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Four proofs of the directed Brooks' Theorem

We give four new proofs of the directed version of Brook's Theorem and an NP-completeness result.

Introduction

A k-colouring of an undirected graph G is a partition V 1 , . . . , V k of V (G) into k independent sets. The chromatic number of G, denoted χ(G), is the least k such that G admits a k-colouring. The maximum degree of an undirected graph G is denoted by ∆(G). It is an easy observation that for every graph G, χ(G) ≤ ∆(G) + 1. The following classical result of Brooks characterizes the (very few) graph for which equality holds.

Theorem 1.1 (Brooks' Theorem, [START_REF] Brooks | O, colouring the nodes of a network[END_REF]) A graph G satisfies χ(G) = ∆(G) + 1 if and only if G is an odd cycle or a complete graph.

Many proofs of Brooks' Theorem have been found, and the different proofs generalize and extend in many directions. See [START_REF] Cranston | Brooks' Theorem and Beyond[END_REF] for a particularly nice survey on this subject. Brooks' Theorem has been generalised to digraphs via the notion of acyclic colouring. The aim of this paper is to give four new proofs of the directed version, each of them adapted from a proof of the undirected version.

The digraphs in this paper have no loops nor parallel arcs, but we allow cycle of length 2 (digon). A digraph is acyclic if it contains no directed cycle. An acyclic colouring (or dicolouring) of a digraph G is a colouring of V (G) in such a way that no directed cycle is monochromatic. Equivalently, it is a partition of G into acyclic induced subdigraph. The dichromatic number χ(G) of a digraph G is the minimum number of colors in an acyclic colouring of G.

The dichromatic number was first introduced by Neumann-Lara [START_REF] Neumann-Lara | The dichromatic number of a digraph[END_REF] in 1982 and was rediscovered by Mohar [START_REF] Mohar | circular colourings of edge-weighted graphs[END_REF] 20 years later. It is easy to see that for any undirected graph G, the symmetric digraph ← → G obtained from G be replacing each edge by a digon satisfies χ(G) = χ( ← → G ). This simple fact permits to generalize results on the chromatic number of undirected graphs to digraphs via the dichromatic number. Such results have (recently) been found in various area of graph colouring such as extremal graph theory [START_REF] Bang-Jensen | Hajós and Ore Constructions for Digraphs[END_REF][START_REF] Hoshino | The edge density of critical digraphs[END_REF][START_REF] Kostochka | Stiebitz The Minimum Number of Edges in 4-Critical Digraphs of Given Order[END_REF], algebraic graph theory [START_REF] Mohar | Eigenvalues and colourings of digraphs[END_REF], substructure forced by large dichromatic number [START_REF] Aboulker | Decomposing and colouring some locally semicomplete digraphs[END_REF][START_REF] Aboulker | Extension of Gyarfas-Sumner conjecture to digraphs[END_REF][START_REF] Aboulker | Thomassé Subdivisions in digraphs of large out-degree or large dichromatic number[END_REF][START_REF] Berger | Tournaments and colouring[END_REF][START_REF] Gishboliner | Dichromatic number and forced subdivisions[END_REF][START_REF] Harutyunyan | Coloring dense digraphs[END_REF][START_REF] Steiner | On coloring digraphs with forbidden induced subgraphs[END_REF], list dichromatic number [START_REF] Bensmail | List colouring digraphs[END_REF][START_REF] Harutyunyan | Gallai's Theorem for List Coloring of Digraphs[END_REF], dicolouring digraphs on surfaces [START_REF] Aboulker | On the dichromatic number of surfaces[END_REF][START_REF] Li | Planar digraphs of digirth four are 2-colourable[END_REF][START_REF] Steiner | A Note on Graphs of Dichromatic number 2[END_REF], flow theory [START_REF]Hochstättler A flow theory for the dichromatic number[END_REF][START_REF] Knauer | On removable edges in 3-connected cubic graphs[END_REF], links between dichromatic number and girth [START_REF] Harutyunyan | Strengthened Brooks Theorem for digraphs of girth three[END_REF][START_REF] Harutyunyan | Two results on the digraph chromatic number[END_REF][START_REF] Steiner | A note on colouring digraphs of large girth[END_REF].

