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We report the correlation between critical behavior and magnetocaloric effect around magnetic
phase transition temperature, using magnetization isotherms of Pr2Fe16Al. We used four techniques
to determine the critical exponents: the Modified Arrott plot, Kouvel-Fisher plot, critical isotherm
technique, and magnetocaloric effect method. The critical exponents values for Pr2Fe16Al are similar
to that found by the 3D-Heisenberg model. The validity and the reliability of our critical exponents
were confirmed. The isotherm M(H) curves below and above the critical temperatures collapse into
two independent universal branches with the found critical exponents. The exponents determined
in this study are close to those calculated from the results of the renormalization group approach
for a heuristic model of three-dimensional Heisenberg (d = 3, n = 3). A correlation between critical
behavior and magnetocaloric effect is demonstrated.

PACS numbers: 75.50.Bb, 75.50.Tt, 76.80.+y
Keywords: Intermetallic, magnetocaloric compounds; ferro-paramagnetic transition; Critical behavior.

I. INTRODUCTION

Intermetallic (R-M) compounds combine the large
magnetocrystalline anisotropy of rare-earth (R) atoms,
the high magnetization transition and high Curie tem-
perature of metal (M) atoms have attracted great inter-
est due to their wide applications. R-M compounds have
been investigated in various works on their thermody-
namic properties [1], thermal hysteresis [2], hydrogen ab-
sorption [3, 4], thermal expansion properties and magne-
tocaloric effect (MCE) [5–7]. Recently, many R-M-based
intermetallics and oxide compounds have been reported
to exhibit promising magnetocaloric performance at low
temperatures [8–15]. Moreover, a great interest has been
given to the study of critical behavior in intermetallic
compounds in the vicinity of Curie temperature [16–21]

Among the intermetallics containing rare earth and a
transition metal, we are interested in R2M17. According
to structural investigations, there are two possible struc-
ture for R2M17 series, the hexagonal Th2Ni17 (P63mmc-
space group) and the rhombohedral Th2Zn17 (R3̄m-space
group) depending to the rare earth or metal transition
[22]. Among them, we are interested in Pr2Fe17 based
materials. Pr2Fe17 crystallizes in R3̄m-space group. The
rare-earth atom possesses one crystallographic site in
this structure, but the iron atom possesses four sites:
6c, 18f, 18h, and 9d. The principal parameters that can
influence the exchange interaction are The magnetic mo-
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ment of the transition metal atom, the de Gennes fac-
tor, and inter-atomic distances. Investigation of thermo-
magnetic properties shows that the Curie temperatures of
Pr2Fe17 are shallow compared to other R-T compounds.
Exchange interactions cause the ferromagnetic state in R-
M compounds; the Curie temperature increases when the
exchange interactions increase. Morrish et al. were cal-
culated the exchange integrals of each iron site. Indeed,
they found that exchange integrals between two iron
atoms are negative for an inter-atomic distance less than
2.45 Å. This result is the origin of the relatively low value
of Curie temperature in Pr2Fe17 [23]. Pr2Fe16Al com-
pound exhibits a second-order magnetic phase transition
and crystallizes in the same space group with Pr2Fe17
[24]. In the case of second-order magnetic phase transi-
tion, the macroscopic thermodynamic quantities follow a
power law in the vicinity of Curie temperature, a set of
critical exponents characterizes these laws; they are still
valid even over the area of critical fluctuations. We inter-
est in this study in Pr2Fe16Al compound. These systems
have interesting magnetic properties; their Curie temper-
ature and magnetization amplitude are easily controlled
with the substitution in the rare-earth site and a transi-
tion metal. Therefore, they can be interesting for appli-
cations like magnetic refrigeration, magnetic recording,
and hydrogen storage. Moreover, it is always essential to
study them not only because of their potential applica-
tions but also for understanding the fundamental prop-
erties of these materials. In this research, we studied the
correlation between critical behavior and magnetocaloric
effect near the Curie temperature, the nature as well as
the range of interaction in Pr2Fe16Al samples.
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II. EXPERIMENTS

