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Abstract

An explicit formula for the mean value of |L(1, χ)|2 is known, where χ runs over all odd primitive
Dirichlet characters of prime conductors p. Bounds on the relative class number of the cyclotomic
field Q(ζp) follow. Lately the authors obtained that the mean value of |L(1, χ)|2 is asymptotic to
π2/6, where χ runs over all odd primitive Dirichlet characters of prime conductors p ≡ 1 (mod 2d)
which are trivial on a subgroup H of odd order d of the multiplicative group (Z/pZ)∗, provided that
d � log p

log log p . Bounds on the relative class number of the subfield of degree p−1
2d of the cyclotomic

field Q(ζp) follow. Here, for a given integer d0 > 1 we consider the same questions for the non-
primitive odd Dirichlet characters χ′ modulo d0p induced by the odd primitive characters χ modulo
p. We obtain new estimates for Dedekind sums and deduce that the mean value of |L(1, χ′)|2 is

asymptotic to π2

6

∏
q|d0

(
1− 1

q2

)
, where χ runs over all odd primitive Dirichlet characters of prime

conductors p which are trivial on a subgroup H of odd order d � log p
log log p . As a consequence we

improve the previous bounds on the relative class number of the subfield of degree p−1
2d of the

cyclotomic field Q(ζp). Moreover, we give a method to obtain explicit formulas and use Mersenne
primes to show that our restriction on d is essentially sharp.

1 Introduction

Let Xf be the multiplicative group of the φ(f) Dirichlet characters modulo f > 2. Let X−f = {χ ∈
Xf ; χ(−1) = −1} be the set of the φ(f)/2 odd Dirichlet characters modulo f . Let L(s, χ) be the
Dirichlet L-function associated with χ ∈ Xf . Let H denote a subgroup of index m in the multiplicative
groupG := (Z/fZ)∗. We assume that−1 6∈ H. Hencem is even. We setXf (H) = {χ ∈ Xf ; χ/H = 1},
a subgroup of order m of Xf isomorphic to the group of Dirichlet characters of the abelian quotient
group G/H of order m. Define X−f (H) = {χ ∈ X−f ; χ/H = 1}, a set of cardinal m/2. Let K
be an abelian number field of degree m and prime conductor p ≥ 3, i.e. let K be a subfield of
the cyclotomic number field Q(ζp) (Kronecker-Weber’s theorem). The Galois group Gal(Q(ζp)/Q)

02010 Mathematics Subject Classification. 11F20, 11R42, 11M20, 11R20, 11R29, 11J71.
Key words and phrases. Dirichlet character, L-function, Mean square value, Relative class number, Dedekind sums,

Cyclotomic field, Discrepancy, Multiplicative subgroup
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Mean square values of non primitive L- functions 2

is canonically isomorphic to the multiplicative cyclic group (Z/pZ)∗ and H := Gal(Q(ζp)/K) is a
subgroup of (Z/pZ)∗ of index m and order

d = (p− 1)/m.

Now, assume that K is imaginary. Then d is odd, m is even, −1 6∈ H and the set

X−K := X−p (H) := {χ ∈ X−p ; and χ/H = 1}

is of cardinal (p − 1)/(2d) = m/2. Let K+ be the maximal real subfield of K of degree m/2 fixed
by the complex conjugation. The class number hK+ of K+ divides the class number hK of K. The
relative class number of K is defined by h−K = hK/hK+ . We refer the reader to [Ser] and [Was] for
such basic knowledge. The mean square value of L(1, χ) as χ ranges in X−f (H) is defined by

M(f,H) :=
1

#X−f (H)

∑
χ∈X−f (H)

|L(1, χ)|2. (1)

The analytic class number formula and the arithmetic-geometric mean inequality give

h−K = wK

( p

4π2

)m/4 ∏
χ∈X−K

L(1, χ) ≤ wK
(
pM(p,H)

4π2

)m/4
, (2)

where wK is the number of complex roots of unity in K. Hence wK = 2p for K = Q(ζp) and wK = 2
otherwise. In [LM21, Theorem 1.1] we proved that

M(p,H) =
π2

6
+ o(1) (3)

as p tends to infinity uniformly over subgroups H of (Z/pZ)∗ of odd order d ≤ log p
3(log log p)

1. Hence, by

(2) we have

h−K ≤ wK
(

(1 + o(1))p

24

)(p−1)/4d
. (4)

In some situations it is even possible to give an explicit formula for M(p,H) implying a completely
explicit bound for h−K . Indeed, by [Wal] and [Met] (see also (30)), we have

M(p, {1}) =
π2

6

(
1− 1

p

)(
1− 2

p

)
≤ π2

6
(p ≥ 3). (5)

Hence,

h−Q(ζp)
≤ 2p

(
pM(p, {1})

4π2

)(p−1)/4
≤ 2p

( p
24

)(p−1)/4
. (6)

We refer the reader to [Gra] for more information about the expected size of h−Q(ζp)
. The only other

situation where a similar explicit result is known is the following one (see Theorem 6.6 for a new
proof).

Theorem. (See 2 [Lou16, Theorem 1]). Let p ≡ 1 (mod 6) be a prime integer. Let K be the imaginary
subfield of degree (p− 1)/3 of the cyclotomic number field Q(ζp). Let H be the subgroup of order 3 of
the multiplicative group (Z/pZ)∗. We have (compare with (5) and (6))

M(p,H) =
π2

6

(
1− 1

p

)
≤ π2

6
and h−K ≤ 2

( p
24

)(p−1)/12
. (7)

1This restriction on d is probably optimal, by (43).
2Note the misprint in the exponent in [Lou16, (8)].
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In [Lou94] (see also [Lou11]), the following simple argument allowed to improve on (6). Let d0 > 1
be a given integer. Assume that gcd(d0, f) = 1. For χ modulo f let χ′ be the character modulo d0f
induced by χ. Then,

L(1, χ) = L(1, χ′)
∏
q|d0

(
1− χ(q)

q

)−1
(8)

(throughout the paper this notation means that q runs over the distinct prime divisors of d0). Let H
be a subgroup of order d of the multiplicative group (Z/fZ)∗, with −1 6∈ H. We define

Md0(f,H) :=
1

#X−f (H)

∑
χ∈X−f (H)

|L(1, χ′)|2 (9)

and3

Πd0(f,H) :=
∏
q|d0

∏
χ∈X−f (H)

(
1− χ(q)

q

)
and Dd0(f,H) := Πd0(f,H)4/m. (10)

Clearly there is no restriction in assuming from now on that d0 is square-free. Let now H be of odd
order d in the multiplicative group (Z/pZ)∗. Using (8), we obtain (compare with (2)):

h−K =
wK

Πd0(p,H)

( p

4π2

)m/4 ∏
χ∈X−K

L(1, χ′) ≤ wK
(
pMd0(p,H)

4π2Dd0(p,H)

)m/4
. (11)

Let d = o(log p) as p→∞. Then, by Corollary 2.4 below, we have

Dd0(p,H) = 1 + o(1)

and we expect that

Md0(p,H) ∼

∏
q|d0

(
1− 1

q2

)×M(p,H). (12)

Hence, (11) should indeed improve on (2). The aim of this paper is two-fold. Firstly, in Theorem 1.1
we give an asymptotic formula for Md0(p,H) when d satisfies the same restriction as in (3) allowing
us to improve on the bound (4). Secondly we treat the case of groups of order 1 and 3 for small d0’s as
well as the case of Mersenne primes and groups of size ≈ log p. In both cases an explicit description of
these subgroups allows us to obtain explicit formulas for Md0(p,H). Our main result is the following.

Theorem 1.1. Let d0 ≥ 1 be a given square-free integer. As p→ +∞ we have the following asymptotic
formula

Md0(p,H) =
π2

6

∏
q|d0

(
1− 1

q2

)
+O(d(log p)2p−

1
d−1 ) =

π2

6

∏
q|d0

(
1− 1

q2

)
+ o(1)

uniformly over subgroups H of (Z/pZ)∗ of odd order d ≤ log p
3(log log p) . Moreover, let K be an imaginary

abelian number field of prime conductor p and of degree m = (p − 1)/d. Let C < 4π2 = 39.478.. be

any positive constant. If p is sufficiently large and m ≥ 3 (p−1) log log p
log p , then we have

h−K ≤ wK
( p
C

)(p−1)/4d
. (13)

3Note that Πd0(f,H) ∈ Q∗+, by Lemma 2.3.



Mean square values of non primitive L- functions 4

Remarks 1.2. The second result in Theorem 1.1 improves on (4), (6) and (7). It follows from the
first result in Theorem 1.1, and by using (11) and (16), where we take d0 as the product of sufficiently
many consecutive first primes.

The special case d0 = 1 was proved in [LM21, Theorem 1.1]. Note that the restriction on d cannot
be extended further to the range d = O(log p) as shown by Theorem 5.2. Moreover the constant C in
(13) cannot be taken larger than 4π2, see the discussion about Kummer’s conjecture in [MP01].

In the first part of the paper, the presentation goes as follows:

• In Section 2, we explain the condition about the prime divisors of d0 and prove that Dd0(p,H) =
1 + o(1).

• In Section 3, we review some results on Dedekind sums and prove a new bound of independent
interest for Dedekind sums s(h, f) with h being of small order modulo f (see Theorem 3.1).
To do so we use techniques from uniform distribution and discrepancy theory. Then we relate
Md0(p,H) to twisted moments of L- functions which we further express in terms of Dedekind
sums. For the sake of clarity, we first treat separately the case H = {1}. Note that we found
that this case is related to elementary sums of maxima that we could not estimate directly,
see Section 3.4.1. Using our estimates on Dedekind sums we deduce the asymptotic formula of
Theorem 1.1 and the related class number bounds.

In the second part of the paper, we focus on the explicit aspects. Let us describe briefly our presen-
tation:

• In Section 4.1 we establish a formula for Md0(f, {1}), d0 > 2, provided that all the prime factors
q of f satisfy q ≡ ±1 (mod d0). In particular, we get formulas for Md0(f, {1}) for d0 ∈ {1, 2, 3, 6}
and gcd(d0, f) = 1 (such formulae become harder to come by as d0 gets larger). For example,
for p ≥ 5 and d0 = 6, using Theorem 4.1 we obtain the following formula for M6(p, {1}):

M6(p, {1}) =
π2

9

(
1− cp

p

)
≤ π2

9
, where cp =

{
1 if p ≡ 1 (mod 3)

0 if p ≡ 2 (mod 3)

which by (11) and Corollary 2.4 give improvements on (6) (see also [Feng] and [Lou94])

h−Q(ζp)
≤ 3p

( p
36

)(p−1)/4
.

See also [Lou23, Theorem 5.2] for even better bounds.
In Section 4.3 we obtain an explicit formula of the form

Md0(p,H) =
π2

6

∏
q|d0

(
1− 1

q2

)
(

1 +
Nd0(p,H)

p

)
, (14)

where Nd0(p,H) defined in (33) is an explicit average of Dedekind sums. In Proposition 4.6 we
prove that Nd0(p, {1}) ∈ Q depends only on p modulo d0 and is easily computable.

