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Abstract: Heusler alloy with an atomic composition of Ni51.82Mn32.37In15.81 was prepared by melt
spinning from arc-melted ingots. X-ray diffraction, scanning electron microscopy and magnetic
measurements were used to study the structural, microstructural and magnetic properties. The
crystal structure consists of a mixture of B2 austenite (~50%) and 14M martensite (~50%). The
alloy undergoes a second order magnetic transition at a Curie temperature of TA

c = 194.2 K. The
hysteresis loop reveals the occurrence of exchange bias phenomenon at room temperature. The
critical exponents β, γ and δ were estimated using modified Arrott plots, Kouvel–Fisher curves and
critical isothermal analysis. The respective values are β = 0.500± 0.015, γ = 1.282± 0.055 and
δ = 3.003± 0.002. The critical behaviour in ribbons is governed by the mean field model with a
dominated long-range order of ferromagnetic interactions. The maximum entropy change, ∆Smax

M , for
an applied magnetic field of 5 T reaches an absolute value of 0.92 J/kg·K. The experimental results of
entropy changes are in good agreement with those calculated using Landau theory.

Keywords: Ni-Mn-In ribbons; magnetic transition; critical behavior; magnetocaloric effect;
Landau theory

1. Introduction

Since structural and magnetic transformations have been reported in Ni-Mn-Z (Z = Ga,
Sn, In) alloys [1], many studies on austenitic and martensitic states have been investi-
gated [2–9]. Upon cooling, these alloys undergo a first order martensitic transition from a
high temperature cubic austenite phase (Ast), displaying long ferromagnetic (FM) order,
to a low temperature modulated or non-modulated martensite phase (Mst) with com-
plex magnetic behavior. The magnetization is smaller in the Mst phase than in the Ast.
Additionally, the magnetic coupling is FM in the high temperature phase and is short
range antiferromagnetic (AFM) for Mn-rich compounds [10,11]. Moreover, the magnetic
properties are dominated by Mn-Mn coupling in stoichiometric compositions of Ni2MnZ.
However, FM−AFM interactions were found in off-stoichiometric alloys, in which Mn
atoms occupying Z sites coupled antiferromagnetically to Mn atoms in their own regu-
lar sites.

Due to their good magneto-functional performances, these magnetic materials have
attracted much attention owing to their potential application in magnetic refrigeration,
spintronics and actuation [12,13]. These technological applications are related to the strong
correlation between the magnetism and the structural transition such as the magnetocaloric
effect (MCE), magnetostructural resistance, shape memory, exchange bias behaviour (EB),
etc. [7,14–21]. Thus, any change in the chemical composition, sample preparation, type of
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crystal structure homogeneity, heat treatment, application of an external magnetic field or
stress can affect the phase transitions. MCE is strongly dependent on the type of magnetic
transition. For example, most Heusler alloys have a second-order magnetic transition
(SOMT), from FM to paramagnetic state (PM) around the Curie temperature (Tc), resulting
in a negative magnetic entropy change known as direct MCE, and a first-order magnetic
transition resulting in a positive magnetic entropy change, known as inverse magnetocaloric
effect (IMCE) near the martensitic transition [22,23].

Many studies have been conducted on polycrystalline Ni–Mn–In ingots prepared by
arc melting and succeeding heat treatment at high temperature for homogenization. The
crystal structure and physical properties can be affected considerably by a small change in
composition and/or sample preparation as the magnetic interactions and their strength
can be modified by the substitution of Mn atoms for Ni and In atoms. For example, a
mixture of austenite and martensite phases was observed in bulk Ni50Mn50-xInx (x = 14.8,
15.05 and 15.2), while a single austenite phase (space group Fm3m) was observed for
x = 14.5, and an orthorhombic martensite (space group Pmm2) for x = 15 [24]. In addition,
the crystal structure of the arc-melted Ni50Mn35In15 consisted of a mixture of austenite
and orthorhombic martensite having different magnetic transition temperatures of about
TA

c = 310 K and TM
c = 200 K, respectively. For the as-quenched Ni51.1Mn31.2In17.7, the