Pr2Fe16Al was prepared from high purity elements
praseodymium (Pr) 99.98%, aluminium (Al) 99.9%, and
iron(Fe) 99.9% by arc-melting technique under a purified
argon atmosphere. The elements are placed in a copper
crucible cooled by cold water. The ingot was then subse-
quently processed into nanopowders by undergoing high
energy ball milling for 5 hours in Ar atmosphere, using
a Fritsch P7 planetary mill. the powder is wrapped into
tantalum foil and introduced into a silica tube sealed un-
der secondary vacuum 2 × 10−6 bar [25, 26]. The ingot
is heat-treated for 30 min at 1073 K and finally, water
quenched [27, 28]. Phase analysis has been performed
by X-ray powder diffraction (XRD), using D8 Brucker
diffractometer with Cu Kα radiation λ = 1.54178 Å.
XRD data of the samples have been collected between
20◦ and 80◦ at room temperature with 0.015 step width.
XRD diagrams are analyzed with the Rietveld method
[29, 30] using the Fullprof program [31, 32].A Physical
Properties Measurement System (PPMS) magnetometer
is used for measurements at low temperatures. Isotherms
are collected at an interval of 1 K around TC with an ap-
plied magnetic field up to 5 T. To get the internal field
Hint Hint=Hext-NDemagM(T, Hext), where M is the mea-
sured magnetization, the external applied magnetic field
Hext has been corrected for the demagnetization effect.
Demagnetization constant NDemag has been determined
from M vs Hext curve in low field region following the
method given in Ref [33].

III. RESULTS AND DISCUSSIONS

A. Structure and Magnetic properties

Fig. 1 shows the Rietveld refinement of the XRD data
of the sample Pr2Fe16Al milled and annealed at 1273 K.
XRD patterns of Pr2Fe16Al and the compound is pre-
sented with Rietveld refinement in Fig. 1. The pure
Pr2Fe17 compound crystallizes in a rhombohedral struc-
ture of the Th2Zn17 type in the space group R3̄m. In
this structure, Pr atoms occupy 6c sites, while (Fe,Al)
atoms occupy four different crystallographic sites which
are: 18f, 18h, 6c and 9d (in Wyckoff notation).

The refinement revealed that the Th2Zn17 type phase
of space group R3̄m is more than 98 % majority.

Tab. I shows unit cell parameters values, atomic po-
sitions of all Wyckoff sites RB and χ2 factor. Similar
lattice parameter values and atom positions were found
in the previous work [34, 35].

Fig. 2 shows The magnetization variation with temper-
ature for Pr2Fe16Al compound measured under an exter-
nal applied field of 0.1 T. Curie temperature is identified
as the temperature that corresponds to the minimum of
dM/dT curve. For Pr2Fe17, Curie temperature is equal
to 285 K [36]. After substitution of iron by an Aluminium
atom, the value of Curie temperature increased signifi-

Figure 1. XRD of the compound Pr2Fe16Al milled and an-
nealed at 1273 K for 30 min. The black and red line presents
respectively the calculated intensities and the experimental
intensities. The green vertical bars correspond to (hkl) line
positions (Positions of Bragg peaks). The blue line shows the
difference between the calculated and experimental intensi-
ties.

Table I. a and c unit cell parameters, RB , χ2 factors, and
atomic positions from Rietveld refinement of Pr2Fe16Al1.

a (Å) 8.6193 (2)

c (Å) 12.5165 (4)

c/a 1.452

V (Å3) 795

χ2 2.08

RB 4.103

x{18f}(Fe) 0.284(2)

x{18h}(Fe) 0.504(3)

z{6c}(Pr) 0.347(4)

x{6c}(Fe) 0.096(2)

z{18h}(Fe) 0.158(2)

cantly from 285 K to 356 K, the same behavior was ob-
served by Guetari et al. [24].

