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Abstract
An explicit formula for the mean value of |L(1, x)|? is known, where x runs over all odd primitive
Dirichlet characters of prime conductors p. Bounds on the relative class number of the cyclotomic
field Q(¢,) follow. Lately the authors obtained that the mean value of |L(1, x)|? is asymptotic to
72 /6, where y runs over all odd primitive Dirichlet characters of prime conductors p = 1 (mod 2d)
which are trivial on a subgroup H of odd order d of the multiplicative group (Z/pZ)*, provided that
d < Og){gogp. Bounds on the relative class number of the subfield of degree % of the cyclotomic
field Q(¢,) follow. Here, for a given integer dy > 1 we consider the same questions for the non-
primitive odd Dirichlet characters x’ modulo dyp induced by the odd primitive characters y modulo

p. We obtain new estimates for Dedekind sums and deduce that the mean value of |L(1,x')|? is

asymptotic to %2 11 aldo (1 — q%), where y runs over all odd primitive Dirichlet characters of prime

conductors p which are trivial on a subgroup H of odd order d < O:igp. As a consequence we
improve the previous bounds on the relative class number of the subfield of degree ’%1 of the

cyclotomic field Q((,). Moreover, we give a method to obtain explicit formulas and use Mersenne
primes to show that our restriction on d is essentially sharp.

1 Introduction

Let X be the multiplicative group of the ¢(f) Dirichlet characters modulo f > 2. Let X, = {x €
Xy, x(—=1) = —1} be the set of the ¢(f)/2 odd Dirichlet characters modulo f. Let L(s, ) be the
Dirichlet L-function associated with x € Xy. Let H denote a subgroup of index m in the multiplicative
group G := (Z/fZ)*. We assume that —1 ¢ H. Hence miseven. Weset X;(H) = {x € Xy; x/g = 1},
a subgroup of order m of X isomorphic to the group of Dirichlet characters of the abelian quotient
group G/H of order m. Define X, (H) = {x € X;; x/g = 1}, a set of cardinal m/2. Let K
be an abelian number field of degree m and prime conductor p > 3, i.e. let K be a subfield of
the cyclotomic number field Q(¢,) (Kronecker-Weber’s theorem). The Galois group Gal(Q((p)/Q)

92010 Mathematics Subject Classification. 11F20, 11R42, 11M20, 11R20, 11R29, 11J71.
Key words and phrases. Dirichlet character, L-function, Mean square value, Relative class number, Dedekind sums,
Cyclotomic field, Discrepancy, Multiplicative subgroup
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is canonically isomorphic to the multiplicative cyclic group (Z/pZ)* and H := Gal(Q((y)/K) is a
subgroup of (Z/pZ)* of index m and order

d=(p—1)/m.
Now, assume that K is imaginary. Then d is odd, m is even, —1 ¢ H and the set
Xy =X, (H):={x€X,; and ;i =1}

is of cardinal (p — 1)/(2d) = m/2. Let KT be the maximal real subfield of K of degree m/2 fixed
by the complex conjugation. The class number hy+ of K+ divides the class number hg of K. The
relative class number of K is defined by hy = hi/hy+. We refer the reader to [Ser|] and [Was] for
such basic knowledge. The mean square value of L(1,x) as x ranges in Xf_(H ) is defined by

1
M) = ey M )
Xef

The analytic class number formula and the arithmetic-geometric mean inequality give

= ()" T1 20 < e (PB1)™ @

4m? . 472
XEX i

where wg is the number of complex roots of unity in K. Hence wg = 2p for K = Q({,) and wx = 2
otherwise. In [LM21, Theorem 1.1] we proved that

7T2
Mp, H) = " +o(1) 3)

as p tends to infinity uniformly over subgroups H of (Z/pZ)* of odd order d < % L. Hence, by

log logp
(2) we have
_ 14+ o(1 (p—1)/4d
;%ngCQJWj | (4)

In some situations it is even possible to give an explicit formula for M (p, H) implying a completely
explicit bound for hj;. Indeed, by [Wal] and [Met] (see also (30)), we have

Mo =T (1-1) (1-2) <% o2 ®)
Hence,
fo) < 2P (pMEfjr’jl}))(p_M =2 (224)@71)/4' (6)

We refer the reader to [Gra] for more information about the expected size of h@( o) The only other
D

situation where a similar explicit result is known is the following one (see Theorem 6.6 for a new
proof).

Theorem. (See? [Loul6, Theorem 1]). Letp =1 (mod 6) be a prime integer. Let K be the imaginary
subfield of degree (p —1)/3 of the cyclotomic number field Q((,). Let H be the subgroup of order 3 of
the multiplicative group (Z/pZ)*. We have (compare with (5) and (6))

2

1 2 (p—1)/12
M(p,H):7T6<1—>§ andh}§2<£>p . (7)

!This restriction on d is probably optimal, by (43).
*Note the misprint in the exponent in [Loul6, (8)].
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In [Lou94] (see also [Loull]), the following simple argument allowed to improve on (6). Let dy > 1
be a given integer. Assume that ged(dy, f) = 1. For x modulo f let X’ be the character modulo dyf
induced by x. Then,

/ (Q)_l
L,x) =L, ) [ (1 - 22 (8)
=200 (1-2)

(throughout the paper this notation means that ¢ runs over the distinct prime divisors of dy). Let H
be a subgroup of order d of the multiplicative group (Z/fZ)*, with —1 ¢ H. We define

— 1 |2
Mmmﬁ.#&wﬂ%%éyﬁwﬂ (9)
and?
m( 8 =] ] Qifﬁmu%mm:mwﬂwﬂ (10)

aldo xe X7 (H)

Clearly there is no restriction in assuming from now on that dy is square-free. Let now H be of odd
order d in the multiplicative group (Z/pZ)*. Using (8), we obtain (compare with (2)):

B wi p \m/A , pMa, (p, H) \™*
== (= < S R .
hc g, (p, H) (47r2) H LX) < we <47T2Ddo(va) (1)

Let d = o(logp) as p — oo. Then, by Corollary 2.4 below, we have
Dy, (p, H) =1+ o(1)

and we expect that

May(p. H) ~ H(LWQ « M(p, H). (12)

q
qldo

Hence, (11) should indeed improve on (2). The aim of this paper is two-fold. Firstly, in Theorem 1.1
we give an asymptotic formula for Mg, (p, H) when d satisfies the same restriction as in (3) allowing
us to improve on the bound (4). Secondly we treat the case of groups of order 1 and 3 for small dy’s as
well as the case of Mersenne primes and groups of size ~ log p. In both cases an explicit description of
these subgroups allows us to obtain explicit formulas for My, (p, H). Our main result is the following.

Theorem 1.1. Let dg > 1 be a given square-free integer. Asp — 400 we have the following asymptotid
iformula

7T2 1 7r2
Ma, (p, H) = - 11 (1 - q12> +O(d(logp)®p~ 1) = a 11 (1 - qu> +o(1)

qldo qldo

uniformly over subgroups H of (Z/pZ)* of odd order d < m

abelian number field of prime conductor p and of degree m = (p — 1)/d. Let C' < 4mw? = 39.478.. be
3 (p—ll) log log p
ogp

. Moreover, let K be an imaginar

any positive constant. If p is sufficiently large and m > , then we have

b < wie (2)(17*1)/461'

c (13)

3Note that Tl (f, H) € Q%, by Lemma 2.3.
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Remarks 1.2. The second result in Theorem 1.1 improves on (4), (6) and (7). It follows from the
first result in Theorem 1.1, and by using (11) and (16), where we take dy as the product of sufficiently
many consecutive first primes.

The special case dy = 1 was proved in [LM21, Theorem 1.1]. Note that the restriction on d cannot
be extended further to the range d = O(logp) as shown by Theorem 5.2. Moreover the constant C' in
(13) cannot be taken larger than 4w?, see the discussion about Kummer’s conjecture in [MP01].

In the first part of the paper, the presentation goes as follows:

e In Section 2, we explain the condition about the prime divisors of dy and prove that Dg,(p, H) =
1+o0(1).

e In Section 3, we review some results on Dedekind sums and prove a new bound of independent
interest for Dedekind sums s(h, f) with h being of small order modulo f (see Theorem 3.1).
To do so we use techniques from uniform distribution and discrepancy theory. Then we relate
Mg, (p, H) to twisted moments of L- functions which we further express in terms of Dedekind
sums. For the sake of clarity, we first treat separately the case H = {1}. Note that we found
that this case is related to elementary sums of maxima that we could not estimate directly,
see Section 3.4.1. Using our estimates on Dedekind sums we deduce the asymptotic formula of
Theorem 1.1 and the related class number bounds.

