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Heroes in oriented complete multipartite graphs

The dichromatic number of a digraph is the minimum size of a partition of its vertices into acyclic induced subgraphs. Given a class of digraphs C, a digraph H is a hero in C if H-free digraphs of C have bounded dichromatic number. In a seminal paper, Berger at al. give a simple characterization of all heroes in tournaments. In this paper, we give a simple proof that heroes in quasi-transitive oriented graphs are the same as heroes in tournaments. We also prove that it is not the case in the class of oriented multipartite graphs, disproving a conjecture of Aboulker, Charbit and Naserasr. We also give a full characterisation of heroes in oriented complete multipartite graphs up to the status of a single tournament on 6 vertices.

Introduction 1.Definitions and notations

In this paper, we only consider directed graphs (digraphs in short) with no digons (a cycle on two vertices), loops nor multi-arcs. Let G be a digraph. We denote by V (G) its set of vertices and by A(G) its set of arcs. For a vertex x of G, we denote by x + (resp. x -, x o ) the set of its out-neighbours (resp. in-neighbours, non-neighbours). For a given set of vertices X ⊆ V , we denote by G[X] the subgraph of G induced by X.

For two disjoint set of vertices X, Y , we write X ⇒ Y to say that for every x ∈ X and for every y ∈ Y , xy ∈ A(G), and we write X → Y to say that every arc with one end in X and the other one in Y is oriented from X to Y (but some vertices of X might be non-adjacent to some vertices of Y ). When X = {x} we write x ⇒ Y and x → Y .

A tournament is an orientation of a complete graph. A transitive tournament is an acyclic tournament and we denote by T T n the unique acyclic tournament on n vertices. Given two tournaments H 1 and H 2 , we denote by ∆(1, H 1 , H 2 ) the tournament obtained from pairwise disjoint copies of H 1 and H 2 plus a vertex x, and all arcs from x to the copy of H 1 , all arcs from the copy of H 1 to the copy of H 2 , and all arcs from the copy of H 2 to x. When ℓ and k are integers, we write ∆(1, k, H) for ∆(1, T T k , H) and ∆(1, ℓ, k) for ∆(1, T T ℓ , T T k ). The tournament ∆(1, 1, 1) is also denoted by C 3 and called a directed triangle.

A k-dicolouring of G is a partition of V (G) into k sets V 1 , . . . , V k such that G[V i ] is acyclic for i = 1, . . . , k. The dichromatic number of G, denoted by -→ χ (G) and introduced by Neuman-Lara [START_REF] Neumann-Lara | The dichromatic number of a digraph[END_REF] is the minimum integer k such that G admits a k-dicolouring. We will sometimes extend -→ χ to subsets of vertices, using -→ χ (X) to mean -→ χ (G[X]) where X ⊆ V .

Given a set of digraphs H, we say that a digraph G is H-free if it contains no member of H as an induced subgraph. We denote by F orb ind (H) the class of H-free digraphs. Given a class of digraphs C, a digraph H is a hero in C if every H-free digraph in C has bounded dichromatic number.

We denote by -→ P 3 the directed path on 3 vertices. An oriented complete multipartite graph is an orientation of a complete multipartite graph. Given two digraphs G 1 and G 2 , G 1 + G 2 is the disjoint union of G 1 and G 2 . We denote by K 1 the unique digraph on 1 vertex. Observe that oriented complete multipartite graphs are precisely the digraphs in F orb ind (K 1 + T T 2 ).

The main goal of this paper is to identify heroes in oriented complete multipartite graphs.

Context and results

In a seminal paper, Berger et al. [START_REF] Berger | Tournaments and colouring[END_REF] characterized heroes in tournaments:

Theorem 1.1 (Berger et al. [START_REF] Berger | Tournaments and colouring[END_REF])

A digraph H is a hero in tournaments if and only if:

• H = K 1 , or • H = H 1 ⇒ H 2 ,
where H 1 and H 2 are heroes in tournaments, or

• H = ∆(1, k, H 1 ) or H = ∆(1, H 1 , k),
where k ≥ 1 and H ′ is a hero in tournaments.

Observe that if a class of digraphs C contains all tournaments, then a hero in C must be a hero in tournaments. In [START_REF] Aboulker | Extension of Gyárfás-Sumner conjecture to digraphs[END_REF], it is conjectured that heroes in oriented complete multipartite graphs are the same as heroes in tournaments (actually a wider conjecture is proposed, see Section 5). We disprove this conjecture by showing the following:

Theorem 1.2
The digraphs ∆(1, 2, C 3 ), ∆(1, C 3 , 2), ∆(1, 2, 3) and ∆(1, 3, 2) are not heroes in tournaments.

On the positive side, we prove that:

Theorem 1.3
A digraph H is a hero in oriented complete multipartite graphs if:

• H = K 1 , • H = H 1 ⇒ H 2 ,
where H 1 and H 2 are heroes in oriented complete multipartite graphs, or

• H = ∆(1, 1, H 1 )
where H 1 is a hero in oriented complete multipartite graphs.

Observe that the second bullet of the theorem above implies that a digraph is a hero in oriented complete multipartite graphs if and only if each of its strong connected components are. Indeed, the only if part of the assertion holds because a subgraph of a hero in any class is a hero in this class.

Since a hero in oriented complete multipartite graphs must be a hero in tournaments, Theorem 1.1, Theorem 1.2 and Theorem 1.3 imply that, to get a full characterization of heroes in oriented complete multipartite graphs, it suffices to decide whether ∆(1, 2, 2) is a hero in oriented complete multipartite graphs or not. If it is not, then heroes in oriented complete multipartite graphs are precisely the ones described in Theorem 1.3. If it is, then a digraph H is a hero in oriented complete multipartite graphs if and only if:

• H = K 1 or H = ∆(1, 2, 2), • H = H 1 ⇒ H 2 ,
where H 1 and H 2 are heroes in oriented complete multipartite graphs, or

• H = ∆(1, 1, H 1 )
where H 1 is a hero in oriented complete multipartite graphs. Question 1.4. Is ∆(1, 2, 2) a hero in oriented complete multipartite graphs?

A digraph G is quasi-transitive if for every triple of vertices x, y, z, if xy, yz ∈ A(G), then xz ∈ A(G) or zx ∈ A(G).
Observe that the class of quasi-transitive digraphs is precisely F orb ind ( -→ P 3 ). Our last result is:

Theorem 1.5
Heroes in quasi-transitive digraphs are the same as heroes in tournaments.

Organisation of the paper: We prove in Section 2 that ∆(1, 2, C 3 ), ∆(1, C 3 , 2), ∆(1, 2, 3), ∆(1, 3, 2) are not heroes in oriented complete multipartite graphs. We prove in Subsection 3.1 that if H 1 and H 2 are heroes in oriented complete multipartite graphs, then so is H 1 ⇒ H 2 and in subsection 3.2 that if H is a hero in oriented complete multipartite graphs, then so is ∆(1, 1, H). We give some insight about whether ∆(1, 2, 2) should be a hero or not in oriented complete multipartite graphs in Section 4 and finally, we prove Theorem 1.5, detail related results and propose some leads for further works in Section 5.