The maximum degree of a graph does not have a clear analogue for digraphs. We now introduce two ways to measure maximum degree in a digraph that make sense in the context of Brooks' Theorem. Let v be a vertex of a digraph G. We define the maxdegree of v as d max (v) = max(d + (v), d -(v)) and the mindegree of v as d min (v) = min(d + (v), d -(v)). We can then define the corresponding maximum degrees: ∆ max (G) = max v∈V (G) (d max (v)) and ∆ min (G) = max v∈V (G) (d min (v)). The following easily holds (see subsection 1.1 for a proof): for

every digraph G, χ(G) ≤ ∆ min (G) + 1 ≤ ∆ max (G) + 1.
A symmetric cycle (resp. symmetric complete graph) is the digraph obtained from a cycle (resp. from a complete graph), by replacing each edge by a digon.

We are now ready to state the directed version of Brooks' Theorem. It was first proved by Mohar in [START_REF] Mohar | Eigenvalues and colourings of digraphs[END_REF], but we discovered a flaw in the proof, see Section 2 for more details. Anyway, in [START_REF] Harutyunyan | Gallai's Theorem for list coloring of digraphs[END_REF], Harutyunyan and Mohar generalises Gallai's Theorem (a straightening of Brooks' Theorem for list colouring) to digraph, which gave an alternative and correct proof. The next four sections are devoted to four new proofs of the directed Brooks' Theorem. In the last section, we show that it is NP-complete to decide if χ(G) = ∆ min (G) + 1, so a simple characterization of digraphs satisfying χ(G) = ∆ min (G) + 1 is very unlikely.

Definitions and preliminaries

Let G be a digraph and v a vertex of G. We denote by d + G (v) (resp. d - G (v)) the number of outneighbours (resp. of in-neighbors) of v. We omit the subscript when G is clear from the context. We denote by N + (v) (resp. N -(v)) the set of out-neighbors (resp. in-neighbours) of v, and by

N (v) the set of neighbors of v, that is N (v) = N + (v) ∪ N -(v). If X is a set of vertices and v / ∈ X, N X (v) = N (v) ∩ X, N + X (v) and N - X (v) are defined similarly. We denote by G[X] the subdigraph of G induced by X. A digraph is k-regular if for every vertex v, d + (v) = d -(v) = k.
We denote by B 1 be the set of directed cycles, B 2 the set of symmetric odd cycles and, for

k ≥ 3, B k = { ← → K k+1 } where ← → K k+1
is the symmetric complete graph on k + 1 vertices. Observe that the directed version of Brooks Theorem is equivalent to the following statement: A digraph G has dichromatic number at most ∆ max (G) + 1 and equality occurs if and only if G contains a connected component isomorphic to a member of B ∆max(G) . We sometime call the members of B k exceptions.

Given a digraph G and an ordering (v 1 , . . . , v n ) of its vertices, to colour greedily G is to colour v 1 , . . . , v n in this order by giving to v i the minimum between the smallest colour not used in N + (V ) ∩ {v 1 , . . . , v i-1 } and the smallest colour not used in N -(V ) ∩ {v 1 , . . . , v i-1 }. It is easy to see that any ordering leads to an acyclic colouring with at most ∆ min (G) + 1 colours. And since we clearly have ∆ min (G) ≤ ∆ max (G), we have:

χ(G) ≤ ∆ min (G) + 1 ≤ ∆ max (G) + 1
Given a digraph G, we denote by G its underlying graph and we say that G is connected if its underlying graph is connected. The following easy lemma will be used in the four proofs of the directed Brooks' Theorem. Note that it does not hold if one replace ∆ max (G) by ∆ min (G), implicit examples are given in Section 6.