In the second part of the paper, we focus on the explicit aspects. Let us describe briefly our presen-
tation:

e In Section 4.1 we establish a formula for Mg, (f,{1}), do > 2, provided that all the prime factors
g of f satisfy ¢ = £1 (mod dp). In particular, we get formulas for My, (f,{1}) for dy € {1,2,3,6}
and ged(dp, f) = 1 (such formulae become harder to come by as dy gets larger). For example,
for p > 5 and dp = 6, using Theorem 4.1 we obtain the following formula for Mg(p, {1}):

2 2 1 ifp=1 d3
Mg(p, {1}) = = ( _ cp) < where ¢, = p (mod 3)
9 D 9 0 ifp=2 (mod 3)
which by (11) and Corollary 2.4 give improvements on (6) (see also [Feng] and [Lou94])

B P (-1)/4
ho(g) <3P (%) :

See also [Lou23, Theorem 5.2] for even better bounds.
In Section 4.3 we obtain an explicit formula of the form

My, (p, H) :”62 11 (1—2) <1+Nd°(p’H)>, (14)

qldo : N

where Ny, (p, H) defined in (33) is an explicit average of Dedekind sums. In Proposition 4.6 we
prove that Ng,(p,{1}) € Q depends only on p modulo dy and is easily computable.

e For H # {1} explicit formulae for My, (p, H) seem difficult to come by. In Section 5, we focus on
Mersenne primes p = 2¢ — 1, with d odd. We take H = {2¥; 0 < k < d — 1}, a subgroup of odd
order d of the multiplicative group (Z/pZ)*. For dy € {1,3,15} we prove in Theorem 5.4 that

M, (p, H) —7;2 11 (1_(112> <1+W>’

qldo

where N¢/10 (p, H) = a1(p)d+ ao(p) with a1(p), ag(p) € Q depending only on p = 2¢ — 1 modulo dg
and easily computable. In the range d > log p, we see that My, (p, H) has a different asymptotic
behavior than the one in Theorem 1.1.
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e In Section 6, we turn to the specific case of subgroups of order 3. Writing f = a? + ab + b? not
necessarily prime, and taking H = {1,a/b,b/a}, the subgroup of order 3 of the multiplicative
group (Z/fZ)*, we prove in Proposition 6.4 that Ny, (f, H) = O(\/f) in (14) for dy € {1,2,3,6}.
To do so we obtain bounds for the Dedekind sums stronger than the one in Theorem 3.1. Note
that this cannot be expected in general for subgroups of order 3 modulo composite f (see
Remark 3.4 and 6.2). Furthermore we show that these bounds are sharp in the case of primes
p =a®+ a+ 1, in accordance with Conjecture 7.1.

2 Preliminaries

2.1 Algebraic considerations

Take a € Z with ged(a, f) = 1. There are infinitely many prime integers in the arithmetic progressions
a+ fZ. Taking a prime p € a + fZ with p > dyf, we have sq,(p) = a, where sq, : (Z/dof2)* —
(Z/fZ)* is the canonical morphism. Therefore, sq4, surjective and its kernel is of order ¢(dp). Let H
be a subgroup of (Z/fZ)* of order d. Then Hy, = sgol(H) is a subgroup of order ¢(dy)d of (Z/dofZ)*
and as x runs over X, (H) the x”’s run over X; :(Hy,) and by (1) and (9) we have

My, (f, H) = M(do f, Hq,)- (15)
The following Lemma is probably well known but we found no reference in the literature.

Lemma 2.1. Let f > 2. Let H be a subgroup of index m = (G : H) in the multiplicative group
= (Z/fZ)*. Then #X¢(H) =m and H = N\ex,(m) ker x. Moreover, if =1 ¢ H, then m is even,

#X; (H) =m/2 and H =N (i) Ker x.

xGX

Proof. Since X¢(H) is isomorphic to the group of Dirichlet characters of the abelian quotient group
G/H, it is of order m, by [Ser, Chapter VI, Proposition 2]. Clearly, H C NxeX;(H) ker y. Conversely,
take g & H, of order n > 2 in the abelian quotient group G/H. Define a character x of the subgroup
(g, H) of G generated by g and H by x(g*h) = exp(27ik/n), (k,h) € Z x H. It extends to a character
of G still denoted x, by [Ser, Chapter VI, Proposition 1]. Since g ¢ ker x and x € X¢(H) we have
9 & Nyex ) ker x, Le. Nyex,mkerx C H.

Now, assume that —1 ¢ H. Set H' = (-1, H), of index m/2 in G. Then X (H) = X;(H)\ X (H')
is indeed of order m — m/2 = m/2, by the first assertion. Clearly, H C ﬂxe X; (H) ker x. Conversely,

take g ¢ H. Set H" := (g,H) = {¢*h; k € Z, h € H}, of index m” in G, with m > m". If
—1 = g*h € H” then clearly x(g) # 1 for x € X, (H), hence g ¢ mXeX an kerx. If =1 ¢ H" and

X € XJT( )\X‘(H”), a non-empty set or cardinal m/2 — m” /2 = (H” : H)/2 > 1, then clearly
x(g) # 1, hence g & mxeX (H )kerx. Therefore, mxeX;(H) kery C H. O

Remarks 2.2. We have My,(p, H)/Da,(p, H) = My, /q(p, H)/Dg,q(p, H) whenever a prime q divid-
g dg s in ﬂxeX;(H) ker x. Hence, by Lemma 2.1, when applying (11) we may assume that no prime
divisor of dy is in H.

2.2  On the size of I1,,(f, H) and Dy, (f, H) defined in (10)

Lemma 2.3. Let H be a subgroup of order d > 1 of the multiplicative group (Z/fZ)*, where f > 2.
Assume that —1 & H. Let g be the order of a given prime integer q in the multiplicative quotient group
(Z/)fz)*/H. Let X{(H) be the multiplicative group of the ¢(f)/d Dirichlet characters modulo f for
which x;g = 1. Define X, (H) = {x € Xy(H); x(-1) = —1}, a set of cardinal (f)/(2d). Then

IO,(f,H) := H (1 _ X(Q)> _ <1 1/2 if g is even and —q9/% € H,

q B op
XEX (H) (1 — qig) otherwise.
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Proof. Let « be of order ¢ in an abelian group A of order n. Let B = («) be the cyclic group generated

by . Let B be the group of the g characters of B. Then Pg(X) := [T,c5(X —x(a)) = X9—1. Now,

the restriction map y € A— X/B € B is surjective, by [Ser, Proposition 1], and of kernel isomorphic
to Z/T? of order n/g, by [Ser, Proposition 2]. Therefore, P4(X) =[] c4(X — x(@)) = Pp(X)"9 =
(X9 —1)"/9. A

With A = (Z/fZ)*/H of order n = ¢(f)/d, we have A = X(H) and

[T X-x@) =(x7-1)%

XEXy(H)

Let H' be the subgroup of order 2d generated by —1 and H. With A" = (Z/fZ)*/H" of order
n' = ¢(f)/(2d), we have A’ = X;(H') = X7 (H) := {x € X;(H); x(~1) = +1} and

) o(f)
[I &-x@)=x" -1,
xXeX (H)
where ¢ is of order ¢’ in A’.
Since X, (H) = Xy(H) \X;{(H), it follows that
(X0 -
— g
H (X —x(q9) = NG
XEX (H) (X9 —1)2d

Since ¢ € H we have ¢9 € H' and ¢’ divides g. Since ¢¢ € H' = {xh; h € H} we have ¢ € H and
g divides 2¢’. Hence, g = ¢ or g = 2¢’ and g = 2¢’ if and only if g is even and ¢9/2 = ¢¢' € H'\ H =
{—h; h € H}. The assertion follows. O

Corollary 2.4. Fix dy > 1 square-free. Let p > 3 run over the prime integers that do not divide dy.
Let H a subgroup of odd order d of the multiplicative group (Z/pZ)*. Then,

Day(p, H) =1+ O(w(do)p™/*“1) (16)
where w(dy) stands for the number of prime divisors of dy. In particular when d = o(logp), we have
Dy (p. H) = 1+ of1). (17)

Moreover,

(r —2)log (1 — %)
log x

g, (p, {1}) > exp <log2dOF(p + 1)) , where F(x) := , (z>1).

In particular, g(p, {1}) > 2/3 for p > 5.

Proof. Let q be a prime divisor of dg. Let g be the order of ¢ in the multiplicative quotient group
(Z/pZ)*/H. Then

11%<D H) =,(p, H)r7 < (1 Ly
- qig = q(pa ) - q(p7 )p = + W )
by (10) and Lemma 2.3, with f = p, ¢(f) = p—1 and m = (p — 1)/d. Either ¢ = 1 (mod p), in
which case ¢9 > p+ 1, or ¢ = h (mod p) for some h € {2,---,p— 1} N H, in which case p divides
1
S :=1+4h+---+h%" which satisfies p < S < 2%, Therefore, in both cases, we have ¢9 > (p/2)7-1.
Hence,

2
log Dy(p, H) > glog(l —q9) > Z(=2log2)q 9 > —4(log 2)(p/2) /(41

2
g



Mean square values of non primitive L- functions 7

where we used for z = ¢79 the fact that log(1 — z) > —2(log2)x in [0,1/2].
Dy(p, H) > 1 — 4(log 2)(p/2) /(@1

where we used the fact that e™® > 1 — x. Therefore we have,

—-1/(d-1)
Day(p, H) = [ Dy, H) = 1 = (10g 2)u(do) (%)

qldo

where we used the inequality (1 — )" > 1 — nx for x < 1 and n € N. A similar reasoning gives an
explicit upper bound Dy, (p, H) < 1+ cw(do)p~/?@=1 for some constant ¢ > 0. Therefore, we do get
(16). Finally, p'/(¢=1 tends to infinity in the range d = o(logp) and (17) follows.