disordered B2 structure, which is observed at room temperature, transformed into an
ordered L21 structure after a short annealing time [25]. It is important to mention that
the arc melting process may cause different problems that negatively affect the functional
properties of the alloys [26]. Hence, the melt-spinning process can be considered as an
alternative way of produce ribbons in a metastable state with homogeneous chemical
composition avoiding annealing at high temperature [27]. Furthermore, it is possible to
obtain a nearly single-phase [8,28] and highly textured microstructure owing to the high
cooling rate (~106 K/s), which leads to a change in the atomic order. Consequently, this fact
is of great interest to investigate. Additionally, the ribbon’s shape could be used mainly as
sensors and actuators, and in magnetocaloric devices.

The current work was carried out to investigate the effect of the melt-spinning process
on the structure, morphology and magnetic properties of melt-spun Ni50Mn35In15 ribbons.
Structure, morphology and magnetic properties were studied using X-ray diffraction, scan-
ning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS),
and magnetic measurements. In order to distinguish the nature of the magnetic interaction
around the magnetic transition, the critical behavior around the Curie temperature was in-
vestigated through isothermal magnetization data, M(H), using several techniques [29] of
the conventional critical exponents for the mean field model (MF) β = 0.5 and γ = 1, 3D
Heisenberg model β = 0.365 and γ = 1.336, 3D Ising model β = 0.325 and γ = 1.241,
and for tricritical mean field model β = 0.25 and γ = 1. Thus, the Curie temperature and
the critical exponents were estimated.

2. Materials and Methods

Polycrystalline ribbons with nominal composition of Ni51.82Mn32.37In15.81 were pre-
pared by melt-spinning at high wheel speed of 40 m/s from arc-melted pure elements.
An ingot of about 5 g was prepared from high purity (>99.98%) Ni, Mn and In elements
(Sigma Aldrich, Saint Louis, MO, USA) by arc melting in a MAM-1 Buhler (Edmund Bühler
GmbH, Bodelshausen, Germany) compact arc melter, in a water-cooled copper crucible,
under argon atmosphere. The ingot was melted several times to ensure good homogeneity.
The ribbons were obtained in a MSP10 melt-spinning system (Edmund Bühler GmbH,
Bodelshausen, Germany), under argon atmosphere (400 mbar), onto a polished surface of
copper wheel rotating at a linear speed of 40 m/s, with a nozzle wheel distance of 3 mm,
an orifice diameter of 0.5 mm and an injection pressure of 500 mbar.

Magnetization measurements versus temperature were carried out using BS1 magne-
tometer developed at Néel Institute. The hysteresis loop, at room temperature, was mea-
sured with a Lake Shore 7400 VSM vibrating sample magnetometer (Lake Shore Cryotonics,
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Westerwille, OH, USA). Ribbons’ morphology was investigated using a scanning electron
microscope (SEM, TESCAN, Brno, Czech Republic) operating at 30 kV and equipped with
the energy dispersive X-ray spectrometer (EDS, TESCAN, Brno, Czech Republic). The
alloy structure was followed by X-ray diffraction (XRD) on a D8 Advance diffractometer
(Bruker, Billerica, MA, USA) in a (θ−2θ) Bragg Brentano geometry using Cu−Kα radiation
(λCu = 0.154056 nm). The XRD analysis was carried out using the Maud program [30],
which is based on the Rietveld method.

3. Results and Discussion
3.1. Structure and Morphology

Figure 1 displays secondary electron SEM micrographs showing the fracture cross
section microstructure, wheel surface microstructure and free surface microstructure of
Ni51.82Mn32.37In15.81 as-spun ribbons. One observes that the grains are highly ordered
columnar-like microstructures with their longer axis being perpendicular to the ribbon
sides (Figure 1c). The wheel surface shows typical elongated thin plates corresponding
to martensite variants (Figure 1a), and the free surface displays granular microstructure
with different grain sizes and shapes (Figure 1b). EDS element-mapping over one defined
region indicates that the three elements (Ni, Mn, and In) are homogeneously distributed
(Figure 1d). From EDS analysis over many points an average elemental composition
Ni51.82Mn32.37In15.81 is obtained. Therefore, the electron-to-atom ratio (e/a) calculated from
the outer shell of each element is 7.922.
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Figure 1. Typical SEM micrographs of wheel surface (a), free surface (b), fracture cross-section (c),
and (d) EDS element-mapping of Ni51.82Mn32.37In15.81 ribbons.