• For H 6= {1} explicit formulae for Md0(p,H) seem difficult to come by. In Section 5, we focus on
Mersenne primes p = 2d − 1, with d odd. We take H = {2k; 0 ≤ k ≤ d− 1}, a subgroup of odd
order d of the multiplicative group (Z/pZ)∗. For d0 ∈ {1, 3, 15} we prove in Theorem 5.4 that

Md0(p,H) =
π2

2

∏
q|d0

(
1− 1

q2

)
(

1 +
N ′d0(p,H)

p

)
,

where N ′d0(p,H) = a1(p)d+a0(p) with a1(p), a0(p) ∈ Q depending only on p = 2d−1 modulo d0
and easily computable. In the range d� log p, we see that Md0(p,H) has a different asymptotic
behavior than the one in Theorem 1.1.
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• In Section 6, we turn to the specific case of subgroups of order 3. Writing f = a2 + ab+ b2 not
necessarily prime, and taking H = {1, a/b, b/a}, the subgroup of order 3 of the multiplicative
group (Z/fZ)∗, we prove in Proposition 6.4 that Nd0(f,H) = O(

√
f) in (14) for d0 ∈ {1, 2, 3, 6}.

To do so we obtain bounds for the Dedekind sums stronger than the one in Theorem 3.1. Note
that this cannot be expected in general for subgroups of order 3 modulo composite f (see
Remark 3.4 and 6.2). Furthermore we show that these bounds are sharp in the case of primes
p = a2 + a+ 1, in accordance with Conjecture 7.1.

2 Preliminaries

2.1 Algebraic considerations

Take a ∈ Z with gcd(a, f) = 1. There are infinitely many prime integers in the arithmetic progressions
a + fZ. Taking a prime p ∈ a + fZ with p > d0f , we have sd0(p) = a, where sd0 : (Z/d0fZ)∗ −→
(Z/fZ)∗ is the canonical morphism. Therefore, sd0 surjective and its kernel is of order φ(d0). Let H
be a subgroup of (Z/fZ)∗ of order d. Then Hd0 = s−1d0 (H) is a subgroup of order φ(d0)d of (Z/d0fZ)∗

and as χ runs over X−f (H) the χ′’s run over X−d0f (Hd0) and by (1) and (9) we have

Md0(f,H) = M(d0f,Hd0). (15)

The following Lemma is probably well known but we found no reference in the literature.

Lemma 2.1. Let f > 2. Let H be a subgroup of index m = (G : H) in the multiplicative group
G := (Z/fZ)∗. Then #Xf (H) = m and H = ∩χ∈Xf (H) kerχ. Moreover, if −1 6∈ H, then m is even,

#X−f (H) = m/2 and H = ∩χ∈X−f (H) kerχ.

Proof. Since Xf (H) is isomorphic to the group of Dirichlet characters of the abelian quotient group
G/H, it is of order m, by [Ser, Chapter VI, Proposition 2]. Clearly, H ⊆ ∩χ∈Xf (H) kerχ. Conversely,
take g 6∈ H, of order n ≥ 2 in the abelian quotient group G/H. Define a character χ of the subgroup
〈g,H〉 of G generated by g and H by χ(gkh) = exp(2πik/n), (k, h) ∈ Z×H. It extends to a character
of G still denoted χ, by [Ser, Chapter VI, Proposition 1]. Since g 6∈ kerχ and χ ∈ Xf (H) we have
g 6∈ ∩χ∈Xf (H) kerχ, i.e. ∩χ∈Xf (H) kerχ ⊆ H.

Now, assume that −1 6∈ H. Set H ′ = 〈−1, H〉, of index m/2 in G. Then X−f (H) = Xf (H)\Xf (H ′)
is indeed of order m −m/2 = m/2, by the first assertion. Clearly, H ⊆ ∩χ∈X−f (H) kerχ. Conversely,

take g 6∈ H. Set H ′′ := 〈g,H〉 = {gkh; k ∈ Z, h ∈ H}, of index m′′ in G, with m > m′′. If
−1 = gkh ∈ H ′′ then clearly χ(g) 6= 1 for χ ∈ X−f (H), hence g 6∈ ∩χ∈X−f (H) kerχ. If −1 6∈ H ′′ and

χ ∈ X−f (H) \ X−f (H ′′), a non-empty set or cardinal m/2 − m′′/2 = (H ′′ : H)/2 ≥ 1, then clearly
χ(g) 6= 1, hence g 6∈ ∩χ∈X−f (H) kerχ. Therefore, ∩χ∈X−f (H) kerχ ⊆ H.

Remarks 2.2. We have Md0(p,H)/Dd0(p,H) = Md0/q(p,H)/Dd0/q(p,H) whenever a prime q divid-
ing d0 is in ∩χ∈X−p (H) kerχ. Hence, by Lemma 2.1, when applying (11) we may assume that no prime

divisor of d0 is in H.

2.2 On the size of Πd0(f,H) and Dd0(f,H) defined in (10)

Lemma 2.3. Let H be a subgroup of order d ≥ 1 of the multiplicative group (Z/fZ)∗, where f > 2.
Assume that −1 6∈ H. Let g be the order of a given prime integer q in the multiplicative quotient group
(Z/fZ)∗/H. Let Xf (H) be the multiplicative group of the φ(f)/d Dirichlet characters modulo f for
which χ/H = 1. Define X−f (H) = {χ ∈ Xf (H); χ(−1) = −1}, a set of cardinal φ(f)/(2d). Then

Πq(f,H) :=
∏

χ∈X−f (H)

(
1− χ(q)

q

)
=


(

1 + 1
qg/2

)φ(f)
dg

if g is even and −qg/2 ∈ H,(
1− 1

qg

)φ(f)
2dg

otherwise.



Mean square values of non primitive L- functions 6

Proof. Let α be of order g in an abelian group A of order n. Let B = 〈α〉 be the cyclic group generated
by α. Let B̂ be the group of the g characters of B. Then PB(X) :=

∏
χ∈B̂(X −χ(α)) = Xg− 1. Now,

the restriction map χ ∈ Â→ χ/B ∈ B̂ is surjective, by [Ser, Proposition 1], and of kernel isomorphic

to Â/B of order n/g, by [Ser, Proposition 2]. Therefore, PA(X) :=
∏
χ∈Â(X − χ(α)) = PB(X)n/g =

(Xg − 1)n/g.
With A = (Z/fZ)∗/H of order n = φ(f)/d, we have Â = Xf (H) and∏

χ∈Xf (H)

(X − χ(q)) = (Xg − 1)
φ(f)
dg .

Let H ′ be the subgroup of order 2d generated by −1 and H. With A′ = (Z/fZ)∗/H ′ of order
n′ = φ(f)/(2d), we have Â′ = Xf (H ′) = X+

f (H) := {χ ∈ Xf (H); χ(−1) = +1} and∏
χ∈X+

f (H)

(X − χ(q)) = (Xg′ − 1)
φ(f)

2dg′ ,

where q is of order g′ in A′.
Since X−f (H) = Xf (H) \X+

f (H), it follows that

∏
χ∈X−f (H)

(X − χ(q)) =
(Xg − 1)

φ(f)
dg

(Xg′ − 1)
φ(f)

2dg′
.

Since qg ∈ H we have qg ∈ H ′ and g′ divides g. Since qg
′ ∈ H ′ = {±h; h ∈ H} we have q2g

′ ∈ H and
g divides 2g′. Hence, g = g′ or g = 2g′ and g = 2g′ if and only if g is even and qg/2 = qg

′ ∈ H ′ \H =
{−h; h ∈ H}. The assertion follows.

Corollary 2.4. Fix d0 > 1 square-free. Let p ≥ 3 run over the prime integers that do not divide d0.
Let H a subgroup of odd order d of the multiplicative group (Z/pZ)∗. Then,

Dd0(p,H) = 1 +O(ω(d0)p
−1/2(d−1)) (16)

where ω(d0) stands for the number of prime divisors of d0. In particular when d = o(log p), we have

Dd0(p,H) = 1 + o(1). (17)

Moreover,

Πd0(p, {1}) ≥ exp

(
log d0

2
F (p+ 1)

)
, where F (x) :=

(x− 2) log
(
1− 1

x

)
log x

, (x > 1).

In particular, Π6(p, {1}) ≥ 2/3 for p ≥ 5.

Proof. Let q be a prime divisor of d0. Let g be the order of q in the multiplicative quotient group
(Z/pZ)∗/H. Then (

1− 1

qg

) 2
g

≤ Dq(p,H) = Πq(p,H)
4d
p−1 ≤

(
1 +

1

qg/2

) 4
g

,

by (10) and Lemma 2.3, with f = p, φ(f) = p − 1 and m = (p − 1)/d. Either qg ≡ 1 (mod p), in
which case qg ≥ p + 1, or qg ≡ h (mod p) for some h ∈ {2, · · · , p − 1} ∩ H, in which case p divides

S := 1+h+ · · ·+hd−1 which satisfies p ≤ S ≤ 2hd−1. Therefore, in both cases, we have qg ≥ (p/2)
1
d−1 .

Hence,

logDq(p,H) ≥ 2

g
log(1− q−g) ≥ 2

g
(−2 log 2)q−g ≥ −4(log 2)(p/2)−1/(d−1)
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where we used for x = q−g the fact that log(1− x) ≥ −2(log 2)x in [0, 1/2].

Dq(p,H) ≥ 1− 4(log 2)(p/2)−1/(d−1)

where we used the fact that e−x ≥ 1− x. Therefore we have,

Dd0(p,H) =
∏
q|d0

Dq(p,H) ≥ 1− 4(log 2)ω(d0)
(p

2

)−1/(d−1)
where we used the inequality (1 − x)n ≥ 1 − nx for x ≤ 1 and n ∈ N. A similar reasoning gives an
explicit upper bound Dd0(p,H) ≤ 1 + cω(d0)p

−1/2(d−1) for some constant c > 0. Therefore, we do get
(16). Finally, p1/(d−1) tends to infinity in the range d = o(log p) and (17) follows.

Notice that if p = 2d − 1 runs over the Mersenne primes and H = 〈2〉, we have d = O(log p) but

D2(p,H) =
(
1− 1

2

)2
does not satisfy (17).

Now, assume that H = {1}. Then, K = Q(ζp) and qg ≥ p+ 1. Hence,

Πq(p, {1}) ≥
(

1− 1

p+ 1

) p−1
2g

≥
(

1− 1

p+ 1

) (p−1) log q
2 log(p+1)

= exp

(
log q

2
F (p+ 1)

)
.

The desired lower bound easily follows.