Digraphs that are not heroes in oriented complete multipartite graphs

The goal of this section is to prove that ∆(1, 2, C 3 ), ∆(1, C 3 , 2), ∆(1, 2, 3) and ∆(1, 3, 2) are not heroes in oriented complete multipartite graphs. Since reversing all arcs of a ∆(1, 2, C 3 )-free oriented complete multipartite graph results in a ∆(1, C 3 , 2)-free oriented complete multipartite graph and does not change the dichromatic number, if ∆(1, 2, C 3 ) is not a hero in oriented complete multipartite graphs then ∆(1, C 3 , 2) is not either. Similarly, if ∆(1, 2, 3) is not a hero in oriented complete multipartite graphs then ∆(1, 3, 2) is not either. Hence, it is enough to prove that ∆(1, 2, C 3 ) nor ∆(1, 2, 3) are heroes in oriented complete multipartite graphs. This is implied by the existence of {∆(1, 2, C 3 ), ∆(1, 2, 3)}-free oriented complete multipartite graphs with arbitrarily large dichromatic number. The rest of this section is dedicated to the description of such digraphs.

A feedback arc set of a given digraph G is a set of arcs F of G such that their deletion from G yields an acylic digraph. The idea of the construction comes from the fact that a feedback arc set of ∆(1, 2, C 3 ) or of ∆(1, 2, 3) must induce a digraph with at least one vertex of in-or out-degree at least 2. We then describe an oriented complete multipartite graph with large dichromatic number in which every subtournament has a feedback arc set inducing disjoint directed paths, implying that it does not contain ∆(1, 2, C 3 ) nor ∆(1, 2, 3) by the fact above.

Given an undirected graph H, a k-colouring of H is a partition of V (G) into k independent sets. The chromatic number of H is the minimum k such that H is k-colourable. Let G be a digraph. We denote by χ(G) the chromatic number of the underlying graph of G. The (undirected) line graph of G is denoted by L(G) and defined as follows: its vertex set is A(G), and two of its vertices vertices ab, cd ∈ A(G) are adjacent if and only if b = c.

Be aware that the next lemma deals with chromatic number and not dichromatic number. We think it appears for the first time in [START_REF] Erdős | on chromatic number of infinite graph[END_REF]. Lemma 2.1. [START_REF] Erdős | on chromatic number of infinite graph[END_REF] For every digraph G, we have χ(L(G)) ≥ log(χ(G)).

Proof : Let G be a digraph and assume L(G) admits a k-colouring. Observe that a colouring of L(G) is the same as a colouring of the arcs of G in such a way that no -→ P 3 is monochromatic. Consider the following colouring of G: for each v ∈ V (G), colour v with the set of colours received be the arcs entering in v. This is a 2 k -colouring of G because the colouring of A(G) does not have monochromatic -→ P 3.

Let s ≥ 3 be an integer and let us describe the graph L(L(T T s )). Assuming the vertices of T T s are numbered v 1 , . . . , v s in the topological ordering (that is, for all 1 ≤ i < j ≤ s, we have v i v j ∈ A(T )), for any i < j < k, {v i , v j , v k } induces a -→ P 3 in T T s . This way, we get a natural name for the vertices of

L(L(T T s )), namely V (L(L(T T s ))) = {(v i , v j , v k ) | for every i < j < k}. Moreover, edges of L(L(T T s )) are of the form (v i , v j , v k )(v j , v k , v ℓ ) for every i < j < k < ℓ. For 2 ≤ j ≤ s -1, set V j = {(v i , v j , v k )} : i < j < k}. So V j 's partition the vertices of L(L(T T s )) into stable sets.
We now define the digraph D s from L(L(T T s )) as follows. The vertices of D s are the same as the vertices of L(L(T T s )) and D s is an oriented complete multipartite graph with parts (V 2 , V 3 , . . . , V s-1 ) and we orient the arcs as follow: given j < k, the edges of L(L(T T s )) are oriented from V j to V k and all the other arcs are oriented from V k to V j . This complete the description of D s .

The arcs v i v j such that i < j are called the forward arcs of D s , and the other arcs the backward arcs of D s . Observe that the underlying graph of the graphs induced by the forward arcs of D s is L(L(T T s )).

The following remark is the crucial feature of D s .

Remark 2.2. Given a vertex (v i , v j , v k ) of D s , the forwards arcs going out (v i , v j , v k ) are included in V k and the forward arcs going in

(v i , v j , v k ) are included in V i .
An out-star (resp. in-star) is a connected digraph made of one vertex of in-degree 0 (resp. of outdegree 0) and vertices of in-degree 1 (resp. out-degree 1). Observe that a digraph that does not contain -→ P 3 as a subgraph is a disjoint union of in-and out-stars. Let R be an acyclic induced subgraph of Ds. Observe that a directed path on 3 vertices in Ds using only arcs in Fs must be of the form

(vi 1 , vi 2 , vi 3 ) → (vi 2 , vi 3 , vi 4 ) → (vi 3 , vi 4 , vi 5 ) where 1 ≤ i1 < i2 < i3 < i4 < i5 ≤ s and is thus contained in a directed triangle of Ds (because (vi 1 , vi 2 , vi 3 )(vi 3 , vi 4 , vi 5 )
is not an edge of L(L(T Ts)), and thus is not an arc of Fs, and thus (vi 3 , vi 4 , vi 5 )(vi 1 , vi 2 , vi 3 ) is an arc of Ds). Hence, A(R) ∩ A(Fs) does not contain -→ P 3 as a subgraph and is thus a disjoint union of out-and in-stars. So A(R) ∩ A(Fs) can be partitioned into two stable sets of Fs. Hence, a t-dicolouring of Ds implies a 2t-(undirected) colouring of Fs. As we have that χ(Fs) ≥ log(log(s)), the result follows.

Lemma 2.4. If T is a tournament contained in D s , then T has a feedback arc set formed by disjoint union of directed paths.

Proof : Let T be a subgraph of Ds inducing a tournament. Then each vertex of T belongs to a distinct Vi and thus, by Remark 2.2, the forward arcs of Ds that are in T induce a disjoint union of directed paths (i.e. every vertex have in-and out-degree at most 1) and clearly form a feedback arc set of T .

Lemma 2.5. For every s ≥ 1, D s does not contain ∆(1, 2, C 3 ) nor ∆(1, 2, 3).