Rietveld refinement of the XRD pattern of the melt-spun ribbons (Figure 2) reveals the
coexistence of a seven-layered monoclinic 14M structure, P2/m space group, with lattice
parameters a = (4.3381± 0.0002)Å, b = (5.5642± 0.0002)Å and c = (29.235± 0.0005)Å
and β = 92.92◦, and a cubic B2 austenite structure, space group Pm3m, and a lattice
parameter of a = (2.9684± 0.0002)Å. The relative deviations of the lattice parameters
shown by: ∆a = (a−a0)

a0
, ∆b = (b−b0)

b0
, and ∆c = (c−c0)

c0
where a0, b0 and c0 are the lattice

parameters of a perfect crystal, reaching as much as ∆a = 0.88%, ∆b =−3.6% and ∆c = 0.81%
for the 14M structure, and ∆a = −1.6% for the B2 austenite. In addition, the weight
fractions of both the 14M martensite and B2 austenite structures are equal to 50%, and their
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crystallite sizes are of about 65 nm and 96 nm, respectively. The nanocrystalline state of the
obtained ribbons can be attributed to the atomic disorder, which is induced by the rapid
solidification of the melt-spun ribbons.
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Figure 2. Rietveld refinement of the XRD pattern of melt-spun ribbons.

Krenke et al. reported that bulk Ni0.5Mn0.5-xInx (x = 0.05− 0.25) alloys displayed
an austenite structure with x ranging from 0.16 to 0.25, and a martensite structure for
0.05 ≤ x ≤ 0.155 [2]. Çakir et al. reported that bulk Ni50Mn50-xInx exhibited modu-
lated 7M and austenite structures for x = 14.4 [31]. Sánchez Llamazares et al. found that
Ni51.1Mn31.2In17.7 ribbons presented a B2 structure [25]. The obtained result differs from
those reported above, since the elaboration technics affect the alloy composition and physi-
cal properties. Furthermore, the martensitic transformation temperature can be twined by
electron-to-atom ratio, Mn nearest neighbor interatomic distances, atomic order degree and
crystallite size [32,33]. From differential calorimetry scans (not shown here), no structural
transformation was detected in these ribbons since the modulated martensite has a lower
symmetry than the austenite, and the B2 structure is considered as disordered compared to
the L21 structure. Such structural complexity can affect other physical properties, especially
the magnetic results.

3.2. Magnetic Properties

Figure 3a displays magnetization evolution versus temperature M(T), in the tempera-
ture range 5–330 K, upon cooling under an applied magnetic field of 500 Oe. The melt-spun
ribbons exhibit a paramagnetic to ferromagnetic transition at the Curie temperature of
austenite, Tc (As) = 194.2 K, which is defined as the minimum peak position of dM/dT curve
(Figure 3b).
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Figure 3. Temperature dependence of the magnetization measured at 500 Oe (a), and the derivative
dM/dT curve showing the magnetic transition temperature (Tc (As)) (b).

The isothermal magnetization curves as a function of the applied magnetic field,
M(H), are shown in Figure 4. All the curves do not saturate even at 5 T and show a
typical FM character when T < 194.2 K and PM behavior when T > 194.2 K. According to
Banerjee’s criteria [34], the second order FM− PM phase transition (SOMT) is characterised
by a positive slope in Arrott curves, M2 versus µ0H/M. Thus, the studied ribbons undergo
SOMT phase transition since they show a positive slope (Figure 5). In the low-field region,
M2 = f (µ0H/M) curves have two parts in the opposite directions indicating the FM−PM
separation. However, in the vicinity of Tc, a linear M2 = f (µ0H/M) line passing through
the coordinate origin is observed. Hence, the Tc value deduced from the Arrott plots is
very close to that obtained from M(T). This feature supports evidence of the long-rang
FM-order character of the sample.
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Figure 5. Standard Arrott plot isotherms M2 vs. µ0H/M. From 100 to 260 K (increments of 5 K).