3 Dedekind sums and mean square values of L-functions

3.1 Dedekind sums and Dedekind-Rademacher sums

The Dedekind sums is the rational number defined by

s(c, d) =
1

4d

|d|−1∑
n=1

cot
(πn
d

)
cot
(πnc
d

)
(c ∈ Z, d ∈ Z \ {0}, gcd(c, d) = 1), (18)

with the convention s(c,−1) = s(c, 1) = 0 for c ∈ Z (see [Apo] or [RG] where it is however assumed
that d > 1). It depends only on c mod |d| and c 7→ s(c, d) can therefore be seen as a mapping from
(Z/|d|Z)∗ to Q. Notice that

s(c∗, d) = s(c, d) whenever cc∗ ≡ 1 (mod d) (19)

(make the change of variables n 7→ nc in s(c∗, d)). Recall the reciprocity law for Dedekind sums

s(c, d) + s(d, c) =
c2 + d2 − 3|cd|+ 1

12cd
, (c, d ∈ Z \ {0}, gcd(c, d) = 1). (20)

In particular,

s(1, d) =
d2 − 3|d|+ 2

12d
and s(2, d) =

d2 − 6|d|+ 5

24d
(d ∈ Z \ {0}). (21)

For b, c ∈ Z, d ∈ Z \ {−1, 0, 1} such that gcd(b, d) = gcd(c, d) = 1, the Dedekind-Rademacher sum is
the rational number defined by

s(b, c, d) =
1

4d

|d|−1∑
n=1

cot

(
πnb

d

)
cot
(πnc
d

)
,

with the convention s(b, c,−1) = s(b, c, 1) = 0 for b, c ∈ Z. Hence, s(c, d) = s(1, c, d), if α ∈ (Z/|d|Z)∗

is represented as α = b/c with gcd(b, d) = gcd(c, d) = 1, then s(α, d) = s(b, c, d), and

s(b, c, d) = s(ab, ac, d) for any a ∈ Z with gcd(a, d) = 1. (22)
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For gcd(b, c) = gcd(c, d) = gcd(d, b) = 1 we have a reciprocity law for Dedekind-Rademacher sums
(see [Rad] or [BR]):

s(b, c, d) + s(d, b, c) + s(c, d, b) =
b2 + c2 + d2 − 3|bcd|

12bcd
. (23)

The Cauchy-Schwarz inequality and (21) yield

|s(c, d)| ≤ s(1, |d|) ≤ |d|/12 and |s(b, c, d)| ≤ s(1, |d|) ≤ |d|/12. (24)

3.2 Non trivial bounds on Dedekind sums

In this section we will use the alternative definition of the Dedekind sums given by

s(c, d) =
d−1∑
a=1

((a
d

))((ac
d

))
(c ∈ Z, d ≥ 1, gcd(c, d) = 1)

where (()) : R→ R stands for the sawtooth function defined by

((x)) :=

{
x− bxc − 1/2 if x ∈ R\Z,
0 if x ∈ Z.

In order to prove Theorem 1.1, we need general bounds on Dedekind sums depending on the multi-
plicative order of the argument. This is a new type of bounds for Dedekind sums and the following

result that improves upon (24) when the order is o
(

log p
log log p

)
might be of independent interest (see

also Conjecture 7.1 for further discussions).

Theorem 3.1. Let p > 1 be a prime integer and assume that h has odd order k ≥ 3 in the multiplicative
group (Z/pZ)∗. We have

|s(h, p)| � (log p)2p
1− 1

φ(k) .

Remarks 3.2. Let us notice that by a result of Vardi [Var], for any function f such that limn→+∞ f(n) =
+∞ we have s(c, d)� f(d) log d for almost all (c, d) with gcd(c, d) = 1. However Dedekind sums take
also very large values (see for instance [CEK, Gir03] for more information).

Our proof builds from ideas of the proof of [LM21, Theorem 4.1] where some tools from equidistri-
bution theory and the theory of pseudo-random generators were used. We refer for more information
to [Kor], [Nied77] or the book of Konyagin and Shparlinski [KS, Chapter 12] (see [LM21, Section 4]
for more details and references). Let us recall some notations. For any fixed integer s, we consider
the s-dimensional cube Is = [0, 1]s equipped with its s-dimensional Lebesgue measure λs. We denote
by B the set of rectangular boxes of the form

s∏
i=1

[αi, βi) = {x ∈ Is, αi ≤ xi < βi}

where 0 ≤ αi < βi ≤ 1. If S is a finite subset of Is, we define the discrepancy D(S) by

D(S) = sup
B∈B

∣∣∣∣#(B ∩ S)

#S
− λs(B)

∣∣∣∣ .
Let us introduce the following set of points:

Sh,p =

{(
x

p
,
xh

p

)
∈ I2, x mod p

}
.

For good choice of h, the points are equidistributed and we expect for “nice” functions f

lim
p→∞

1

p

∑
x mod p

f

(
x

p
,
hx

p

)
=

∫
I2

f(x, y)dxdy.
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Lemma 3.3. For any h of odd order k ≥ 3 we have the following discrepancy bound

D(Sh,p) ≤ (log p)2p−1/φ(k).

Proof. It follows from the proof of [LM21, Theorem 4.1] where the bound was obtained as a conse-
quence of Erdős-Turan inequality and tools from pseudo random generators theory.

3.2.1 Proof of Theorem 3.1

Observe that

s(h, p) =
∑

x mod p

f

(
x

p
,
hx

p

)
where f(x, y) = ((x))((y)). By Koksma-Hlawka inequality [DT, Theorem 1.14] we have∣∣∣∣∣∣1p

∑
x mod p

f

(
x

p
,
xh

p

)
−
∫
I2

f(u, v)dudv

∣∣∣∣∣∣ ≤ V (f)D(Sh,p)

where V (f) is the Hardy-Krause variation of f . Moreover we have∫
I2

f(u, v)dudv = 0.

The readers can easily convince themselves that V (f)� 1. Hence the result follows from Lemma 3.3.

Remarks 3.4. The same method used to bound the discrepancy leads to a similar bound for composite
f . Indeed for h ∈ (Z/fZ)∗ of order k ≥ 3, we have s(h, f) = O

(
(log f)2f/E(f)

)
with E(f) =

max{P+(f)1/φ(k
∗), rad(f)1/k} where P+(f) is the largest prime factor of f , k∗ is the order of h modulo

P+(f) and rad(f) =
∏
`|f

`prime

` is the radical of f . If f = h3 − 1 is squarefree, then we have E(f) = f1/3

and s(h, f) = O
(
(log f)2f2/3

)
which is close to the truth by a logarithmic factor (see Remark 6.2).

For gcd(b, p) = gcd(c, p) = 1 we recall the other definition of Dedekind-Rademacher sums

s(b, c, p) =

p−1∑
a=1

((
ab

p

))((
ac

p

))
.

A similar argument as in the proof of Theorem 3.1 leads to a bound on these generalized sums:

Theorem 3.5. Let q1, q2 and k ≥ 3 be given natural integers. Let p run over the primes and h over
the elements of order k in the multiplicative group (Z/pZ)∗. Then, we have

|s(q1, q2h, p)| � (log p)2p
1− 1

φ(k) .

Proof. The proof follows exactly the same lines as the proof of Theorem 3.1 except for the fact that
the function f is replaced by the function g(x, y) = ((q1x))((q2y)). Hence we have

s(q1, q2h, p) = g

(
x

p
,
hx

p

)
and by symmetry we remark that ∫

I2

g(u, v)dudv = 0.

Again V (g)� 1 and the result follows from Lemma 3.3 and Koksma-Hlawka inequality.
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3.3 Twisted second moment of L- functions and Dedekind sums

We illustrate the link between Dedekind sums and twisted moments of L- functions by first proving
Theorem 1.1 in the case H = {1} with a stronger error term. For any integers q1, q2 ≥ 1 and any
prime p ≥ 3, we define the twisted moment

Mq1,q2(p) :=
2

φ(p)

∑
χ∈X−p

χ(q1)χ(q2)|L(1, χ)|2. (25)

The following formula (see [Lou94, Proposition 1]) will help us to relate L- functions to Dedekind
sums:

L(1, χ) =
π

2f

f−1∑
a=1

χ(a) cot

(
πa

f

)
(χ ∈ X−f ). (26)

Theorem 3.6. Let q1 and q2 be given coprime integers. Then when p goes to infinity

Mq1,q2(p) =
π2

6q1q2
+Oq1,q2(1/p).

Remarks 3.7. It is worth to notice that in the case q2 = 1, explicit formulas are known by [Lou15,
Theorem 4] (see also [Lee17]). This also gives a new and simpler proof of [Lee19, Theorem 1.1] in a
special case.

Proof. Let us define

ε(a, b) :=
2

φ(p)

∑
χ∈X−p

χ(a)χ(b) =


1 if p - ab and a = b mod p,

−1 if p - ab and a = −b mod p,

0 otherwise.

For p large enough, we have gcd(q1, p) = gcd(q2, p) = 1. Hence, using orthogonality relations and (26)
we arrive at

Mq1,q2(p) =
π2

4p2

p−1∑
a=1

p−1∑
b=1

ε(q1a, q2b) cot

(
πa

p

)
cot

(
πb

p

)

=
π2

2p2

p−1∑
a=1

cot

(
πq1a

p

)
cot

(
πq2a

p

)
=

2π2

p
s(q1, q2, p).

When q1 and q2 are fixed coprime integers and p goes to infinity, we infer from (23) and (24) that

s(q1, q2, p) =
p

12q1q2
+O(1).

The result follows immediatly.

Corollary 3.8. Let q1 and q2 be given natural integers. Then when p goes to infinity

Mq1,q2(p) =
π2

6

gcd(q1, q2)
2

q1q2
+Oq1,q2(1/p).

Proof. Let δ = gcd(q1, q2). We clearly have Mq1,q2(p) = Mq1/δ,q2/δ(p) and the result follows from
Theorem 3.6.

The proof of Theorem 1.1 in the case of the trivial subgroup follows easily.

Corollary 3.9. Let d0 be a given square-free integer. When p goes to infinity, we have the following
asymptotic formula

Md0(p, {1}) =
π2

6

∏
q|d0

(
1− 1

q2

)
+O(1/p).
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Proof. For χ modulo p, let χ′ be the character modulo d0p induced by χ. By (8) and Corollary 3.8
we have

Md0(p, {1}) =
2

#X−p

∑
χ∈X−p

|L(1, χ′)|2 =
∑
δ1|d0

∑
δ2|d0

µ(δ1)

δ1

µ(δ2)

δ2
Mδ1,δ2(p)

=
π2

6

∑
δ1|d0

∑
δ2|d0

µ(δ1)

δ21

µ(δ2)

δ22
gcd(δ1, δ2)

2 +O(1/p)

=
π2

6

∏
q|d0

(
1− 1

q2

)
+O(1/p).

3.4 An interesting link with sums of maxima

Before turning to the general case of Theorem 1.1, we explain how to use Theorem 3.6 to estimate the
seemingly innocuous sum4 defined for any integers q1, q2 ≥ 1 by

Maq1,q2,p :=
∑

x mod p

max(q1x, q2x)

where here and below q1x, q2x denote the representatives modulo p taken in [1, p].