Proof : Observe that the two digraphs ∆(1, 2, C3) and ∆(1, 2, 3) only differ on the orientation of one arc: reversing an arc of the copy of C3 in ∆(1, 2, C3) leads to ∆(1, 2, 3) and reversing an arc of the copy of T T3 in ∆(1, 2, 3) leads to ∆(1, 2, C3). Our argument does not make any use of the orientations between the vertices inside this oriented K3. Let H be one of ∆(1, 2, C3) or ∆(1, 2, 2), and let x be the vertex in the copy of K1, and y1 and y2 the vertices in the copy of T T2. See Figure 1. Thanks to Lemma 2.4, it is enough to prove that in every feedback arc set of H, there exists a vertex with in-or out-degree at least 2. Let F be a feedback arc set of H and assume for contradiction that it induces a disjoint union of directed paths. Then both xy1 and xy2 cannot belong to F . So we may assume without loss of generality that xy1 / ∈ F . But then F must intersect the three disjoint paths of length 2 that go from y1 to x, which necessarily implies that F contains either two arcs coming out of y1 or two arcs coming in x.
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Figure 1: whatever the orientations of blue edges, D s does not contain this tournament and hence does not contain

∆(1, 2, C 3 ) nor ∆(1, 2 , 3). 
By Lemma 2.3 and Lemma 2.5, ∆(1, 2, C 3 ) and ∆(1, 2, 3) are not heroes in oriented complete multipartite graphs.

3 Heroes in oriented complete multipartite graphs

Strong components

The goal of this subsection is to prove the following:

Theorem 3.1 If H 1 and H 2 are heroes in F orb ind (K 1 + T T 2 ), then so is H 1 ⇒ H 2 .
We actually prove the following stronger result:

Theorem 3.2 Let H 1 , H 2 and F be digraphs such that H 1 ⇒ H 2 is a hero in F orb ind (F ) and H 1 and H 2 are heroes in F orb ind (K 1 + F ). Then H 1 ⇒ H 2 is a hero in F orb ind (K 1 + F ).
To see that Theorem 3.2 implies Theorem 3.1, take F = T T 2 and observe that F orb ind (T T 2 ) is the class of digraphs with no arc and thus every digraph is a hero in F orb ind (T T 2 ). We explain why such a stronger version can be of interest for future works in section 5

Note also that by taking F = K 1 , we have that F orb ind (F ) is empty and that F orb ind (K 1 + F ) is the class of tournaments, so Theorem 3.2 yields the result of [START_REF] Berger | Tournaments and colouring[END_REF] (see (3.1)) stating that H is a hero in tournaments if and only if all of its strong components are. Then, by induction, we get the same result for the class of digraphs with bounded independence number, reproving Theorem 1.4 of [START_REF] Harutyunyan | Coloring dense digraphs[END_REF].

The rest of this subsection is devoted to the proof of Theorem 3.2, which is inspired but simpler (we got rid of the intricate notion of r-mountain) than the analogous result for tournaments in [START_REF] Berger | Tournaments and colouring[END_REF], even though our result is more general.

We start with a few definitions and notations. First, in order to simplify statements of the lemmas, we assume H 1 , H 2 and F are fixed all along the subsection and are as in the statement of Theorem 3.2. So there exists constants c and h such that:

• H 1 and H 2 have at most h vertices,

• digraphs in F orb ind (F, H 1 ⇒ H 2 ) have dichromatic number at most c,

• for i = 1, 2, digraphs in F orb ind (K 1 + F, H i ) have dichromatic number c.
If G is a digraph and uv ∈ E, we set C uv = v + ∩u -, that is the of vertices that form a directed triangle with u and v. Finally, for t ∈ N, we say that a digraph K is a t-cluster if χ(K) ≥ t and |V (K)| ≤ f (t), where f (t) is the function defined recursively by f (1) = 1 and

f (t) = 1 + f (t -1)(1 + f (t -1)).
The structure of the proof is very simple, we prove that digraphs in F orb ind (K 1 + F, H 1 ⇒ H 2 ) that do not contain a t-cluster for some t has bounded dichromatic number (Lemma 3.3), and then that the ones that contains a t-cluster for some t also have bounded dichromatic number (Lemma 3.4).

Lemma 3.3. There exists a function φ such that if t is an integer and

G is a digraph in F orb ind (K 1 + F, H 1 ⇒ H 2 ) which contains no t-cluster as a subgraph, then -→ χ (G) ≤ φ(c, h, t)
Proof : We prove this by induction on t. For t = 1 the result is trivial as a 1-cluster is simply a vertex. Assume the existence of φ(c, h, t -1), and assume G is a digraph in F orb ind (K1 + F, H1 ⇒ H2) which contains no t-cluster. Say an arc uv is heavy if Ce contains a (t -1)-cluster, and light otherwise. For a vertex u we define h(u) = {v ∈ V (G) | uv or vu is a heavy arc}.

Claim 3.3.1. For any vertex u, h(u) contains no (t -1)-cluster.

Proof. Assume by contradiction that K is a (t -1)-cluster in h(u). By definition of h(u), for every v ∈ V (K), there exists a (t -1)-cluster Kv in Cuv or Cvu (depending on which of uv or vu is an arc). Let

K ′ = {u} ∪ V (K) ∪ (∪v∈KV (Kv)). We claim that K ′ is a t-cluster. First note that the number of vertices of K ′ is at most 1 + f (t -1) + f (t -1) • f (t -1) = f (t).
We need to prove that K ′ is not (t -1)-colourable, so let us consider for contradiction a (t -1)-colouring of its vertices, and without loss of generality assume u gets colour 1. Because K is a (t -1)-cluster, some vertex v in K must also receive colour 1, and since Kv is also a (t -1)-cluster, some vertex w in Kv must also receive colour 1, which produces a monochromatic directed triangle. So K ′ is indeed a t-cluster, a contradiction.

Claim 3.3.2. For any vertex u, min( -→ χ (u -), -→ χ (u + )) ≤ (h + 1) • (φ(c, h, t -1) + c).
Proof. Let u ∈ V (G). By the previous claim and the induction hypothesis, h(u) induces a digraph of dichromatic number at most φ(c, h, t -1), so it is enough to prove that one of the sets u - ℓ := (u -\ h(u)) and u + ℓ := (u + \ h(u)) induces a digraph with dichromatic number at most h • φ(c, h, t -1) + c • (h + 1). If u + ℓ induces a H2-free digraph, then it has dichromatic number at most c < h•φ(c, h, t-1)+c•(h+1), so we can assume that there exists V2 ⊆ u + ℓ such that G[V2] = H2. We now partition u - ℓ into three sets A, B, C, each of which will have bounded dichromatic number.

