieved, based on which it was submitted that Quonset SC
could be used for cooking successively during the day. It was found that Quonset solar
cooker with water gave 6–35% efficiency and with glycerin 9–92% efficiency.
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Hoigebazar and Valder [43] made a compound parabolic solar concentrator (CPC)
(Figure 15) that focuses maximum sun rays on the subject pot till the incoming ray angle
lies within the range of the acceptance angle of the CPC. The sole purpose of using CPC
was to accumulate the distributed solar radiation energy and focus it on the receiver. Two
configurations of the CPC were made, first, with a front area of 0.429 m2, and second, with
a front area of 0.385 m2 against the same receiver area. The performance of the first CPC
was found to be better for the same content. However, the comprehensive study concluded
that the performance of SC with CPC was better than those without CPC.
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Terres et al. [44] studied the use of multiple reflectors on a box-type SC and demon-
strated the cases by varying the angular position of the reflectors in experiments. About
five reflectors were used for the experiment. The high value of the temperature was found
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when the angle of reflectors was inclined at 40◦, 50◦, 60◦, 70◦, and 81◦, with the highest
temperatures reaching 98.1 ◦C at an 81◦ inclination angle. Further, the low temperature
was reported at reflector angles of 13◦, 18◦, 21◦, 24◦, and 30◦, with the highest temperature
value of 83.9 ◦C.

Vengadesan and Senthil [45] conducted different experiments to check the outcome of
using fins on thermal transmission in solar cooking. Four types of covers, including those
with or without fins (lengths 25 mm, 35 mm, and 45 mm fixed on covers for conducting
tests, as shown in Figure 16), were used in the experiment. Water was used as the subject,
and its peak temperature and time of reaching the highest temperature were checked. With
a configuration of the fin height of 45 mm, the highest water temperature was noticed as
102 ◦C and the time duration for reaching a boiling point was 2 h and 17 min. Further, solar
cookers with fins had a higher thermal performance due to increased heat transfer surface
area than the conventional ones.
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8. Box-Type Solar Cooker with Thermal Energy Storage Concept

Sharma et al. [46] reviewed various types of PCM used in various solar cooker de-
signs. Starting from using sand by Ramadan et al. [47] with a small coat of salt hydrate
Ba(OH)2. 8H2O in an SC design to obtaining an overall energy conversion of 28.4% with
pentaerythritol. Bushnell [48] achieved significant improvement with solid–solid transition
employed for energy storage compared to solid–liquid transition. In an experiment, a
non-TES system was compared to a system with PCM as pentaerythritol by Bushnell and
Sohi [49]. This experiment was conceived for studying thermal energy retention periods,
cooking extraction intervals, time duration, and efficiency. In another study, the feasibility
of cooking with PCM during non-sunshine hours was tested experimentally with stearic
acid (SA) magnesium nitrate hexahydrate (MNHH) by Domanski et al. [50]. The author
discovered that the amount of the cooking medium, solar irradiation, and thermal–physical
parameters of the phase change material affect cooker performance.

Buddhi and Sahoo [51] used stearic acid (commercial grade) in box-type SC and
discovered it was many times more efficient than steam and heat-pipe SC. The results
suggested that the application of PCM as a latent heat storage medium in solar cookers
under India’s composite climatic conditions is possible and that meals may be cooked even
in the evening.

Belghit et al. [52] used acetamide (commercial grade) in a double-glazed box-type SC,
where the PCM container was welded with eight fins to increase the heat transmission
rate. It was found that three batches of food were cooked per day in the summer and two
batches per day in the winter, respectively. As per the study, it was assessed that solar
energy storage had no effect on the performance of SC for midday cooking.

Buddhi et al. [53] used acetanilide (commercial grade) with a double-glazed box-type
SC with an opening area of 50 cm × 50 cm and a depth of 19 cm in an experimental study.
In this study, PCM, Acetanilide (2.0 kg), was stored below the absorbing plate so that even
if food ingredients were added late by 15.30 h, the second batch of food would be cooked
with the same stored heat, even during the winter season. The test findings have shown
that late-evening cooking was achievable in an SC with three reflectors. Further cooking
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experiments with 4.0 kg of PCM in two concentric aluminum chambers (Figure 17) with
three reflectors in the storage unit were successful for evening cooking till 08:00 p.m.
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There is a lot of research wherein the performance of the box SC was investigated
under various operational and environmental settings. With Erythritol [54–56] as part
of these studies, it was found that midday cooking had little effect on cooking during
off-sunshine hours, while evening cooking with PCM as TES, was discovered to be quicker
as compared to midday cooking. These studies and experiments revealed that, despite
poor heat transfer, the prototype solar cookers performed satisfactorily in the existing
arrangement, and the enhanced design of the heat exchanger in the TES storage unit would
improve the thermal transmission rate.

