
HAL Id: hal-03983465
https://hal.science/hal-03983465

Submitted on 13 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FPGA-based SoC for transcoding H264/AVC-SVC with
low latency and high bitrate entropy coding

Michael Guarisco, Hassan Rabah, Yves Berviller, Serge Weber, S. Belkouch

To cite this version:
Michael Guarisco, Hassan Rabah, Yves Berviller, Serge Weber, S. Belkouch. FPGA-based SoC for
transcoding H264/AVC-SVC with low latency and high bitrate entropy coding. 2009 IEEE Interna-
tional SOC Conference (SOCC 2009), Sep 2009, Belfast, United Kingdom. pp.423-426, �10.1109/SOC-
CON.2009.5398004�. �hal-03983465�

https://hal.science/hal-03983465
https://hal.archives-ouvertes.fr

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221594963

FPGA-based SoC for transcoding H264/AVC-SVC with low latency and high

bitrate entropy coding

Conference Paper · September 2009

DOI: 10.1109/SOCCON.2009.5398004 · Source: DBLP

CITATIONS

2
READS

361

5 authors, including:

Some of the authors of this publication are also working on these related projects:

TOSCANE View project

Arc fault detection View project

Michael Guarisco

Université de Technologie de Belfort-Montbéliard

14 PUBLICATIONS 97 CITATIONS

SEE PROFILE

Yves Berviller

University of Lorraine

53 PUBLICATIONS 224 CITATIONS

SEE PROFILE

Serge Weber

University of Lorraine

135 PUBLICATIONS 725 CITATIONS

SEE PROFILE

All content following this page was uploaded by Serge Weber on 31 August 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221594963_FPGA-based_SoC_for_transcoding_H264AVC-SVC_with_low_latency_and_high_bitrate_entropy_coding?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221594963_FPGA-based_SoC_for_transcoding_H264AVC-SVC_with_low_latency_and_high_bitrate_entropy_coding?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/TOSCANE?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Arc-fault-detection?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael-Guarisco?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael-Guarisco?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-de-Technologie-de-Belfort-Montbeliard?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael-Guarisco?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yves-Berviller?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yves-Berviller?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Lorraine?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yves-Berviller?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Serge-Weber?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Serge-Weber?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Lorraine?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Serge-Weber?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Serge-Weber?enrichId=rgreq-496599a48d866ebec79c567ff31c8621-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU5NDk2MztBUzo1MzMzNTU1ODM4NzMwMjRAMTUwNDE3MzI4ODEwMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

FPGA-BASED SoC FOR TRANSCODING H264/AVC-SVC WITH LOW
LATENCY AND HIGH BITRATE ENTROPY CODING

M. GUARISCO†, H. RABAH†, Y. BERVILLER†, S. WEBER† and S. BELKOUCH‡

†
Université Henri Poincaré Nancy 1, Faculté des Sciences et Techniques - BP 239

54506 Vandoeuvre-lès-Nancy Cedex, FRANCE

‡Université Cadi ayyad ENSA
BP575, Avenue Abdelkarim Khatabi, Guéliz, Marrakech, Marocco

ABSTRACT
Scalable Video Coding extension of H.264

standard is very suitable for content adaptation and
addressing different terminals. However, in various
cases it is necessary to perform transcoding in
video coding layer requiring tremendous
computation and hardware acceleration. In this
paper, we present an efficient hardware
architecture of a CAVLC codec based on a new
method that provides a constant and reduced
latency. The presented method calculates the 16
DCT coefficients in parallel. The results of hardware
implementation targeting a Xilinx Virtex 5 FPGA are
presented.

I. INTRODUCTION

The H.264 video compression standard is very
efficient, since it allows reducing the bitrate of a
multimedia stream by half, compared to previous
standards such as H.263 [1]. Thanks to predefined
profiles and levels, this standard enables a wide
range of applications, going from mobile video
streaming to high definition TV over wired/wireless
networks. The scalable extension of H.264/AVC
standard called SVC, is defined to address
heterogeneous terminals and different available
bandwidth. One of the main features of the H.264 is
the separation between the video coding layer
(VCL) and the network adaptation layer (NAL). SVC
exploits this separation by encoding input video into
several layers corresponding to different video size,
frame rate or quality. Each layer corresponds to a
NAL unit so that it is possible to access to a given
spatial/temporal/quality level of the compressed
video sequence by selecting appropriate SVC
layers. This selection process called SVC layer
dropping is applied to perform video adaptation.
This adaptation scheme can be efficient in several
cases but does not cover all possible scenarios.

