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Fig. 1: Near state of the art generation quality can be obtained on transfer learning with ten time less trainable parameters (left
two examples). Our parameter sharing procedure can also learn multiple domains simultaneously with higher quality than the
state of the art (right 4 images). Here, λD refers to the ratio of trainable parameters per domain, see Sec. 3

ABSTRACT

In this work, we propose a new parameter efficient sharing
method for the training of GAN generators. While there has
been recent progress in transfer learning for generative mo-
dels with limited data, they are either limited to domains close
to the original one, or adapt a large part of the parameters.
This is somewhat redundant, as the goal of transfer learning
should be to re-use old features. In this way, we propose
width wise parameter sharing, which can learn a new domain
with ten times fewer trainable parameters without a signi-
ficant drop in quality. Previous approaches are less flexible
than our method and also fail to preserve image quality for
challenging transfers. Finally, as our goal is ultimately para-
meter re-use, we show that our method performs well in the
multi-domain setting, wherein several domains are learned
simultaneously with higher visual quality than the state of the
art StarGAN-V2.

Index Terms— Image generation, GANs, Distributed
learning, Network compression

1. INTRODUCTION

Recent years has seen substantial progress on improving
image generation quality. Notably, the StyleGAN2 network
substantially improved the state of the art for image genera-
tion and can fool even human observers at high resolutions
[1]. Even so, StyleGAN2 is a resource intensive network with
millions of parameters even if only for a single domain or
with few images. As such, the research focus for image gene-
ration has shifted to more specialized tasks aiming at increa-
sing the efficiency or usability of these generators. For ins-

tance several works have addressed transfer learning between
datasets [2, 3, 4] or learning with limited data [4, 5]. Indeed,
the status quo for GANs is to re-train from scratch millions
of parameters for every new image dataset. Clearly this is a
poor approach, as even disparate image classes can contain
commonalities, such as color and texture distributions. Seve-
ral methods have employed explicitly freezing discriminator
layers when training a new generator on similar data [4, 3],
which helps train on limited data by regularizing the learning
problem and converging faster as less parameters need to be
learned. Similarly, MineGAN [2] appends layers to a genera-
tor and freezes the original generator parameters.

In this work we address to what extent image features can
transfer across datasets. Unlike previous work, we consider
capacity needed to perform transfer learning and multi do-
main learning in terms of trainable parameters per domain.
This is useful because after training, one only needs to store
and distribute the domain specific parameters. For multi do-
main learning, one also has a shared representation which
contains features from many distributions. As an additional
result, we demonstrate intra layer redundancy of Stylegan2
parameters. In summary, we provide the following contribu-
tions :

— We demonstrate a parameter sharing method for GAN
generators, which we call width-wise sharing, sum-
marized in Fig. 2 and detailed in Sec. 3. Naive sharing
strategies used in previous works reported in Sec. 2,
such as sharing by layer, are unable to generate realis-
tic samples with small parameter budgets. In Sec. 4,
we show our sharing procedure can generate new
images with ten times less trainable parameters wi-
thout significant drop in image quality, as illustrated



in Fig. 1.
— We train a model on multiple image generation bench-

marks simultaneously. Our method outperforms the
baseline multi domain image generation method of
StarGAN-V2 in terms of FID.

2. PREVIOUS WORK

We start by reviewing several recent works related to
transfer learning with GANs and parameter sharing in gene-
rative networks.

2.1. Generative Transfer Learning

Recently, transfer learning has been shown to be effective
in the generative setting to address the problems of limited
data training and slow training time [2, 4, 5]. The quality of
state of the art GANs, such as StyleGAN2 or BigGAN [6],
degrades significantly with "small" amounts of training data,
which can even be as large as 1k-5k samples. This signifi-
cantly limits the applicability of such methods in real world
scenarios.