Notice that if p = 2% — 1 runs over the Mersenne primes and H = (2), we have d = O(logp) but
Dy(p,H) = (1 - 7) does not satisfy (17).

Now, assume that H = {1}. Then, K = Q(¢,) and ¢ > p+ 1. Hence,

(p—1)logg

p—1
1 29 1 2log(p+1) lgq
M(p, {1}) > (1- —— > (1 —— — ex Fp+1)).
)= (1= )7 = (1) o (“50rw )

The desired lower bound easily follows. O

3 Dedekind sums and mean square values of L-functions

3.1 Dedekind sums and Dedekind-Rademacher sums

The Dedekind sums is the rational number defined by

1
s(ed) = — 3 cot (%) cot (%) (ceZ, deZ\ {0}, ged(c,d) = 1), (18)
1

with the convention s(c,—1) = s(¢,1) = 0 for ¢ € Z (see [Apo] or [RG] where it is however assumed
that d > 1). It depends only on ¢ mod |d| and ¢ — s(c,d) can therefore be seen as a mapping from
(Z/\d|Z)* to Q. Notice that

s(c*,d) = s(c¢,d) whenever cc* =1 (mod d) (19)
(make the change of variables n +— nc in s(c*,d)). Recall the reciprocity law for Dedekind sums

2+ d?—3lcd| +1

s(e.d) + s(d,c) = = . (e.dez\ {0}, ged(c,d) =1). (20)
In particular,
d? — 3|d| + 2 d?> —6ld| +5

For b,c € Z, d € Z \ {—1,0,1} such that ged(b,d) = ged(e,d) = 1, the Dedekind-Rademacher sum is
the rational number defined by

s(b, ¢, d) Zcot< > t(%),

with the convention s(b,c,—1) = s(b,¢,1) = 0 for b, c € Z. Hence, s(c¢,d) = s(1,¢,d), if « € (Z/|d|Z)*
is represented as o = b/c with ged(b,d) = ged(e,d) = 1, then s(«, d) = s(b, ¢, d), and

s(b,c,d) = s(ab, ac,d) for any a € Z with ged(a,d) = 1. (22)
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For ged(b,c¢) = ged(e,d) = ged(d,b) = 1 we have a reciprocity law for Dedekind-Rademacher sums

(see [Rad] or [BR]):

b2 + % + d? — 3|bed|
12bed

s(b,c,d) + s(d,b,c) + s(c,d, b) = (23)

The Cauchy-Schwarz inequality and (21) yield
s(e, ) < s(1,|d]) < |d]/12 and |s(b, ¢, d)| < s(1, |d]) < |d]/12. (24)

3.2 Non trivial bounds on Dedekind sums

In this section we will use the alternative definition of the Dedekind sums given by

(=3 (D) (%)) ez a2, e =1

where (()) : R — R stands for the sawtooth function defined by

x|z -1/2 ifzeR\Z,
(@)= {o if 2 € Z.

In order to prove Theorem 1.1, we need general bounds on Dedekind sums depending on the multi-

plicative order of the argument. This is a new type of bounds for Dedekind sums and the following

result that improves upon (24) when the order is o (102)5)2 -

) might be of independent interest (see

also Conjecture 7.1 for further discussions).

Theorem 3.1. Letp > 1 be a prime integer and assume that h has odd order k > 3 in the multiplicative
group (Z/pZ)*. We have

1
|s(h, p)| < (logp)2p'~H.

Remarks 3.2. Let us notice that by a result of Vardi [Var], for any function f such that lim,_, 1 f(n) =
+00 we have s(c,d) < f(d)logd for almost all (¢, d) with ged(c,d) = 1. However Dedekind sums take
also very large values (see for instance [CEK, Gir03] for more information).

Our proof builds from ideas of the proof of [LM21, Theorem 4.1] where some tools from equidistri-
bution theory and the theory of pseudo-random generators were used. We refer for more information
to [Kor], [Nied77] or the book of Konyagin and Shparlinski [KS, Chapter 12] (see [LM21, Section 4]
for more details and references). Let us recall some notations. For any fixed integer s, we consider
the s-dimensional cube Iy = [0,1]% equipped with its s-dimensional Lebesgue measure \;. We denote
by B the set of rectangular boxes of the form

S

H[O‘iv,ﬁi) ={rel,a <z; < B}

i=1
where 0 < o; < 3; < 1. If S is a finite subset of I®, we define the discrepancy D(S) by
#(BNS) '
D(S) =sup | ——— — \s(B)]|.
S )

Let us introduce the following set of points:

Shp = {(ac’ :Bh) € I>, x mod p} )
b p

For good choice of h, the points are equidistributed and we expect for “nice” functions f

o1 r hx B
plggo]; Z f(pap) —/12 f(z,y)dzdy.

z mod p
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Lemma 3.3. For any h of odd order k > 3 we have the following discrepancy bound
D(Sh,p) < (logp)*p~1/*").

Proof. Tt follows from the proof of [LM21, Theorem 4.1] where the bound was obtained as a conse-
quence of Erdés-Turan inequality and tools from pseudo random generators theory. O
3.2.1 Proof of Theorem 3.1

Observe that

where f(x,y) = ((z))((y)). By Koksma-Hlawka inequality [DT, Theorem 1.14] we have

1 Z f(x xh) —/12 f(u,v)dudv| < V(f)D(Shp)

==
p p
where V(f) is the Hardy-Krause variation of f. Moreover we have

f(u,v)dudv = 0.
I

The readers can easily convince themselves that V' (f) < 1. Hence the result follows from Lemma 3.3.

Remarks 3.4. The same method used to bound the discrepancy leads to a similar bound for composite
f. Indeed for h € (Z/fZ)* of order k > 3, we have s(h, f) = O ((log f)*f/E(f)) with E(f) =
max{ P+ (f)VF) rad(f)1/*} where P (f) is the largest prime factor of f, k* is the order of h modulo

PY(f) and rad(f) = H 0 is the radical of f. If f = h3 — 1 is squarefree, then we have E(f) = f/3
Ll f

Lprime

and s(h, f) = 0O ((log f)2f2/3) which is close to the truth by a logarithmic factor (see Remark 6.2).

For ged(b, p) = ged(e, p) = 1 we recall the other definition of Dedekind-Rademacher sums

wen=S(()((5))

a=1
A similar argument as in the proof of Theorem 3.1 leads to a bound on these generalized sums:

Theorem 3.5. Let q1, g2 and k > 3 be given natural integers. Let p run over the primes and h over
the elements of order k in the multiplicative group (Z/pZ)*. Then, we have

1—-L1_
(g1, g2h, p)| < (logp)*p 5.

Proof. The proof follows exactly the same lines as the proof of Theorem 3.1 except for the fact that
the function f is replaced by the function g(z,y) = ((¢12))((¢2y)). Hence we have

x hz
s(q1, q2h,p) = g < )
p p
and by symmetry we remark that

/ g(u,v)dudv = 0.

1P

Again V(g) < 1 and the result follows from Lemma 3.3 and Koksma-Hlawka inequality. O
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3.3 Twisted second moment of - functions and Dedekind sums

We illustrate the link between Dedekind sums and twisted moments of L- functions by first proving
Theorem 1.1 in the case H = {1} with a stronger error term. For any integers ¢i1,¢2 > 1 and any
prime p > 3, we define the twisted moment

2

Mg, 4, (p) = M

> x(@)x(g2) [ L(1, ) (25)

XEXp

The following formula (see [Lou94, Proposition 1]) will help us to relate L- functions to Dedekind
sums:

T =1 Ta
L0 = 52 Yoot () (ee X)) (26)
a=1

Theorem 3.6. Let g1 and qo be given coprime integers. Then when p goes to infinity

7T2

Mg, g5 (p) = @

+ Og1.5(1/p)-

Remarks 3.7. It is worth to notice that in the case qo = 1, explicit formulas are known by [Loul,
Theorem 4] (see also [Leel7]). This also gives a new and simpler proof of [Leel9, Theorem 1.1] in a
special case.

Proof. Let us define
5 1 if ptab and a = b mod p,
e(a,b) := o) Z x(a)x(b) =49 —1 if ptaband a = —bmod p,
X€Xp 0 otherwise.

For p large enough, we have ged(q1,p) = ged(ge, p) = 1. Hence, using orthogonality relations and (26)
we arrive at

w2 i Ta b
Mq1,q2 (p) = 47192 Z Z 6((1161, ng) cot (p) cot <p>

a=1 b=1
a TQoa 272
cot = 78(q17q2,p)~

72 2
= 557 2 oot <
2p* —~ p
When ¢; and ¢y are fixed coprime integers and p goes to infinity, we infer from (23) and (24) that

O(1).

Tq1
p

The result follows immediatly. O
Corollary 3.8. Let q1 and g2 be given natural integers. Then when p goes to infinity

72 ged(q1, q2)?