Therefore, transcoding is still a necessary operation
that must be carried out in the video coding layer
(VCL). This operation requires a single or multiple
entropy decoding and encoding before and after
image or video manipulation. Figure 1 depicts a
typical use case, where an adaptive home gateway
addresses various terminals and capable of
performing adaptability in NAL and VCL layers.

 Figure 1: Adaptive Home gateway with High-level architecture of
H.264/AVC-SVC Transcoder.

Adaptability in VCL layer requires entropy
decoding and encoding that must be performed
over one ore more streams depending on the
number of required input and output bitstreams.
Two statistical coding tools - the Context-based
Adaptive Variable Length Coding (CAVLC) and the
Context-based Adaptive Binary Arithmetic Coding
(CABAC) - have been adopted in different profiles
of the H.264/AVC video coding standard, and must
be interoperable depending on input profile and
output profile. Therefore, the entropy coding and

decoding are important tasks that must be executed
efficiently in the transcoding process. In this paper,
we propose a hardware real time transcoding
architecture of a video stream. The architecture is
based on a CAVLC decoder, encoder, and
frequency selection in the DCT domain. We
particularly focus on the CAVLC architecture.

II. RELATED WORK

The performance of H264 encoding standard is
obtained in particular with variable length entropy
encoding CAVLC. Such a performance can only be
achieved at the price of a high complexity in the
compression algorithm. Since this complexity
depends on the target architecture, several models
have been developed to reduce it [2-5].

Most approaches encode symbols sequentially.
In these approaches, the execution time of the VLC
encoding for a given block depends on the
quantization parameter and the type of video [6] [7].
The corresponding architectures introduce a
random execution time that requires an
intermediate buffer in upstream of the entropy
encoder between the encoder and the quantizer.
Indeed, variable execution time implies a variable
input rate, whereas the output rate of the quantizer
is fixed. It is therefore necessary to provide a buffer
and a controller to synchronize the buffer with the
CAVLC encoder.

III CAVLC ALGORITHM

The CAVLC algorithm uses a variable length
encoding, which plays an important role in image
compression. Frequently occurring elements can be
assigned very short codes, while infrequent
elements can be assigned longer codes. This can
significantly reduce information redundancy.
CAVLC is called adaptive because, a block i is
coded based on the information coming from block
i-1; i.e. the neighboring blocks (left-hand and upper
previously coded blocks). This adaptation is also
used inside the block when encoding the level of
each coefficient. The codeword of a coefficient
depends on the precedent level or, in the case of
the first coefficient, on the number of non-zero
coefficients and on the coefficients that are equal to
1 or -1 inside the same block.

The modules that compute and generate the bit
stream receive their coefficients from a frequential
transformation followed by a quantizer and

reorganized through a zigzag scanning. In general,
CAVLC encodes each block in five independent
steps. In the first step it generates “CoeffToken”
that encodes both the total number of non-zero
coefficients (TotalCoeffs) and the number of trailing
+/-1 values (TrailingOnes) in a block. “CoeffToken”
also depends on the number of non-zero
coefficients in the left-hand and upper previously
coded blocks. The second step allows the
encoding of the “TrailingOnes” and represents the
sign of each coefficient by a single bit. The
TotalZeros parameter encodes the amount of all
zeros preceding the highest non-zero coefficient.
Afterward comes the actual encoding of the non-
zero coefficients contained in the block. It is at this
step that we contributed by removing the look-up
tables and generating the code from simple values,
the coefficient sign and its absolute value. The next
step encodes the number of zeros in the block
related to the non-zero coefficients. Finally, it is
necessary to indicate in the final bitstream where to
find these zeros among the non-zeros coefficients.
This step is called “Run_Before” because it gives
the number of zeros preceding each non-zero
coefficient within the zigzag reorganized block. The
corresponding syntactic element is calculated in the
compression sub-module that we call “Encode
RunZeros ». Each of these steps is represented by
a syntactic element that, when they are all
concatenated, build up the final bitstream.