Theorem 3.10. Let q1 and q2 be natural integers such that q1 6= q2. Then we have the following
asymptotic formula

Maq1,q2,p = p2
(

2

3
− gcd(q1, q2)

2

12q1q2

)
(1 + o(1)).

Remarks 3.11. In the special case q1 = 1, we are able to evaluate the sum directly without the need
of Dedekind sums and L- functions. However, we could not prove Theorem 3.10 in the general case
using elementary counting methods.

Remarks 3.12. Let us notice that
∫ 1
0

∫ 1
0 max(x, y)dxdy = 2/3. Hence using the same method as in

Section 3.2, we can show that if the points
({

x
p

}
,
{
qx
p

})
are equidistributed in the square [0, 1]2 then

∑
x mod p

max(x, qx) ∼ 2

3
p2.

For q fixed and p→ +∞, the points are not equidistributed in the square and we see that the correcting

factor gcd(q1,q2)2

12q1q2
from equidistribution is related to the Dedekind sum s(q1, q2, p).

We need the following result of [LM21, Theorem 2.1]:

Proposition 3.13. Let χ be a primitive Dirichlet character modulo f > 2, its conductor. Set

S(k, χ) =

k∑
l=0

χ(l). Then

f−1∑
k=1

|S(k, χ)|2 =
f2

12

∏
p|f

(
1− 1

p2

)
+ aχ

f2

π2
|L(1, χ)|2, where aχ :=

{
0 if χ(−1) = +1,

1 if χ(−1) = −1.

4In [Sun] the author uses lattice point interpretation to study sums with a similar flavour.
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3.4.1 Proof of Theorem 3.10

We follow a strategy similar to the proof of [LM21, Corollary 2.2]. We denote by χ0 the trivial
character. Using Proposition 3.13 and recalling the definition (25) we arrive at:

∑
χ∈Xp\χ0

χ(q1)χ(q2)

p−1∑
k=1

|S(k, χ)|2 =
∑

χ∈Xp\χ0

χ(q1)χ(q2)
p2 − 1

12
+

p3

2π2
Mq1,q2(p).

Adding the contribution of the trivial character

χ0(q1)χ0(q2)

p−1∑
k=1

∣∣∣∣∣
k∑
l=1

1

∣∣∣∣∣
2

=

p−1∑
k=1

k2 =
(p− 1)p(2p− 1)

6
,

we obtain

∑
χ∈Xp

χ(q1)χ(q2)

p−1∑
k=1

|S(k, χ)|2 =
∑
χ∈Xp

χ(q1)χ(q2)
p2 − 1

12
+

(p− 1)p(2p− 1)

6

+
p3

2π2
Mq1,q2(p) +O(p2). (27)

For sufficiently large p, using the fact that q1 6= q2 mod p and the orthogonality relations, we have∑
χ∈Xp

χ(q1)χ(q2)
p2 − 1

12
= 0.

We now follow the method used in the proof of [LM21, Theorem 4.1] (see also [Elma]) with some
needed changes to treat the left hand side of (27). Again by orthogonality, we obtain

∑
χ∈Xp

χ(q1)χ(q2)

p−1∑
k=1

|S(k, χ)|2 =
∑
χ∈Xp

χ(q1)χ(q2)

p−1∑
k=1

∣∣∣∣∣
k∑
l=1

χ(l)

∣∣∣∣∣
2

=
∑
χ∈Xp

p−1∑
k=1

∑
1≤l1,l2≤k

χ(q1l1)χ(q2l2) = (p− 1)2A(q1, q2, p),

where

A(q1, q2, p) =
1

p− 1

p−1∑
N=1

 ∑
1≤n1,n2≤N

q1n1=q2n2 mod p

1

 .

Changing the order of summation and making the change of variables n1 = q2m1 we arrive at

(p− 1)A(q1, q2, p) =
∑

1≤m1≤p
(p−max(q1m1, q2m1)) = p2 −

∑
x mod p

max(q1x, q2x).

By symmetry, injecting this into (27), we arrive at

p3 − p
∑

x mod p

max(q1x, q2x) =
(p− 1)p(2p− 1)

6
+

p3

2π2
Mq1,q2(p) + o(p3). (28)

Hence comparing the terms of order p3 in the above formula (28) and using Corollary 3.8, we have∑
x mod p

max(q1x, q2x) = cq1,q2(p2 + o(p2))
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where

1− cq1,q2 =
1

3
+

1

12

gcd(q1, q2)
2

q1q2
.

This concludes the proof.

We know turn to the general case of Theorem 1.1. Let d0 be a given square-free integer such that
gcd(d0, p) = 1. For χ modulo p, let χ′ be the character modulo d0p induced by χ. Recall that we want
to show for H a subgroup of (Z/pZ)∗ of odd order d� log p

log log p that

Md0(p,H) =
1

#X−p (H)

∑
χ∈X−p (H)

|L(1, χ′)|2 = (1 + o(1))
π2

6

∏
q|d0

(
1− 1

q2

)
.

3.5 Twisted average of L- functions over subgroups

For any integers q1, q2 ≥ 1 and any prime p ≥ 3, we define

Mq1,q2(p,H) :=
1

#X−p (H)

∑
χ∈X−p (H)

χ(q1)χ(q2)|L(1, χ)|2.

Our main result is the following:

Theorem 3.14. Let q1 and q2 be given coprime integers. When H runs over the subgroups of (Z/pZ)∗

of odd order d, we have the following asymptotic formula

Mq1,q2(p,H) =
π2

6q1q2
+O

(
d(log p)2p

− 1
φ(d)

)
.

Proof. The proof follows the same lines as the proof of Theorem 3.6. Let us define

εH(a, b) :=
1

#X−p (H)

∑
χ∈X−p (H)

χ(a)χ(b) =


1 if p - ab and a ∈ bH,
−1 if p - ab and a ∈ −bH,
0 otherwise.

Hence we obtain similarly

Mq1,q2(p,H) =
π2

4p2

p−1∑
a=1

p−1∑
b=1

εH(q1a, q2b) cot

(
πa

p

)
cot

(
πb

p

)

=
π2

2p2

∑
h∈H

p−1∑
a=1

cot

(
πq1a

p

)
cot

(
πq2ha

p

)

=
2π2

p
s(q1, q2, p) +O

p−1 ∑
16=h∈H

s(q1, q2h, p)


=

π2

6q1q2
+O(1/p) +O

(
|H|(log p)2p

− 1
φ(d)

)
=

π2

6q1q2
+O

(
d(log p)2p

− 1
φ(d)

)
,

where we used Theorem 3.5 in the last line and noticed that φ(k) divides φ(d) whenever k divides
d.

Remarks 3.15. The error term is negligible as soon as d ≤ log p
3(log log p) .
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Corollary 3.16. Let q1 and q2 be given integers. When H runs over the subgroups of (Z/pZ)∗ of odd
order d, we have the following asymptotic formula

Mq1,q2(p,H) =
π2

6

gcd(q1, q2)
2

q1q2
+O

(
d(log p)2p

− 1
φ(d)

)
.

3.6 Proof of Theorem 1.1

As in the proof of Corollary 3.9 and using Corollary 3.16

Md0(p,H) =
1

#X−p (H)

∑
χ∈X−p (H)

|L(1, χ′)|2 =
∑
δ1|d0

∑
δ2|d0

µ(δ1)

δ1

µ(δ2)

δ2
Mδ1,δ2(p,H)

=
π2

6

∑
δ1|d0

∑
δ2|d0

µ(δ1)

δ21

µ(δ2)

δ22
gcd(δ1, δ2)

2 +O
(
d(log p)2p

− 1
φ(d)

)
=
π2

6

∏
q|d0

(
1− 1

q2

)
+O

(
d(log p)2p

− 1
φ(d)

)
= (1 + o(1))

π2

6

∏
q|d0

(
1− 1

q2

)
using the condition on d.

4 Explicit formulas for Md0(f,H)

Recall that by (26)

L(1, χ) =
π

2f

f−1∑
a=1

χ(a) cot

(
πa

f

)
(χ ∈ X−f ).

Hence using the definition of Dedekind sums we obtain (see [Lou16, Proof of Theorem 2])

M(f,H) =
2π2

f

∑
δ|f

µ(δ)

δ

∑
h∈H

s(h, f/δ). (29)

4.1 A formula for Md0(f, {1}) for d0 = 1, 2, 3, 6

The first consequence of (29) is a short proof of [Lou94, Théorèmes 2 and 3] by taking H = {1}, the
trivial subgroup of the multiplicative group (Z/fZ∗). Indeed, (29) and (21) give

M(f, {1}) =
2π2

f

∑
δ|f

µ(δ)

δ
s(1, f/δ) =

π2

6

∑
δ|f

µ(δ)

(
1

δ2
− 3

δf
+

2

f2

)
.

The arithmetic functions f 7→
∑

δ|f µ(δ)δk being multiplicative, we obtain (see also [Qi])

M(f, {1}) =
π2

6
×

∏
q|f

(
1− 1

q2

)
− 3

f

∏
q|f

(
1− 1

q

) (f > 2). (30)

Now, it is clear by (15) that for d0 odd and square-free and f odd we have

M2d0(f, {1}) = Md0(2f, {1}).

Hence, on applying (30) to 2f instead of f we therefore obtain

M2(f, {1}) =
π2

8
×

∏
q|f

(
1− 1

q2

)
− 1

f

∏
q|f

(
1− 1

q

) (f > 2 odd).
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For d0 ∈ {3, 6}, the following explicit formula holds true for any f coprime with d0. It generalizes
[Lou94, Théorème 4] to composite moduli

Theorem 4.1. Let d0 > 2 be a given square-free integer. Set

κd0 :=
π2

6

∏
q|d0

(
1− 1

q2

)
and c := 3

∏
q|d0

q − 1

q + 1
.

For n ∈ Z, set ε(n) = +1 if n ≡ +1 (mod d0) and ε(n) = −1 if n ≡ −1 (mod d0).
Then for f > 2 such that all its prime divisors q satisfy q ≡ ±1 (mod d0) we have

Md0(f, {1}) = κd0 ×

∏
q|f

(
1− 1

q2

)
− c

f

∏
q|f

(
1− 1

q

)
+ ε(f)

c− 1

f

∏
q|f

(
1− ε(q)

q

) .

In particular, for f > 2 such that all its prime divisors q satisfy q ≡ 1 (mod d0) we have

Md0(f, {1}) = κd0 ×

∏
q|f

(
1− 1

q2

)
− 1

f

∏
q|f

(
1− 1

q

) .