Mqht]g(p) = 6 0102

+ Og1,4,(1/P)-

Proof. Let 6 = ged(q1,q2). We clearly have My, 4,(p) = Mg, /s,4,/5(p) and the result follows from
Theorem 3.6. Ul

The proof of Theorem 1.1 in the case of the trivial subgroup follows easily.

Corollary 3.9. Let dy be a given square-free integer. When p goes to infinity, we have the following
asymptotic formula

71.2
Mo (p,11}) = & 11 <1 - ;2) +0(1/p).

qldo
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Proof. For x modulo p, let ¥’ be the character modulo dpp induced by x. By (8) and Corollary 3.8
we have

Mo (1) = e 3 LR = 3 3 MO

XGX* d1]do d2|do

- Z Z Mf;;l) ,uf;;z) ged(d1,02)% + O(1/p)

S1ldo baldo 1

3.4 An interesting link with sums of maxima

Before turning to the general case of Theorem 1.1, we explain how to use Theorem 3.6 to estimate the
seemingly innocuous sum? defined for any integers ¢1, g2 > 1 by

Mag, g5.p := Z max(q1 7, q2)

x mod p

where here and below ¢z, gox denote the representatives modulo p taken in [1, p].

Theorem 3.10. Let g1 and g2 be natural integers such that g1 # qo. Then we have the followin

asymptotic formula
2 ged(qr, 2)?
Mag, g,p = P° <3 T a0 (14 0(1)).

Remarks 3.11. In the special case g1 = 1, we are able to evaluate the sum directly without the need
of Dedekind sums and L- functions. However, we could not prove Theorem 3.10 in the general case
using elementary counting methods.

Remarks 3.12. Let us notice that fol fol max(z,y)drdy = 2/3. Hence using the same method as in

Section 3.2, we can show that if the points ({%} , {%}) are equidistributed in the square [0,1]? then

2
Z max(z, gx) ~ §p2.

x mod p

For q fized and p — 400, the points are not equidistributed in the square and we see that the correcting

ged(g1,92)?

factor 50125

from equidistribution is related to the Dedekind sum s(q1,q2,Dp).
We need the following result of [LM21, Theorem 2.1]:

Proposition 3.13. Let x be a primitive Dirichlet character modulo f > 2, its conductor. Set
k

k,x) = Zx(l). Then
=0

1 if x(—1)=—-1.

“In [Sun] the author uses lattice point interpretation to study sums with a similar flavour.

Z 1S(k, X)* = H (1 — ) +ay 2]L(l X)%, where ay := {O Z:fX(_l) =+
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3.4.1 Proof of Theorem 3.10

12

We follow a strategy similar to the proof of [LM21, Corollary 2.2]. We denote by xo the trivial

character. Using Proposition 3.13 and recalling the definition (25) we arrive at:

3

p—1 2
> xax@) 3 ISk 0P = Y xax@) o+ LMy g ).

XEXp\X0 k=1 X€Xp\Xx0

Adding the contribution of the trivial character

p—1] k
o(q1)x0(q2) Z Zl

k=111l=1

2

-1

we obtain

2 — _
2 qaZIS k0P = Y xa)x(e)? o W=D

XEXp XE€Xp

p3

272Mq1,q2 (p) + O(p?).

_l’_

(27)

For sufficiently large p, using the fact that g¢; # g2 mod p and the orthogonality relations, we have

2 _
3 x@)x(a)” o Lo,

XE€Xp

We now follow the method used in the proof of [LM21, Theorem 4.1] (see also [Elmal) with some

needed changes to treat the left hand side of (27). Again by orthogonality, we obtain

2

p—1 =11 k
> x(a)x(a2) Y 1Sk X)1P = Y xla)x(e2) Y D x(0)
XEX, k=1 XEX, =1 |1=1
p—1

= X(qh)x(q2l2) = (p — 1)*Alq1, g2, p),

where

A(Ql q2,p pil Z 1

1<nqi,ng<N
q1n1=qgng mod p

Changing the order of summation and making the change of variables n; = gom; we arrive at

(p—1)A(q1,q2,p) = Z (p — max(qim1,gami)) = p* - Z max(q17, ¢2).
1<m1<p z mod p

By symmetry, injecting this into (27), we arrive at

—1p(2p—1 3
PP-p > max(q,qa) = v )p(;( p-l) %Mql,(p(ﬁ) +o(p?).

x mod p

(28)

Hence comparing the terms of order p? in the above formula (28) and using Corollary 3.8, we have

Y max(q1z, 22) = 00 (0 + 0(p?)

z mod p
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where )
1—e 1 1 ged(q1, ¢2)
41,92 3 12 G2 .

This concludes the proof.

We know turn to the general case of Theorem 1.1. Let dy be a given square-free integer such that
ged(dp, p) = 1. For x modulo p, let x’ be the character modulo dpp induced by . Recall that we want

to show for H a subgroup of (Z/pZ)* of odd order d < log’ﬁ)g that

1 N2 12 1
A%@an#&ﬂﬂmginuLmP—a+qm6}lQ_¢J_

3.5 Twisted average of L- functions over subgroups

For any integers ¢q1,q2 > 1 and any prime p > 3, we define

Mg, g5 (p, H) := > x(@)x(@)IL(1, )P

XEXp (H)

#Xp (H)

Our main result is the following:

Theorem 3.14. Let 1 and qa be given coprime integers. When H runs over the subgroups of (Z/pZ)*
of odd order d, we have the following asymptotic formula

2

__1_
Mg, 4, (p, H) = +0 (d(logp)Qp ¢(d)> .

64142

Proof. The proof follows the same lines as the proof of Theorem 3.6. Let us define

1 if pfaband a € bH,
Z x(a)x(b) =< —1 if ptaband a € —bH,
XEXp (H) 0 otherwise.

er(a,b) =

Hence we obtain similarly

7'('2 p=lp-] ma
Moo H) = 5 > 3 enlana. o) ot<p) ( )

a=1 b=1
2 qQa wqaha
2y S ( ) o(72)
heH a=1
272
= —:5(q1,42,p) Z s(q1, g2h, p)
p #heH
2 R —
- +WUM+OGHW%M%¢W>
6412
2 1
= +O<dlo 2 ¢><d>),
0 (logp)°p

where we used Theorem 3.5 in the last line and noticed that ¢(k) divides ¢(d) whenever k divides
d. O

log p

Remarks 3.15. The error term is negligible as soon as d < 3oglogp) -
g log p)
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Corollary 3.16. Let ¢ and g2 be given integers. When H runs over the subgroups of (Z/pZ)* of od
order d, we have the following asymptotic formula

LS ng(Qh CJ2)2

Mg, g (p, H) = G P

1o (d(log p)Qp*ﬁ) .

3.6 Proof of Theorem 1.1
As in the proof of Corollary 3.9 and using Corollary 3.16

Mdo(p7 H) = #)(;(ff) Z Z Z M 51,52(177 H)

XGX_(H) d1|do d2]do

Ty oy Mo O gedt1,60)" + 0 (daogpfp*ﬁ)

61|d0 daldo 0t
T D)

using the condition on d.

4 Explicit formulas for M, (f, H)

Recall that by (26)

L(1,x) = QfZX cot( ) (x € X;).

Hence using the definition of Dedekind sums we obtain (see [Loul6, Proof of Theorem 2])

2” 3" s(h, £/3). (29)

SIf heH

4.1 A formula for M, (f,{1}) for dy =1,2,3,6

The first consequence of (29) is a short proof of [Lou94, Théorémes 2 and 3] by taking H = {1}, the
trivial subgroup of the multiplicative group (Z/fZ*). Indeed, (29) and (21) give

271' w(d 3 2
SV SVOEE SWLICES 25

The arithmetic functions f 3 s, 1(0)0% being multiplicative, we obtain (see also [Qi])

M(f,{1}) = %x H<1_q12)_;g<1_;) (f >2). (30)

alf
Now, it is clear by (15) that for dyp odd and square-free and f odd we have

Maq, (f,{1}) = My, (2f,{1}).