Let

A = u - ℓ ∩ (∪v∈V 2 v + ) = u - ℓ ∩ (∪v∈V 2 Cuv). For every v ∈ V2, uv ∈ E is light (because V2 ⊆ u - l ), so G[Cuv ∩ A]
does not contain a (t -1)-cluster and is thus φ(c, h, t -1)-colourable by induction. Now, since H2 contains at most h vertices, we get

-→ χ (A) ≤ h • φ(c, h, t -1). Let B = u - ℓ ∩ (∪v∈V 2 v 0 ). Since G is (K1 + F, H1 ⇒ H2)-free, for every v ∈ V2, v 0 is (F, H1 ⇒ H2)- free and thus -→ χ (G[v 0 ]) ≤ c. Hence, -→ χ (B) ≤ c • h. Finally, consider C = u - ℓ \ (A ∪ B). By definition of A and B, we get C ⇒ V2. Since G is H1 ⇒ H2- free, G[C] is H1-free, and therefore -→ χ (C) ≤ c.
All together, we get

-→ χ (x - ℓ ) ≤ h • φ(c, h, t -1) + c • (h + 1) as desired.
By the previous claim, we can partition the set of vertices into the two sets V -and V + defined by:

V -= {u ∈ V | -→ χ (u -) ≤ (h + 1) • (c + φ(c, h, t -1))} V + = {u ∈ V | -→ χ (u + ) ≤ (h + 1) • (c + φ(c, h, t -1))} If G[V -] is H1-free and G[V + ] is H2-free, then -→ χ (G) ≤ 2c < φ(c, h, t
) and we are done. Assume that there exists V1 ⊆ V -such that G[V1] = H1 (the case where V + contains an induced copy of H2 is symmetrical).

We now partition V (G) \ V1 into three sets of vertices depending on their relation with V1 and prove that each of these set induces a digraph with bounded dichromatic number.

Let A = v∈V 1 v -. By definition of V -and since V1 ⊆ V -, for every v ∈ V1, v -has dichromatic number at most (h + 1)(c + φ(c, h, t -1)), and since H1 has h vertices we get that

-→ χ (A) ≤ h • (h + 1) • (c + φ(c, h, t -1)). Let B = v∈V 1 v 0 . Since G is (K1 + F, H1 ⇒ H2)-free, for every v ∈ V1, v 0 is (F, H1 ⇒ H2)-free and thus -→ χ (G[v 0 ]) ≤ c. Hence, -→ χ (B) ≤ c • h. Finally, let C = V (G) \ (A ∪ B ∪ V1)
. By definition of A and B, we have V1 ⇒ C, hence C is H2-free and thus -→ χ (C) ≤ c.

All together, we get that

-→ χ (G) ≤ h + h • (h + 1) • (c + φ(c, h, t -1)) + ch + c := φ(c, h, t).
The proof of the theorem will follow from the second lemma below.

Lemma 3.4. If G ∈ C contains a (3c + 1)-cluster, then -→ χ (G) ≤ c • 2 f (3c+1)+1 .
Proof : Let K be a (3c+1)-cluster in G. Assume there exists a vertex u ∈ V (G) such that u -∩V (K) is H1-free and u + ∩ V (K) is H2-free. Since u 0 ∩ V (K) is by assumption (F, H1 ⇒ H2)-free, we get a partition of V (K) into three sets that induce digraphs with dichromatic number at most c, a contradiction (this still holds if u ∈ K as we can add it to any of the sets without increasing the dichromatic number). So, for every u ∈ V (G), either u -∩ V (K) contains a copy of H1, or u + ∩ V (K) contains a copy of H2. Now for every V1 ⊆ V (K) such that G[V1] is isomorphic to H1, the set of vertices u such that V1 ⊂ u -is H2-free and therefore has dichromatic number at most c. Similarly, for every V2 ⊂ V (K) such that G[V2] is isomorphic to H2, the set of vertices u such that V2 ⊂ u + is H1-free and therefore has dichromatic number at most c. By doing this for every possible copy of H1 or H2 inside V (K) we can cover every vertex of V (G). Moreover, the number of subsets of V (K) that induces a copy of H1 (resp. of H2) is at most 2 f (3c+1) . Hence, we get that -→ χ (G) ≤ c • 2 f (3c+1)+1 .

Proof of Theorem 3.2 : By Lemma 3.3 and Lemma 3.4, we get that every digraph in F orb ind (K1 + F, H1 ⇒ H2) has dichromatic number at most max(φ(c, h, 3c + 1), 2 f (3c+1)+1 c), which proves Theorem 3.2.

Remark 3.5. Let K(c, h) an integer such that digraphs in F orb ind (F, H 1 ⇒ H 2 ) have dichromatic number at most K(c, h). From the proof above we can deduce that taking

K(c, h) = max((2h • (h + 1)) 5c+1 , 2 2 2•3 3c+1 +1 • c)
works (proving as intermediate steps that for every integer t, we can take f (t) ≤ 2 2•3 t and φ(c, h, t) ≤ (2h • (h + 1)) 2c+t ).

Growing a hero

The goal of this subsection is to prove the following theorem:

Theorem 3.6
If H is a hero in oriented complete multipartite graphs, then so is ∆(1, H, 1).

The next lemma is proved in [START_REF] Berger | Tournaments and colouring[END_REF] (see (4.2)) for tournaments but actually holds for every digraphs.

Lemma 3.7. Let G a digraph and let (X 1 , . . . , X n ) a partition of V (G). Suppose that d is an integer such that:

• ∀ 1 ≤ i ≤ n -→ χ (X i ) ≤ d , • ∀ 1 ≤ i < j ≤ n , if there is an arc uv with u ∈ X j and v ∈ X i , then -→ χ (X i+1 ∪X i+2 ∪• • •∪X j ) ≤ d Then -→ χ (G) ≤ 2d.
Proof : Define a sequence s0 < s1 < ... < st = n defined recursively as follows: s0 = 0 and

s k = max{j > s k-1 | -→ χ ( s k-1 <i≤j Xi) ≤ d} For k = 1 . . . t, and Y k = s k-1 <i≤s k Xi. By definition of the sequence s k , -→ χ (Y k ) ≤ d for k = 1, . . . , t and -→ χ (Y k ∪ Xs k +1) > d for k = 1, .
. . , t -1, so by the assumption of the lemma, there cannot be an arc from Yj to Yi whenever i ≤ j -2. Hence, i even Yi and i odd Yi both have dichromatic number at most d, and thus -→ χ (G) ≤ 2d.

The following is an adaptation of (4.4) in [START_REF] Berger | Tournaments and colouring[END_REF] with oriented complete multipartite graphs instead of tournaments (note also that their proof is concerned with ∆(1, k, H) while ours is concerned with ∆(1, 1, H)). Lemma 3.8. Let G be a ∆(1, 1, H)-free oriented complete multipartite graph given with a partition (X 1 , . . . , X n ) of its vertex set V (G). Suppose that c is an integer such that:

• H-free oriented complete multipartite graphs have dichromatic number at most r,

• ∀ 1 ≤ i ≤ n -→ χ (X i ) ≤ r, • ∀ 1 ≤ i ≤ n ∀v ∈ X i -→ χ (v + ∩ (X 1 ∪ • • • ∪ X i-1 )) ≤ r, • ∀ 1 ≤ i ≤ n ∀v ∈ X i -→ χ (v -∩ (X i+1 ∪ • • • ∪ X n )) ≤ r.
Then -→ χ (G) ≤ 8r + 4.