Lemma 1.3 If G is a connected non-regular digraph, then χ(G) ≤ ∆ max (G).
proof -Since G is non-regular, it has a vertex u 1 such that d min (u 1 ) < ∆ max (G). Let u 1 , . . . , u n be a vertex ordering output by a BFS on G starting at u 1 . By greedily colouring G with respect to the ordering u n , . . . , u 1 , we get a colouring with at most ∆ max (G) colours. ✷

If ∆ max (G) = 1, then every vertex has at most one in-neighbour and at most one out-neighbour so G is a directed cycle or a path. Hence, χ(G) = 2 if and only if G is a directed cycle. This proves Theorem 1.2 for ∆ max (G) = 1. So we only need to prove the directed Brooks' Theorem for digraphs with ∆ max (G) ≥ 2, and we have the base case when we want to proceed by induction on the value of ∆ max (G).

Lovász' proof: greedy colouring

In this section, we adapt the proof of Brooks' Theorem given by Lovász in [START_REF] Lovász | Three short proofs in graph theory[END_REF]. The idea is the following: when we greedily colour the vertices of a connected digraph G using the reverse order output by a BFS of G, each vertex except (possibly) the last one receives a colour from {1, . . . , ∆ max (G)}. Indeed, the fact that G is connected ensures that each vertex (except possibly the last one) has at most ∆ max (G) -1 in-neighbors or out-neighbors already coloured. The goal of the proof is then to find an ordering of the vertices such that the last vertex can also be coloured with a colour from {1, . . . , ∆ max (G)}.

The first version of the directed Brooks' Theorem appeared in [START_REF] Mohar | Eigenvalues and colourings of digraphs[END_REF] and the given proof is based on Lovász' idea, but have a flaw in it. To explain the error, let us dive a little deeper into the proof. The goal is to find a vertex v that has two out-(or two in-) neighbors v 1 , v 2 such that v 1 and v 2 are not linked by a digon and such that G \ {v 1 , v 2 } is connected. You can then choose an ordering of the vertices that starts with v 1 and v 2 and continue with the reverse order output by a BFS of G starting at v (so the ordering ends with v). A greedy colouring give colour 1 to v 1 and v 2 , and thus there will be an available colour from {1, . . . , ∆ max (G)} to colour v (the last vertex of the ordering). In [START_REF] Mohar | Eigenvalues and colourings of digraphs[END_REF], a vertex v with two in-or two out-neighbors v 1 and v 2 not linked by a digon is found, but the fact that G \ {v 1 , v 2 } is connected is not checked, and reveals to be non-trivial to prove. We now give a full proof based on this idea.

Theorem 2.1 A connected digraph G has dichromatic number at most ∆ max (G) + 1 and equality occurs if and only it is a member of

B ∆max(G) . proof -Let G be a counter-example, that is G is connected, χ(G) = ∆ max (G) + 1 and G is not a member B ∆max(G)+1 . Set k = ∆ max (G) ≥ 2 and recall that G denotes the underlying graph of G. By Lemma 1.3, G is k-regular.
(1) G is 2-connected Assume for contradiction that G has a cutvertex u and let C 1 be a connected component of G -u, and C 2 the union of the other connected components. Set

G i = G[C i ∪ {u}] for i = 1, 2. By Lemma 1.3, G 1 and G 2 are k-dicolourable.
Up to permuting colours, we may assume that kdicolourings of G 1 and G 2 agreed on u, which give a k-dicolouring of G, a contradiction. This proves (1).

(2) G has no edge-cut of size 2.

Assume by contradiction that G has an edge cutset {e 1 , e 2 }. Let G 1 and G 2 be the two connected components of G -{e 1 , e 2 }. Both G 1 and G 2 are k-colourable by Lemma 1.3. A k-coloring of G 1 and G 2 give a k-colouring of G as soon as the extremities of e 1 and e 2 use at least two distinct colours. Permuting colours in G 1 if necessary, we get a k-colouring of G. This proves (2).