Hence, on applying (30) to 2f instead of f we therefore obtain

Ma(f,{1}) = %x H<1—q12)—]1£]|_[(1—;> (f > 2 odd).
qlf

alf
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For dy € {3,6}, the following explicit formula holds true for any f coprime with dy. It generalizes
[Lou94, Théoreme 4] to composite moduli

Theorem 4.1. Let dy > 2 be a given square-free integer. Set

—H 1—— cmclc:31_IE
: .

qldo qldo

Forn € Z, set e(n) =41 if n =+1 (mod dp) and e(n) = —1 if n = —1 (mod dp).
Then for f > 2 such that all its prime divisors q satisfy ¢ = +1 (mod dy) we have

My (f.{1}) = Ka, % H<1_‘112>_;H<1_611> c—1H< >

qlf

In particular, for f > 2 such that all its prime divisors q satisfy ¢ =1 (mod dy) we have

My, (f,{1}) = Fiay % H(l_qQ> fH( _q>

qlf

Proof. With the notation of [Loull, Lemma 2] we have My, (f,{1})) = 4725 (do, f). Hence, by [Loull,
Lemmas 3 and 6] we have

7T2 7T2
Ma( 00 =5 IT (1 ) - T A2 2 5= 2D o, g o),

qldo f dlf

where the A(do, f/d)’s are rational numbers such that A(dy, f/d) = €A(dp,1) if f/d = ¢ (mod dyo)
with e € {£1}, see (41). If all the prime divisors ¢ of f satisfy ¢ = +1 (mod dy) then f/d = e(f/d)
(mod dy) and A(do, f/d) = e(f/d)A(do, 1) = e(f)A(do, 1)e(d) and

D atay. /) = (1) A0, ) (1 - @) |

dIf alf q

Hence we finally get

2 w2 2 2
it (1 2) O 2 e[ 4)

qldof 1 alf 1
The desired formula for My, (f,{1}) follows by using the explicit formula
A(dp, 1) = ¢(dp)? — H ( )
q\d
given in [Loull, Lemma 6]. O

4.2 A formula for M(p, H)

The second immediate consequence of (29) and (21) is
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Proposition 4.2. For f > 2 and H a subgroup of the multiplicative group (Z]fZ)*, set

S'(H,f)= > s(h.f) and N(f H) = —3+ ; +125'(H, f). (31)

1#£heH

Then, for p > 3 a prime and H a subgroup of odd order of the multiplicative group (Z/pZ)*, we have

o= (14252 (1)1 2) o)

Remarks 4.3. In particular, N(f,{1}) = =342/ f and (32) implies (5). Notice also that N(p,H) € Z
for H # {1}, by [Loul9, Theorem 6]. Moreover, by [LM21, Theorem 1.1], the asymptotic formula
M(p,H) = %2 + o(1) holds as p tends to infinity and H runs over the subgroup of (Z/pZ)* of odd

order d < logﬁ)};p. Hence we have N(p, H) = o(p) under this restriction.

4.3 A formula for M, (p, H)

We will now derive a third consequence of (29): a formula for the mean square value My, (f, H) defined
in (9) when f is prime.

Theorem 4.4. Let dy > 1 be a square-free integer. Let f > 2 be coprime with do. Let H be a subgroup
of the multiplicative group (Z/fZ)*. Whenever § divides dy, let ss : (Z/6fZ)* — (Z]fZ)* be the
canonical surjective morphism and set Hs = s5*(H) and Hj = s;*(H \ {1}). Define the rationa
number

Ny (f, H) = —f + —24do) _ 5 du) 3 s(han) (33)

[gjay(a* = 6\d heHdO

Then, for p > 3 a prime which does not divide dy and H a subgroup of odd order of the multiplicative
group (Z/pZ)*, we have

My (p. 1) = ZH jgp (do) 5~ ‘5) (H;, 6p) (34)
8|do
where
S(Hs,8f) = s(h,6f),
heHgs
and
Mg, (p, H) = Kqy X <1 + Nd()(]]j’H)> , where kg, = 7T62H <1 - ql2> . (35)
qldo
Moreover,
12p4(do) ou(9) o
N, H)= - Hs, o 36
do(f7 ) f+ Hq|d0( )5|d ¢(5) ( &5 f) ( )
12# dO '
= Nao( )+ Z S (Hs,5f) (37)
q|ao dldo
where

S'(Hs,0f) == > s(h,5f).

heHj
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Proof. Using (15) and by making the change of variables § — dyf/d in (29), we obtain:

May (f, H) = M(dof, Hay) = 2 f2 ZM dof/8) > s(h,d). (38)

Sldo f heHg,

Since {d; 0 | dop} is the disjoint union of {d; ¢ | do} and {dp; 0 | do}, by (38) we obtain:

My, (p, H) = — 27Td52d° S oud) Y s(h,6) + 27””[0 N ou(d) Y s(h,op).

d|do hEHdO d|do hEHdO

Now, S := ZheHdO s(h,d) = 0 whenever 0 | dy, which gives

My, (o, H) = ) do S 6@ Y s(h,op) (39)

8ldo heHg,

and implies (35). Indeed, let o : (Z/dofZ)* — (Z/0Z)* be the canonical surjective morphism. Its
restriction 7 to the subgroup Hy, is surjective, by the Chinese reminder theorem. Hence, S = (Hy, :
ker 7) x ', where S := 37 /57y« 5(¢,0) = 3 e(z/57) S(—¢,0) = —5" ylelds S = 0. In the same way,
whenever ¢ | dy, the kernel of the canonical surjective morphism s : (Z/dofZ)* — (Z/6fZ)* being a
subgroup of order ¢(dof)/d(6f) = d(do)/P(d), we have

S sthaf) = A0S o (40)

hEHdO ¢( ) heHg

and (34) follows from (39) and (40).
Then, (35) is a direct consequence of (34) and (33). Finally (37) is an immediate consequence of
(33) and (40). O

4.3.1 A new proof of Theorem 1.1

We split the sum in (39) into two cases depending whether h = 1 or not. By (21) we have s(1,dp) =
% + O(1) giving a contribution to the sum of order

7T2
5+ 0/ =11 (1-;) +0(1/p).

dldo qldo

When h # 1 and h € Hy,, it is clear that the order of A modulo p is between 3 and d. Hence it follows
from Theorem 3.1 (see the Remark after) that s(h,dp) = O((logp)*p - ¢(d>) The integer dp being

fixed, we can sum up these error terms and the proof is finished.
4.4 An explicit way to compute Ny (f,{1})

Lemma 4.5. Let dy > 1 be a square-free integer. Let f > 2 be coprime with dy. Recall that Hyq,(f) =
{he(Z/dofZ)*, h=1 (mod f)} and set

U, f) =Y. d(fl (1+C0t<dof> t(%))

1#heHq, (f) gcd(:;;}l):l

Adp= 35 or (M) (o (B0 eor (T, (41)

ac(B/dol)* bE (/0" 0

and

a rational number depending only on f modulo dy. Then U(dy, f) = fA(dy, f)-
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Proof. As in [Loull, Lemma 3], set

dof 1 n nh
T(do, f) := Z Z F (do]c’dof> )
1#h€Hd0 (f) gcd(dof n) 1

where F(m y) = 1+cot( )cot(wy). On the one hand, since ged(dp f,n) = 1 if and only if ged(do, n) =

ged(f,n) =1 and Z w(d) is equal to 1 if ged(f,n) = 1 and is equal to 0 otherwise, we have
¥
do(f/d)— n nh
T(d r '
0./)= ud) Y > (do(f/d)’ do(f/d)>
dlf 1#heHaqq (f) gcd&o,i):l

On the other hand, the canonical morphism o : Hg,(f) — Hg,(f/d) is surjective and both groups
have order ¢(dof)/o(f) = d(do(f/d))/d(f/d) = ¢(dp). Hence o is bijective and

d07 Z/J* dva/d)
dlf

Using [Loull, Lemma 6] and Mo6bius’ inversion formula, we finally do obtain

U(do, f) = > T(do,d) => d Y M?)A(do,d/é)

dlf dif dld
=y ( > u(5)> A(do, ') = fA(do, f),
o' f S| f/e
where we set §' = d/0. O

Proposition 4.6. Let dy > 1 be a square-free integer. Set B = ]_[q‘do(q2 —1). For f > 2 and
ged(do, f) = 1 we have

3
Nao(f:{1}) = 5 (A(do, ) = 6(do)?) -
Consequently, Nq,(f,{1}) is a rational number depending only on f modulo dy.

Proof. Set H = Hg,(f) :=={h € (Z/dofZ)*, h=1 (mod f)}. By (33) we have

12 (dp)
Nap(f: (1) = 7 + A0S 50(5) 3 o).
§|d0 heH
Using (21) to evaluate the contribution of A =1 in this expression and } 5, 1(0) = 0, we get

Nup(f. 1)) = 20 L) § 505 57 snaop)

8|do 1£heH

and

Ndo(f,{l})=—3¢%l°> DI le<1+‘3°t<5f> t(?))

1£heH 6|dy n=1
by (18) and by noticing that #H = ¢(dy). Therefore,

Nt (19 = =220 1 a0, (12)

(make the change of variable § — dy/d). Lemma 4.5 gives the desired result. O
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Remarks 4.7. As a consequence we obtain Mg, (p,{1}) = %2 144 (1 - q%) +O0(p™1), using (35) and

the fact that Ng,(p,{1}) depends only on p modulo dy. This gives in this extreme situation another
proof of Theorem 1.1 with a better error term. Moreover, in that situation we have K = Q((,) and in
(11) the term Iy, (p,{1}) is bounded from below by a constant independent of p, by Corollary 2.4.

5 The case where f =a% '+ .- +ad>+a+1

In this specific case we are able to obtain explicit formulas for My, (f, H) when the subgroup H
is defined in terms of the parameter a defining the modulus. For a general subgroup H, it seems
unrealistic to be more explicit than the formula involving Dedekind sums given in Theorem 4.4. It
might be interesting to explore formulas involving continued fraction expansions in view of their link
to Dedekind sums [Hic].