IV PROPOSED ARCHITECTURE
A. Global view

The majority of the CAVLC hardware
implementations encode the coefficient values in an
iterative way. The number of iterations, and
consequently the time of global calculation, is
hence dependent on the number of non-zeros
coefficients that belong to the block to be encoded.
We noticed during the implementation on a
multiprocessor system that this particular task
requires numerous operations and that the
execution time is significantly modified according to
the number of non-zero coefficients. The originality
of our architecture is based on the use of massive
parallelism that allows on one hand fast calculation
and on the other hand a fixed execution time. The
architecture is also fully combinatorial and does not
need any controller. Thus, except for the loading
time of the block, which is loaded sequentially, the
encoding is executed in one clock cycle.

Figure 2: Block diagram of CAVLC architecture

B. Details of operations

In Figure 2 a first phase of pretreatment (“Variable
Extraction”) can be distinguished, which introduces
a latency of a few cycles. At this stage, there are
data selections for the repartition to different
encoding blocks. Theses data could be coefficients
or intermediate results of non-zero coefficients
(“Total_Coeff”) or the number of zeros
(“Total_Zeros”) etc. This pretreatment is done on
the fly and continuously by updating the output
values for each new coefficient input. The expected
values are obtained after 16 coefficients are
processed and only then, the architecture delivers a
valid bitstream for the block. It is then necessary to
make a selection at the output of the encoder.
Each of the tasks delivering a syntactic element is
done in parallel, as they are independent from each
other. The last module that generates the bitstream
concatenates on the fly the syntactic elements
issued from the preceding modules.

The CAVLC bitstream is encoded by a block of
coefficients, in addition to encoding parameters that
allow a reduction of the bitstream size. Thus,
variables that have been defined in the algorithmic
part of this paper have to be encoded. Each of the
sub-modules uses predetermined tables that
accelerate the values encoding. Only the
«EncodeLevel» module, that processes coefficient
values and «Encode RunZeros» require more
complex calculations. The number of non-zeros
coefficients can vary from 0 to 16 per block and
most of the common architectures use an iterative
computation on these numbers. This necessitates a
controller and leads to a variable execution time
that is unpredictable. For each coefficient, the code-
word depends both on its value and on the value of
preceding coefficients. We use an index which is
going to be incremented or not for the following

coefficient encoding depending on whether the
coefficient value is higher than a defined threshold.
These indexes are calculated beforehand and then
distributed to the 16 processing modules. Each
module uses this index and the corresponding
coefficient value to find out the code-word to be
used. The sub-modules «Table generation» contain
the algorithm of the code-word generation. The
code-words are calculated by means of two
parameters: Their size and their value. Using these
two parameters, the bitstream generator can
reconstitute the global bitstream. We are using the
same principle of parallelism in order to calculate
syntactic elements of «RunBefore», with the
noteworthy difference that we are using predefined
tables to find the value and size of each element.
These tables are duplicated in each module in
order to not overload the access to this table in
contrast with the case where a single table is
available for all 16 modules. As the number of the
value is relatively restricted for these tables, the
extra cost of memory is negligible.

Figure 3: Encode Level detail

We propose a different approach by

systematically performing in parallel the
calculations of level encoding (Figure 3) and thus
obtaining the totality of the codes on one clock
transition whatever the number of the coefficients to
be processed. We process the iteration in 16
identical modules. These modules are purely
combinatorial and allow encoding in a fixed time.
The cost of this fixed time is that some of the
modules are not always used and continue to
function while their results are not going to be taken
in account. For example, we could have 7 non-
zeros coefficients in the block, which means that 9
modules are not going to be used but they will
execute the calculation on the values which most of
the time, are coming from the preceding blocks.

V IMPLEMENTATION RESULTS

We have verified our architecture using the
simulation tools from Xilinx: first, in terms of
functional specification, and then with timing

information. We implemented our CAVLC block on
an embedded platform that includes a Virtex 5
FPGA. Table 1 presents the implementation results
of the different modules composing the CAVLC
encoder. The results come from Xilinx synthesizer.
The pretreatment module is a master in the
architecture. It works at a maximum frequency of
152 MHz and generates a clock signal for the sub-
modules which work at a frequency 16 times lower.
Because of the parallelism these sub-modules
provides, in one clock cycle, the value of each
syntactic element for a block of 16 coefficients.