Proof : We are going to prove that G satisfies the hypothesis of Lemma 3.7 with d = 4r + 2, which implies the result. Let uv be an edge such that u ∈ Xj and v ∈ Xi where 1 ≤ i < j ≤ n. We want to prove that

-→ χ (Xi+1 ∪ Xi+2 ∪ • • • ∪ Xj ) ≤ 4r + 2. Let W = Xi+1 ∪ • • • ∪ Xj-1. Let Q = v + ∩ u -∩ W . If Q
contains a copy of H, then together with u and v it forms a ∆(1, H, 1), a contradiction. So Q is H-free and thus is r-colourable. Now, each vertex in Proof of Theorem 3.6 : Let H be a hero in oriented complete multipartite graphs and let h = |V (H)|. By applying Theorem 3.1 with H1 = H2 = H, we get that H ⇒ H is a hero in oriented complete multipartite graphs. So there exists a constant c such that every (H ⇒ H)-free oriented complete multipartite graphs have dichromatic number at most c. Note that it also implies that every H-free oriented complete multipartite graphs have dichromatic number at most c.

W \ Q is in u + ∪ v -∪ u o ∪ v o . By hypothesis, -→ χ (v + ∩ W ) and -→ χ (v -∩ W ) are both r-colourable,
Let G be a ∆(1, 1, H)-free oriented complete multipartite graph. Set r = 12c • h 2 + 4c • h + 3c + 18h. We are going to prove that -→ χ (G) ≤ 8r + 4 using Lemma 3.7

We say that

J ⊆ V (G) is a H-jewel if G[J] is isomorphic to H ⇒ H.
The important feature about an H-jewel J in an oriented complete multipartite graph is that, for any vertex x not in J, either x + ∩ J or x -∩ J contains a copy of H, or x has both an in-and an out-neighbour in J. A H-jewel-chain of length n is a sequence (J1, . . . , Jn) of pairwise disjoint H-jewels such that for i = 1, . . . , n -1, Ji ⇒ Ji+1 , and for every 1 ≤ i < j ≤ n, Ji → Jj . Both notions of H-jewel and H-jewel-chain exist in [START_REF] Berger | Tournaments and colouring[END_REF], the ones we give here are slightly different, but are morally similar.

Consider a H-jewel-chain (J1, . . . , Jn) of maximum length n. Set J = J1∪• • •∪Jn and W = V (G)-J. To simplify statements, we also consider sets Ji for i ≤ 0 and i ≥ n + 1, that are assumed to be empty.

The easy but key properties of an H-jewel-chain are stated in the following claim.

Claim 3.8.1. For every w ∈ W and 1 ≤ j ≤ n:

• w + ∩ Jj = ∅ ⇒ w + ∩ Jj+1 = ∅ • w -∩ Jj = ∅ ⇒ w -∩ Jj-1 = ∅.
Proof. Assume w + ∩ Jj = ∅. Then since Jj ⇒ Jj+1, it is not possible that G[w -∩ Jj+1] contains a copy of H for it would create a ∆(1, H, 1). Since G[Jj+1] is isomorphic to H ⇒ H, and since w cannot have a non neighbour in both copies of H (because G is an oriented complete multipartite graph), this implies that w has at least one out-neighbour in Jj+1. The proof of the second item is identical up to reversal of the arcs.

For every w ∈ W , let c(w) be the smallest integer j such that w + ∩ Jj = ∅ if such an integer exists, and c(w) = n + 1 if no such integer exists. For j = 1, . . . , n + 1, set Wj = {w : c(w) = j} and Xj = Jj ∪ Wj. Note that, by definition of the Wj 's, if w ∈ Wj, then Ji → w for every i ≤ j -1.

Claim 3.8.2. -→ χ (Xj ) ≤ 4c • h 2 + c + 6h for j = 1, . . . , n + 1. Proof. Let 1 ≤ j ≤ n + 1. We have -→ χ (Jj ) ≤ |Jj | ≤ 2h.
For each pair of vertices a ∈ Jj and b ∈ Jj+1, set A ab = {w ∈ Wj : bw, wa ∈ A(G)}. Since ab ∈ A(G) (because Jj ⇒ Jj+1), and G is ∆(1, H, 1)-free, A ab must be H-free and thus is c-colourable for every choice of a and b. Setting A = a,b∈J j ×J j+1 A ab , we get that -→ χ (A) ≤ 4h 2 • c. Moreover, since every vertex in Wj has an out-neighbour in Jj , we have

A = {w ∈ Wj : w -∩ Jj+1 = ∅} Let B = {w ∈ Wj : w o ∩ Jj-1 = ∅ or w o ∩ Jj+1 = ∅},
in other words B is the set of vertices in Wj with at least one non-neighbour in Jj-1 or Jj+1. Since G is an oriented complete multipartite graph, we have

-→ χ (B) ≤ |Jj-1| + |Jj+1| ≤ 4h. Let C = Wj \ (A ∪ B). By definition of Wj, for every i ≤ j -1, Ji → C. Since C is disjoint from A, we have C → Jj+1,
and thus, by claim 3.8.1 (second bullet), we have

C → J k for every k ≥ j + 1. Finally, since C is disjoint from B, we have furthermore Jj-1 ⇒ C and C ⇒ Jj+1. Now, if C contains a H- jewel-chain (J ′ 1 , J ′ 2 )
of length 2, then (J1, . . . , Jj-1, J ′ 1 , J ′ 2 , Jj+1, . . . , Jn) is a H-jewel-chain of size n + 1, contradicting the maximality of n. Hence, C does not contain a jewel-chain of size 2 and thus -→ χ (C) ≤ c.

All together, we get that -→ χ (Xj ) ≤ 4c • h 2 + c + 6h.

Claim 3.8.3. For j = 1, . . . , n and for every u ∈ Jj ,

• - → χ u + ∩ (X1 ∪ • • • ∪ Xj-1) ≤ 4c • h 2 + 2c • h + c + 6h, and 
• u -∩ (Xj+1 ∪ • • • ∪ Xn+1) = ∅
Proof. Let 1 ≤ j ≤ n and let u ∈ Jj. We first prove the first bullet. By definition of an H-jewel-chain, u has no out-neighbor in any Ji for i ≤ j -1 and by Claim 3.8.2, -→ χ (Xj-1)

≤ 4c • h 2 + c + 6h. So it is enough to prove that A = u + ∩ (W1 ∪ • • • ∪ Wj-2) has dichromatic number at most 2c • h. By Claim 3.8.1, every vertex of W1 ∪ • • • ∪ Wj-2 has an out-neighbour in Jj-1. Moreover, for every v ∈ Jj-1, we have vu ∈ A(G) (because Jj-1 ⇒ Jj ) and v -∩ A is H-free, for otherwise a copy of H in v -∩ A would form, together with v and u, a ∆(1, H, 1). So -→ χ (A) ≤ |Jj | • c = 2c • h as needed.
To prove the second bullet, observe that for every k ≥ j + 1, since J is a jewel-chain, u has no inneighbour in J k and by definition of W k , u has no in-neighbour in W k . Claim 3.8.4. For j = 1, . . . , n + 1 and for every w ∈ Wj,

• - → χ w + ∩ (X1 ∪ • • • ∪ Xj-1) < 8c • h 2 + 2c • h + 2c + 12h, and • - → χ w -∩ (Xj+1 ∪ • • • ∪ Xn+1) ≤ 8c • h 2 + 2c + 12h Proof. Let 1 ≤ j ≤ n + 1 and let w ∈ Wj.
We first prove the first bullet. By definition of Wj, w has no out-neighbor in any of the Ji for i ≤ j -1 and by Claim 3.8.