Geddam et al. [57] conducted theoretical research with numerical calculations on
PCM, such as magnesium nitrate hexahydrate, stearic acid, acetamide, acetanilide, and
erythritol, for TES for box-type SC. In the numerical calculation of the heat exchanger
container, several materials, such as copper, glass, stainless steel, aluminum, tin, and
mixed aluminum, were considered. During the phase change process, the boundary wall
temperature significantly impacted the melt fraction, which was not greatly affected by the
initial PCM temperature. With varied heat exchanger container materials, stearic acid and
acetamide were found suitable as PCM in a box-type SC for the preparation of food and
keeping meals hot till late evening.

Yuksel et al. [55] used paraffin wax in a double-glazed box-type SC (Figure 18). In
that experiment, 3.5 kg of paraffin wax was filled in the space clawed between aluminum
plates and metal shavings. The reflector boosted thermal performance to roughly 18.35%.
Metal shavings were capable of distributing heat evenly throughout the paraffin wax. The
paraffin got a maximum temperature of 75.1 ◦C to 80.5 ◦C during the testing. The intended
usable thermal efficiency of the SC ranged from 30.10% to 40%.

Tarwidi et al. [58] made mathematical modeling of the fourth numerical simulation
of PCMs, such as erythritol, magnesium nitrate hexahydrate (MNHH), and magnesium
chloride hexahydrate (MCHH), with SC with a solar heat collector. Godunov process was
used in simulating the thermal evaluation of said PCMs. The solar thermal energy storage
capacity of magnesium chloride hexahydrate was the greatest. Erythritol had maximum
temperature history through the charging and the initial 54 min of discharge. After the
charging time was through, erythritol as a heat storage medium was only suitable for a brief
time; however, magnesium chloride hexahydrate was used for the late-evening cooking.
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Geddam et al. [57] used paraffin with box-type SC (with double exposure) having an
area of 0.1344 m2 with the aid of PCM medium in which meals prepared were maintained
hot for 3–4 h. Various parameters, such as optical efficiency and heat capacity, which qualify
a material for its construction, were discussed. Paraffin use as PCM material significantly
improved as cooking time was consistently reduced when the box-type SC was used in
conjunction with a finned cooking vessel.

Nayak et al. [59] used acetanilide and stearic acid SC with an evacuated tube solar
collector (area 84 cm × 58 cm and height 58 cm) supplying a PCM storage unit in a closed-
loop water line. PCM storage unit, stainless steel heat exchanger, cooking vessel, and the
SC were found to cook effectively in the evenings till 7:30 p.m. At 3 p.m., the temperature
of the PCM material had risen to above 120 ◦C, which was enough to cook the meal in
the evening. From a performance standpoint, acetanilide would be preferred over stearic
acid. With acetanilide as a PCM, a 30% cooker efficiency and 60 to 65% collector efficiency
were reported.

Sharma and Rai [60] conducted an experimental study with magnesium nitrate hex-
ahydrate in a box-type SC with two models. In both models, the same plate of surface area
(0.75 m × 0.75 m) was used for absorption, which consists of galvanized iron sheet painted
black, thereby increasing the capability toward the absorption of incoming solar radiation.
Due to the space minimization and thermal inertial effect, the energy efficiency of Model II
with fins attached was determined to be 439% higher than that of Model I, which was a
simple cooking pot without fins. For Model II, the highest efficiency value was 70%, which
was recorded at 12:30.