In R-M compounds, the Curie temperature corre-
sponds to a direct measure of the exchange interaction.
This interaction depends strongly on the magnetic mo-
ment of the transition metal atom and the distance be-
tween near-neighbors. Because of the magnetic dilution
for Pr2Fe17−xAlx, the significant increase of TC value can
not be explained only by the magnetic moment of transi-
tion metal. However, it has been demonstrated that unit
cell parameters of Pr2Fe17 increase with Al content, due
to the fact that rAl (1.43 Å) > rFe (1.27 Å) and conse-
quently Fe-Fe atomic distances increase [24]. Morrish et
al. have demonstrated by fitting the hyperfine field of all
iron sites (6c, 9d, 18h and 18f) at different temperatures
in Sm2Fe17 the dependence of exchange integrals value on
the interatomic Fe-Fe distances. They found that there
is a coexistence of negative and positive interactions in
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Figure 2. Magnetization plotted against temperature at
µ0H =0.1 T with dM/dT for Pr2Fe16Al.
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Figure 3. Isotherms M(H) measured between 340 and 380 K
under an applied magnetic field 0 - 5 T for Pr2Fe16Al.

Sm2Fe17 [23]. A slight increase of distance between pairs
of iron leads to a large increase in the amplitude of ex-
change integrals, consequently a significant increase of
Curie temperature value. Combining the result found by
Morrish et al. and the increase of Fe-Fe distance, we can
explain the significant increase of Curie temperature by
the magnetovolume effect. Another important factor re-
sponsible for the increase of TC is the electronic effect. It
has been demonstrated that the increase of Co content
in Sm2Fe17−xCox leads to an increase of the hyperfine
field, which is explained by the increase of core electron
polarization due to the asymmetric filling of 3d band by
the additional electron of Co atom [37]. Based on this
argument, the additional electron of the Al atom can be
responsible for the evolution of TC . Finally, the coexis-
tence of the two important competitive factors, magne-

tovolume effect, and electronic effect, can be responsible
for the increase of TC .

Isothermal magnetization M(µ0H,T ) curves measured
at different magnetic fields between 0 and 5 T and tem-
peratures from 340 to 380 K with ∆T=1 K is shown
in Fig. 3. It shows that, for temperatures lower than
TC , which corresponds to a ferromagnetic state, the
magnetization increases notably with the magnetic field.
However, the material is paramagnetic for temperatures
higher than TC , and the magnetization increases slowly
with the applied magnetic field. We also note that the
magnetization decreases when the temperature increases
for a given magnetic field.

B. Critical study

1. Modified Arrott plot method

We plotted the Arrott plots M2 = f(H/M) deduced
from isotherm magnetization M(H) curves (Fig. 3).
From the shape and the slope of the curves, we can de-
termine the type of the phase transition [38]: If the slope
is negative and the Arrott plots close to the Curie tem-
perature have the S shape, the transition from the ferro-
magnetic state to the paramagnetic state is, therefore, a
first-order transition. If the curves have a single inflection
point and a positive slope, the transition from the ferro-
magnetic state to the paramagnetic one is a second-order
transition. Fig. 3 shows a positive slope which indicates
that Pr2Fe17Al exhibits a second-order one. To deter-
mine the critical exponents and the Curie temperature,
an Arrott plot method is used [39]. Arrott plot supposes
that β = 0.5 and γ = 1.0, which correspond to the crit-
ical exponents of mean-field model [39]. Based on this
method, isotherms plotted in the form of M2 vs H/M
show in the high field region linear behavior with the
same slope, and the isotherm at the critical temperature
TC should pass through the origin. Fig. 4 shows down-
ward curvature also in the high region field; this means
that the mean-field model is not the suitable model for
our compound.

The modified Arrott plot of M1/β vs (H/M)1/γ is used
in order to determine the most appropriate model for
Pr2Fe16Al sample [40]. The Arrott-Noakes equation of
state gives it:

(H/M)1/γ = pε+ qM1/β (1)