2 -→ χ (Wj-2 ∪ Wj-1) ≤ 8c • h 2 + 2c + 12h. So it is enough to prove that A = w + ∩ W1 ∪ • • • ∪ Wj-3 has dichromatic number at most 2c • h.
Again by definition of Wj we have Jj-2 → w and Jj-1 → w, and since Jj-2 ∪ Jj-1 induces a tournament and G is (K1 + T T2)-free, w has at most one non-neighbour in Jj-2 ∪ Jj-1. So there exists s ∈ {j -2, j -1} such that Js ⇒ w. For every v ∈ Js, if v -∩ A contains a copy of H, then it would form, together with v and w, a ∆(1, 1, H), a contradiction. So, for every v ∈ Js, v -∩ A is H-free and is thus c-colourable. Finally, by claim 3.8.1 every vertex in A has an out-neighbour in Js. So we get that -→ χ (A) ≤ 2c • h.

We now prove the second bullet. If j ≥ n -1, then by claim 3.8.2 -→ χ (Xn ∪ Xn+1) ≤ 8c • h 2 + 2c + 12h and we are done. So we may assume that j ≤ n -2 By claim 3.8.2, -→ χ (Xj+1) ≤ 4c • h 2 + 8h + c, so we may assume that j ≤ n -2. 

Set B = w -∩ Xj+2 ∪ • • • ∪ Xn+1 .
\ (v + ∩ B) is a stable set. Now, v + ∩ B is H-free, as otherwise G would contain an ∆(1, H, 1). So v + ∩ B is c-colourable and thus -→ χ (B) ≤ c + 1 and thus -→ χ w -∩ (Xj+1 ∪ • • • ∪ Xn+1) ≤ -→ χ (Xj+1) + c + 1 ≤ 4c • h 2 + 3c +
< i 2 < i 3 < i 4 < i 5 , {x i1 x i3 , x i3 x i5 , x i2 x i4 } E(G)
. See Figure 2. They left as an open question whether non-interlaced graphs have bounded chromatic number or not. The goal of this section is to show that if ∆(1, 2, 2) is a hero in oriented complete multipartite graphs, then non-interlaced graphs have bounded chromatic number. See Theorem 4.2.

x i1 x i2 x i3 x i4 x i5
Figure 2: A graph is non-interlaced if there is an ordering of its vertices that avoids the above pattern as a subgraph.

Given an oriented complete multipartite graph D together with an ordering (V 1 , . . . , V n ) on its parts, the arcs going from V i to V j are called forward arcs if i < j, and backward arcs otherwise. Moreover, given i < j, we say that u < v for every u ∈ V i and every v ∈ V j . Finally, we say that an oriented complete multipartite graph D is flat if it admits an ordering (V 1 , . . . , V n ) on its parts such that for every vertex v of D, the backward arcs going out from (resp. going in) v are included in a single part of D. Such an ordering is called a flat ordering. Lemma 4.1. Let D be an oriented complete multipartite graph with parts V 1 , . . . , V n where (V 1 , . . . , V n ) is a flat ordering. If D contains a copy of ∆(1, 2, 2), naming its vertices as in Figure 3, we must have

v 1 < v 2 < v 3 < v 4 < v 5 .
Proof : Suppose that D contains a copy of ∆(1, 2, 2) and name its vertices as in Figure 3. Since ∆(1, 2, 2) is a tournament, vi's are contained in pairwise distinct parts of D, and thus are totally ordered. Since (V1, . . . , Vn) is a flat ordering, the smallest vertex among {v1, v2, v3, v4, v5} must have in-degree at most 1 in ∆(1, 2, 2), and hence must be v1. Similarly, since v5 is the only vertex with out-degree 1 in ∆(1, 2, 2), v5 must be

v 3 v 1 v 4 v 2 v 5 (a) ∆(1, 2, 2) v 1 v 2 v 3 v 4 v 5 (b) A drawing of ∆(1, 2, 2)
where the backward arcs (coloured in red) induce the forbidden pattern of noninterlaced graphs. the largest of the vi. If v3 < v2, then v3 < v2 < v5 and the arcs v2v3 and v5v3 contradicts the fact that (V1, . . . , Vn) is a flat ordering, so v2 < v3. Similarly, if v4 < v3, then v4 < v3 < v5 and the arcs v3v4 and v5v3 contradicts the fact that (V1, . . . , Vn) is a flat ordering, so v3 < v4 and thus v1 < v2 < v3 < v4 < v5.

Theorem 4.2 If ∆(1, 2, 2) is a hero in oriented complete multipartite graphs, then every non-interlaced graph has bounded chromatic number.

Proof : Assume that ∆(1, 2, 2) is a hero in oriented complete multipartite graphs. Let F be the class of flat ∆(1, 2, 2)-free oriented complete multipartite graphs. Since ∆(1, 2, 2) is a hero in oriented complete multipartite graphs, there exists a constant r such that every digraph in F has dichromatic number at most r.

Let R ∈ F such that -→ χ (R) = r and recall that R has a flat ordering. We are going to prove that every non-interlaced graph has chromatic number at most 2 2 r . Let G be a non-interlaced (undirected) graph and (x1, . . . , xn) the ordering on V (G) given by the definition of non-interlaced graphs (that is an ordering that avoids the patter in Figure 2). We construct an oriented complete multipartite graph D ′ (G) as follow. For each xi, we create a stable set Vi in D ′ (G) of size n 2 and we assume the vertices of Vi are organised as an n × n matrix. The Vi are the parts of D ′ (G). Let us now explain how we orient the arcs. Given i < j, if xixj ∈ E(G), we orient the arcs from each vertex of the i th line of Vj to each vertex of the j th column of Vi. Every other arc are oriented from Vj to Vi. This complete the construction of D ′ (G).