5.1 Explicit formulas for dy =1,2

Lemma 5.1. Let f > 1 be a rational integer of the form f = (a® —1)/(a — 1) for some a # —1,0,1
and some odd integer d > 3. Hence f is odd. Set H = {a*; 0 <k < d — 1}, a subgroup of order d of
the multiplicative group (Z)fZ)*. Then,

a—l—le—(d—l)a—l

and
S(Hy,2f) = Z%ri X —4f_(d_;)1a_3d_1 if a is odd
2 N 2(1‘1:11 X f_(dbl)a_l if a is even.
Proof. We have S(H, f) = i;(l)s(ak,f). Moreover, S(H,2f) = Z;(l)s(ak,Zf) if a is odd and

S(H2,2f) =s(1,2f) + ZZ;% s(a® + f,2f) if a is even. Now, we claim that for 0 < k < d — 1 we have

k 2 —k ko o —k(,2
i a (f*+1a a®+a " —2a+2) ala+1) )
_ _ h h £
s(a”, f) 12f 12f + 12(a— 1) 2(a—1) whatever the parity of a,
k 4 2 1 —k 4 k —k 2_2 1
st 2f) = 2 WA e daida (o - 204h) (0t Dledd) g g4

24f 24f 24(a — 1) 24(a — 1)
and that for 1 < k <d — 1 we have

s(a¥ + f,2f) = Lk_i_ (f2+1a"* . a* +a*a®-2a+2) a(2a—1)

- if g i .
24f 24f 24(a — 1) 12(a—1) = “PE

Noticing that Zi;i a* = f—1and Zi;i a k= (aiﬁ? we then get the assertions on S(H, f) and
S(Haz,2f). Now, let us for example prove the third claim. Hence, assume that a is even and that
1 <k<d—1. Then f; := (a* —1)/(a — 1) is odd, sign(f;) = sign(a)* and a* + f > 0.
First, since 2f = —2a* (mod a* + f), using (20) we have

ak + f f 1 1

o R
s+ 120 = G g T it I e

(2a*,a* + f).

Second, noticing that a* + f = fx (mod 2a*) and using (20) we have

a” a* + f  sign(a)k 1

k
(ak + f) + 24a* 1 + 2k + f) s(fk,2a").

s(2ak,a* + f) = 5
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Finally, noticing that 2a* =2 (mod f;) and using (20) and (21) we have

T a®  sign(a)” 1
2a%) = — - —5(2
5k, 207) 240k 6, 1 Toapar S
Tk N ab  sign(a)” n 1 JE—6fu+5
24ak " 6, 4 24 frak 24 fy

After some simplifications, we obtain the desired formula for s(a® + f,2f).
Notice that for d = 3 we obtain S(H, f) = %, in accordance with (51). O

Using (34) and Lemma 5.1 we readily obtain:

Theorem 5.2. Let d > 3 be a prime integer. Let p = 1 (mod 2d) be a prime integer of the for
= (a®—1)/(a—1) for some a # —1,0,1. Let K be the imaginary subfield of degree (p —1)/d of the
cyclotomic field Q((p). Set H = {a¥; 0 <k < d—1}, a subgroup of order d of the multiplicative group
(Z/pZ)*. We have the mean square value formulas

2 — 1a
M(p,H)—%thix(l—(dlp)—i_l). (43)

and

_ ™ a—1
MQ(p7 H) - § 1— (d_l)a+1p (44)

p

2 atl (1—4> if a is odd,
X
if a is even.

Consequently, for a given d, as p — oo we have
2 2

M(p, H) = % +o(1) and Ms(p, H) = % +o(1).

On the other hand, for a given a, as p — oo we have

™ a+1

M(p, H) = =

m° atl . .

g a1 1 dd
+0(1) and My(p, H) = fz x &3 4+ o(1) Z.fa z.s odd,
§ To(l) if a is even.

Remarks 5.3. Assertion (43) was initially proved® in [Loul6, Theorem 5] for d = 5 and then gen-
eralized in [LM21, Proposition 3.1] to any d > 3. However, (43) is much simpler than [LM21, (22)].
Notice that if p runs over the prime of the form p = (a® — 1)/(a — 1) with a # 0,2 even then
Msy(p, H) = % X Z—;} X M(p, H) and the asymptotic (12) is not satisfied.

5.2 The case where p is a Mersenne prime and dy =1, 3,15

In the setting of Theorem 5.4, we have 2 € H. Hence, by Remark 2.2 we assume that dy is odd.

*Note the misprint in the exponent in [Loul6, Theorem 5]
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Theorem 5.4. Let p = 2%—1 > 3 be a Mersenne prime. Hence, d is odd and H = {2F; 0 < k < d—1}
is a subgroup of odd order d of the multiplicative group (Z/pZ)*. Let K be the imaginary subfield of
degree m = (p —1)/d of Q((p). Then

2

2d — 1 2 m/4
M(p,H):7;<1— g )ggandhl—(g2(§) ,

4r? 4r? m/4
Malp. ) =15 (1= ) < 35 and 1 <2 (5)

and

272 272 47d+1 ifd=1 d4
M15(p,H):37T (1 Cd)ggﬂ,wherecd:{ +1 if (mod 4),

75 U 48p 75 17d—3 ifd=3 (mod 4).
_ _ 3 m/4
In particular, for d =3 (mod 4) we have hy < 2 (%)
Proof. By (34) we have
7'['2 1 N, (pa H)
M) =TT (1- ) ¢ (14 7222, (45)

qldo

where for H a subgroup of odd order of the multiplicative group (Z/fZ)* we set

/ o 4p(do) Spu(6)
Nio ) 3= =1 g ) ﬂzd o8y S He01). (46)

The formulas for M (p, H), M3(p, H) and M;5(p, H) follow from (45)) and Lemma 5.5 below. The
upper bounds on h follow from (11) and Lemma 2.3 according to which II,(p, H) > 1 if ¢ is of
even order in the quotient group G/H, where G = (Z/pZ)*, hence if q is of even order in the group
G. Now, since p = 3 (mod 4) the group G is of order p — 1 = 2N with N odd and ¢ is of even

order in G if and only ¢V = —1 in G, i.e. if and only if the Legendre symbol (%) is equal to
—1. Now, since p = 2¢ =1 = —1 = 3 (mod 4) for d > 3, the law of quadratic reciprocity gives
(%) =—(5) =- (%) = —l,asp=(-1)—1=-2=1 (mod 3). Hence, II3(p, H) > 1. In the
same way, if d =3 (mod 4) thenp:2d—1:2-4%—152-(—1)%—15—352 (mod 5) and
(g) = (2) = (2) = —1 and TI5(p, H) > 1. 0

Lemma 5.5. Set f = 2¢ — 1 and ¢4 = (—1)(“"D/2 with d > 2 odd. Hence ged(f,15) = 1. Set
H=1{2%, 0 <k <d—1}, a subgroup of order d of the multiplicative group (Z/fZ)*. Then,

S, ) = =2 N ) = —2d 41, (47)

S(Hy,3f) = 2L =80T N1 HY = —d, (48)

S(Hs,5f) = 1= 10?2*” and NL(f, H) = —§d+ ! e, (49)
Sasf) - W D230 ddT o Bl 12

3 48 48
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Proof. The first assertion is the special case a = 2 of Lemma 5.1. Let us now deal with the second
assertion. Here Hy = {2%; 0 < k < d -1} U{2F + (=1)*f; 0 < k < d — 1}. We assume that
0 <k <d— 1. Hence, sign(2* + (-1)Ff) = (—1)*.

1. Noticing that 3f = —3 (mod 2¥), by (20) we obtain

4F 192 —9.2F. f 11

2k).

s(28,3f) =

Noticing that 2¥ = (~1)* (mod 3), by (20) and (21) we obtain

oo 9+4F—9.2F 41 . 944k —9.2F 41 (—1)F
5(3,2) = 36 - 2F — (D)7s(1,3) = 36 - 2F s
o P4l , F+DOF+D), , 1 (<1
" +1,, + +1) g —~
5(2%,3f) = 36f2+ 36f 2T T s
2. Noticing that 3f = —3 - (—=1)¥2F (mod 2* + (=1)%f), by (20) we obtain
k k 2P (DY / (=¥ 1
R I e T

+(=1)Fs(3-25 28+ (-1)*f)
and noticing that 2¥ + (—=1)*f = (—=1)*~! (mod 3 - 2¥), by (20) we obtain

53228+ (1)) TRt (—)F) 36(- 2’3 - 4)
1

T 36 2k 2F 4 (—1)Ff)

+ (=1)ks(1,3-2%).

Using (21) we finally obtain

9f +1 (f+1)2%. . 1 (=1
ok + ok o7k _ =
s+ (-1)Ff,3f) = 367 2 367 T
3. Using EZ; =f, Zd Lok — f2—+f1 and Zz;é(—l)k = 1, we obtain
] 19f —18d + 1 - 11f —18d +5
s(2k,3f):— nd Zs oF 4 (—1)Ff3f) = L ——"°.
k=0 =0 36

Hence, we do obtain

19f —18d+1 11f—-18d+5 b5f—6d+1
> s(h,3f) = ! LR th_ b ody

heHs

and Ni(f, H) = —d, by (46).

