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Abstract: In this study, we investigate the crystal structure, magnetic, and magnetocaloric effect
properties in the intermetallic compounds SmNi3−xFex using a phenomenological model based on
Landau mean-field theory and Maxwell relation (conventional method). SmNi3−xFex compounds
were prepared under high pure argon by arc melting. To minimize the amount of other possible
impurity phases, the ingots were heat-treated at 1073 K for seven days. X-ray diffraction (XRD) under
and without an applied magnetic field was used for the structural study. Rietveld analysis with
FullProf computer code was used to analyze X-ray diffraction data. The magnetization against tem-
perature was measured under several applied magnetic fields. After the partial substitutions of nickel
atom with iron one, we notice an increase of cell parameters. In addition, Curie temperature value
increases significantly with the increase of iron content. According to the Landau model, SmNi3−xFex

compounds exhibit a second-order magnetic phase transition. The magnetic entropy change was
determined with theoretical and experimental methods. Finally, a comparison between theoretical
magnetic entropy change and the experimental show an agreement between the two methods.

Keywords: intermetallic rare-earth transition-metal compounds; phase transitions; phenomenologi-
cal model

1. Introduction

Intermetallic compounds present very interesting structural and magnetic properties.
As a result, they have been used in many different technological applications [1]. Inter-
metallic compounds are intensively studied; they are studied for hydrogen absorption [2,3],
for their thermomagnetic properties [4,5], for their magnetocaloric effect [6–10,10–17], and
for their critical behavior around ferromagnetic to paramagnetic phase transition [18,19].
The SmNi3 compound is a compound with very interesting structural and magnetic prop-
erties. This is due to the fact that the atomic environments of the Sm and Ni atoms are very
different and not equivalent [20]. In RNi3 intermetallics, the different exchange interactions
do not have the same importance in determining the Curie temperature. We can consider
that the Curie temperature’s only contribution is the exchange interaction between the
magnetic moments of the 3d–3d sublattice. A low Curie temperature characterizes the
SmNi3 compound. This is mainly due to the low magnetic moment of the Ni atom and
short Ni–Ni interatomic distances between the atoms at the 6c–18h and 18h–18h sites that
lead to negative Ni–Ni interactions. Entropy is a measure of order in the magnetocaloric
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system. The magnetic entropy ∆SM variation is evaluated by the magnetic measurement
method, and this method is directly related to the magnetization isotherms as a function
of the applied magnetic field for different temperatures. It is possible to obtain the value
of ∆SM, at different fields and temperatures, after numerical integration of Maxwell’s
relation [21]. The magnetocaloric effect (MCE) in various magnetic materials has been
extensively investigated experimentally and also theoretically, not only because of their
potential applications for active magnetic refrigeration but also for understanding the
fundamental properties of these materials. The experimental study of the magnetocaloric
effect requires the measurement of the magnetization as a function of the magnetic field
for several temperatures around the magnetic transition while respecting the adiabatic
condition of the magnetic field variation, so this measurement is very time-consuming and
energetically costly. In this work, we have determined, theoretically and experimentally,
the magnetic and magnetocaloric properties of two intermetallic compounds, SmNi3 and
SmNi2.2Fe0.8, for several magnetic field values. For the theoretical method, one measure
of magnetization at low magnetic field is necessary to calculate the magnetic entropy
change for a given magnetic field variation. Finally, a comparison is made between the
two methods.

2. Experiments

SmNi3 and SmNi2.2Fe0.8 were prepared from high-purity elements samarium 99.98%,
nickel 99.9%, and iron 99.9% by arc-melting technique under a purified argon atmosphere.
The elements were placed in a copper crucible cooled by cold water. After ingot formation,
the compound was wrapped into tantalum foil and introduced into a silica tube sealed
under secondary vacuum 2× 10−6 bar [22,23]. The ingot was heat-treated for seven days at
1073 K and finally water quenched [24,25]. Phase analysis was performed by X-ray powder
diffraction (XRD), using a D8 Brucker diffractometer with Cu Kα radiation λ = 1.54178 Å.
XRD data of the samples were collected between 20◦ and 80◦ at room temperature with
0.015 step width.