Various approaches have addressed this problem via trans-
fer learning. In [3], several input layers of the discriminator
are frozen and the generator is learned from scratch. In Mi-
neGAN [2], knowledge is transferred from a previously lear-
ned generator to a new domain by either freezing all layers of
the generator and relearning a compact MLP layer appended
to the input, or by finally allowing fine tuning after an initial
learning step. In this work, we consider only the setting where
the source generator parameters are frozen, as we consider
parameter efficiency and finetuning corresponds to fully re-
learning the generator. MineGAN is attractive in that only a
very compact set of parameters needs to be stored, alongside
the original generator to generate new data. However, we will
demonstrate that MineGAN is unable to tackle difficult trans-
fer problems, when the new data distribution is far from the
original distribution. Finally, we note the work of [7], which
only retrains layers near the input of the source generator, and
then only relearns filter statistics of subsequent frozen layers,
which they dub "AdaFM," due to it’s similarity to the AdaIN
layers in Stylegan [1]. While this is in some ways similar to
our layerwise strategy (see next section), we do not consider
this method directly as they re-learn a substantial portion of
the generator parameters.

2.2. Learning GANs on Multiple Domains

Many problems seek to train GANs to generate data from
many different domains. In conditional image generation,
one seeks to generate potentially thousands of classes, each
containing a small amount of samples [6, 8]. In BigGAN
for example, class specific generation is controlled by an
embedding layer at the input, and all other parameters are

shared amongst every class. In domain translation, one seeks
to translate samples from domain to another with a generative
model, typically with a GAN training loss [9, 10, 11]. For
instance in StarGAN-V2 [10], each image domain shares a
common representation with one another, and each domain
has specific style layers. Then samples from each domain can
be translated simply by replacing the style. These methods
have a similar objective to this work in that they promote mo-
dels with parameter re-use across different domains. Finally,
also related is the task of lifelong learning, wherein data is
learned in an online fashion and may be subject to domain
shift [12, 13].

In this work, we consider two settings where models share
parameters to generate data from different domains. The first
is transfer learning where most parameters are simply re-used
as is (frozen) while the remaining ones are adapted to generate
a new domain. We also consider a use-case wherein multiple
domains are learned simultaneously with the majority of pa-
rameters shared. However, we believe our parameter sharing
procedure, introduced in the next section, can be applied to
many of the multi-domain settings introduced herein.

3. SHARING STRATEGIES FOR TRANSFER
LEARNING

We consider transferring knowledge from a GAN gene-
rator/discriminator pair (G1, D1) trained on dataset S1 to a
GAN (G2, D2) trained on dataset S2 (denoting henceforth
the transfer as S1 → S2). We initialize training of (G2, D2)
with the parameters of (G1, D1). Then, a subset of parame-
ters are frozen to force the new generator to use knowledge
from the old one. Shared (frozen) parameters are referred to
as θS and domain (trainable) parameters are referred to as
θD. As ultimately we wish to train G2 with as few parame-
ters as possible, we measure the number of new parameters
needed to train G2 by simply measuring the ratio of trai-
nable parameters, which we refer to as the learn ratio λD,
i.e. λD = |θD|/(|θD| + |θS |). Note that λD is also the ratio
of memory needed to store G2 ; if one has already stored G1,
G2 can be constructed by loading θS from G1. We detail se-
veral strategies for splitting capacity of G2 amongst θD and
θS given λD in the following paragraphs.
MineGAN. In MineGAN [2], MLP layers are appended to
the input of the generator and all other parameters are frozen.
Therefore the trainable parameters in this layer are θD. Fur-
thermore, θS =θ is simply all original parameters frozen at
the start of training. While in [2], the generator may also be
fine tuned after the MLP layers are learned, we consider only
the case where no finetuning takes place, as we are investiga-
ting the parameter efficiency of different sharing procedures.
Thus, MineGAN will only refer to the learned MLP layers
with every other layer frozen.
Layer wise sharing. As a simple baseline, we explore sim-
ply choosing entire layers of StyleGAN2 to be within θD
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Fig. 2: Sharing strategies illustrated on the StyleGAN network. Left : layerwise sharing, a fixed ratio of the style / convolutional
layers are domain specific (red) and the rest are shared between models (green). Right : widthwise sharing, in each style and
convolutional layer a fixed ratio of the parameters are specific (red) and the remainder are shared (green).