(

) If {u, v} ⊆ V (G) is a cutset of G, then {u, v} is a stable set. 3 
Let {u, v} ⊆ V (G) be a cutset of G and assume for contradiction and without loss of generality, that uv is an arc of G. Let C 1 be a connected component of G \ {u, v} and C 2 the union of the other connected components. Set

G i = G[C i ∪ {u, v}] for i = 1, 2.
Since G is 2-connected, both u and v have some neighbours in both C 1 and C 2 and thus G 1 and G 2 are k-dicolourable by Lemma 1.3. If both G 1 and G 2 admit a k-dicolouring in which u and v receive distinct (resp. same) colours, then we get a k-dicolouring of G, a contradiction (because no induced cycle can intersect both C 1 and C 2 ). So we may assume without loss of generality that u and v receive the same colour (resp. distinct colours

) in every k-dicolouring of G 1 (resp. in every k-dicolouring of G 2 ). If u has an out-neighbour in C 2 , then d + G 1 (u) ≤ k -1.
We can k-dicolour G 1 -{u}, and extend the k-dicolouring to u with a colour not appearing in the out-neighbourhood of u, so in particular distinct from the colour of v, a contradiction. So u has no out-neighbour in C 2 and similarly, v has no in-neighbour in C 2 .

Suppose u has in-degree at least 2 in G 2 . Then d - G 1 (u) ≤ k -2 and thus we can k-dicolour G 1 -{u} and extend this dicolouring to G 1 by giving to u a colour not used in its in-neighbor and distinct from v, a contradiction. So u has exactly one in-neighbour in G 2 , and similarly v has exactly one out-neighbour in G 2 which gives us an edge cutset of size 2, a contradiction with (2). This proves (3).

(4) Let x be a vertex of G and u and v two out-neighbours of x. Then either {u, v} induces a digon, or {u, v} is a cutset. Same holds if u and v are in-neighbours of x.

Assume for contradiction that {u, v} does not induce a digon and is not a cutset of G. Let G ′ = G -{u, v} and G′ the underlying graph of G ′ . Since G′ is connected, there is a BFS ordering (x = u 1 , u 2 , . . . , u n-2 ) of G′ . Set u n-1 = u and u n = v. We now greedily dicolour G ′ with respect to the order (u n , u n-1 , . . . , u 1 ). Since G[{u n , u n-1 }] is not a digon, u n and u n-1 both receive colour 1. For i = n -2, . . . 2, u i has at least one neighbour in G[{u 1 , . . . u i-1 }], and thus u i has at most k -1 in-or out-neighbours in G[u n , . . . , u i ] and hence we can assign a colour from {1, . . . , k} to it. Finally, since u n and u n-1 receive colour 1 and are both in the out-neighbourhood of u n , the out-neighbourhood of u n is coloured with at most k -1 distinct colours and thus u n receive a colour from {1, . . . , k}, a contradiction. The proof is the same when u and v are in-neighbours of x. This proves [START_REF] Aboulker | On the dichromatic number of surfaces[END_REF].

Observe that G cannot be a symmetric digraph because of the undirected Brook's Theorem. So there exists u, v ∈ V (G) such that uv ∈ E(G) and vu / ∈ E(G). By (3), {u, v} is not a cutset.

(5) For every a ∈ N + (u) \ {v}, {a, v} is a cutset.

Suppose {a, v} is not a cutset. By (4) {a, v} induces a digon and thus u and v are in-neighbours of a. But {u, v} is not a cutset by (3) and does not induce a digon, a contradiction to (4). This proves [START_REF] Bang-Jensen | Hajós and Ore Constructions for Digraphs[END_REF].

Let H = G -v and let a ∈ N + (u) \ {v}. By (5) a is a cutvertex of H, so H has at least two blocks (where a block is a maximal 2-connected subgraph of G). Since G is 2-connected, v has a neighbour in each leaf block of the block decomposition of H.