Proof. With the notation of [Lou11, Lemma 2] we have Md0(f, {1})) = 4π2S(d0, f). Hence, by [Lou11,
Lemmas 3 and 6] we have

Md0(f, {1}) =
π2

6

∏
q|d0f

(
1− 1

q2

)
− π2

2

φ(d0)
2φ(f)

d20f
2

+
π2

2d20f

∑
d|f

µ(d)

d
A(d0, f/d),

where the A(d0, f/d)’s are rational numbers such that A(d0, f/d) = εA(d0, 1) if f/d ≡ ε (mod d0)
with ε ∈ {±1}, see (41). If all the prime divisors q of f satisfy q ≡ ±1 (mod d0) then f/d ≡ ε(f/d)
(mod d0) and A(d0, f/d) = ε(f/d)A(d0, 1) = ε(f)A(d0, 1)ε(d) and∑

d|f

µ(d)

d
A(d0, f/d) = ε(f)A(d0, 1)

∏
q|f

(
1− ε(q)

q

)
.

Hence we finally get

Md0(f, {1}) =
π2

6

∏
q|d0f

(
1− 1

q2

)
− π2

2

φ(d0)
2φ(f)

d20f
2

+
π2

2d20f
ε(f)A(d0, 1)

∏
q|f

(
1− ε(q)

q

)
.

The desired formula for Md0(f, {1}) follows by using the explicit formula

A(d0, 1) = φ(d0)
2 − d20

3

∏
q|d0

(
1− 1

q2

)

given in [Lou11, Lemma 6].

4.2 A formula for M(p,H)

The second immediate consequence of (29) and (21) is:
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Proposition 4.2. For f > 2 and H a subgroup of the multiplicative group (Z/fZ)∗, set

S′(H, f) =
∑

16=h∈H
s(h, f) and N(f,H) := −3 +

2

f
+ 12S′(H, f). (31)

Then, for p ≥ 3 a prime and H a subgroup of odd order of the multiplicative group (Z/pZ)∗, we have

M(p,H) =
π2

6

(
1 +

N(p,H)

p

)
=
π2

6

((
1− 1

p

)(
1− 2

p

)
+

12S′(H, p)

p

)
. (32)

Remarks 4.3. In particular, N(f, {1}) = −3+2/f and (32) implies (5). Notice also that N(p,H) ∈ Z
for H 6= {1}, by [Lou19, Theorem 6]. Moreover, by [LM21, Theorem 1.1], the asymptotic formula

M(p,H) = π2

6 + o(1) holds as p tends to infinity and H runs over the subgroup of (Z/pZ)∗ of odd

order d ≤ log p
log log p . Hence we have N(p,H) = o(p) under this restriction.

4.3 A formula for Md0(p,H)

We will now derive a third consequence of (29): a formula for the mean square value Md0(f,H) defined
in (9) when f is prime.

Theorem 4.4. Let d0 > 1 be a square-free integer. Let f > 2 be coprime with d0. Let H be a subgroup
of the multiplicative group (Z/fZ)∗. Whenever δ divides d0, let sδ : (Z/δfZ)∗ −→ (Z/fZ)∗ be the
canonical surjective morphism and set Hδ = s−1δ (H) and H ′δ = s−1δ (H \ {1}). Define the rational
number

Nd0(f,H) = −f +
12µ(d0)∏
q|d0(q2 − 1)

∑
δ|d0

δµ(δ)
∑
h∈Hd0

s(h, δf). (33)

Then, for p ≥ 3 a prime which does not divide d0 and H a subgroup of odd order of the multiplicative
group (Z/pZ)∗, we have

Md0(p,H) =
2π2µ(d0)φ(d0)

d20p

∑
δ|d0

δµ(δ)

φ(δ)
S(Hδ, δp) (34)

where
S(Hδ, δf) =

∑
h∈Hδ

s(h, δf),

and

Md0(p,H) = κd0 ×
(

1 +
Nd0(p,H)

p

)
, where κd0 :=

π2

6

∏
q|d0

(
1− 1

q2

)
. (35)

Moreover,

Nd0(f,H) = −f +
12µ(d0)∏
q|d0(q + 1)

∑
δ|d0

δµ(δ)

φ(δ)
S(Hδ, δf) (36)

= Nd0(f, {1}) +
12µ(d0)∏
q|d0(q + 1)

∑
δ|d0

δµ(δ)

φ(δ)
S′(Hδ, δf) (37)

where
S′(Hδ, δf) :=

∑
h∈H′δ

s(h, δf).
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Proof. Using (15) and by making the change of variables δ 7→ d0f/δ in (29), we obtain:

Md0(f,H) = M(d0f,Hd0) =
2π2

d20f
2

∑
δ|d0f

δµ(d0f/δ)
∑
h∈Hd0

s(h, δ). (38)

Since {δ; δ | d0p} is the disjoint union of {δ; δ | d0} and {δp; δ | d0}, by (38) we obtain:

Md0(p,H) = −2π2µ(d0)

d20p
2

∑
δ|d0

δµ(δ)
∑
h∈Hd0

s(h, δ) +
2π2µ(d0)

d20p

∑
δ|d0

δµ(δ)
∑
h∈Hd0

s(h, δp).

Now, S :=
∑

h∈Hd0
s(h, δ) = 0 whenever δ | d0, which gives

Md0(p,H) =
2π2µ(d0)

d20p

∑
δ|d0

δµ(δ)
∑
h∈Hd0

s(h, δp) (39)

and implies (35). Indeed, let σ : (Z/d0fZ)∗ −→ (Z/δZ)∗ be the canonical surjective morphism. Its
restriction τ to the subgroup Hd0 is surjective, by the Chinese reminder theorem. Hence, S = (Hd0 :
ker τ)×S′, where S′ :=

∑
c∈(Z/δZ)∗ s(c, δ) =

∑
c∈(Z/δZ)∗ s(−c, δ) = −S′ yields S′ = 0. In the same way,

whenever δ | d0, the kernel of the canonical surjective morphism s : (Z/d0fZ)∗ −→ (Z/δfZ)∗ being a
subgroup of order φ(d0f)/φ(δf) = φ(d0)/φ(δ), we have∑

h∈Hd0

s(h, δf) =
φ(d0)

φ(δ)

∑
h∈Hδ

s(h, δf) (40)

and (34) follows from (39) and (40).
Then, (35) is a direct consequence of (34) and (33). Finally (37) is an immediate consequence of

(33) and (40).

4.3.1 A new proof of Theorem 1.1

We split the sum in (39) into two cases depending whether h = 1 or not. By (21) we have s(1, δp) =
pδ
12 +O(1) giving a contribution to the sum of order

π2µ(d0)

6d20

∑
δ|d0

δ2µ(δ) +O(1/p) =
π2

6

∏
q|d0

(
1− 1

q2

)
+O(1/p).

When h 6= 1 and h ∈ Hd0 , it is clear that the order of h modulo p is between 3 and d. Hence it follows

from Theorem 3.1 (see the Remark after) that s(h, δp) = O((log p)2p
1− 1

φ(d) ). The integer d0 being
fixed, we can sum up these error terms and the proof is finished.

4.4 An explicit way to compute Nd0(f, {1})

Lemma 4.5. Let d0 > 1 be a square-free integer. Let f > 2 be coprime with d0. Recall that Hd0(f) =
{h ∈ (Z/d0fZ)∗, h ≡ 1 (mod f)} and set

U(d0, f) :=
∑

16=h∈Hd0 (f)

d0f−1∑
n=1

gcd(d0,n)=1

(
1 + cot

(
πn

d0f

)
cot

(
πnh

d0f

))

and

A(d0, f) =
∑

a∈(Z/d0Z)∗

∑
b∈(Z/d0Z)∗

b 6=a

cot

(
π(b− a)

d0

)(
cot

(
πfa

d0

)
− cot

(
πfb

d0

))
, (41)

a rational number depending only on f modulo d0. Then U(d0, f) = fA(d0, f).
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Proof. As in [Lou11, Lemma 3], set

T (d0, f) :=
∑

16=h∈Hd0 (f)

d0f−1∑
n=1

gcd(d0f,n)=1

F

(
n

d0f
,
nh

d0f

)
,

where F (x, y) = 1+cot(πx) cot(πy). On the one hand, since gcd(d0f, n) = 1 if and only if gcd(d0, n) =

gcd(f, n) = 1 and
∑
d|f
d|n

µ(d) is equal to 1 if gcd(f, n) = 1 and is equal to 0 otherwise, we have

T (d0, f) =
∑
d|f

µ(d)
∑

16=h∈Hd0 (f)

d0(f/d)−1∑
n=1

gcd(d0,n)=1

F

(
n

d0(f/d)
,

nh

d0(f/d)

)
.

On the other hand, the canonical morphism σ : Hd0(f) → Hd0(f/d) is surjective and both groups
have order φ(d0f)/φ(f) = φ(d0(f/d))/φ(f/d) = φ(d0). Hence σ is bijective and

T (d0, f) =
∑
d|f

µ(d)U(d0, f/d).

Using [Lou11, Lemma 6] and Möbius’ inversion formula, we finally do obtain

U(d0, f) =
∑
d|f

T (d0, d) =
∑
d|f

d
∑
δ|d

µ(δ)

δ
A(d0, d/δ)

=
∑
δ′|f

δ′

∑
δ|f/δ′

µ(δ)

A(d0, δ
′) = fA(d0, f),

where we set δ′ = d/δ.

Proposition 4.6. Let d0 > 1 be a square-free integer. Set B =
∏
q|d0(q2 − 1). For f > 2 and

gcd(d0, f) = 1 we have

Nd0(f, {1}) =
3

B

(
A(d0, f)− φ(d0)

2
)
.

Consequently, Nd0(f, {1}) is a rational number depending only on f modulo d0.

Proof. Set H = Hd0(f) := {h ∈ (Z/d0fZ)∗, h ≡ 1 (mod f)}. By (33) we have

Nd0(f, {1}) = −f +
12µ(d0)

B

∑
δ|d0

δµ(δ)
∑
h∈H

s(h, δf).

Using (21) to evaluate the contribution of h = 1 in this expression and
∑

δ|d0 µ(δ) = 0, we get

Nd0(f, {1}) = −3φ(d0)

B
+

12µ(d0)

B

∑
δ|d0

δµ(δ)
∑

16=h∈H
s(h, δf)

and

Nd0(f, {1}) = −3φ(d0)
2

B
+

3µ(d0)

Bf

∑
16=h∈H

∑
δ|d0

µ(δ)

δf−1∑
n=1

(
1 + cot

(
πn

δf

)
cot

(
πnh

δf

))
,

by (18) and by noticing that #H = φ(d0). Therefore,

Nd0(f, {1}) = −3φ(d0)
2

B
+

3

Bf
S(d0, f) (42)

(make the change of variable δ 7→ d0/δ). Lemma 4.5 gives the desired result.
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Remarks 4.7. As a consequence we obtain Md0(p, {1}) = π2

6

∏
q|d0

(
1− 1

q2

)
+O(p−1), using (35) and

the fact that Nd0(p, {1}) depends only on p modulo d0. This gives in this extreme situation another
proof of Theorem 1.1 with a better error term. Moreover, in that situation we have K = Q(ζp) and in
(11) the term Πd0(p, {1}) is bounded from below by a constant independent of p, by Corollary 2.4.