Where p and q are constants, and ε = (T − TC)/TC is
the reduced temperature. Three kinds of possible expo-
nents belonging to 3D Heisenberg model (β = 0.365, γ =
1.386), 3D Ising model (β = 0.325, γ = 1.241) and tri-
critical mean-field model (β = 0.25, γ = 1.0) are used to
construct the modified Arrott plot [41], Fig. 7 shows that
all curves exhibit a linear behavior, but, it is easy to see
that isotherms curve are not parallel to each other, as a
result, the tricritical mean field is not the suitable model
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for our compound. All curves in Fig. 5 and Fig. 6 show a
linear behavior with a quasi-parallel isotherms curve; this
indicates that the 3D-Ising or 3D-Heisenberg model can
be the suitable model for our compound. We used the
normalized slope (NS) in order to determine the most ap-
propriate model for our compound, it is defined as NS =
S(T )/S(Tc) where S(T ) = dM1/β/d(H/M)1/γ , For the
most adequate model, the modified Arrott plot should be
a series of parallel lines in the high-field region with the
same slope, consequently NS = S(T )/S(Tc) ∼ 1. Fig. 8
shows that the deviation from NS = S(T )/S(Tc) = 1
is more notable for 3D-Ising model than 3D-Heisenberg
one.

To determine with more precision the critical expo-
nents β, γ, an iterative method has been used[42]. Ms(T )
and χ−10 (T ) are determined by a linear extrapolation of
the high field region, in fact, Ms(T ) and χ−10 (T ) corre-
spond to the intercept of extrapolated straight lines with
M1/β and (H/M)1/γ axis, respectively.
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Figure 4. Arrott plot for Pr2Fe16Al.
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A set of β and γ can be obtained by fitting the data
following the Eq. (2) and Eq. (3), which are given by the
following relation:

Ms(T ) = Ms(0)(−ε)β , ε < 0, T < TC (2)

χ−10 (T ) = χ−10 (0)(ε)γ , ε > 0, T > TC (3)

where Ms(0) and χ−10 (0) are the critical amplitudes and
ε = (T − TC)/TC is the reduced temperature [43].

Then a new modified Arrott plot is constructed using
the new values of β and γ. As a result, new Ms(T )
and χ−10 (T ) are generated from the linear extrapolation
from the high-field region. Consequently, new β and γ
can be obtained. This procedure was repeated until the
values of β, and γ became unchanged. Fig. 10 present
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Figure 10. The spontaneous magnetization Ms(T )(left) and
the inverse of initial susceptibility χ−1

0 (T ) (right) plotted
against temperature for Pr2Fe16Al. The solid lines represent
the fit.

the finalMs(T ) and χ−10 (T ) with solid fitting curves. The

values of critical exponents β and γ and value of TC are
obtained.

2. Kouvel Fisher method

Kouvel-Fisher method is used in order to determine
with more precision the values of β and γ [44]:

Ms(T )/(dMs(T )/dT ) = (T − TC)/β

χ−10 (T )/(dχ−10 (T )/dT ) = (T − TC)/γ

Based on this method, χ−10 (T )/(dχ−10 (T )/dT ) and
Ms(T )/(dMs(T )/dT ) are a linear functions of temper-
ature with slopes of 1/γ and 1/β, respectively. They in-
tercept temperature axis for T=TC . As shown in Fig. 11,
the linear fits give β with TC and γ with TC Tab. II.
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(left) and χ−1
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0 (T )/dT ) (right) for Pr2Fe16Al. The

red solid lines represents the fit

The third exponent δ has been calculated using Widom
scaling law as follow:

δ = 1 + γ/β

. β and γ values determined from the modified Arrott
plot and Kouvel-Fisher plot were used to deduce δ values
(Tab II).

3. Isotherm method

Fig. 12 shows the isotherm magnetization M(H) at TC ,
with the inset plotted on a log-log scale. δ value is de-
duced from the fitting of the critical isotherm using the
following equation:

M = DH1/δ, ε = 0, T = TC (4)
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Where D is the critical amplitude [43]. δ=4.72 was deter-
mined based on the fit of the critical isotherm, it is close
to the values deduced from the modified Arrott plot and
Kouvel-Fisher plot. The critical exponents Pr2Fe16Al1
samples are close to critical exponents of 3D-Heisenberg
with a slight deviation.