XRD diagrams are analyzed with the Rietveld method [26,27] using the Fullprof
program [28,29]. A Physical Properties Measurement System (PPMS) magnetometer was
used for measurements at low temperatures. Isotherms were collected at an interval of
2 K around TC with an applied magnetic field up to 5 T. To obtain the internal field Hint,
the external applied magnetic field Hext was corrected for the demagnetization effect using
Hint = Hext − Nd M(T, Hext). Demagnetization constant Nd was determined from M vs.
Hext curve in low field region following the method given in Reference [30].

3. Results and Discussion
3.1. Structure and Magnetic Properties

The structure of SmNi3 can be described by an alternating stacking of hexagonal blocks
of SmNi5 type and cubic blocks of SmNi2 type along the hexagonal axis. For the same
composition, two structure types are possible: the hexagonal structure (H) of space group
P63/mmc or the rhombohedral structure (R) of space group R3̄m. In the rhombohedral
structure of SmNi3−xFex, Sm atoms occupy two crystallographic sites, 3a and 6c, while Ni
atoms occupy three non-equivalent sites: 3b, 6c, and 18h. Therefore, the iron atoms were
placed to share the different Ni sites: 3b, 6c, and 18h. Figure 1 shows the Rietveld refinement
pattern of SmNi3 compound XRD. The Rietveld refinement of the diffractograms obtained
by X-ray diffraction for SmNi3−xFex (x = 0, 0.4, and 0.8) shows that the cell parameters a
and c increase when the concentration of iron increases. Consequently, the cell volume
increases Figure 2, and, obviously, the interatomic distances increase; the increase of the
interatomic distances has a significant effect on the value of the Curie temperature; this
effect will be discussed in the magnetic results.
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Figure 1. The Rietveld refinement pattern of SmNi3 compound XRD. The red and black lines present,
respectively, the calculated intensities and the experimental intensities. The green vertical bars
correspond to (hkl) line positions (positions of Bragg peaks). The blue line shows the difference
between the calculated and experimental intensities.
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Figure 2. Cell parameter a(Å) (black y-axis), c(Å) (red y-axis), c/a (green y-axis), and V(Å3) (blue
y-axis) of SmNi3−xFex plotted against iron content.

The SmNi3−xFex compounds have a significant uniaxial magnetocrystalline anisotropy;
it results from the anisotropies provided by Sm. Figure 3 shows the comparison between
X-ray diffractograms of free and oriented powder measured at 300 K on SmNi3−xFex
(x = 0, 0.8). The XRD obtained on oriented powders shows some reticular planes disap-
pearance and the reinforcement of indexed Bragg peaks (00l) compared to the diagram
measured on free powder; thus, the axis of easy magnetization at room temperature is the
c-axis. This anisotropy is clearly shown by strengthening the Bragg peaks of type (00l).
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Figure 3. X-ray diffraction of free and oriented powder for SmNi2.2Fe0.8 compound.

In the case of an R-T intermetallic compound, there are three types of exchange
interactions: the exchange interaction between the magnetic moments of the transition
metal atoms (3d–3d), the exchange interaction between the magnetic moments of the rare-
earth atoms (4 f –4 f ), and the exchange interaction between the two sublattices (3d–4 f ).
Among these three configurations, the exchange 4 f –4 f is the weakest. Similarly, we can
neglect the 3d–4 f exchange. In this case, only the 3d–3d exchange interaction would be
considered. Therefore, only the interaction between the magnetic moments of the 3d–3d
transition metal contributes to the Curie temperature. It should be noted that there are two
types of exchange interactions 3d–3d in intermetallics, positive and negative. In the case
where inter-atomic distance (Ni–Ni/Fe) is lower than a certain critical distance (2.45 Å),
the exchange interactions are negative; otherwise, they are positive [31].

In our case, after the partial substitution of the nickel atom by the iron one, the Curie
temperature increases noticeably from 60 K to 239 K (Figure 4); obviously, this is due to
the exchange interactions. In this case, the coexistence of three effects can be responsible
for strengthening the ferromagnetic order. First, the value of the magnetic moment of
iron is higher than the magnetic moment of nickel; the second factor is the electronic
effect. Although the electronic configuration of the iron atom is different to that of nickel,
the additional iron electrons are added in an antisymmetric way in the 3d band, which
allows increasing the amplitude of exchange interactions. Several DFT calculations have
demonstrated this effect; we can cite Reference [32]. Thirdly, the magnetovolumic effect:
in fact, the Rietveld refinement results show that the lattice parameters increase with the
concentration of iron. As a result, the interatomic distances increase, and consequently
the amplitude of the exchange interactions between the atoms increases; this effect was
demonstrated for the first time for intermetallics with the help of a Mössbauer study [31].
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Figure 4. Magnetization plotted against temperature for SmNi3 (red y-axis) and SmNi2.2Fe0.8 (blue
y-axis).