or not. We consider two configurations for λD = 1% and
λD=10%. For λD = 1%, we choose only the first two "style"
MLP layers in the mapping network and for λD = 10% we
choose the first four style layers and first convolutional block
(see Fig. 2). We chose to favor early layers as they have more
of a global influence on generation, however the choice of
layers to share is not trivial and is part of the drawback of
a layer wise approach. Note that several methods in the lite-
rature use the early layers of Stylegan2 as the domain spe-
cific layers [10, 14]. Note that both StarGAN-V2 [10] and
[14] are layer wise procedures, which learn the MLP layers
of Stylegan2 as the domain specific parameters and then share
the generator network. For our multi domain learning experi-
ments, discussed in Sec. 4.5, we train StarGAN-V2 using the
official code, and then only use the networks for generating
random samples. Note as well that unconditional generation
from each domain is one of the objectives for StarGAN-V2,
so it serves as a decent comparison for our setting.
Width wise sharing. In an effort to give a more flexible
sharing strategy w.r.t. the parameter budget and also spread
capacity through the various resolutions of the network, we
propose splitting each layer into trainable and shared para-
meters. Note that in the related domain of continual learning
for classification, existing models are augmented by appen-
ding new filters

To do this, we split weight tensors in each layer according
to λD, taking the first dimensions to be θD and the second
part to be θS . The style blocks in StyleGAN2 are based off
adaptive instance normalization [15] with an affine layer ta-
king as input style codes and applying a gain to convolution
channels. The affine layer contains a I × I matrix, we take
the first bλDIc columns to be θD. Similarly for convolution
layers we take the first bλDIc input filters to be θD. In prac-
tice, these weight tensors are kept separate where θD and θS

are concatenated on the forward pass. In this way, our method
can be added in place to any generator, without changing out-
put. See the rightmost diagram of Fig. 2 for more details.

3.1. Sharing for multi-domain learning

In the previous section, we discussed sharing in a trans-
fer learning setting where parameters θS are merely frozen. In
this work, we also explore a distributed setting where multiple
domains S1,S2,S3,. . . are learned simultaneously. In this case
θS is learned along with θD, however θS is trained in a dis-
tributed fashion wherein gradients are synchronized at each
optimizer update. Thus, the downstream distribution and sto-
rage of the network still depends on λD, as it pertains the
number of unique parameters needed for each generator.

4. EXPERIMENTAL RESULTS

In this section, we view generation results for the various
training strategies detailed in Sec. 3, namely MineGAN,
layerwise sharing and finally our width-wise sharing method
for the transfer learning problem.

We indicate by S1 → S2 the transfer learning from a do-
main S1 to a new domain S2, where only a fraction λD of the
generative network parameters are retrained on the new do-
main. Various settings are tested for FFHQ → METFACE and
FFHQ→ LSC for different methods : MineGAN (where λD is
close to 1%), the naive layer-wise approach and the proposed
width-wise sharing for λD = 10%, and finally full training
the generator (λD = 100%). FID values for corresponding
experiments are also reported in Table 1.

One could expect the transfer of FFHQ → METFACE to
be easier than the transfer of FFHQ→ LSC, because while the
color and textures within METFACE are different from FFHQ,



the datasets still comprises registered faces, and contains si-
milar attributes to FFHQ. Still, the results show that MineGAN
is unable to produce plausible samples for METFACE, while
layerwise and width-wise training are both able to handle this
transfer. On the other hand, FFHQ→ LSC requires the genera-
tor to learn completely new large scale structures. In this case,
while layerwise training can produce plausible backgrounds
and colors, the objects (churches) are blurry and unrecogni-
zable. Surprisingly, even with ten times less learnable para-
meters, the width-wise sharing method is able to handle this
difficult transfer, both in terms of the visual quality of samples
(see Fig. 1) and the FID values provided in Table 1.