Let us finally deal with the third and fourth assertions. The proof involves tedious and repetitive
computations. For this reason we will restrict ourselves to a specific case. Let us for example give
some details for the proof of (50) in the case that d = 1 (mod 4). We have f =2¢ —1=1 (mod 30)
and Hys = UM E;, where By := {2F +1f; 0 <k <d—1, ged(2¥ +1,15) = 1} for 0 <1 < 14. We have
to compute the sums s; := ) B s(n,15f). Let us for example give some details in the case that
[ = 1. We have ged(25 +1,15) = 1 if and only if k = 0 (mod 4). Hence s; = 3>\X W/ 5(165 + f,15f).
Using (20) and (21) we obtain

9f+1 16k+7+(f+1)

167k,
180f 45 180 f

s(16" + f,15f) =
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Finally, using Zl(cd:_(]l)/4 16% = % and Z,(Cdz_ol)ﬂl 16F = 28747 we obtain

15(f+1)
(d—1)/4 2
88f< 4+ (210d + 731)f + 21
si= > s(16"+ f,15f) = ( 007 ) .
k=0
Finally, using (46), (47), (48) and (49) we get (50). O

We conclude this Section with the following result for dy = 3 -5 -7 = 105, whose long proof we
omit5:

Lemma 5.6. Set f = 2% — 1 with d > 1 odd. Assume gecd(f,105) = 1, i.e. that d = 1,5,7,11
(mod 12). Set H = {2F; 0 < k < d — 1}, a subgroup of order d of the multiplicative group (Z/fZ)*.
Then

437d +139 ifd=1 (mod 12),

Nios(f, H) = b X 535d — 644 ifd=5 (mod 12),
576 97d — 324 ifd=7 (mod 12),

195d+13  ifd=11 (mod 12).

Lemmas 5.5-5.6 show that the following Conjecture holds true for dy € {1,3,5,15,105}:

Conjecture 5.7. Let dy > 1 be odd and square-free. Let N be the order of 2 in the multiplicative
group (Z/doZ)*. Set f =2%—1 withd > 1 odd and H = {2¥; 0 < k < d—1}, a subgroup of order d of
the multiplicative group (Z/fZ)*. Assume ged(f,do) = 1. Then Ny (f, H) = A1(d)d + Ao(d), where
A1(d) and Aog(d) are rational numbers which depend only on d modulo N, i.e. only on f modulo dy.
Hence for a prime p > 3 we expect

May(p. ) = = H<1—12> (1+A1(d)d+Ao(d)>7

qldo p p

confirming again that the restriction on d in Theorem 1.1 should be sharp.

There is apparently no theoretical obstruction preventing us to prove Conjecture 5.7. Indeed, for a
fixed dp, the formulas for Ay(d) and A;(d) could be guessed using numerous examples on a computer
algebra system. However for large dy’s the set of cases to consider grows linearly and a more unified
approach seems to be required to give a complete proof.

6 The case of subgroups of order d = 3

6.1 Formulas for dy=1,2,6

Let p =1 (mod 6) be a prime integer. Let K be the imaginary subfield of degree m = (p —1)/3 of
the cyclotomic field Q(¢,). Since p splits completely in the quadratic field Q(v/—3) of class number
one, there exists an algebraic integer o = a + b%‘/:‘s with a,b € Z such that p = NQ(\/TS)/Q(O[) =
a® + ab+ b%. Then, H = {1,a/b,b/a}, is the unique subgroup of order 3 of the cyclic multiplicative
group (Z/pZ)*. So we consider the integers f > 3 of the form f = a® +ab+b%, with a,b € Z\ {0} and
ged(a,b) = 1, which implies ged(a, f) = ged(b, f) = 1 and the oddness of f. We have the following
explicit formula.

5The formulas can be and have been checked on numerous examples using a computer algebra system. Indeed, by
(20) and (21) any Dedekind sum s(c,d) € Q with ¢,d > 1 can be easily computed by successive euclidean divisions of ¢
by d and exchanges of ¢ and d, until we reach ¢ = 1.
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Lemma 6.1. Let f > 3 be of the form f = a® + ab + b?, with a,b € Z and ged(a,b) = 1. Set
H ={1,a/b,b/a}, a subgroup of order 3 of the multiplicative group (Z/fZ)*. Then,

f-1 _f-

s(a,b, f) = ! and N(f,H) = -1+ 12S(H, f) = —1. (51)

Proof. Noticing that s(b, f,a) = s(b,b%,a) = s(1,b,a) = s(b,a), by (22), and s(f,a,b) = s(a?,a,b) =
s(a,1,b) = s(a,b), and using (20), we obtain

a? +b* + 2 — 3|ab|f

S(CL, b7 f) 12abf - S(bv f: a) - S(f7 a, b) (by (23))
a? +b? + f? — 3|ab|f
12abf - S(b, a’) - S(a7 b)
a2 =3lablf @ +0? —3Jabl+1  f-1
- 12abf B 12ab T 12
Finally, S(H, f) = s(1, f) + s(a,b, f) + s(b,a, f) = s(1, f) + 2s(a, b, f) and use (21) and (37). O

Remarks 6.2. Take f; = A2+ AB + B? > 0, where 31 f1 and ged(A,B) = 1. Set f = (f1 +1)% — 1.
Then f = a® + ab + b?, where a = Afi + A— B, b= Bfi + A+ 2B and gecd(a,b) = 1. By Lemmas
6.1 we have an infinite family of moduli f for which the multiplicative group (Z/fZ)* contains at the
same time an element h = a/b of order d = 3 for which s(h, f) is asymptotic to 1/12 and an element

= f1+ 1 of order d = 3 for which s(h, f) is asymptotic to f>/3/12. Indeed by (20) and (21) for
f=(0fi+1)3—=1 we have s(W, f) = %f(ﬁh/%

To deal with the case dp > 1, we notice that by (37) we have:

Proposition 6.3. Let dy > 1 be a given squarefree integer. Take f > 3 odd of the form f =
a® + ab + b2, where ged(a,b) = 1 and ged(do, f) = 1. Set H = {1,a/b,b/a}, a subgroup of order 3 of
the multiplicative group (Z/fZ)*. Let Nq,(f, H) be the rational number defined in (33). Then

o 24M do
Nao (1) = Nao (1D + 0 ﬂZd a,,6f),

where Ng,(f,{1}) is a rational number which depends only on f modulo dy, by Proposition 4.6, and

where
S(a,b,6f) = Y s(hof)y= Y s(hdf).

he(Z/S FZ)* he(Z/SfL)*
h=a/b (mod f) h=b/a (mod f)

It seems that there are no explicit formulas for S(a, b,df), S(Hs,df) or Ns(f, H) for § > 1 (however,
assuming that b = 1 we will obtain such formulas in Section 6.2 for 6 € {2,3,6}). Instead, our aim is
to prove in Proposition 6.4 that Ns(f, H) = O(\/f) for § € {2,3,6}.

Let f > 3 be of the form f = a? 4 ab + b?, with a,b € Z and gcd(a,b) = 1. Hence, a or b is odd.
Since a? + ab+ b = a? + a't + b2 = a"? + a"b" + ¥"? and o' /¥ = a/b and a" /¥’ = a/bin (Z]fZ7)*,
where (a’,0') = (=b,a + b) and (a”,b”") = (—a — b,a), we may assume that both a and b are odd.
Moreover, assume that ged(3, f) = 1. If 31 ab, by swapping a and b as needed, which does not change
neither H nor S(a,b, H), we may assume that a = —1 (mod 6) and b = 1 (mod 6). If 3 | ab, by
swapping a and b and then changing both a and b to their opposites as needed, which does not change
neither H nor S(a,b, H), we may assume that a = 3 (mod 6) and b =1 (mod 6). So in Proposition
6.3 we may restrict ourselves to the integers of the form

f > 31is odd of the form f = a?+ ab+ b?, with a,b € Z odd and ged(a,b) =1
and if ged(3,f) =1thena=—-1or3 (mod6)andb=1 (mod6). (52)
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Proposition 6.4. Let § € {2,3,6} be given. Let f be as in (52), with ged(f,0) = 1. Then, s(h,df) =
O(Vf) for any h € (Z/5fZ)* such that h = a/b (mod f). Consequently, for a given dy € {1,2,3,6},
in Proposition 6.3 we have Ny, (f, H) = O(\/f), and we cannot expect great improvements on these
bounds, by (61), (63) and (65).