Figure 6 displays the enlargement of the low magnetic field region of the hysteresis
loop measured, at room temperature, under an applied magnetic field of 2 T. The inset
shows the hysteresis cycle. This later exhibits a nearly straight line typical of a paramagnetic-
type comportment due to the increase of atomic disorder, which is a characteristic of the
melt-spinning process. Furthermore, the hysteresis loop shows a positive horizontal shift
and a negative vertical shift. The horizontal H-axis shift can be related to the development of
a magnetically non-homogeneous AF/FM matrix where the interfacial pinning of FM spins
by the AF component gives rise to an exchange bias (EB) behavior at room temperature.
The exchange bias phenomenon is associated with the exchange anisotropy created at
the interface between AFM and FM regions and can be ascribed to the formation of an
FM unidirectional anisotropy (texture) at the interface between different magnetic phases
during the formation of the ribbons. This result is different from those reported earlier for
a similar composition where the EB was observed at lower temperature of martensitic state
in bulk Ni50Mn35In15 alloy [31]. The obtained result confirms the fact that the processing
conditions, crystal structure and microstructure affect considerably the magnetic properties
leading to the observation of EB in the Ni51.82Mn32.37In15.81 ribbons at room temperature.
The values of EB and the coercivity field are calculated using HE = −(H1 + H2)/2 and
Hc = |H1 − H2|/2, respectively, where H1 and H2 are the left and the right field values
at zero magnetization. Hence, the coercivity and EB values are 48.54 Oe and 100 Oe,
respectively.



Magnetochemistry 2022, 8, 179 7 of 16Magnetochemistry 2022, 8, 179 7 of 16 
 

 

 

Figure 6. Enlargement of the low magnetic field region of the hysteresis loop measured at room 

temperature. The inset shows the corresponding hysteresis cycle. 

Table 1. Comparison of the obtained physical properties of Ni51.82Mn32.37In15.81 ribbons with earlier 

reports. 

Sample Method e/a Phase a, b, c (Å) Tc (K) 
S 

(J/kg.K) 

Hc  

(Oe) 
Ref. 

Ni51.82Mn32.37In15.81  Melt spinning 7.922 
cubic B2 

14 M 

a = 2.968  

a = 4.327  

b = 5.567  

c = 29.035  

194.2 0.92 (5 T)  
48.54  

(2 T) 
This work 

Ni50Mn35In15 

Arc melting and 

annealing at 

1073K for 2h  

7.902 10 M 

a = 4.391 

b = 5.882  

c = 21.184 

   [2] 

Ni51Mn33.4In15.6 

Arc melting and 

annealing at 

1173K for 48 h 

 cubic L21 a = 6.008 309.5 15 (5 T)  [35] 

Ni52Mn32.5In15.5 

Arc melting and 

annealing at 

1173K for 48 h 

 
cubic L21 

orthorhombic  

a = 6.010 

a = 17.961 

b = 10.766  

c = 4.608 

182   [31] 

3.3. Critical Behavior 

The critical exponents 𝛽, 𝛾 and 𝛿 characterize the samples that underwent SOMT. 