We now break the proof into two parts with respect to the value of k. Suppose first that k = 2. If the two out-neighbours (resp. the two in-neighbours) of v belong to distinct blocks of H, then N + (v) does not induced a digon, nor a cutset of G, a contradiction to (4). Hence N + (v) is included in a leaf block of H and N -(u) in another one. Now, dicolour H with 2 colours (it is possible by Lemma 1.3). Let w be a cutvertex of H separating the leaf blocks containing the neighbours of v. Observe that every cycle containing v must go through w. Hence we can extend the 2-dicolouring of H by giving to v a colour distinct from the one received by w to get a 2-dicolouring of G, a contradiction.

Assume now that k ≥ 3. So there exists b ∈ N + (u) \ {a, v}. By ( 5), both a and b are cutvertices of H. Since uv ∈ E(G), u is not a cutvertex of H by (3). Let U be the block of H containing u (which is unique because u is not a cutvertex of H). Since u sees both a and b, U is not a leaf block of H. Let U 1 and U 2 be two distinct leaf blocks of H. Since G is 2-connected, v must have neighbours in U 1 and U 2 . Let u 1 ∈ U 1 and u 2 ∈ U 2 be two neighbours of v. So u, u 1 , u 2 are in pairwise distinct blocks of H which implies that for every {x, y} ⊆ {u, u 1 , u 2 }, {x, y} does not induced a digon and is not a cutset of G. Now, since u, u 1 , u 2 are neighbours of v, two of them are included in the in-neighbourhood or in the out-neighbourhood of v, a contradiction to [START_REF] Aboulker | On the dichromatic number of surfaces[END_REF]. ✷

Acyclic subdigraph and induction

The proof of this section is an adaptation of a proof of Rabern [START_REF] Rabern | A Different Short Proof of Brooks' Theorem[END_REF], see also Section 3 of [START_REF] Cranston | Brooks' Theorem and Beyond[END_REF]. Here is a sketch of the proof. Let G be a digraph with ∆ max (G) = k. We do an induction on k. We first choose a maximal acyclic subdigraph M of G and prove that G -M must have dichromatic number k -1 and thus must contain a connected component T isomorphic to a member of B k-1 by induction. We then show that a k-dicolouring of G -T can be extended to G.

Theorem 3.1 Let G a digraph such that χ(G) = ∆ max (G) + 1. Then G contains a connected component isomorphic to a member of B ∆max(G) .
proof -The theorem is true of digraph G with ∆ max (G) = 1. Let k ≥ 2 and assume the theorem holds for digraph with maximum maxdegree at most k -1. By mean of contradiction, assume there exists a digraph G with ∆ max (G) = k violating the theorem. We choose such a G with minimum number of vertices. By Lemma 1.3, G is k-regular.

We now prove two technical claims.

(1)If k ≥ 3, G cannot contain ← → K k+1 less an arc, or less a digon, as an induced subdigraph.

Suppose G contains a subdigraph K isomorphic to ← → K k+1 less a digon {uv, vu}. Observe that u and v both have exactly one in-neighbour and one out-neighbour outside of K, and that other vertices of K have no neighbour outside of K. Now, by Lemma 1.3, G -K can be k-dicoloured and we can extend this k-dicolouring to G as follows: at most one colour is forbidden for u and one for v, hence, since k ≥ 3, we can give the same colour to u and v, and then assign the k -1 remaining colours to V (K) \ {u, v}. We thus get a k-dicolouring of G, a contradiction. The same reasoning holds when an arc is missing instead of a digon. This proves (1).

(2)If k = 2, G cannot contain a symmetric odd cycle less an arc, or less a digon, as an induced subdigraph.

Let ℓ ≥ 1. Assume for contradiction that G contains a subdigraph C isomorphic to ← → C 2ℓ+1 less an arc uv. Let us consider a 2-dicolouring of G -C and assume without loss of generality that the out-neighbour of u not in C is coloured 1. We can colour u and v with colour 2, and greedily dicolour C -u -v to obtain a 2-dicolouring of G, a contradiction.