4. Validity of critical exponents

We verify the validity and the reliability of the founded
critical exponents based on the scaling hypothesis:

M(H, ε) = εβf±(H/εβ+γ) (5)

where f− for T < TC and f+ for T > TC are the regular
functions. By writing magnetization and magnetic field
in these renormalized forms, renormalized magnetization
m ≡ ε−βM(H,T ) and renormalized field h ≡ ε−β+γH,
Eq. (5) can be written as:

m = f±(h) (6)

m and h is an important criterion to check the validity of
the found critical exponents. Eq. (5) implies that for an
appropriate values of β, γ, and δ, we obtain tow universal
branches one below Curie temperature and the second
above Curie temperature.

Fig. 13 and Fig. 14 show that the renormalised
isotherms collapse into independent universal branches,
which means that the selected critical exponents β, γ,
and δ are valid.

The obtained critical exponents of Pr2Fe16Al exhibit
a slight deviation from 3D-Heisenberg model, they are
listed in Tab II for comparison.
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Figure 13. Scaling plots below and above TC for Pr2Fe16Al
sample. The inset shows the same plot in logarithmic scale.
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Table II. Values of critical exponents determined from the
modified Arrott plot, Kouvel-Fisher plot, the critical isotherm
and MCE method are given for Pr2Fe16Al. The theoretically
predicted values of critical for comparison.

Ref. Technique β γ δ

b This Work MAP 0.368(2) 1.338(6) 4.619(3)

- KF 0.367(9) 1.345(1) 4.665 (6)

- CI - - 4.72 (2)

- MCE 0.350(2) 1.316(6) 4.76 (2)

M-F [41] Theory 0.5 1 3

3D-H [41] Theory 0.365 1.386 4.79

3D-I [41] Theory 0.325 1.241 4.82
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5. Effective critical exponents

In view of the deviation of the deduced exponents in
present study from the conventional theoretical values,
it is important to clarify whether Pr2Fe16Al compound
belongs to any universality class as they approach the
asymptotic limit. For this purpose, we introduce effec-
tive critical exponents βeff and γeff , they are calculated
using Eq. (7) and Eq. (8) [44].

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5

0 . 3 3 6

0 . 3 4 4

0 . 3 5 2

0 . 3 6 0

0 . 3 6 8

0 . 3 7 6

��
���
�� �

��
���
�� �

� eff
��

�

| e |
0 . 9
1 . 0
1 . 1
1 . 2
1 . 3
1 . 4
1 . 5
1 . 6

� eff
(�)

Figure 15. The effective exponents plotted against the re-
duced temperature ε for Pr2Fe16Al sample.

βeff (ε) =
dln(Ms(ε))

dln(ε)
(7)

γeff (ε) =
dln(χ−10 (ε))

dln(ε)
(8)

βeff and γeff vs ε curve show a monotonic change
even in the asymptotic critical region. A nonmonotonic
change of effective exponents with ε can be explained
by: (I) System goes through crossover regime to another
universality class in asymptotic regime [45], (II) εmin is
not falling in the asymptotic regime and TC must be
approached more nearly to have asymptotic exponents
and (III) εmin is in the asymptotic region, it was ob-
served in disordered materials in asymptotic regime that
effective exponents does not match with the universal-
ity classes [46]. For Pr2Fe16Al the monotonic changes
of βeff and γeff with reduced temperature is attributed
to magnetic orders. In the critical region when T ∼ TC
(ε −→ 0), effective exponents βeff (ε) and γeff (ε) should
∼ to real exponents value β and γ. Around Curie tem-
perature (ε −→ 0), we found (βeff=0.368, γeff=1.347)
for Pr2Fe16Al, which approach to critical exponents ob-
served experimentally (see Tab II).