Further oxalic acid dehydrates were also used by Vigneswaran et al. [61] in direct
box-type SC (Figure 19) with four reflectors. An experiment for cooking in a double-glazed,
glass-covered solar cooker was conducted. As per energy requirements, the oxalic acid
PCM required for cooking half a kg of rice was 2.9 kg. PCM storage unit consisted of
two hollow concentric chambers designed from aluminum with diameters of 25.5 cm and
17.5 cm. The cooking research findings revealed that chosen PCM could deliver thermal
energy effectively, with a discharge efficiency of 57%.
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Hebbar et al. [62] used magnesium nitrate hexahydrate for designing an evacuated
tube-powered SC in which a cooking pot was arranged in two concentric hollow cylinders
of stainless steel, and the gap of the cylinder was packed with heat-transfer fluid (HTF).
The HTF was heated directly in sunlight, and hot fluid would arise via a thermo-siphon
cycle. This study focused only on the design and fabrication of an evacuated tube-based
SC with a working fluid and PCM-based TES material.

Cocia et al. [63], in experimental validation, used a high-concentration ratio (10.78)
SC, based (Figure 20) on a parabolic trough with Salt (53 wt.% KNO3, 40 wt.% NaNO2,
7 wt.% NaNO3) in the range of 170–130 ◦C, placed in annular space between the pots. Four
different test sets were conducted for a total of 14 tests in the heating and cooling phase,
wherein thermal stabilization was found to improve with PCM significantly when sunrays
were absent. Additionally, in the case when PCM was used, cooling took more time, about
65.12% to 107.98% higher compared to a case without PCM.
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Coccia et al. [64] used erythritol (commercial grade-2.5 kg) in an SC experimental
study using a portable box-type SC (Figure 21) with a 4.08 concentration ratio and thermal
energy storage based on said PCM. When the solar source was unavailable or inconsistent,
the inclusion of the erythritol-based thermal energy storage helped to stabilize and prolong
the usage of portable box-type SC. Testing was carried out in four different cases: the
first was a case without load, the second was when water was used, then silicone oil, and
finally, with silicone oil inserted in the erythritol-based TES. With 0.7 multi-fiber boards
and 0.6 mm stainless steel side walls, the cooker was mounted on a wooden base with a
rotatable zenith mechanism. The SC area was 0.681 m2, and the receiver glass area was
0.167 m2, so the concentration ratio was 4.08. For the temperature range 125–100 ◦C, the
average subject-cooling time was 351.16% longer than without the TES solution.
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Bhandari et al. [65] used benzoic acid, paraffin wax, and magnesium nitrate hexahy-
drates in hybrid SC with PV technology, and in evening hours as an energy storage medium,
benzoic acid has the best thermal performance. Regarding the case without PCM, the aver-
age thermal efficiency for a hybrid PV cooking system using PCM was approximately 60%,
which comes out to be 7–10 times more. Further, the hybrid SC may be used for cooking
even when the sun is not shining.

Mwaura and Thoruwa [66] used acetanilide with a double reflector SC with length to
depth ratio of 4:1, and the test was conducted three times: first, without loading the cooking
pot of the cooker, second, with water as the cooking load, and third, with different actual
cooking loads in the experimental study. The two pots with and without PCM attained
an average stagnation temperature of 85.9 ± 24.0 ◦C and 82.7 ± 24.3 ◦C, respectively. A
coefficient of performance of 0.754 was attained in the cooking power testing. The findings
revealed that the double reflector SC (Figure 22) with energy storage could prepare meals
during the day and evening. Evening cooking was found unaffected by noon cooking.
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Reprinted/adapted with permission from Ref. [66], 2019, Jomo Kenyatta University of Agriculture
and Technology.

Milikias et al. [67] designed a better-quality box-type SC equipped with sensible
heat storage. The designed SC was constructed so that it could use only 20% less inner
surface area than another simple SC with a similar sunray capture area. The experiment
was conducted under both stagnation and loaded condition. When compared with the
conventional SC, the F1 result with a conventional kind of setup was only 0.115, while it
was 0.1349 with black stone as TES, 0.1238 with concrete, and 0.1453 without any TES with
improved structure. The obtained value for F1 with improved structure was in accordance
with the Indian standard and was categorized as grade A because it was more significant
than 0.12.

Unger et al. [68] thoroughly reviewed the insulated solar electric cooker use, the
current usage of PCM in various industrial and household applications, and its relevant
patents, various design concepts with various PCMs, their alternatives, and validation
modeling. They specifically used erythritol in the insulated solar electrical cooker, where
1 l of water was boiled for 20 min using the solar electric cooker. The use of PCM-led SC
retains heat for more than 4 h.