5 The case where f = ad−1 + · · ·+ a2 + a + 1

In this specific case we are able to obtain explicit formulas for Md0(f,H) when the subgroup H
is defined in terms of the parameter a defining the modulus. For a general subgroup H, it seems
unrealistic to be more explicit than the formula involving Dedekind sums given in Theorem 4.4. It
might be interesting to explore formulas involving continued fraction expansions in view of their link
to Dedekind sums [Hic].

5.1 Explicit formulas for d0 = 1, 2

Lemma 5.1. Let f > 1 be a rational integer of the form f = (ad − 1)/(a − 1) for some a 6= −1, 0, 1
and some odd integer d ≥ 3. Hence f is odd. Set H = {ak; 0 ≤ k ≤ d− 1}, a subgroup of order d of
the multiplicative group (Z/fZ)∗. Then,

S(H, f) =
a+ 1

a− 1
× f − (d− 1)a− 1

12

and

S(H2, 2f) =

{
a+1
a−1 ×

4f−(d−1)a−3d−1
24 if a is odd

2a−1
a−1 ×

f−(d−1)a−1
12 if a is even.

Proof. We have S(H, f) =
∑d−1

k=0 s(a
k, f). Moreover, S(H2, 2f) =

∑d−1
k=0 s(a

k, 2f) if a is odd and

S(H2, 2f) = s(1, 2f) +
∑d−1

k=1 s(a
k + f, 2f) if a is even. Now, we claim that for 0 ≤ k ≤ d− 1 we have

s(ak, f) =
ak

12f
+

(f2 + 1)a−k

12f
+
ak + a−k(a2 − 2a+ 2)

12(a− 1)
− a(a+ 1)

12(a− 1)
whatever the parity of a,

s(ak, 2f) =
ak

24f
+

(4f2 + 1)a−k

24f
+

4ak + a−k(a2 − 2a+ 5)

24(a− 1)
− (a+ 1)(a+ 3)

24(a− 1)
if a is odd,

and that for 1 ≤ k ≤ d− 1 we have

s(ak + f, 2f) =
ak

24f
+

(f2 + 1)a−k

24f
+
ak + a−k(a2 − 2a+ 2)

24(a− 1)
− a(2a− 1)

12(a− 1)
if a is even.

Noticing that
∑d−1

k=1 a
k = f − 1 and

∑d−1
k=1 a

−k = f−1
(a−1)f+1 , we then get the assertions on S(H, f) and

S(H2, 2f). Now, let us for example prove the third claim. Hence, assume that a is even and that
1 ≤ k ≤ d− 1. Then fk := (ak − 1)/(a− 1) is odd, sign(fk) = sign(a)k and ak + f > 0.
First, since 2f ≡ −2ak (mod ak + f), using (20) we have

s(ak + f, 2f) =
ak + f

24f
+

f

6(ak + f)
− 1

4
+

1

24(ak + f)f
+ s(2ak, ak + f).

Second, noticing that ak + f ≡ fk (mod 2ak) and using (20) we have

s(2ak, ak + f) =
ak

6(ak + f)
+
ak + f

24ak
− sign(a)k

4
+

1

24ak(ak + f)
− s(fk, 2ak).
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Finally, noticing that 2ak ≡ 2 (mod fk) and using (20) and (21) we have

s(fk, 2a
k) =

fk
24ak

+
ak

6fk
− sign(a)k

4
+

1

24fkak
− s(2, fk)

=
fk

24ak
+

ak

6fk
− sign(a)k

4
+

1

24fkak
−
f2k − 6fk + 5

24fk
.

After some simplifications, we obtain the desired formula for s(ak + f, 2f).
Notice that for d = 3 we obtain S(H, f) = f−1

12 , in accordance with (51).

Using (34) and Lemma 5.1 we readily obtain:

Theorem 5.2. Let d ≥ 3 be a prime integer. Let p ≡ 1 (mod 2d) be a prime integer of the form
p = (ad − 1)/(a− 1) for some a 6= −1, 0, 1. Let K be the imaginary subfield of degree (p− 1)/d of the
cyclotomic field Q(ζp). Set H = {ak; 0 ≤ k ≤ d− 1}, a subgroup of order d of the multiplicative group
(Z/pZ)∗. We have the mean square value formulas

M(p,H) =
π2

6
× a+ 1

a− 1
×
(

1− (d− 1)a+ 1

p

)
. (43)

and

M2(p,H) =
π2

8
×

{
a+1
a−1 ×

(
1− d

p

)
if a is odd,

1− (d−1)a+1
p if a is even.

(44)

Consequently, for a given d, as p→∞ we have

M(p,H) =
π2

6
+ o(1) and M2(p,H) =

π2

8
+ o(1).

On the other hand, for a given a, as p→∞ we have

M(p,H) =
π2

6
× a+ 1

a− 1
+ o(1) and M2(p,H) =

{
π2

8 ×
a+1
a−1 + o(1) if a is odd,

π2

8 + o(1) if a is even.

Remarks 5.3. Assertion (43) was initially proved5 in [Lou16, Theorem 5] for d = 5 and then gen-
eralized in [LM21, Proposition 3.1] to any d ≥ 3. However, (43) is much simpler than [LM21, (22)].
Notice that if p runs over the prime of the form p = (ad − 1)/(a − 1) with a 6= 0, 2 even then
M2(p,H) = 6

8 ×
a−1
a+1 ×M(p,H) and the asymptotic (12) is not satisfied.

5.2 The case where p is a Mersenne prime and d0 = 1, 3, 15

In the setting of Theorem 5.4, we have 2 ∈ H. Hence, by Remark 2.2 we assume that d0 is odd.

5Note the misprint in the exponent in [Lou16, Theorem 5]
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Theorem 5.4. Let p = 2d−1 > 3 be a Mersenne prime. Hence, d is odd and H = {2k; 0 ≤ k ≤ d−1}
is a subgroup of odd order d of the multiplicative group (Z/pZ)∗. Let K be the imaginary subfield of
degree m = (p− 1)/d of Q(ζp). Then

M(p,H) =
π2

2

(
1− 2d− 1

p

)
≤ π2

2
and h−K ≤ 2

(p
8

)m/4
,

M3(p,H) =
4π2

9

(
1− d

p

)
≤ 4π2

9
and h−K ≤ 2

(p
9

)m/4
and

M15(p,H) =
32π2

75

(
1− cd

48p

)
≤ 32π2

75
, where cd =

{
47d+ 1 if d ≡ 1 (mod 4),

17d− 3 if d ≡ 3 (mod 4).

In particular, for d ≡ 3 (mod 4) we have h−K ≤ 2
(
8p
75

)m/4
.

Proof. By (34) we have

Md0(p,H) =
π2

2

∏
q|d0

(
1− 1

q2

)
(

1 +
N ′d0(p,H)

p

)
, (45)

where for H a subgroup of odd order of the multiplicative group (Z/fZ)∗ we set

N ′d0(f,H) := −f +
4µ(d0)∏
q|d0(q + 1)

∑
δ|d0

δµ(δ)

φ(δ)
S(Hδ, δf). (46)

The formulas for M(p,H),M3(p,H) and M15(p,H) follow from (45)) and Lemma 5.5 below. The
upper bounds on h−K follow from (11) and Lemma 2.3 according to which Πq(p,H) ≥ 1 if q is of
even order in the quotient group G/H, where G = (Z/pZ)∗, hence if q is of even order in the group
G. Now, since p ≡ 3 (mod 4) the group G is of order p − 1 = 2N with N odd and q is of even

order in G if and only qN = −1 in G, i.e. if and only if the Legendre symbol
(
q
p

)
is equal to

−1. Now, since p = 2d − 1 ≡ −1 ≡ 3 (mod 4) for d ≥ 3, the law of quadratic reciprocity gives(
3
p

)
= −

(p
3

)
= −

(
1
3

)
= −1, as p ≡ (−1)d − 1 ≡ −2 ≡ 1 (mod 3). Hence, Π3(p,H) ≥ 1. In the

same way, if d ≡ 3 (mod 4) then p = 2d − 1 = 2 · 4
d−1
2 − 1 ≡ 2 · (−1)

d−1
2 − 1 ≡ −3 ≡ 2 (mod 5) and(

5
p

)
=
(p
5

)
=
(
2
5

)
= −1 and Π5(p,H) ≥ 1.

Lemma 5.5. Set f = 2d − 1 and εd = (−1)(d−1)/2 with d ≥ 2 odd. Hence gcd(f, 15) = 1. Set
H = {2k; 0 ≤ k ≤ d− 1}, a subgroup of order d of the multiplicative group (Z/fZ)∗. Then,

S(H, f) =
f − 2d+ 1

4
and N ′(f,H) = −2d+ 1, (47)

S(H3, 3f) =
5f − 6d+ 1

6
and N ′3(f,H) = −d, (48)

S(H5, 5f) =
7f − 10d+ 2 + εd

5
and N ′5(f,H) = −4

3
d+

1 + εd
6

, (49)

S(H15, 15f) =
14f − (12 + 3εd) d+ 1

3
and N ′15(f,H) = −32 + 15εd

48
d+

1− 2εd
48

. (50)
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Proof. The first assertion is the special case a = 2 of Lemma 5.1. Let us now deal with the second
assertion. Here H3 = {2k; 0 ≤ k ≤ d − 1} ∪ {2k + (−1)kf ; 0 ≤ k ≤ d − 1}. We assume that
0 ≤ k ≤ d− 1. Hence, sign(2k + (−1)kf) = (−1)k.
1. Noticing that 3f ≡ −3 (mod 2k), by (20) we obtain

s(2k, 3f) =
4k + 9f2 − 9 · 2k · f + 1

36 · 2k · f
+ s(3, 2k).

Noticing that 2k ≡ (−1)k (mod 3), by (20) and (21) we obtain

s(3, 2k) =
9 + 4k − 9 · 2k + 1

36 · 2k
− (−1)ks(1, 3) =

9 + 4k − 9 · 2k + 1

36 · 2k
− (−1)k

18
.

Hence

s(2k, 3f) =
f + 1

36f
2k +

(f + 1)(9f + 1)

36f
2−k − 1

2
− (−1)k

18
.

2. Noticing that 3f ≡ −3 · (−1)k2k (mod 2k + (−1)kf), by (20) we obtain

s(2k + (−1)kf, 3f) =
2k + (−1)kf

36f
+

f

4(2k + (−1)kf)
− (−1)k

4
+

1

36(2k + (−1)kf)f

+ (−1)ks(3 · 2k, 2k + (−1)kf)

and noticing that 2k + (−1)kf ≡ (−1)k−1 (mod 3 · 2k), by (20) we obtain

s(3 · 2k, 2k + (−1)kf) =
3 · 2k

12(2k + (−1)kf)
+

2k + (−1)kf

36 · 2k
− (−1)k

4

+
1

36 · 2k · (2k + (−1)kf)
+ (−1)ks(1, 3 · 2k).