The exponent β, which is linked to the evolution of the spontaneous magnetization with 

respect to the temperature (Ms ∝ (𝑇 − 𝑇𝐶)𝛽), describes the growth of the ordered moment 

below Tc; γ is related to the temperature dependence of the initial magnetic susceptibility 

(𝜒0
−1 ∝ (𝑇 − 𝑇𝐶)𝛾. It defines the divergence of χ0 at Tc, and δ is associated with the critical 

isothermal magnetization. It describes the curvature of the isothermal magnetization 

curves 𝑀(𝐻) at 𝑇𝐶. For further confirmation of the long-range nature of FM interac-

tions that characterize the sample, the modified Arrott plots (MAPs) [37] are presented 

for the mean field model, 3D-Heisenberg model, 3D-Ising model and tricritical mean 

field model in Figure 7.  
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The vertical shift observed in the magnetization curve may be attributed to the strong
AFM interactions in the martensite structure and/or to the short-range AFM magnetic
coupling in the Mn-rich areas. Indeed, the rapid solidification leads to structural hetero-
geneities owing to the temperature difference between the free and wheel surfaces of the
ribbons. It is obvious that a small change in the composition or in the elaboration conditions
affects the physical properties of the Heusler alloys as shown in Table 1 [2,35,36].

Table 1. Comparison of the obtained physical properties of Ni51.82Mn32.37In15.81 ribbons with ear-
lier reports.

Sample Method e/a Phase a, b, c (Å) Tc (K) ±∆S
(J/kg.K)

Hc
(Oe) Ref.

Ni51.82Mn32.37In15.81 Melt spinning 7.922 cubic B2
14 M

a = 2.968
a = 4.327
b = 5.567
c = 29.035

194.2 0.92 (5 T) 48.54 (2 T) This work

Ni50Mn35In15

Arc melting and
annealing at 1073 K

for 2 h
7.902 10 M

a = 4.391
b = 5.882
c = 21.184

[2]

Ni51Mn33.4In15.6

Arc melting and
annealing at 1173 K

for 48 h
cubic L21 a = 6.008 309.5 15 (5 T) [35]

Ni52Mn32.5In15.5

Arc melting and
annealing at 1173K

for 48 h

cubic L21
orthorhombic

a = 6.010
a = 17.961
b = 10.766
c = 4.608

182 [31]

3.3. Critical Behavior

The critical exponents β, γ and δ characterize the samples that underwent SOMT.
The exponent β, which is linked to the evolution of the spontaneous magnetization with
respect to the temperature (Ms ∝ (T − TC)

β), describes the growth of the ordered moment
below Tc; γ is related to the temperature dependence of the initial magnetic susceptibility
(χ−1

0 ∝ (T − TC)
γ. It defines the divergence of χ0 at Tc, and δ is associated with the critical

isothermal magnetization. It describes the curvature of the isothermal magnetization curves
M(H) at TC. For further confirmation of the long-range nature of FM interactions that
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characterize the sample, the modified Arrott plots (MAPs) [37] are presented for the mean
field model, 3D-Heisenberg model, 3D-Ising model and tricritical mean field model in
Figure 7.
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related to the coexistence of FM and AFM interactions in the alloy [38]. It is obvious that 

preparation conditions and, consequently, the alloy’s microstructure influences their 

critical behavior considerably.  

Figure 7. Modified Arrott plots: isotherms of M1/β vs. (H/M)1/γ with the mean field model, 3D-
Heisenberg model, 3D-Ising model and tricritical mean field model. From 100 to 260 K (increments
of 5 K).

These models are used to plot the calculated relative slope RS using the linear fit from
the high field region of each curve. The relative slope, which is given by RS = S(T)/S(TCr)
(Figure 8), is identified as the ratio between the slope at each temperature, S(T), and the
slope at the critical temperature, S(TCr). Generally, for a given conventional model, RS
is much closer to the unit. Accordingly, the critical behaviour of the ribbons can be well-
described by the mean field, MF, with a dominated long-range order of ferromagnetic
interactions. Similar critical behaviour was reported for the Ni43Mn46Sn8In3 Heusler alloy
prepared by arc melting and annealing at 1323 K for 48 h. The small deviations in critical
exponents β and γ from those expected for the mean field model were related to the
coexistence of FM and AFM interactions in the alloy [38]. It is obvious that preparation
conditions and, consequently, the alloy’s microstructure influences their critical behavior
considerably.
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Figure 8. Relative slope (RS) as function of temperature defined as RS = S(T)/S(Tcr) using
different models.