Proof. First, by (51) we have

S(a,b, f) = sla, b, f) = fu_fl

Second, f being odd, recalling (41) we have A(2, f) = A(2,1) =0, Na(f,{1}) = —1,
S(a,b,2f) = s(a,b,2f) (53)
and
No(f, H) = —1 —8S(a,b, f) + 16S(a, b, 2f).
Third, assume that dy € {3,6}. Then ged(f,3) = 1. Hence, f = 1 (mod 6). Therefore, A(3, f) =
A(37 1) = 4/37 A(6af) = A(6a 1) = —4, N3(f7 {1}) = Nﬁ(fv {1}) = -1,
Ns(f,H) = —1—-65(a,b, f) +95(a,b,3f)
and
Ne(f,H) = —1+2S(a,b, f) —4S(a,b,2f) — 3S(a,b,3f) + 6S(a,b,6f).
If a = —1 (mod 6), b = 1 (mod 6) and § € {1,2}, then {h € (Z/30fZ)*; h = a/b (mod f)} =
{a/b,(a +2f)/b} and
S(a,b,36f) = s(a,b,30f) + s(a+2f,0,30f). (54)
If a =3 (mod6), b =1 (mod 6) and 6 € {1,2}, then {h € (Z/30fZ)*; h = a/b (mod f)} =
{(a—4f)/b,(a+0f)/b} and

S(a,b,30f) =s(a—06f,0,30f) + s(a+0f,b,30f). (55)
Let us now bound the Dedekind-Rademacher sums in (53), (54) and (55). We will need the bounds:
if f=a®+ab+0b% then |a| + |b| < \/4f and |ab| > \/f/3. (56)

Indeed, 4f — (Ja| + |b])? > 3(|a| — |b])2 > 0 and f < a® + a?b® + b* = 302>
First, we deal with the Dedekind-Rademacher sums s(a,b,0f) in (53) and (54), where 0 € {2,3,6}.
Here, ged(a, b) = ged(a,df) = ged(b,df) = 1. Then (24) and (56) enable us to write (23) as follows:

s(a,0,6f) + O(Vf) + O(V/f) = O(\/).

Hence, in (53) and (54) we have s(a,b,2f), s(a,b,3f), s(a,b,6f) = O/f).

Second, the remaining and more complicated Dedekind-Rademacher sums in (54) and (55) are of the
form s(a + edf,b,30f), where ¢ € {£1}, 6 € {1,2} and ged(a + df,30f) = ged(b,36f) = 1. Set
8 = ged(a+edf,b). Then ged(8’,35f) = 1. Thus, s(a+edf,b,30f) = s((a+edf)/d',b/8,35f), where
now the three terms in this latter Dedekind-Rademacher are pairwise coprime. Then (24) and (56)
enable us to write (23) as follows:

s((a+¢edf)/8,b/8,35f) + O(\/f) +5(b/8',36f, (a+¢ebf)/d)
= 0(5"/b) = O(b) = O(\/f).

Now, 36f = —3eca (mod a + edf) gives s(b/d',30f, (a+edf)/d) = —es(b/d',3a, (a +edf)/d"). Since
the three rational integers in this latter Dedekind-Rademacher are pairwise coprime, the bounds (56)
and (24) enable us to write (23) as follows:

s(b/¢',3a, (a+e6f)/8') + O/ f) + O(VF) = O(VF).
It follows that s(a 4+ €df,b,36f) = s((a+¢edf)/d',b/8,30f) = O(\/f), i.e., in (54) and (55) we have
s(a+2f,b,6f), s(a—2f,b,6f), s(a+2f,b,3f),s(a— f,b,3f),s(a+ f,b,3f) = O(VF). u
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Conjecture 6.5. Let d be a given square-free integer. Let f > 3 run over the odd integers of the for
f = a® + ab + b? with gcd(a,b) = 1 and ged(0, f) = 1. Then s(h,5f) = OK/f) for any h € (Z/5f7)*
such that h = a/b (mod f). Consequently, for a given square-free integer dy, in Proposition 6.3, we
would have Ny, (f, H) = O(\/f) for ged(do, f) = 1.

Putting everything together we obtain:

Theorem 6.6. Let p = 1 (mod 6) be a prime integer. Let K be the imaginary subfield of degree
(p —1)/3 of the cyclotomic field Q((p). Let H be the subgroup of order 3 of the multiplicative group
(Z/pZ)*. We have

2 N(p,H 2 1 (p—1)/12
M) = T (14 FEE) T (1 D) anan <2 (2)7

and the following effective asymptotics and upper bounds

2

My(p, H) = % (1 n NQ(Z’H>> - 7: (1 + O(p_l/z)) and hy <2 (erO(p)> o (57)

—1)

(»
’ N H ? 12
Mot ) = (14 2B ) T (15 00%) and vy < 2 (PSP

Proof. The formulas for M (p, H), Ma(p, H) and Mg(p, H) follow from eq32, (35), (51) and Proposition
6.4. The inequalities on hy are consequences as usual of (11) and Corollary 2.4. O

6.2 The special case p=a?+a+ 1 and dy=1,2,6

Let f > 3 be of the form f = a®>+a+1, a € Z. Then ged(f,6) = 1 if and only if a = 0,2,3,5 (mod 6).

We define ¢, ¢, ¢ and ¢, = (—1 — 2¢,, — ¢! + 2) /12, as follows:

a (mod 6) c, cl c Ca
0 —3a—2|-8a—-5|—-19a—-10| —2a -1
1 3a+1
2 -3a—2| 8a+3 a—18 -3
3 3a+1|—-8a—5 —a—19 -3
4 —3a —2
5 3a+1 8a+3 1949 | 2a+1

Theorem 6.7. Let p =1 (mod 6) be a prime integer of the form p =a® +a+ 1 with a € Z. Let K
be the imaginary subfield of degree (p — 1)/3 of the cyclotomic field Q((p). Let H be the subgroup of
order 3 of the multiplicative group (Z/pZ)*. We have

7['2 a
Malp 1) = (1= (e, (59
and )
Me(p, H) = % <1 n C};‘) : (59)

showing that the error term in (57) is optimal.
Proof. The formula (58) is a special case of (44) for d = 3. By (35), we have
2 Ng(p, H
Mo(p, H) = <1 1 Mol H) )> .
9 p
Hence (59) follows from Lemma 6.9 below. O
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Lemma 6.8. Let f > 3 be of the form f =a>+a+1,a € Z. Set H = {1,a,a}, a subgroup of order
3 of the multiplicative group (Z/fZ)*. We have

f—1 2f + ¢,

and

No(f, H) = (=1)*"1(2a + 1). (61)
Proof. Apply Lemma 5.1 with d = 3 and f = a? + a + 1 to get (60). Then using (36) we get
No(f, H) = —f — 4S(H, f) + 8S(Ha, 2f) = &% = (—1)*"L(2a + 1). O

Lemma 6.9. Let f > 3 be of the form f = a*>+a+ 1, a € Z. Assume that ged(f,6) = 1, d.e. that
a=0,2,3,5 (mod 6). Set H={1,a,a?}, a subgroup of order 3 of the multiplicative group (Z/fZ)*.

Then
5f+cl

S(Hs,3f) = 18 o)
_[—2a—-1 ifa=0 (mod3),

N3(f?H)_ {2a_|_1 ifa=2 (mOd 3)7 (63)

S(Hg,6f) = mf% o

and
—2a—1 ifa=0 (mod 6),
Ne(f,H) =< -3 ifa=2,3 (mod 6), (65)
2a04+1 ifa=5 (mod 6).

Proof. Let us for example detail the computation of S(Hg,6f) in the case that a = 0 (mod 6). We
have f = 1 (mod 6) and Hg = {1,1+4f,a+ f,a +5f,a®> + f,a®> + 5f}. Since a®> + f = (a + f)~!
and a® +5f = (a+5f)"1 in (Z/fZ)*, we have S(Hg,6f) = s(1,6f) + s(1 4+ 4f,6f) + 2s(a + f,6f) +

25(a+5f,6f), by (19). Using (20) and (21) we obtain s(1,6f) = B9 s(14-4f,6f) = 2251804

s(a+ f,6f) = —% and s(a +5f,6f) = —%. Formula (64) follows.
By (36), we have

Na(f, H) = —f = 3S(H, ) + S S(H3,3f)

and
Nolf.H) = ~f + S(H. f) ~ 25(Ho,21) — SS(H3.3f) + 35(Ho 65).

Using (51), (60) and (62), we obtain N3(f, H) = ngl and (63). Using (51), (60), (62) and (64), we

obtain Ng(f, H) = ==2¢—at2%’ _ ¢ and (65). O

7 Conclusion and a conjecture

The proof of Lemma 5.1 gives for d > 3 odd and a # 0, +1

s (a, C;d_11> = (f = 1)(1‘};;}0&2 — b =0 (fl_ﬁ> . (66)

Our numerical computations suggest the following stronger version of Theorem 3.1:
Conjecture 7.1. There exists C > 0 such that for any odd d > 1 dividing p — 1 and any h of order
d in the multiplicative group (Z/pZ)* we have

1

|s(h,p)| < Cp' 7. (67)
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Indeed, for p < 10% we checked on a desk computer that any odd d > 1 dividing p — 1 and any h
of order d in the multiplicative group (Z/pZ)* we have

|s(h, p)|

1
p' @

The estimate (67) would allow to slightly extend the range of validity of Theorem 1.1 to d < (1 —
E)log)lgo{g’p. Moreover the choice a = 2 in (66) for which s(2, f) is asymptotic to 5 f with f =24 —1
shows that s(h,p) = o(p) cannot hold true in the range d < logp. Notice that we cannot expect a
better bound than (67), by (66). Finally, the restriction that p be prime in (67) is paramount by

Remark 6.2 where s(a, f) ~ f2/3/12 for a of order 3 in (Z/(a® — 1)Z)*.
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