Figures 5 and 6 present isothermal magnetization M(µ0H, T) measured at different
magnetic fields between 0 and 5 T and temperatures from 28 to 78 K and from 200 to 250 K
for SmNi3 and SmNi2.2Fe0.8, respectively. They show that for temperatures lower than
the TC, which corresponds to a ferromagnetic state, the magnetization increases notably
according to the magnetic field. However, the material is paramagnetic for temperatures
higher than TC, and the magnetization increases slowly with the applied magnetic field.
We also note that the magnetization decreases when the temperature increases for a given
magnetic field.

Figure 5. Magnetization vs. temperature for SmNi3 under several magnetic fields.
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Figure 6. Magnetization vs. temperature for and SmNi2.2Fe0.8 under several magnetic fields.

3.2. Phase Transition Nature according to Landau Model

In this section, the Landau model is developed to confirm the nature of the phase
transition. The order of the transition phase is determined by developing free magnetic
energy depending on the temperature around TC, neglecting the very high power terms
of magnetization. As a result, free energy F depending on the total magnetization may be
developed in the form of

F =
1
2

A(T)M2 +
1
4

B(T)M4 +
1
6

C(T)M6 − µ0 MH

Applying the equilibrium condition for free energy,

dF
dM

= 0,

we obtain
µ0H = a(T)M + b(T)M3 + c(T)M5

The coefficients A(T), B(T), and C(T) are the Landau parameters determined by
fitting µ0H as a function of the magnetization M with equilibrium condition equation.
A(T) and C(T) are always positive (Figures 7 and 8). From A(T), we can determine the TC
value that corresponds to its minimum. However, B(T) can be positive, zero, or negative;
the sign of B(T) can indicate if the magnetic transition is first-order phase transition or
second-order one. Indeed, if b(TC) ≥ 0, the magnetic transition is a second-order transition
phase; otherwise, the magnetic transition is a first-order transition phase. (Figures 7 and 8)
show Landau coefficient plotted against temperature. For SmNi3−xFex (x = 0.8), b(TC) ≥ 0,
which confirms that the magnetic transition is a second-order type.
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(blue y-axis) plotted against temperature around the TC for SmNi3 sample.
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Figure 8. Landau parameter A(T2kg/J) (black y-axis), B(T4kg3/J3) (red y-axis), and C(T6kg5/J5) (blue
y-axis) plotted against temperature around the TC for SmNi2.2Fe0.8 sample.

3.3. Magnetocaloric Effect
3.3.1. Phenomenological Model

To determine the MCE in magnetic materials, SmNi3 and SmNi2.2Fe0.8, a phenomeno-
logical model is used to simulate magnetization vs. temperature curve under the application
of a magnetic field in adiabatic conditions with a reasonable fit with the experimental data; it
was demonstrated by M-F theory of ferromagnetism that the dependence of magnetization
on the variation of temperature and TC is presented by [33]:

M(T) = MS−ME
2 tanh [α(TC − T)] + T dM

dT |T<TC + β (1)

where MS is an initial magnetization value at the ferromagnetic–paramagnetic transition
and ME is a final value of magnetization at the ferromagnetic–paramagnetic transition.
The following two equations give α and β parameters:

α =
2( dM

dT |T<TC −
dM
dT |TC )

MS −ME
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β =
MS + ME

2
− dM

dT
|T<TC TC

where dM
dT |T<TC represents the sensitivity of magnetization dM

dT at ferromagnetic state, and
dM
dT |TC is magnetization sensitivity dM

dT at TC. A magnetic entropy change ∆SM of a magnetic
system under adiabatic magnetic field variation from 0 to final value Hmax is available by:

∆SM = −αHmax
MS−ME

2 sech2[(α(TC − T))] + ( dM
dT |T<TC )Hmax (2)

Equation (2) shows that an observed relatively large ∆SM is a consequence of high
magnetization at ferromagnetic state and rapid drop in magnetization at T = TC. Hence,
the peak of the ∆SM (∆Smax