Yuksel et al. [55] designed a novel box-type SC incorporating paraffin wax with metal
shavings as TES material suitable for both daylight and late-evening cooking. The diagram
of this SC is shown in Figure 23. The experiment was conducted in June and July. The
experiment was performed at different reflector angles to assess the thermal efficiencies
under various conditions. The results revealed that 30◦ was a suitable reflector angle. The
thermal efficiency was enhanced by 18.35% by the use of reflectors. The temperature of
the paraffin reached between 75.1 ◦C and 80.5 ◦C. The heating time was also reduced by
about 1 h. The effectiveness of the paraffin as PCM can be assessed in terms of the high
temperature reached and reduced cooking time.
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Various PCMs studied in different experiments have been compiled as a table and
placed with proper reference, wherein properties have been mentioned against the PCMs
presented in Table 2.

Table 2. Thermophysical properties of the PCMs.

Sl. No. Phase Change Material (PCM) Melting Temp
(◦C)

Latent Heat of
Fusion (kJ/kg)

Specific Heat
Capacity J/kg.k Reference

1 Acetanilide 118.9 222 - [46]

2 Stearic Acid 89 162.8 1.84 [50]

3 Magnesium Nitrate Hexahydrate 82 263 1.94 [51]

4 Acetamide 56–60 189 2.95 [53]

5 Paraffin Wax 67–69 202.5 2.8 [55]

6
Ternary mixture of nitrite and nitrate

salts (solar salt: 53 wt% KNO3, 40 wt%
NaNO2, 7 wt% NaNO3)

145.14 101.5 1.4 [63]
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Table 2. Cont.

Sl. No. Phase Change Material (PCM) Melting Temp
(◦C)

Latent Heat of
Fusion (kJ/kg)

Specific Heat
Capacity J/kg.k Reference

7 Coconut Oil 22 to 26 114.6 2.1 [69]

8 Magnesium chloride hexa-
hydrate (MgCl2 6H2O) 115–117 165–169 - [70]

9 Capric Acid 30.1 150–158 -

10 Lauric Acid 41–43 212 -

11 Pentadecane Acid 52.5 159 -

12 Palmitic Acid 59.9 198 -

13 Myristic Acid 53.8 192 -

14 Stearic Acid 55.1 160 -

15 Erythritol 118 340 -

Various studies and models have been made for the optimum selection of PCM for an
SC along with energy and exergy [71] analysis. The multi-criteria decision-making model
has been made with techniques such as TOPSIS, EDAS, and MOOR [72]. The result of one
study has been mentioned here in Table 3, wherein the MOORA technique has been used,
and erythritol has been found to be the first preference for PCM.

Table 3. Ranking of PCMs using the MOORA method with different criteria weights.
Reprinted/adapted with permission from Ref. [72], 2021, Elsevier.

AHP-MOORA ENTROPY-MOORA CRITIC-MOORA COMPROMISED
WEIGHS (Wj)—MOORA

NAV Rank NAV Rank NAV Rank NAV Rank

Acetanilide 0.372 4 0.319 4 0.283 4 0.364 3

Erythritol 0.51 1 0.441 1 0.342 1 0.529 1

Paraffin wax 0.266 5 0.269 5 0.276 5 0.246 5

MgCl.6H2O 0.392 3 0.329 3 0.285 3 0.352 4

Oxalic acid
di-hydrate 0.509 2 0.381 2 0.299 2 0.521 2

The benefits associated with box-type SC are a simple design, flexibility in construction,
and low monitoring requirement during the cooking period. Due to the strong and simple
construction, the box-type SC is stable and has low maintenance costs. Further, this SC
can also be easily transported from one place to another. Besides cooking food, it can
also be used for keeping meals warm during off-sunshine hours. Simple box-type solar
cookers do not pose risks of fire and burns, and no high glares are generally produced
during operation. However, there are disadvantages: slow cooking rate due to low in situ
temperature and intermittent sunshine may lead to partial cooking of food which may get
wasted, as it cannot be kept for long. Even by adding reflectors and booster mirrors to the
box-type SC, there is not much appreciation in the concentration ratio. Box-type SC has a
concentration ratio of 10 with a low temperature of up to 100 ◦C.
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9. Results and Findings

The performance parameter of various papers studied as part of work with many
design modifications and with PCM has been tabulated in Table 4 below. The value of
the parameters presented are as follows: the first figure of merit (F1); the second figure of
merit (F2), stagnation temperature; standardized cooking power; energy efficiency; cost or
affecting environmental parameter. Because all the parameters have not been provided in
each study, only the mentioned parameters have been presented. Based on the analysis, the
key findings have been mentioned as follows:

• It can be seen from the data presented that, in general, the solar cooker with a different
type of design improvements has a value of F1 near 0.12 m2 ◦C/W and successfully
meets the BIS standard for cooking food in the given conditions.