FFHQ→METFACE FFHQ→LSC

strategy λD (%) FID λD (%) FID
fully trainable 100 22.1 100 10.7
MineGAN 1 ≈1 59.5 ≈1 254

layer-wise 10 50 10 191
1 52.1 1 136

width-wise 10 27.8 10 22.5
1 39.2 1 31.1

Table 1: FID values for different sharing strategies un-
der various parameter budgets λD. Both MineGan [2] and
layer-wise strategies fail for the difficult transfer of faces to
churches FFHQ→ LSC, as indicated by the high FID’s over
100, contrary to the proposed width-wise approach. See the
supplementary material for visual comparison.

4.1. Sharing strategies for Multi-domain distributed lear-
ning

In the previous section, we explored transfer learning
from a single source domain to a target domain and froze
some source generator parameters to enforce parameter sha-
ring. In this section, we’ll explore learning multiple domains
simultaneously. In some generative applications, parameter
sharing is built in to the learning procedure. For example, in
domain translation, a shared representation is used to trans-
late samples from one domain to another [10, 15, 9]. Here,
we’ll compare to the state of the art in image translation net-
work StarGAN-V2 [10] and only use the final network for
unconditional image generation. As was discussed in Sec 4,
StarGAN-V2 takes θD to be the MLP mapping layers in
the Stylegan2 network, and θS to be all other parameters,
which is equivalent to a layerwise strategy. Four our sharing
strategies, we’ll learn several domains S1,S2, ...Sn whilst
learning both θS (shared amongst every domain) along with
θD. Note that in this setting, the overall memory needed to
store all parameters is n|θD|+ |θS |, and thus λD is an impor-
tant parameter effecting the bandwidth needed for parameter
updates (if training is done in a distributed parameter-server
paradigm) and distribution of the network after training.

Table 2 compares FID scores for StarGAN-V2, layerwise
and width-wise sharing strategies when training on 4 datasets
(CA-HQ, LSC, LSCA, LSB). In the case of λD = 1%, width-
wise sharing beats layerwise by a large margin for every da-
taset. When λD = 10%, the two sharing methods are more
comparable. This is somewhat to be expected ; a particular
choice of layers for layerwise sharing might perform better
for a specific set of datasets, as style layers each control dif-
ferent image semantics and particular layers may represent
commonalities better than others (see Sec. 3). On the other
hand, when λD is too small, the choice of layers is limited
and we chose input layers as it reflects the sharing in BigGAN
or MineGAN. StarGAN-V2 performs comparably on 3 data-
sets and has generator collapse on CelebA-HQ. This is likely
because it is the most different of the three datasets, and the
extra constrain of domain translation has forced the shared re-
presentation to favor similar domains. Width-wise is clearly a
better approach in general as it spreads domain specific capa-
city throughout the network. We note that good performance
with low λD desirable because as with the previous setting it
effects the downstream storage and distribution of parameters.

Strategy Layer-Wise StarGAN-V2 Width-Wise
λD 1 10 10 1 10

CHQ 23.71 18.84 254.7 17.06 15.08
LSC 17.29 15.49 21.31 14.45 14.46

LSCA 39.40 43.43 47.24 36.44 32.05
LSB 19.14 18.67 19.15 17.29 13.56

Table 2: FID values for different sharing strategies under va-
rious parameter budgets λD for multi-domain distributed lear-
ning (here 4 datasets simultaneously). Note that width-wise
has the highest quality samples for each domain, across both
parameter budgets. See the supplementary material for visual
comparison.

5. CONCLUSION

In this work, we addressed the problems of transfer lear-
ning and multi domain learning with a GAN generator. We
proposed the simple yet effective weight sharing method of
width wise sharing. This method was more efficient at transfer
learning than currently the currently proposed method of Mi-
neGAN when constrained to a set parameter budget. Finally,
we used our width wise sharing method to learn multiple do-
mains simultaneously, and again showed that our method was
more effective than a state of the art method StarGAN-V2,
when simultaneously learning several challenging datasets.
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