Using (21) we finally obtain

s(2k + (−1)kf, 3f) =
9f + 1

36f
2k +

(f + 1)2

36f
2−k − 1

2
+

(−1)k

18
.

3. Using
∑d−1

k=0 2k = f ,
∑d−1

k=0 2−k = 2f
f+1 and

∑d−1
k=0(−1)k = 1, we obtain

d−1∑
k=0

s(2k, 3f) =
19f − 18d+ 1

36
and

d−1∑
k=0

s(2k + (−1)kf, 3f) =
11f − 18d+ 5

36
.

Hence, we do obtain

S(H3, 3f) =
∑
h∈H3

s(h, 3f) =
19f − 18d+ 1

36
+

11f − 18d+ 5

36
=

5f − 6d+ 1

6

and N ′3(f,H) = −d, by (46).
Let us finally deal with the third and fourth assertions. The proof involves tedious and repetitive

computations. For this reason we will restrict ourselves to a specific case. Let us for example give
some details for the proof of (50) in the case that d ≡ 1 (mod 4). We have f = 2d − 1 ≡ 1 (mod 30)
and H15 = ∪14l=0El, where El := {2k + lf ; 0 ≤ k ≤ d− 1, gcd(2k + l, 15) = 1} for 0 ≤ l ≤ 14. We have
to compute the sums sl :=

∑
n∈El s(n, 15f). Let us for example give some details in the case that

l = 1. We have gcd(2k + 1, 15) = 1 if and only if k ≡ 0 (mod 4). Hence s1 =
∑(d−1)/4

k=0 s(16k + f, 15f).
Using (20) and (21) we obtain

s(16k + f, 15f) =
9f + 1

180f
16k +

14

45
+

(f + 1)2

180f
16−k.
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Finally, using
∑(d−1)/4

k=0 16k = 8f+7
15 and

∑(d−1)/4
k=0 16−k = 2(8f+7)

15(f+1) we obtain

s1 =

(d−1)/4∑
k=0

s(16k + f, 15f) =
88f2 + (210d+ 731)f + 21

2700f
.

Finally, using (46), (47), (48) and (49) we get (50).

We conclude this Section with the following result for d0 = 3 · 5 · 7 = 105, whose long proof we
omit6:

Lemma 5.6. Set f = 2d − 1 with d > 1 odd. Assume gcd(f, 105) = 1, i.e. that d ≡ 1, 5, 7, 11
(mod 12). Set H = {2k; 0 ≤ k ≤ d − 1}, a subgroup of order d of the multiplicative group (Z/fZ)∗.
Then

N ′105(f,H) = − 1

576
×


437d+ 139 if d ≡ 1 (mod 12),

535d− 644 if d ≡ 5 (mod 12),

97d− 324 if d ≡ 7 (mod 12),

195d+ 13 if d ≡ 11 (mod 12).

Lemmas 5.5-5.6 show that the following Conjecture holds true for d0 ∈ {1, 3, 5, 15, 105}:

Conjecture 5.7. Let d0 ≥ 1 be odd and square-free. Let N be the order of 2 in the multiplicative
group (Z/d0Z)∗. Set f = 2d−1 with d > 1 odd and H = {2k; 0 ≤ k ≤ d−1}, a subgroup of order d of
the multiplicative group (Z/fZ)∗. Assume gcd(f, d0) = 1. Then N ′d0(f,H) = A1(d)d + A0(d), where
A1(d) and A0(d) are rational numbers which depend only on d modulo N , i.e. only on f modulo d0.
Hence for a prime p ≥ 3 we expect

Md0(p,H) =
π2

2

∏
q|d0

(
1− 1

q2

)
(

1 +
A1(d)d

p
+
A0(d)

p

)
,

confirming again that the restriction on d in Theorem 1.1 should be sharp.

There is apparently no theoretical obstruction preventing us to prove Conjecture 5.7. Indeed, for a
fixed d0, the formulas for A0(d) and A1(d) could be guessed using numerous examples on a computer
algebra system. However for large d0’s the set of cases to consider grows linearly and a more unified
approach seems to be required to give a complete proof.

6 The case of subgroups of order d = 3

6.1 Formulas for d0 = 1, 2, 6

Let p ≡ 1 (mod 6) be a prime integer. Let K be the imaginary subfield of degree m = (p − 1)/3 of
the cyclotomic field Q(ζp). Since p splits completely in the quadratic field Q(

√
−3) of class number

one, there exists an algebraic integer α = a + b1+
√
−3

2 with a, b ∈ Z such that p = NQ(
√
−3)/Q(α) =

a2 + ab + b2. Then, H = {1, a/b, b/a}, is the unique subgroup of order 3 of the cyclic multiplicative
group (Z/pZ)∗. So we consider the integers f > 3 of the form f = a2 +ab+ b2, with a, b ∈ Z \ {0} and
gcd(a, b) = 1, which implies gcd(a, f) = gcd(b, f) = 1 and the oddness of f . We have the following
explicit formula.

6The formulas can be and have been checked on numerous examples using a computer algebra system. Indeed, by
(20) and (21) any Dedekind sum s(c, d) ∈ Q with c, d ≥ 1 can be easily computed by successive euclidean divisions of c
by d and exchanges of c and d, until we reach c = 1.
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Lemma 6.1. Let f > 3 be of the form f = a2 + ab + b2, with a, b ∈ Z and gcd(a, b) = 1. Set
H = {1, a/b, b/a}, a subgroup of order 3 of the multiplicative group (Z/fZ)∗. Then,

s(a, b, f) =
f − 1

12f
, S(H, f) =

f − 1

12
and N(f,H) = −1 + 12S(H, f) = −1. (51)

Proof. Noticing that s(b, f, a) = s(b, b2, a) = s(1, b, a) = s(b, a), by (22), and s(f, a, b) = s(a2, a, b) =
s(a, 1, b) = s(a, b), and using (20), we obtain

s(a, b, f) =
a2 + b2 + f2 − 3|ab|f

12abf
− s(b, f, a)− s(f, a, b) (by (23))

=
a2 + b2 + f2 − 3|ab|f

12abf
− s(b, a)− s(a, b)

=
a2 + b2 + f2 − 3|ab|f

12abf
− a2 + b2 − 3|ab|+ 1

12ab
=
f − 1

12f
.

Finally, S(H, f) = s(1, f) + s(a, b, f) + s(b, a, f) = s(1, f) + 2s(a, b, f) and use (21) and (37).

Remarks 6.2. Take f1 = A2 +AB +B2 > 0, where 3 - f1 and gcd(A,B) = 1. Set f = (f1 + 1)3 − 1.
Then f = a2 + ab + b2, where a = Af1 + A − B, b = Bf1 + A + 2B and gcd(a, b) = 1. By Lemmas
6.1 we have an infinite family of moduli f for which the multiplicative group (Z/fZ)∗ contains at the
same time an element h = a/b of order d = 3 for which s(h, f) is asymptotic to 1/12 and an element
h′ = f1 + 1 of order d = 3 for which s(h′, f) is asymptotic to f2/3/12. Indeed by (20) and (21) for

f = (f1 + 1)3 − 1 we have s(h′, f) = h′5+h′4−6h′3+6
12f .

To deal with the case d0 > 1, we notice that by (37) we have:

Proposition 6.3. Let d0 ≥ 1 be a given squarefree integer. Take f > 3 odd of the form f =
a2 + ab+ b2, where gcd(a, b) = 1 and gcd(d0, f) = 1. Set H = {1, a/b, b/a}, a subgroup of order 3 of
the multiplicative group (Z/fZ)∗. Let Nd0(f,H) be the rational number defined in (33). Then

Nd0(f,H) = Nd0(f, {1}) +
24µ(d0)∏
q|d0(q + 1)

∑
δ|d0

δµ(δ)

φ(δ)
S(a, b, δf),

where Nd0(f, {1}) is a rational number which depends only on f modulo d0, by Proposition 4.6, and
where

S(a, b, δf) =
∑

h∈(Z/δfZ)∗
h≡a/b (mod f)

s(h, δf) =
∑

h∈(Z/δfZ)∗
h≡b/a (mod f)

s(h, δf).

It seems that there are no explicit formulas for S(a, b, δf), S(Hδ, δf) orNδ(f,H) for δ > 1 (however,
assuming that b = 1 we will obtain such formulas in Section 6.2 for δ ∈ {2, 3, 6}). Instead, our aim is
to prove in Proposition 6.4 that Nδ(f,H) = O(

√
f) for δ ∈ {2, 3, 6}.

Let f > 3 be of the form f = a2 + ab + b2, with a, b ∈ Z and gcd(a, b) = 1. Hence, a or b is odd.
Since a2 + ab + b2 = a′2 + a′b′ + b′2 = a′′2 + a′′b′′ + b′′2 and a′/b′ = a/b and a′′/b′′ = a/b in (Z/fZ)∗,
where (a′, b′) = (−b, a + b) and (a′′, b′′) = (−a − b, a), we may assume that both a and b are odd.
Moreover, assume that gcd(3, f) = 1. If 3 - ab, by swapping a and b as needed, which does not change
neither H nor S(a, b,H), we may assume that a ≡ −1 (mod 6) and b ≡ 1 (mod 6). If 3 | ab, by
swapping a and b and then changing both a and b to their opposites as needed, which does not change
neither H nor S(a, b,H), we may assume that a ≡ 3 (mod 6) and b ≡ 1 (mod 6). So in Proposition
6.3 we may restrict ourselves to the integers of the form

f > 3 is odd of the form f = a2 + ab+ b2, with a, b ∈ Z odd and gcd(a, b) = 1

and if gcd(3, f) = 1 then a ≡ −1 or 3 (mod 6) and b ≡ 1 (mod 6). (52)
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Proposition 6.4. Let δ ∈ {2, 3, 6} be given. Let f be as in (52), with gcd(f, δ) = 1. Then, s(h, δf) =
O(
√
f) for any h ∈ (Z/δfZ)∗ such that h ≡ a/b (mod f). Consequently, for a given d0 ∈ {1, 2, 3, 6},

in Proposition 6.3 we have Nd0(f,H) = O(
√
f), and we cannot expect great improvements on these

bounds, by (61), (63) and (65).

Proof. First, by (51) we have

S(a, b, f) = s(a, b, f) =
f − 1

12f
.

Second, f being odd, recalling (41) we have A(2, f) = A(2, 1) = 0, N2(f, {1}) = −1,

S(a, b, 2f) = s(a, b, 2f) (53)

and
N2(f,H) = −1− 8S(a, b, f) + 16S(a, b, 2f).

Third, assume that d0 ∈ {3, 6}. Then gcd(f, 3) = 1. Hence, f ≡ 1 (mod 6). Therefore, A(3, f) =
A(3, 1) = 4/3, A(6, f) = A(6, 1) = −4, N3(f, {1}) = N6(f, {1}) = −1,

N3(f,H) = −1− 6S(a, b, f) + 9S(a, b, 3f)

and
N6(f,H) = −1 + 2S(a, b, f)− 4S(a, b, 2f)− 3S(a, b, 3f) + 6S(a, b, 6f).