• The value of F2 achieved in general for all the cases mentioned in Table 4 for 1 kg of
water is from 0.33–0.47, which meets the BIS criteria.

• The stagnant temperature above 100 ◦C has been achieved for most cases, which
shows that solar cooking can be achieved with the design proposed.

• The effect on the environment has been calculated by the amount of wood saved per
year for the number of days when the cooking is done with a solar cooker.

Table 4. Performance Parameters; Energy efficiency; Cost of various solar cookers.

Sl
No. Year Location Author First Figure

of Merit (F1)

Second
Figure of
Merit (F2)

Stagnation
Temperature

Standardized
Cooking

Power

Energy
Efficiency Cost

Environmental
Effecting
Parameter

1 2010 Algeria Harmim
et al. [16] - - 140 ◦C - - - -

2 2012 Algeria Harmim
et al. [33]

0.1681 m2

◦C/W
0.329 at 1 kg

of water 140.5 ◦C - - - -

3 2012 India Misra et al.
[35]

0.1424 m2

◦C/W
0.4077 at 1 kg

of water - - - -

4 2013 Algeria Harmima
et al. [34]

0.152 m2

◦C/W

0.47 at 3.5 kg
of water
without
reflector

with reflector
maximum

absorber-plate
temperature

166 ◦C

78.9 W - - -

5 2013 Nigeria Folaranmi
et al. [36]

0.1135 m2

◦C/W
0.3172 for

2 kg of water 119 ◦C - - - -

6 2015 Spain Soria et al.
[37] - - -

480 kg wood
saved for

328 cooking
days

7 2015 India Mahavara
et al. [38]

0.116 m2

◦C/W
0.466 at 1 kg

of water

for bare plate
without

reflectors
144 ◦C

29.8 W Rs 1385
per unit -

8 2018 India Saxena
et al. [39]

0.12 m2

◦C/W

0.41 m2

◦C/W at
1.2 kg of

water

- 60.20 W
thermal

efficiency—
45.11%

- -

9 2020 Egypt Khallaf
et al. [42] 0.0657 m2/W

0.085 to 0.76
for the mass

of water from
0.5 kg to

4.0 kg

113.6 ◦C - - - -

10 2021 India Vengadesan
et al. [45] - -

102 ◦C for a fin
with max

height
- 56.03% - -

11 2021 Egypt Tawfik
et al. [25]

0.12 m2

◦C/W - 100 ◦C -

overall
cooking

efficiency
12.5%

reduce the
LCOH and
LCMM by

~44.1% and
~18%, re-
spectively

-

12 2017 Tunisia Guidara
et al. [27]

0.14 m2

◦C/W 0.39 133.6 ◦C - - - -
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10. Conclusions

This paper has reviewed the latest development and design improvements in the
box-type SCs using various mechanical modifications, add-on reflectors, and transparent
insulating materials in the experiments conducted over recent years. Various heat equations
and the existing method of calculating costs, such as payback period (PP), net present
value (NPV), benefit–cost (B–C) ratios, internal rate of return (IRR), levelized cost of heat
(LCOH), levelized cost of cooking a meal (LCCM) along with energy efficiency, exergy,
and environmental effect, have been explained with a case of sample solar cooker. Various
PCMs have been studied, and a multi-criteria decision-making model for choosing and
optimizing PCM has been elaborated. The results of various studies and their findings have
also been briefed discreetly. It can be stated that with the help of the design improvements
and latest developments mentioned in the paper, the comprehensive design for a solar
cooker can be made and analyzed, and its performance can be simulated beforehand to
meet the end use. It has been established vide research work that solar energy stored in a
thermal energy storage system can be efficiently utilized for cooking during off-sunshine
hours. Further incorporation of better government policies can bring social acceptance of
this green and clean energy usage for its widespread percolation. The realization of SDG 7
and SGD 13 of the United Nations Mandate can be accomplished using solar energy most
efficiently and cost-effectively.
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Nomenclature