6. Magnetocaloric effect method

To determine the MCE in the magnetic material
Pr2Fe16Al, we calculate the variation of the magnetic
entropy change produced after the application of a mag-
netic field with the following Maxwell relation:

∆SM = µ0

∫ H

0

(
∂M

∂T

)
H

dH

Where M is the magnetization, T is the temperature
and H is the applied magnetic field. However, if the
isothermal M(H) curves are measured by discrete field
changes the following expression might be used [47]:

|∆SM| = µ0

∑
i

Mi −Mi+1

Ti+1 − Ti
∆Hi

Magnetic cooling efficiency is estimated by consider-
ing the magnitude of magnetic entropy change (∆SmaxM ),
and its full-width at half-maximum (δTFWHM ) [48]. A
product of ∆SmaxM and δTFWHM is called relative cool-
ing power (RCP) based on magnetic entropy change and
can be calculated by:

RCP = ∆SmaxM .δTFWHM (9)

Figure 16. The magnetic entropy change plotted against tem-
perature for Pr2Fe16Al compound at several applied magnetic
field.

Universal phenomenological curve using normalized
entropy change −∆S/−∆Smax as a function of rescaled
temperature can be obtained for materials that exhibit
a second-order magnetic phase transition from the ferro-
magnetic to the paramagnetic state. [49].

Θ = −(T − TC)/(Tr1 − TC), T ≤ TC

Θ = (T − TC)/(Tr2 − TC), T ≥ TC
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Figure 17. Normalized magnetic entropy change plotted
against reduced temperature for Pr2Fe16Al compound.

Where Θ is the rescaled temperature, Tr1 and Tr2 are
the temperatures of the two reference points that have
been selected as those corresponding to −∆SM=−a×
∆Smax (where 0 ≤ a ≤ 1) [50].

It has been shown in some theoretical research that it
is unnecessary to use two reference temperatures below
and above TC Tr1 and Tr2, but for a material with a
single magnetic phase, only one Tr can be used. However,
for materials with a significant demagnetization factor or
multi-magnetic phases, two reference temperature points
must be employed [51].

Fig. 17 shows that the normalized entropy change for
all applied magnetic fields collapses in a single universal
curve after rescaling temperature and choosing a=0.5.
This suggests that Pr2Fe16Al undergoes a second-order
magnetic transition phase around TC=356 K.

0 1 2 3 4 50

1

2

3

4

- 3 - 2 - 1 0 1 2
- 1 . 5
- 1 . 0
- 0 . 5
0 . 0
0 . 5
1 . 0
1 . 5

� � � � 	 �

DS
ma

x M (
J.k

g-1 .K
-1 ) D S m a x

M   µ � �

ln(
DS

Mma
x )


 � � � � � �

� � � � � �

F i t

Figure 18. ∆Smax
M vs µ0H. Inset show the same plot in a

log-log scale.

Fig. 16 clearly shows that magnetic entropy change
of Pr2Fe16Al sample reaches its maximum around Curie

temperature. The magnetic entropy maximum change
depends strongly on the applied magnetic field. A non-
linear relation can be expected between ∆SmaxM and µ0H
as follows:

∆SmaxM ∝ µ0H
n

where n=2/3 in the case of mean-field model [52]. In or-
der to predict the exponent n, which describes the depen-
dence of magnetic entropy change at T=TC for materials
that do not follow the mean-field model in the critical
regime, the equation of the Arrott-Noakes can be consid-
ered to describe the magnetic material around transition
temperature. As described in Ref. [50], by differentiation
and integration of the Arrott-Noakes equation, we can
obtain a relation between n, β and γ:

n = 1 +
β − 1

β + γ
(10)

By fitting the curve of the ∆SmaxM vs µ0H, we obtain
n=0.61

0 1 2 3 4 5
0

1 0 0

2 0 0

3 0 0

4 0 0

- 2 - 1 0 1 2
2
3
4
5
6

RC
P(J

.kg
-1 )

� � 
 � � �

� � � µ 
 � � � � d

ln(
RC

P)

� � � � � 
 �

d � � � 
 	

F i t

Figure 19. RCP vs µ0H. Inset show the same plot on a log-log
scale.