Suppose now that G contains a subdigraph C isomorphic to ← → C 2l+1 less a digon {uv, vu}. Let us name F = (G -(C -{u, v}))/uv. Either F is 2-dicolourable, in which case there exists a 2-dicolouring of G -{C -{u, v}} in which u and v receive the same colour and we can extend this dicolouring to C or, as ∆ max (F ) ≤ 2 and |V (F )| < |V (G)|, F is a symmetric odd cycle, which implies G is a symmetric odd cycle as well, a contradiction. This proves (2).

Let M be a maximal directed acyclic subdigraph of G. By maximality of M , every vertex in G -M must have at least one in-neighbour and one out-neighbour in M , so ∆ max (G -M ) ≤ k -1. Moreover, χ(G -M ) = k, as otherwise we could (k -1)-dicolour G -M and use a k th colour for M . So G -M has a connected component T isomorphic to a member of B k-1 by induction.

Suppose first there exists u ∈ V (T ) whose in-neighbour x and out-neighbour y in G -T are distinct. Let H = G -T to which is added the arc xy if xy / ∈ E(G). Observe that ∆ max (H) ≤ k. Then H does not contain any element of B k (as G does not contain an element of B k less an arc) which, by minimality of G, implies that H is k-dicolourable. Thus there is a k-dicolouring of G -T with no monochromatic path from y to x.

We are now going to show that such a dicolouring can be extended to T . We break the proof into two parts with respect to the value of k.

Assume first that k ≥ 3. Then T induces ← → K k . Observe that each vertex of T has precisely one in-neighbour and one out-neighbour outside of T . So we can greedily extend the k-dicolouring of G -T to G -u. We can now greedily extend this dicolouring to u. This is possible because there is no monochromatic path from y to x in G -T .

Assume now that k = 2. Then T induces a directed cycle. If ∪ v∈T N (v)\V (T ) is monochromatic of colour c, we can assign colour c to u and the other colour to vertices of T -{u} to obtain a proper 2-dicolouring of G. If not, there must exist a vertex z in T such that, naming z ′ its out-neighbour in

T , N + (z ′ ) ∪ N -(z ′ ) ∪ N + (z) \ V (T )
is not monochromatic. Let c be the colour of the out-neighbour of z not in T . We can then safely assign colour c to z ′ and then greedily extend the dicolouring to T \ {z}. Now, since the two out-neighbours of z are coloured c, we can safely assign the other colour to z to obtain a proper 2-dicolouring of G.

We can now assume that each vertex u of T is linked to G -T via a digon. If there is a vertex x in G -T linked to all vertices of T , then T has at most k vertices and thus must be isomorphic to ← → K k . Hence T ∪ {x} induces ← → K k+1 , a contradiction.

So, there exist two distinct vertices x, y in G -T linked via a digon to two (distinct) vertices of T . Let H = G -T to which is added arcs xy and yx (if not existing). Then H does not contain any element of B k (as G does not contain an element of B k less a digon or an arc) and thus, by minimality of G, H is k-dicolourable. Thus, G -T admits a k-dicolouring in which x and y receive distinct colours. We can easily extend this k-dicolouring to a k-dicolouring of G since each vertex of T has a set of k -1 available colours and some pair of vertices in T (the neighbors of x and y) get distinct sets. ✷

k-trees

The proof presented in this section is an adaptation of a proof of Tverberg [START_REF] Tverberg | On Brooks' theorem and some related results[END_REF], see also section 4 of [START_REF] Cranston | Brooks' Theorem and Beyond[END_REF].