Aeff Effective aperture area of the solar cooker Agu Aperture area of upper glass
Ca,m Cost of yearly savings Agl Aperture area of lower glass
Clpg Cost of LPG per kg Av Aperture area of vessel
Co,m Operation and maintenance cost Amr Aperture area of mirror
Csc Salvage value of the box-type solar cooker Aab Area of absorber plate
Ci,sc Capital cost Avb Area of vessel base
d Discount rate αab Absorptivity of solar radiation on absorber plate
Fmr View factor which is taken unity in this case αv Absorptivity of solar radiation on vessel/pot
Et Energy saved αgu Absorptivity of solar radiation on upper glass
hc.gu-am Convective heat transfer coefficient of upper αgl Absorptivity of solar radiation on lower glass

glass to ambient
hr.gu-sky Radiative heat transfer coefficient glass upper hc.v-f Convective heat transfer coefficient vessel to fluid

to outside air
hr.gl-gu Radiative heat transfer coefficient glass lower hr.vc-gl Radiative heat transfer coefficient vessel to lower glass

to upper
Θo Exergy output hc.vc-a Convective heat transfer coefficient vessel to air in SC
H exp Average solar radiation exposed hc.a-gl Convective heat transfer coefficient ambient to

lower glass
H Solar radiation hc.ab-a Convective heat transfer coefficient ambient to air in SC
HCpw Specific heat of water hc.ab-gl Convective heat transfer coefficient ambient to

lower glass
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h Heat transfer coefficient hc.gl-gu Convective heat transfer coefficient lower to upper glass
Id Diffused solar radiation hr.ab-gl Radiative heat transfer coefficient ambient to lower glass
Is Solar radiation MCp Heat capacity of upper glass
IG Solar radiation on glass Qr,gl-gu Radiative heat from lower to upper glass
Ib Beam Solar radiation Qc, gl-gu Convective heat from lower to upper glass
Mlpg Mass of LPG consumed per month Qc,v-a Heat convective vessel to air in solar cooker
Mlt Meals cooked per year Qsw Heat from side wall
n Number of vessels (01 in this sample case) Qv Heat from vessel/pot
Qf Heat from fluid in vessel/Pot Qred CO2 Quantity of CO2 reduced while using a box-type SC in

place of a conventional LPG,
η Optical efficiency Qam Ambient heat
ε Thermal exergy Qgl Heat on glass lower surface
Qgu Heat on upper surface of glass Qtotal CO2 Total quantity of CO2 produced (in kg/month)

conventional LPG
Pr Percentage of the time a solar cooker is used Qab Heat at absorber base
Tsky Temperature outside SC Qc,gu-am Convective heat from lower glass to ambient air
Tab Stagnation temperature of the absorber plate Qsw-am Heat from side wall to ambient air
Tv Temperature of vessel/pot Qab-am Heat from absorber to ambient air
Tam Ambient temperature Qr,gu-sky Radiative heat from lower glass to sky
Tw1 Lower level of water temperature Qc, gu-sky Convective heat from lower glass to sky
Tw2 Upper level of water temperature (Qc+ Qr)gl-gu Heat convective and radiative from lower to

upper glass
t Time interval when the temperature of Qc, ab-a Convective heat from ambient to air

water rises from Tw1 to Tw2,
texp Time interval of the experiment Qu Heat from absorber plate to vessel
Ts Surface temperature of the sun Qc,v-f Convective heat from vessel to fluid
Ta Temperature of air inside solar cooker Qc, a-gl Convective heat from ambient to lower glass
Tf Temperature of fluid Qr,v-gl Radiative heat from vessel to lower glass
Tgu Temperature of upper surface of glass Qr,ab-gl Radiative heat from ambient to lower glass
Tgl Temperature of lower surface of glass Ψ exergy efficiency
ULs Heat loss factor S Solar flux
Uvb Heat loss by vessel base τgl Transmissivity of lower glass
Usw Heat loss by side wall τgu Transmissivity of upper glass
Uab Heat loss by vessel base Φ Angle of incident from mirror to upper glass cover
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