Let v ∈ Vi and assume v is in the j th line and the k th column of Vi. Then either xjxi / ∈ E(G) and no backward arcs goes out from v, or xjxi ∈ E(G) and all backward arcs going out from v are included in Vj (more precisely, they goes from v to the vertices of the j th column of Vj). Similarly, either x k xi / ∈ E(G) and no backward arc goes in v, or xix k ∈ E(G) and all backward arcs going in v are included in V k (more precisely, they goes from the i th line of V k to v). Hence, D ′ (G) is flat and (V1, . . . , Vn) is a flat ordering of D ′ (G).

We now construct another oriented complete multipartite graph D(G) from D ′ (G) by introducing, for j = 1, . . . , n -1, a copy of R between Vj and Vj+1 that is seen by all vertices in ∪ i≤j Vj and sees all vertices in ∪ k≥i+1 V k . This complete the construction of D(G).

It is clear that D(G) is an oriented complete multipartite graph and by inserting the flat ordering of each copy of R between each consecutive Vj, we get a natural ordering of the parts of D(G). In the rest of the proof, we speak about backward and forward arcs of D(G) with respect to this ordering.

We are going to prove that D(G) ∈ F (so -→ χ (D(G)) ≤ r) and that χ(G) ≤ 2 2 -→ χ (D(G)) , which together implies the result.

In order to help in our analysis, we will say that the vertices of D(G) that comes from D ′ (G) are green.

The following claim is straightforward by construction. Let us first prove that D(G) ∈ F. By claim 4.2.1, D(G) is flat and the ordering we consider is a flat ordering. Assume that D(G) contains a copy of ∆(1, 2, 2) and name its vertices as in Figure 3. By Lemma 4.1, we have that the vi are in pairwise distinct parts of D(G) and v1 < v2 < v3 < v4 < v5. If v3 is in a copy of R, since v3v1 and v5v3 are backward arcs of D(G), we get by claim 4.2.1 that v1 and v5 are in the same copy of R as v3. By construction, since v1 < v2 < v3 < v4 < v5, we get that v2 and v4 are also in this same copy of R, a contradiction with the fact that R is ∆(1, 2, 2)-free. So we may assume that v3 is green, and so are v1 and v5 by claim 4.2.1. Now, if v2 is in a copy of R, then by claim 4.2.1 v4 is in the same copy of R, and since v2 < v3 < v4, v3 must be in that same copy of R, a contradiction with the fact that v3 is green. Hence, v2 is green and by claim 4.2.1 so is v4. Thus, every vi is green, a contradiction to claim 4.2.2. This proves that D(G) ∈ F.

Since D(G) contains copies of R, it has dichromatic number at least r, and since D(G) ∈ F, we get that -→ χ (D(G)) = r. Consider a dicolouring -→ ϕ of D(G) with r colours We define a coloring ϕ of V (G) from -→ ϕ as follows: for i = 1, . . . , n, ϕ(vi) is the set of sets of colours used by each line of Vi. This gives us a colouring of V (G) with at most 2 2 r colours. Let us prove that it is a proper colouring of G that is, each colour class is an independent set.

Assume for contradiction that there exists xixj ∈ E(G) such that ϕ(xi) = ϕ(xj) and assume without loss of generality that i < j. Let us first prove that D(G) has a monochromatic backward arc. Consider the set of colours used in the i th line of Vj. The same set of colours is used by the vertices of some line of Vi, say the k th . Now, the j th vertex of the k th line of Vi is seen by every vertex of the i th line of Vj, which implies the existence of a monochromatic backward arc as announced. Let uv be this monochromatic backward arc, with v ∈ Vi and u ∈ Vj. Since i < j, there is a copy of R between Vi and Vj. Since -→ χ (R) = r, one of the vertex x of R is coloured with -→ ϕ (u). By construction of D(G), ux and xv are arcs of D(G) and thus {u, x, v} induces a monochromatic directed triangle, a contradiction.

Related and further works

Heroes in orientations of chordal graphs was recently fully characterized in [START_REF] Aboulker | Heroes in orientations of chordal graphs[END_REF].

A star is an undirected tree with at most one non-leaf vertex. An oriented forest (resp. oriented star) is an orientation of a forest (resp. of a star). In [START_REF] Aboulker | Extension of Gyárfás-Sumner conjecture to digraphs[END_REF], the authors initiated a systematic study of heroes in F orb ind (F ) for a fixed digraph F . We now summarize the known results in this direction and explain how our results fit in the big picture.

First observe that K 1 and T T 2 are heroes in every class of digraphs. A result in [START_REF] Harutyunyan | Two results on the digraph chromatic number[END_REF] implies that no digraph except for K 1 and T T 2 is a hero in F orb ind (F ) whenever the underlying graph of F contains a cycle. We now distinguish cases depending on whether F is an oriented forest, an oriented star or a disjoint union of at least two oriented stars.

Heroes in F orb ind (F ) when F is an oriented forest

It is proved in [START_REF] Aboulker | Extension of Gyárfás-Sumner conjecture to digraphs[END_REF] that if F is not a disjoint union of oriented stars, then the only possible heroes in F orb ind (F ) are transitive tournaments. In the same paper the authors venture to conjecture the following (which can be seen as an oriented analogue of the well-known Gyárfás-Sumner conjecture [START_REF] Gyárfás | On ramsey covering-number[END_REF][START_REF] Sumner | Subtrees of a graph and chromatic number[END_REF]): For every oriented forest F , every transitive tournament is a hero in F orb ind (F ).

Lemma 2 . 3 .

 23 For every integer s, -→ χ (D s ) ≥ 1 2 log(log(s)). Proof : Let V2, . . . , Vs-1 be the partition of Ds as in the definition. Recall that V (Ds) = {(vi, vj , v k ) : 1 ≤ i < j < k ≤ s}. Denote by Fs the digraph induced by the forward arcs of Ds. So the underlying graph of Fs is L(L(T Ts)) and by Lemma 2.1, χ(Fs) ≥ log(log(s)).

  and since G is an oriented complete multipartite graph, u o and v o are stable sets. Finally, by hypothesis, -→ χ (Xj ) ≤ r. All together, we get that -→ χ (Xi+1 ∪ • • • ∪ Xj ) ≤ 4r + 2 as announced.

  By Claim 3.8.1, w has an out-neighbour v ∈ Jj+1. For i ≥ j + 2, by definition of an H-jewel-chain, v → Ji and by definition of Wi, v → Wi. So v → B and since G is an oriented complete multipartite graph B

Figure 3 :

 3 Figure 3: Two drawings of ∆(1, 2, 2).

Claim 4 . 2 . 1 .

 421 If uv is a backward arc of D(G), then either both u and v are green, or u and v are both contained in one of the copies of R.

Claim 4 . 2 . 2 .

 422 If v1, v2, v3, v4, v5 are vertices of D(G) such that v1 < v2 < v3 < v4 < v5, then {v3v1, v5v3, v4v2} A(D(G)).Proof. For otherwise {x1x3, x3x5, x2x4} ⊆ E(G), a contradiction.