M ) can be calculated using Equation (2); for T = TC, ∆SM is equal
to ∆Smax

M , so, it is expressed as follows:

∆Smax
M = (−α

(MS −ME)

2
+ (

dM
dT
|T<TC ))Hmax

In addition, the calculation of the half-value width of ∆SM, δTFWHM can be performed
as follows:

δTFWHM =
α

2
acsh[(

2α(MS −ME)

2( dM
dT |TC ) + α(MS −ME)

)1/2]

The relative cooling power (RCP) is an essential parameter in the magnetocaloric ap-
plication. It is related to the maximum entropy change and the full width at half-maximum
in the temperature dependence of the ∆SM [34]. The following equation gives RCP:

RCP = ∆Smax
M δTFWHM = (−α

(MS −ME)

2
+

dM
dT
|T<TC )

× α

2
acsh[(

2α(MS −ME)

2 dM
dT |T<TC + α(MS −ME)

)1/2]Hmax (3)

The magnetization-related change of the specific heat is given by [21]:

∆δCp = T
∆SM
δT

According to this model, heat capacity change, ∆δCp, can be expressed as

∆δCp = −α2HmaxT
MS −ME

2
sech2[(α(TC − T))]× tanh[α(TC − T)] (4)

From this phenomenological model, δTFWHM, ∆Smax
M , RCP, and ∆T can be simply

evaluated for SmNi3 and SmNi2.2Fe0.8 compounds under magnetic field variation.

3.3.2. Results

Figure 9 shows a good agreement between modeled and experimental magnetization
variation with temperature for SmNi3 and SmNi2.2Fe0.8. Symbols represent experimental
data, and the red line corresponds to modeled magnetization.

Moreover, Figures 10 and 11 show ∆SM and specific heat capacity variation with
temperature, respectively. To calculate δTFWHM, ∆Smax

M and RCP five parameters are
determined from experimental variation of magnetization with temperature: MS, ME, TC,
dM
dT |T<TC , and dM

dT |TC , as displayed in Table 1. Predicted values of maximum ∆SM, full-
width at half-maximum, and RCP under 0.5 T for SmNi3 and SmNi2.2Fe0.8 are determined,
as shown in Table 2. From Figure 10, we can easily see that the substitution of Ni atom by
Fe causes an increase of ∆SM values from 0.5 J·(kg·K)−1 to 0.65 J·(kg·K)−1 for an applied
magnetic field ∆µ0H = 5 T; this result is due to the increase of the magnetic sensitivity in the
vicinity of TC and the increase of magnetization amplitude after the substitution of nickel
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atom by iron one, which for SmNi3 dM
dT |TC is −0.056 Am2·(kg·K)−1 and for SmNi2.2Fe0.8 is

−0.080 Am2·(kg·K)−1.
For SmNi3 and SmNi2.2Fe0.8, an increase of applied magnetic field change causes an

increased magnetic entropies change; this is the consequence of an increase of magnetization
change as a response to an increase of ∆µ0H. The RCP increases after the partial substitution
of Ni with Fe; this result can be explained by the direct increase of δTFWHM and ∆Smax

M .

Table 1. Values of MS(Am2·kg−1), ME(Am2·kg−1), TC(K), dM
dT |T<TC (Am2·(kg·K)−1), and

dM
dT |TC (Am2·(kg·K)−1) determined from experimental magnetization vs. temperature are given

for SmNi3 and SmNi2.2Fe0.8 at low field µ0H = 0.5 T.

Magnetocaloric
Sample MS ME TC

dM
dT |T<TC

dM
dT |TC

SmNi3 5.14 1.69 60 −0.06 −0.2
SmNi2.2Fe0.8 8.59 1.90 239 −0.08 −0.24

3 0 4 0 5 0 6 0 7 0 8 0 9 0
0
1
2
3
4
5
6
7
8

M(
Am

2 .kg
-1 )

S i m u l a t e d

T ( K )

0 . 5  T

0 . 5  T

5  T

a

2 0 0 2 1 0 2 2 0 2 3 0 2 4 0 2 5 0 2 6 0
2

4

6

8

1 0

1 2

M(
Am

2 .kg
-1 )

T ( K )

0 . 5  T

5  T

0 . 5  TS i m u l a t e d

b

Figure 9. Magnetization vs. temperature for SmNi3 (a) and SmNi2.2Fe0.8 (b) under several magnetic
fields.
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Table 2. ∆Smax
M , δTFWHM, RCP and (minimum-maximum) of specific heat capacity for SmNi3 and

SmNi2.2Fe0.8 at low field µ0H = 0.5 T.