If a ≡ −1 (mod 6), b ≡ 1 (mod 6) and δ ∈ {1, 2}, then {h ∈ (Z/3δfZ)∗; h ≡ a/b (mod f)} =
{a/b, (a+ 2f)/b} and

S(a, b, 3δf) = s(a, b, 3δf) + s(a+ 2f, b, 3δf). (54)

If a ≡ 3 (mod 6), b ≡ 1 (mod 6) and δ ∈ {1, 2}, then {h ∈ (Z/3δfZ)∗; h ≡ a/b (mod f)} =
{(a− δf)/b, (a+ δf)/b} and

S(a, b, 3δf) = s(a− δf, b, 3δf) + s(a+ δf, b, 3δf). (55)

Let us now bound the Dedekind-Rademacher sums in (53), (54) and (55). We will need the bounds:

if f = a2 + ab+ b2, then |a|+ |b| ≤
√

4f and |ab| ≥
√
f/3. (56)

Indeed, 4f − (|a|+ |b|)2 ≥ 3(|a| − |b|)2 ≥ 0 and f ≤ a2 + a2b2 + b2 = 3a2b2.
First, we deal with the Dedekind-Rademacher sums s(a, b, δf) in (53) and (54), where δ ∈ {2, 3, 6}.
Here, gcd(a, b) = gcd(a, δf) = gcd(b, δf) = 1. Then (24) and (56) enable us to write (23) as follows:

s(a, b, δf) +O(
√
f) +O(

√
f) = O(

√
f).

Hence, in (53) and (54) we have s(a, b, 2f), s(a, b, 3f), s(a, b, 6f) = O(
√
f).

Second, the remaining and more complicated Dedekind-Rademacher sums in (54) and (55) are of the
form s(a + εδf, b, 3δf), where ε ∈ {±1}, δ ∈ {1, 2} and gcd(a + εδf, 3δf) = gcd(b, 3δf) = 1. Set
δ′ = gcd(a+εδf, b). Then gcd(δ′, 3δf) = 1. Thus, s(a+εδf, b, 3δf) = s((a+εδf)/δ′, b/δ′, 3δf), where
now the three terms in this latter Dedekind-Rademacher are pairwise coprime. Then (24) and (56)
enable us to write (23) as follows:

s((a+ εδf)/δ′, b/δ′, 3δf) +O(
√
f) + s(b/δ′, 3δf, (a+ εδf)/δ′)

= O(δ′2/b) = O(b) = O(
√
f).

Now, 3δf ≡ −3εa (mod a + εδf) gives s(b/δ′, 3δf, (a + εδf)/δ′) = −εs(b/δ′, 3a, (a + εδf)/δ′). Since
the three rational integers in this latter Dedekind-Rademacher are pairwise coprime, the bounds (56)
and (24) enable us to write (23) as follows:

s(b/δ′, 3a, (a+ εδf)/δ′) +O(
√
f) +O(

√
f) = O(

√
f).

It follows that s(a + εδf, b, 3δf) = s((a + εδf)/δ′, b/δ′, 3δf) = O(
√
f), i.e., in (54) and (55) we have

s(a+ 2f, b, 6f), s(a− 2f, b, 6f), s(a+ 2f, b, 3f), s(a− f, b, 3f), s(a+ f, b, 3f) = O(
√
f).



Mean square values of non primitive L- functions 26

Conjecture 6.5. Let δ be a given square-free integer. Let f > 3 run over the odd integers of the form
f = a2 + ab+ b2 with gcd(a, b) = 1 and gcd(δ, f) = 1. Then s(h, δf) = O(

√
f) for any h ∈ (Z/δfZ)∗

such that h ≡ a/b (mod f). Consequently, for a given square-free integer d0, in Proposition 6.3, we
would have Nd0(f,H) = O(

√
f) for gcd(d0, f) = 1.

Putting everything together we obtain:

Theorem 6.6. Let p ≡ 1 (mod 6) be a prime integer. Let K be the imaginary subfield of degree
(p − 1)/3 of the cyclotomic field Q(ζp). Let H be the subgroup of order 3 of the multiplicative group
(Z/pZ)∗. We have

M(p,H) =
π2

6

(
1 +

N(p,H)

p

)
=
π2

6

(
1− 1

p

)
and h−K ≤ 2

( p
24

)(p−1)/12
,

and the following effective asymptotics and upper bounds

M2(p,H) =
π2

8

(
1 +

N2(p,H)

p

)
=
π2

8

(
1 +O(p−1/2)

)
and h−K ≤ 2

(
p+ o(p)

32

) (p−1)
12

, (57)

M6(p,H) =
π2

9

(
1 +

N6(p,H)

p

)
=
π2

9

(
1 +O(p−1/2)

)
and h−K ≤ 2

(
p+ o(p)

36

) (p−1)
12

.

Proof. The formulas for M(p,H), M2(p,H) and M6(p,H) follow from eq32, (35), (51) and Proposition
6.4. The inequalities on h−K are consequences as usual of (11) and Corollary 2.4.

6.2 The special case p = a2 + a + 1 and d0 = 1, 2, 6

Let f > 3 be of the form f = a2 +a+1, a ∈ Z. Then gcd(f, 6) = 1 if and only if a ≡ 0, 2, 3, 5 (mod 6).
We define c′a, c

′′
a, c
′′′
a and ca = (−1− 2c′a − c′′a + 2c′′′a )/12, as follows:

a (mod 6) c′a c′′a c′′′a ca
0 −3a− 2 −8a− 5 −19a− 10 −2a− 1
1 3a+ 1
2 −3a− 2 8a+ 3 a− 18 −3
3 3a+ 1 −8a− 5 −a− 19 −3
4 −3a− 2
5 3a+ 1 8a+ 3 19a+ 9 2a+ 1

Theorem 6.7. Let p ≡ 1 (mod 6) be a prime integer of the form p = a2 + a + 1 with a ∈ Z. Let K
be the imaginary subfield of degree (p − 1)/3 of the cyclotomic field Q(ζp). Let H be the subgroup of
order 3 of the multiplicative group (Z/pZ)∗. We have

M2(p,H) =
π2

8

(
1− (−1)a

2a+ 1

p

)
, (58)

and

M6(p,H) =
π2

9

(
1 +

ca
p

)
, (59)

showing that the error term in (57) is optimal.

Proof. The formula (58) is a special case of (44) for d = 3. By (35), we have

M6(p,H) =
π2

9

(
1 +

N6(p,H)

p

)
.

Hence (59) follows from Lemma 6.9 below.
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Lemma 6.8. Let f > 3 be of the form f = a2 + a+ 1, a ∈ Z. Set H = {1, a, a2}, a subgroup of order
3 of the multiplicative group (Z/fZ)∗. We have

S(H, f) =
f − 1

12
, S(H2, 2f) =

2f + c′a
12

(60)

and
N2(f,H) = (−1)a−1(2a+ 1). (61)

Proof. Apply Lemma 5.1 with d = 3 and f = a2 + a + 1 to get (60). Then using (36) we get

N2(f,H) = −f − 4S(H, f) + 8S(H2, 2f) = 2c′a+1
3 = (−1)a−1(2a+ 1).

Lemma 6.9. Let f > 3 be of the form f = a2 + a + 1, a ∈ Z. Assume that gcd(f, 6) = 1, i.e. that
a ≡ 0, 2, 3, 5 (mod 6). Set H = {1, a, a2}, a subgroup of order 3 of the multiplicative group (Z/fZ)∗.
Then

S(H3, 3f) =
5f + c′′a

18
, (62)

N3(f,H) =

{
−2a− 1 if a ≡ 0 (mod 3),

2a+ 1 if a ≡ 2 (mod 3),
(63)

S(H6, 6f) =
10f + c′′′a

18
(64)

and

N6(f,H) =


−2a− 1 if a ≡ 0 (mod 6),

−3 if a ≡ 2, 3 (mod 6),

2a+ 1 if a ≡ 5 (mod 6).

(65)

Proof. Let us for example detail the computation of S(H6, 6f) in the case that a ≡ 0 (mod 6). We
have f ≡ 1 (mod 6) and H6 = {1, 1 + 4f, a + f, a + 5f, a2 + f, a2 + 5f}. Since a2 + f = (a + f)−1

and a2 + 5f = (a+ 5f)−1 in (Z/fZ)∗, we have S(H6, 6f) = s(1, 6f) + s(1 + 4f, 6f) + 2s(a+ f, 6f) +

2s(a+5f, 6f), by (19). Using (20) and (21) we obtain s(1, 6f) = 18f2−9f+1
36f , s(1+4f, 6f) = 2f2−13f+1

36f ,

s(a+ f, 6f) = − (3a−21)f+1
72f and s(a+ 5f, 6f) = − (35a+19)f+1

72f . Formula (64) follows.
By (36), we have

N3(f,H) = −f − 3S(H, f) +
9

2
S(H3, 3f)

and

N6(f,H) = −f + S(H, f)− 2S(H2, 2f)− 3

2
S(H3, 3f) + 3S(H6, 6f).

Using (51), (60) and (62), we obtain N3(f,H) = c′′a+1
4 and (63). Using (51), (60), (62) and (64), we

obtain N6(f,H) = −1−2c′a−c′′a+2c′′′a
12 = ca and (65).

7 Conclusion and a conjecture

The proof of Lemma 5.1 gives for d ≥ 3 odd and a 6= 0,±1

s

(
a,
ad − 1

a− 1

)
=

(f − 1)(f − a2 − 1)

12af
= O

(
f1−

1
d−1

)
. (66)

Our numerical computations suggest the following stronger version of Theorem 3.1:

Conjecture 7.1. There exists C > 0 such that for any odd d > 1 dividing p − 1 and any h of order
d in the multiplicative group (Z/pZ)∗ we have

|s(h, p)| ≤ Cp1−
1

φ(d) . (67)
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Indeed, for p ≤ 106 we checked on a desk computer that any odd d > 1 dividing p− 1 and any h
of order d in the multiplicative group (Z/pZ)∗ we have

Q(h, p) :=
|s(h, p)|

p
1− 1

φ(d)

≤ Q(2, 27 − 1) = 0.08903 · · ·

The estimate (67) would allow to slightly extend the range of validity of Theorem 1.1 to d ≤ (1 −
ε) log p

log log p . Moreover the choice a = 2 in (66) for which s(2, f) is asymptotic to 1
24f with f = 2d − 1

shows that s(h, p) = o(p) cannot hold true in the range d � log p. Notice that we cannot expect a
better bound than (67), by (66). Finally, the restriction that p be prime in (67) is paramount by
Remark 6.2 where s(a, f) ∼ f2/3/12 for a of order 3 in (Z/(a3 − 1)Z)∗.
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