  6h + 1 by claim 3.8.2. By Claims 3.8.2, 3.8.3 and 3.8.4, we can apply Lemma 3.7 with r= 12c • h 2 + 4c • h + 3c + 18h to get -→ χ (G) ≤ 8r + 4.4 Some insights about ∆(1, 2, 2)-free oriented complete multipartite graphsIn[START_REF] Axenovich | Chromatic number of ordered graphs with forbidden ordered subgraphs[END_REF] Axenovich et al. tried to characterize patterns that must appear in every ordering of the vertices of graphs with large chromatic number. An (undirected) graph G is (what we call) non-interlaced if there exists an ordering (x 1 , . . . , x n ) on its vertices such that for every i 1

Acknowledgments: This research was partially supported by ANR project DAGDigDec (JCJC) ANR-21-CE48-0012 and by the group Casino/ENS Chair on Algorithmics and Machine Learning.

5.2 Heroes in F orb ind (F ) when F is an oriented star When F is an oriented star, it is still possible that heroes in F orb ind (F ) are the same as heroes in tournaments. As said in the previous subsection, it is proved in [START_REF] Chudnovsky | Induced subgraphs of graphs with large chromatic number. xi. orientations[END_REF] that for every oriented star F , all transitive tournaments are heroes in F orb ind (F ). The only other known result so far is concerned with -→ K 1,2 (the oriented star on 3 vertices, with one vertex of out-degree 2 and two vertices of in-degree 1): it is proved in [START_REF] Aboulker | Decomposing and colouring some locally semicomplete digraphs[END_REF][START_REF] Steiner | On coloring digraphs with forbidden induced subgraphs[END_REF] that

). Note that -→ P 3 is an oriented star. We now give an easy proof that all heroes in tournaments are heroes in F orb ind ( -→ P 3 ). Recall that a digraph G is quasi-transitive if for every triple of vertices x, y, z, if xy, yz ∈ A(G), then xz ∈ A(G) or zx ∈ A(G) and observe that the class of quasi-transitive digraphs is precisely F orb ind ( -→ P 3 ). Given two digraphs G 1 and H 1 with disjoint vertex sets, a vertex u ∈ G 1 , and a digraph G, we say that G is obtained by substituting H 1 for u in G 1 , provided that the following hold:

is seen by, resp. is non-adjacent with) every vertex in

Let T be the class of tournaments and A the class of acyclic digraphs. Let (A ∪ T ) * be the closure of A∪T under taking substitution, that is to say digraphs in (A∪T ) * are the digraphs obtained from a vertex by repeatedly substituting vertices by digraphs in A ∪ T . A classic result of Bang-Jensen and Huang [START_REF] Bang-Jensen | Quasi-transitive digraphs[END_REF] (see also Proposition 8.3.5 in [START_REF] Bang | Classes of Directed Graphs[END_REF]), implies that quasi-transitive digraphs are all in (A ∪ T ) * .

Theorem 5.2

Heroes in (A ∪ T ) * are the same as heroes in tournaments. In particular, heroes in F orb ind ( -→ P 3 ) are the same as heroes in tournaments.

Proof : Let H be a hero in tournaments and c be the maximum dichromatic number of an H-free tournament.

We prove by induction on the number of vertices that H-free digraphs in (A ∪ T ) * are also c-dicolourable. Let G ∈ (A ∪ T ) * on n ≥ 2 vertices and assume that all digraphs in (A ∪ T ) * on at most n -1 vertices are c-dicolourable.

There exist G1, . . . , Gs, H1, . . . , Hs-1 and vertices v1 . . . , vs-1 such that the Gi's and the Hi's are digraphs of A ∪ T with at least two vertices, G1 = K1, Gs = G, vi ∈ V (Gi) and for i = 1, . . . s -1,

If all Hi are tournaments, then G is a tournament and is thus c-dicolourable. So we may assume that there exists 1 ≤ i ≤ s -1 such that Hi is an acyclic digraph. Let x1, . . . , xt be the vertices of Hi. There exist t digraphs X1, . . . , Xt in (A ∪ T ) * such that G is obtained from Gi+1 by substituting x1 by X1, x2 by X2, . . . , xt by Xt and some vertices of V (Gi+1) \ {x1, . . . , xt} by digraphs in (A ∪ T ) * . Note that the order in which these substitutions are performed does not matter.

Let X = ∪ 1≤i≤t V (Xi). So V (G) \ X can be partitioned into 3 sets S + , S -, S 0 such that for every v ∈ X, v sees all vertices of S + , is seen by all vertices of S -and is non-adjacent with all vertices of S 0 .

For i = 1, . . . , t, let Di = G[Gi \ (X \ Xi)]. By induction, the Di's are c-dicolourable. For i = 1, . . . , t, let φi be a c-dicolouring of Di. Assume without loss of generality that |φ1(X1

Note that the proof of the previous theorem actually works for the following stronger statement:

Let C be a class of digraphs closed under taking substitution and let (A ∪ C) * be the closure of A ∪ C under taking substitution. Then heroes in (A ∪ C) * are the same as heroes in C.

Heroes in F orb ind (F ) when F is a disjoint union of at least two oriented star

When F is a disjoint union of stars, as mentioned in the introduction, the authors of [START_REF] Aboulker | Extension of Gyárfás-Sumner conjecture to digraphs[END_REF] conjectured that heroes in F orb ind (F ) were the same as heroes in tournaments, and one of the main result of this paper disproves this conjecture. Since F orb ind (F 1 ) ⊆ F orb ind (F 2 ) whenever F 1 is an induced subgraph of F 2 , and given our knowledge on heroes in F orb ind (F ) when F is an oriented star, let us focus on disjoint union of stars where each connected component is K 1 , T T 2 or -→ P 3 . We denote by K t the digraph on t vertices with no arc (this is a disjoint union of stars, where each connected component is K 1 ). Observe that F orb ind (K 2 ) is the class of tournaments. In [START_REF] Harutyunyan | Coloring dense digraphs[END_REF], it is proved that heroes in F orb ind (K t ) are the same as heroes in tournaments. The proof of this result is quite hard, and shows that knowing heroes in F orb ind (F ) does not necessarily help in understanding heroes in F orb ind (K 1 + F ). Even worse, it is clear that every digraph is a hero in F orb ind (K 1 ) and in F orb ind (T T 2 ), while our result shows that only very few digraphs are heroes in F orb ind (K 1 + T T 2 ).

Theorem 3.2 suggests that the heroes in F orb ind (K 1 +T T 2 ) could be the same as heroes in F orb ind (F ) where F = K t + T T 2 or F = K t + -→ P 3 . In order to prove it (up to the status of ∆(1, 2, 2)), it would be enough to answer by the affirmative to the following question: Question 5.4. Let H and F be digraphs such that ∆(1, 1, H) is a hero in F orb ind (F ) and H is a hero in F orb ind (K 1 + F ). Then ∆(1, 1, H) is a hero in F orb ind (K 1 + F ).