Table 1: FPG implantation results of CAVLC

 Slice
Registers

Slice
LUT’s

Bufg /
BufGCTRL’s

CAVLC:
preprocessing 32 28 1
CAVLC :
memory480 5 75 45
CAVLC:
CoeffToken / 1 /
CAVLC:
TotalZeros / 52 /
CAVLC:
MemoryEL / 16 1
CAVLC :
MemoryERZ / 16 1
CAVLC :
EncodeLevel / 1906 /
CAVLC:
EncodeRunZero / 417 /

Compared to existing architectures [2], we

obtain with our proposal a significant reduction in
the operating frequency while maintaining a
comfortable speed for HD video. One of the
advantages of our architecture is that it can save
either the internal RAM or registers in the interface
between the quantizer and the entropy coder.
Moreover, thanks to the parallelization of most
computations, only the first part (variable extraction)
of the architecture requires a frequency of 63 MHz.
This phase corresponds to the first stage of the
pipeline. The second stage may work at a
frequency 16 times lower (4 Mhz), to provide a real-
time encoding of high definition 1920x1080p
images at 30fps. Table 2 gives a comparison of our
architecture with two similar ones. Our architecture
is divided in half to detail the frequencies used with
one or the other stages of the pipeline, in order to
highlight the fact that most of the elements of the
architecture work at a very low frequency.
Compared to [6], our proposition has an overhead
in terms of logic gate, but can process a larger
amount of data with (for the most part of the
architecture) a much smaller frequency, so clock
consumption is widely reduced.

VI Conclusion

Our architecture allows executing the CAVLC in
a fixed time. In addition, this time is considerably
reduced at the cost of a slight increase of the area
occupied. The principle of this architecture is
completely reusable. The modules can be used in
any CAVLC decoder as well as any encoder with
comparable complexity and execution time [3]. This
architecture is designed to integrate into an
encoder or transcoder for real time high definition
video.

Table 2: Comparison of CAVLC architectures

 Chen et
al. [7]

Rahman
et al. [6]

Proposed(sta
ge1/stage2)

Gate
count

23600 6855 28152
(351/27801)

Clock
frequency

100MHz 50MHz 63MHz/4MHz

Encoding Full HD
30fps

CIF/QCI
F 30fps

Full HD
30fps

REFERENCES

1. N. August and D.S. Ha, “Low Power Design of DCT and

IDCT for Low Bit Rate Video Codec” IEEE Transactions on
Multimedia, Vol. 6, No. 3, pp.414-422, June 2004.

2. N Chih-Da Chien; Keng-Po Lu; Yi-Hung Shih; Jiun-In Guo;
“A high performance CAVLC encoder design for MPEG-4
AVC/H.264 video coding applications” Circuits and Systems,
2006. ISCAS 2006. Proceedings. 2006 IEEE International
Symposium on, Volume , Issue , 21-24 May 2006

3. Myungseok Oh, Wonjae Lee, Yunho Jung, and Jaeseok Kim,
Design of High-Speed CAVLC Decoder Architecture for
H.264/AVC, ETRI Journal, Volume 30, Number 1, February
20

4. George, T.G., Malmurugan, N., “The Architecture of Fast
H.264/CAVLC Decoder and its FPGA Implementation”,
IIHMSP 2007, Volume 2, issue, 26-28 Nov. 2007 Pages:389

5. Yi-Chih Chao, Shih-Tse Wei, Jar-Ferr Yang, and Bin-Da Lui.
“Combined CAVLC Decoder and Inverse Quantizer for
Efficient H.264/AVC Decoding,” Circuits and Systems, 2006.
APCCAS 2006. IEEE Asia Pacific Conference on 4-7 Dec.
2006 Pages 259

6. Choudhury A. Rahman, Wael Badawy. “CAVLC Encoder
Design for Real-Time Mobile Video Applications”. IEEE
Transactions on circuits and Systems : Express Briefs Vol.
54 N°10, Oct. 2007.

7. Tung-Chien Chen, Yu-Wen Huang, Chuan-Yung Tsai, Bing-
Yu Hsieh, Liang-Gee Chen. “Architecture Design of Context-
Based Adaptative Variable-Length Coding for H.264/AVC”.
IEEE transactions on Circuits and Systems : Express Briefs,
Vol. 53, N°9, Sept. 2006.

View publication stats

https://www.researchgate.net/publication/221594963