The first estimation of β and γ values as well as Tc are provided through the non-linear
fit of the spontaneous magnetization Ms(T, 0) and the inverse of the initial susceptibility
χ−1

0 (T, 0) curves using Equations (1) and (2), respectively:

MS(T) = M0(−ε)β; ε < 0, T < Tc (1)

χ−1
0 (T) =

(
h0

M0

)
εγ; ε > 0, T > Tc (2)

M = DH1/δ; ε = 0, T = Tc (3)

where ε = (T − Tc)/Tc is the reduced temperature, M0, h0 and D are the critical am-
plitudes. The values of β, γ and Tc are shown in Figure 9, in which β = 0.500± 0.015,
γ = 1.282± 0.055 and Tc = (198.456± 1.077) K are close to the MF model and the
estimated Tc is closer to the obtained value from the M(T) curve.
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Straight-lined Kouvel–Fisher plots [39,40] (K − F) of MS(T)(dMS(T)/dT)−1 and

χ−1
0 (T)

(
dχ−1

0 (T)/dT
)−1

vs. T, with slopes 1/β and 1/γ, show the most precise values
of the critical exponents and Tc. This was later determined by an extrapolation to the
T-axis (Figure 10). One observes that the accurate values are close to those obtained from
the MAPs. The value of the third exponent δ can be determined directly from the critical
isotherm (CI) curve M = f (µ0H, Tc) (Figure 11). The inset in Figure 11 displays the log–
log plot, where the linear fit using Equation (3) leads to a value of δ = 3.003± 0.002. The
accuracy of the gained exponent values β and γ are interrelated to the third exponent δ via
Widom scaling relation (δ = 1 + (γ/β)) [41]. The calculated δ = 3.353± 0.027 is slightly
large than that determined experimentally from the critical isotherm δ = 3.003± 0.002.
The difference may be attributed to the coexistence of 14M and B2 structures leading to
the coexistence of FM and AFM interactions in the prepared Heusler alloy. Consequently,
the temperature dependence of the initial magnetic susceptibility can be affected. Critical
exponents often show a deviation from the values of theoretical models. This appears as if
a magnetic system is governed by various competing coupling and/or disorders [42,43].
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The reliability of the obtained critical exponents and Tc values can be confirmed by
the scaling hypothesis [44], which presents two distinct branches below and above Tc;
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confirming that the estimated critical exponents and Tc are reasonably accurate (Figure 12).
As summarized in Table 2, the estimated values match well the mean field model [29,30,45].
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Table 2. Comparison of estimated critical exponents of Ni51.82Mn32.37In15.81 ribbons with other
reports and the various theoretical models.

Material Technique β γ δ Ref.

Ni51.82Mn32.37In15.81 MAPs 0.500 ± 0.015 1.282 ± 0.055 —- This work

K-F 0.554 ± 0.017 1.304 ± 0.044 3.353 ± 0.027

CI —- —- 3.003 ± 0.002

Ni50Mn35In14Si1 MAPs 0.510 0.987 2.935 [44]

CI —- —- 2.950

MAPs 0.550 0.944 2.716

CI —- —- 2.670

Ni50Mn35Sn15 MAPs 0.50 ± 0.03 0.92 ± 0.03 —- [30]

K-F 0.45 ± 0.01 0.88 ± 0.03 2.92

CI 3.02 ± 0.02

Mean field model 0.5 1.0 3.0 [29]

3D Heisenberg model 0.365 1.336 4.80 [29]

3D Ising model 0.325 1.241 4.82 [29]

Tricritical mean field 0.25 1.0 5.0 [29]

3.4. Magnetocaloric Effect

The MCE can be evaluated by calculating the magnetic entropy change (∆SM). This is
calculated by using the thermodynamic Maxwell relation as follows:

∆SM(T, ∆H) = SM(T, H2)− SM(T, H1) =
∫ H2

H1

(
∂M
∂T

)
T

dH (4)

where H1 and H2 are the applied fields and ∆H = H2 − H1, H1 ≤ H2.
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Numerically, ∆SM can be deduced by the integration of the magnetic isotherm plots
at small discrete magnetic field and temperature intervals, and can be approximated
as follows:

∆SM(T, M) = ∑i
Mi+1(Ti+1, Hi+1)−Mi(Ti, Hi)

Ti+1 − Ti
∆H (5)

where Mi and Mi+1 are the experimental data of the magnetization at temperatures Ti
and Ti+1, respectively, under a magnetic field Hi. Figure 13 displays the −∆SM versus
T plots for different applied magnetic fields ranging from 1 to 5 T. One observes that
the magnetic entropy’s peak (−∆Smax

M ) rises continuously with increasing the field from
0.11 to 0.92 J/kg.K for 1 T and 5 T, respectively (inset in Figure 13). This value is lower
than that obtained for the melt-spun Ni50Mn35Sn15 ribbons [28] and bulk Ni51Mn33.4In15.6
alloy [35]. The much lower magnetic entropy change compared to that of the polycrystalline
Ni51Mn33.4In15.6 sample prepared by arc melting, followed by annealing at 1173 K for 48 h
and quenching in ice water [35], can be associated with the modifications in the magnetic
order of the sample, which is related to the preparation conditions and crystal structure.
This later consists of a single cubic cell (space group Fm3m, and a = 6.008(2) Å) for the bulk
Ni51Mn33.4In15.6, and a mixture of 14 M martensite (50%) and cubic B2 austenite structure
(50%), (space group Pm3m, and a = 2.9684Å) for the ribbons.

Magnetochemistry 2022, 8, 179 13 of 16 
 

 

𝐻 = 𝑎(𝑇)𝑀 + 𝑏(𝑇)𝑀3 + 𝑐(𝑇)𝑀5  (7) 

 

Figure 13. −∆𝑆𝑀(𝑇) curves for Ni51.82Mn32.37In15.81 ribbons under applied fields of 1−5 T. The inset 

shows magnetic field dependence of −∆𝑆𝑀
𝑚𝑎𝑥. 

By using Equation (7), the polynomial fit of the experimental 𝑀(𝐻) data can be 

used to determine Landau’s coefficient 𝑎(𝑇), 𝑏(𝑇) and 𝑐(𝑇). One notes that the 𝑎(𝑇) 

value is always positive and presents a minimum around 𝑇𝑐, and the 𝑏(𝑇) value can be 

negative, zero or positive. Additionally, 𝑏(𝑇𝑐) = 0 confirms that the transition belongs 

to the second order character. The 𝑐(𝑇) value is always negative. Accordingly, the cal-

culated values are in good agreement with the Landau model. 

The magnetic entropy change can be modelled theoretically by using the derivative 

of the free energy with respect to the temperature according to the subsequent equation: 

−∆𝑆𝑀(𝑇, 𝐻) = (
𝑑𝐺

𝑑𝑇
)

µ0𝐻
=

𝑎′(𝑇)

2
𝑀2 +

𝑏′(𝑇)

4
𝑀4 +

𝑐′(𝑇)

6
𝑀6  (8) 

where 𝑎′(𝑇), 𝑏′(𝑇) and 𝑐′(𝑇) are the derivative of Landau’s coefficient with respect to 

temperature. The plots of the numeric calculation of −∆𝑆𝑀 are in good concordance 

with experimental results as illustrated in Figure 14. One observes that in the PM region 

(𝑇 > 𝑇𝑐), (−∆𝑆𝑀)𝑒𝑥𝑝 and (−∆𝑆𝑀)𝑡ℎ𝑒𝑜 are well superposed, suggesting that the calcu-

lated Landau’s coefficients are accurate. The small deviations around the maximum of 

the magnetic entropy curves can be related to the numerical derivatives that are intro-

duced in the calculation, which may present a source of errors close to the transition 

temperature. In addition, these deviations may be attributed to the existence of inhomo-

geneous magnetism that could be associated with the coexistence of FM and AFM inter-

actions in this Heusler alloy. 

Figure 13. −∆SM(T) curves for Ni51.82Mn32.37In15.81 ribbons under applied fields of 1−5 T. The inset
shows magnetic field dependence of −∆Smax

M .