Magnetocaloric
Sample

∆Smax
M

J·(kg·K)−1 δTFW HM K RCP J·kg−1 ∆Cp,H

J·(kg·K)−1

SmNi3 0.1 31 3.1 −0.23–0.3
SmNi2.2Fe0.8 0.12 50 6 −0.66–0.71
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Figure 10. Modeled ∆SM vs. temperature for the samples SmNi3 (a) and SmNi2.2Fe0.8 (b) at several
magnetic fields.
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Figure 11. Change of the specific heat for SmNi3 (a) and SmNi2.2Fe0.8 (b) under several magnetic
fields vs. temperature.

3.3.3. Experimental Method

The change in magnetic entropy produced after the application of a magnetic field can
be calculated by integrating the following Maxwell’s relation:

∆SM = µ0

∫ H

0

(
∂M
∂T

)
H

dH

Here, M is the magnetization, T is the temperature, and H is the applied magnetic field.
However, if discrete field changes measure the isothermal M(H) curves, the following
expression can be used: [21]:

|∆SM| = µ0 ∑
i

Mi −Mi+1

Ti+1 − Ti
∆Hi

Here, Mi and Mi+1 represent the initial magnetization at temperature Ti and Ti+1,
respectively, when the magnetic field increases by ∆Hi.
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Figures 12 and 13 illustrate the variation of the magnetic entropy around Curie tem-
perature of SmNi3 SmNi2.2Fe0.8, respectively, for external variation of the magnetic field
between 0 and 5 T. The partial substitution of Ni with Fe increases the operating tempera-
ture that corresponds to the maximum of |∆SM|, which is higher in SmNi2.2Fe0.8 compared
to the parent compound SmNi3. |∆SM| increases slightly after the substitution of Ni with
Fe, this is due to the increase of the amplitude and the variation of magnetization. On the
other hand, it is easy to see that the full width at half-maximum of the magnetic entropy
change of SmNi2.2Fe0.8 is larger than SmNi2.2Fe0.8. The value of magnetic entropy change
of these studied compounds is weak. Obviously, they are not suitable for the application;
nevertheless, investigating them from a fundamental viewpoint is important.

Figure 12. Magnetic entropy change vs. temperature for SmNi3 under several magnetic fields.

Figure 13. Magnetic entropy change vs. temperature for and SmNi2.2Fe0.8 under several mag-
netic fields.



Crystals 2022, 12, 481 13 of 15

Figure 14 shows a comparison between the magnetic entropy change determined with
the phenomenological model and with Maxwell relation for two applied magnetic field
values. One can see that the experimental and the simulated curve are in a good agreement.
From this observation, we can conclude that the phenomenological model can be used to
evaluate the magnetocaloric effect. The use of this model allows economizing time and
cost of measurement since it is able to predict the ∆SM curve from the magnetization curve
measured under a low and single value of a magnetic field.
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Figure 14. Comparison between theoretical and experimental magnetic entropy change plotted
against temperature for SmNi2.2Fe0.8 and SmNi3 under 0.5 and 5 T.

4. Conclusions

A study of the structural, magnetic, and magnetocaloric properties has been carried
out for the intermetallic compounds SmNi3−xFex. X-ray diffraction at room tempera-
ture shows that this compound crystallizes in the structure of PuNi3 type. A Rietveld
refinement shows that the cell parameters increase when Fe replaces Ni. X-ray diffraction
using oriented powder shows that the c-axis is the easy magnetization axis for these com-
pounds. After substitution of Ni with Fe, the TC increases from 30 to 239 K. The reason for
this increase in TC is due to the increase in the cell temperature, iron magnetic moment,
and electronic effect. The phase transition study, according to the Landau model, proves
that SmNi2−xFex exhibits a second-order transition phase. The magnetization curves are
successfully simulated. The magnetic entropy change, the maximums of magnetic entropy
change, the width at half height of magnetic entropy change, and the relative cooling
power are calculated, and the RCP of SmNi2.2Fe0.8 is about 200% compared to the RCP
value of SmNi3. The phenomenological model is in good agreement with the experimental
method. The phenomenological model used in this study allows quick characterization of
the magnetocaloric effect.
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