RCP variations with the applied magnetic field follow
a power law, it is given by the following relation [53]:

RCP ∝ H1+ 1
δ (11)

Fig. 19 shows the variations of relative cooling power with
the applied magnetic field, the fit gives δ=4.76 which is
very close to the value obtained from the critical isotherm
method. By the combination of the Eq. (10) and Widom
scaling relation we obtain β and γ as follow:

β =
1

δ(1− n) + 1
(12)

γ =
δ − 1

δ(1− n) + 1
(13)
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The values of β, γ and δ determined from magnetocaloric
method are listed in Tab. II for comparison. The criti-
cal exponents determined from the conventional methods
are close to that found from the magnetocaloric method,
which implies that the MCE method is helpful to study
the critical behavior. Also, this agreement demonstrates
the correlation between magnetic entropy change around
Curie temperature and the universality class of magne-
tocaloric compounds.

7. Interaction change distance

It is essential to have a better idea of the nature and
extent of the interaction in the material. Fisher et al.
have in theoretical studies treated this type of magnetic
order as an attractive interaction of spins, where analysis
of renormalization group theory suggests that the inter-
action degrades with distance r as J(r) = r−(3+σ), where
σ is a positive constant [54]. Moreover, the susceptibility
exponent γ is predicted as:

γ = 1 +

(
4

d

)(
n+ 2

n+ 8

)
∆σ +

8(n+ 2)(n− 4)

d2(n+ 8)2

×

[
1 +

2(G(d2 )(7n+ 20)

(n− 4)(n+ 8)

]
∆σ2 (14)

Where ∆σ = (σ−d/2), n is the spin dimensionality. In
order to find the appropriate model that can reproduce
the values of critical exponents found by using the con-
ventional experimental methods (Modified Arrott plot,
Kouvel-Fisher method, and critical isotherm), we used
all possible combinations of d and n, for each couple d
and n, we search σ value that gives γ values determined
from conventional methods. Tab. III shows the values of
σ, β and α obtained for different couples of d and n.

Table III. Values of σ, β and α with different combination
(d, n) for Pr2Fe16Al compound

d n σ β ν α δ

3 1 2.04 0.317 0.66 0.02 5.24

2 1.96 0.362 0.68 -0.04 4.71

3 1.90 0.388 0.70 -0.1 4.46

2 1 1.34 0.395 1 0 4.40

2 1.29 0.369 1.04 -0.08 4.64

3 1.26 0.329 1.07 -0.14 5.09

1 1 0.67 0.333 2.01 -0.01 5.03

2 0.64 0.373 2.10 -0.1 4.61

3 0.63 0.398 2.13 -0.13 4.38

According to this model, the range of spin interac-
tion is long or short depending on σ < 2 or σ > 2.
In fact,when σ > 2 the 3D Heisenberg model is valid,
J(r) decays faster then r−5 with short range type inter-
action, considering that σ < 2 it agrees with mean field
model and J(r) decays slower than r−4.5. In the range
between short range and long range (1.5 < σ < 2) J(r)
decays slower then r−5 and faster than r−4.5, the critical
exponents take intermediate values between tow classes.

According to scaling equations we can obtain the val-
ues of ν, α, β and δ: ν = γ/σ, α = 2 − νd and
β = (2−α− γ)/2 [55, 56]. In our case for Pr2Fe16Al, we
obtain (β = 0.362, γ = 1.345, and δ = 4.71) which are
the most closest values to our experimentally observed
values. This calculation suggests that the spin interac-
tion Pr2Fe16Al is close to the Heisenberg [d : n] ≡ [3 : 2]
type coupled, the values of σ value is inferior to 2, sug-
gesting the ferromagnetic interaction in this compound
is long-range type interaction with σ = 2.04 and J(r)
decays as r−5.04 faster than r−4.5.

IV. CONCLUSION

We have made a detailed study on the critical behavior
in Pr2Fe16Al; our sample exhibits a second-order mag-
netic phase transition from the ferromagnetic state to
the paramagnetic one. The critical exponents β, γ, and δ
estimated from various conventional techniques are close
and obey the scaling equation. Moreover, the determined
critical exponents from the magnetocaloric method are
consistent with those found from the modified Arrott plot
method, Kouvel-Fisher method, and critical isotherm;
this result supports using the MCE method to study the
critical behavior. The determined exponents are close
to 3D-Heisenberg (d = 3 : n = 2) spins coupled with
a long-range interaction type (σ = 1.96), spin decays as
J(r) = r−4.96.
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