The theoretical model proposed by Amaral et al. takes into account the contribution of
the magneto-elastic electron’s interactions [46]. The model is based on Landau theory in the
vicinity of Tc [47]. In this model, free energy (G) is developed as a function of magnetization
(M) as follows:

G(M, T) = G0 +
a(T)

2
M2 +

b(T)
4

M4 +
c(T)

6
M6 + · · · · · · − HM (6)
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Considering the equilibrium condition, ∂G/∂M = 0, the total magnetization around Tc
can be described as follows:

H = a(T)M + b(T)M3 + c(T)M5 (7)

By using Equation (7), the polynomial fit of the experimental M(H) data can be used
to determine Landau’s coefficient a(T), b(T) and c(T). One notes that the a(T) value is
always positive and presents a minimum around Tc, and the b(T) value can be negative,
zero or positive. Additionally, b(Tc) = 0 confirms that the transition belongs to the second
order character. The c(T) value is always negative. Accordingly, the calculated values are
in good agreement with the Landau model.

The magnetic entropy change can be modelled theoretically by using the derivative of
the free energy with respect to the temperature according to the subsequent equation:

− ∆SM(T, H) =

(
dG
dT

)
µ0 H

=
a′(T)

2
M2 +

b′(T)
4

M4 +
c′(T)

6
M6 (8)

where a′(T), b′(T) and c′(T) are the derivative of Landau’s coefficient with respect to
temperature. The plots of the numeric calculation of −∆SM are in good concordance with
experimental results as illustrated in Figure 14. One observes that in the PM region (T > Tc),
(−∆SM)exp and (−∆SM)theo are well superposed, suggesting that the calculated Landau’s
coefficients are accurate. The small deviations around the maximum of the magnetic
entropy curves can be related to the numerical derivatives that are introduced in the calcu-
lation, which may present a source of errors close to the transition temperature. In addition,
these deviations may be attributed to the existence of inhomogeneous magnetism that
could be associated with the coexistence of FM and AFM interactions in this Heusler alloy.
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4. Conclusions

Heusler Ni51.82Mn32.37In15.81 ribbons were prepared by melt-spinning from arc-melted
ingots. The crystal structure consisted of a mixture of B2 austenite (~50%) and 14M
martensite (~50%). The SOMT occurred at a Curie temperature of TA

C = 194.2 K. The
occurrence of the exchange bias, at room temperature, can be related to the experimental
conditions. The exchange bias can be ascribed to the coupling of AFM and FM at the
interfaces. According to the critical exponent values (β = 0.500 ± 0.015, γ = 1.282 ±
0.055 and δ = 3.003 ± 0.002), the critical behavior is governed by the mean field model
with a dominated long-range order of ferromagnetic interactions. The maximum entropy
change reached an absolute value of 0.92 J/kg·K for an applied magnetic field of 5 T. The
experimental results from the magnetic entropy changes are in good agreement with those
calculated using the Landau theory.
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2. Şaşmaz, M. Metamagnetic transition and magnetocaloric properties of Ni45Mn42In13 Heusler alloy. Phase Transit. 2021, 94,

289–297. [CrossRef]
3. Fan, J.L.; Zhao, G.M.; Ai, Y.L.; Ouyang, S.; Zhu, Y. Partially ordered hierarchical substructure of as cast? phase in Ni-Mn-Ga alloys.

Mater. Design 2022, 219, 110780. [CrossRef]
4. Zhou, L.; Mehta, A.; Giri, A.; Cho, K.; Sohn, Y. Martensitic transformation and mechanical properties of Ni49+xMn36−xIn15 (x = 0,

0.5, 1.0, 1.5 and 2.0) Alloy. Mater. Sci. Eng. A 2015, 646, 57–65. [CrossRef]
5. Wederni, A.; Ipatov, M.; González, J.M.; Khitouni, M.; Suñol, J.J. Ni-Mn-Sn-Cu alloys after thermal cycling: Thermal and magnetic

response. Materials 2021, 14, 6851. [CrossRef]
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