A digraph G is a direct composition of digraphs G 1 and G 2 on vertices v 1 ∈ V (G 1 ) and v 2 ∈ V (G 2 ) if it
can be obtained from the disjoint union of G 1 and G 2 by adding exactly one arc between

v 1 and v 2 (either v 1 v 2 or v 2 v 1 ). A digraph G is a cyclic composition of digraphs G 1 , . . . , G ℓ (ℓ ≥ 2) on vertices v 1 ∈ V (G 1 ), . . . , v ℓ ∈ V (G ℓ ) if it
can be obtained from the disjoint union of the G i by adding the arcs v i v i+1 for i = 1, . . . , ℓ -1 and

v ℓ v 1 A digraph G is a k-tree if ∆ max (G)
≤ k and it can be constructed as follows:

• the digraphs in B k-1 are k-trees;

• a direct or cyclic composition of k-trees is a k-tree;

Let G be a digraph. A direct k-leaf of G is an induced subdigraph T of G such that T belongs to B k-1 and G is a direct composition of T and G -T . If G cannot be obtained from a cyclic composition of members of B k-1 , an induced subdigraph T of G is a cyclic k-leaf of G if T can be obtained from ℓ ≥ 1 disjoint T 1 , . . . , T ℓ belonging to B k-1 by adding ℓ -1 arcs v i v i+1 for i = 1, . . . , ℓ -1 where v i ∈ V (T i ), and G is a cyclic composition of G -T and T 1 , . . . , T ℓ . See Figure 1.

A

k-leaf of G is either a direct k-leaf or a cyclic k-leaf of G, or G itself if G is a member of B k-1 or G is obtained from a cyclic composition of members of B k-1 .
Observe that two distinct k-leaves of a digraph G are always vertex disjoint and that a k-tree has at least two k-leaves except if it is a member of B k-1 or if it can be obtained by a cyclic composition of members of B k-1 .

A k-path is a digraph obtained by taking the disjoint union of l ≥ 2 members T 1 , . . . , T ℓ of B k-1 and adding edges v i v i+1 for i = 1, . . . , ℓ -1 where v i ∈ V (T i ).

The following easy observation will be useful during the proof.

Observation 4.1 Let G be a k-tree. Then all vertices of G have mindegree at least k-1. Moreover,

G has at least k + 1 vertices of mindegree k -1, except if G = ← → K k or if it

is a symmetric path of odd length (and thus k = 2).

The main ingredient of the proof is the following lemma:

Lemma 4.2 Let G be a connected digraph and k = ∆ max (G) ≥ 2. Then either G is a member of B k , or G is a k-tree, or there exists v ∈ V (G) such that d max (v) = k and no connected component of G -{v} is a k-tree. A cyclic leaf A direct leaf Figure 1: A 4-tree proof -Let G be a digraph with ∆ max (G) = k and assume that G is not a member of B k nor a k-tree.
(1) G has no k-leaf.

Assume first that G has a direct k-leaf T , and let v be the unique vertex of T having a neighbour outside of T . Recall that T belongs to B k-1 by definition of a direct k-leaf. Then d max (v) = k and G -{v} has two connected components, T -{v} and G -T . G -T is not a k-tree otherwise G is too, and T -{v} is clearly not a k-tree, so we are done.

Assume now that G has a cyclic k-leaf T made of ℓ members T 1 , . . . , T ℓ of B k-1 and let v 1 , . . . , v ℓ be as in the definition of cyclic k-leaf. Then d max (v 1 ) = k and G -{v 1 } has two connected components, T 1 -{v 1 } and G -T 1 . As in the previous case, none of them is a k-tree. This proves [START_REF] Aboulker | Decomposing and colouring some locally semicomplete digraphs[END_REF].

We say that a vertex v of G is special if it is contained in an induced subdigraph of G isomorphic to a member of B k-1 and d max (v) = k. For each special vertex x, choose arbitrarily an induced subdigraph of G isomorphic to a member of B k-1 that we name T x . Moreover, we name H x the connected component of G -x containing T x -x. Note that in the case where G -x is connected, we have

H x = G -x.
If no induced subdigraph of G is isomorphic to a member of B k-1 , then any vertex with maxdegree k satisfies the output of the theorem. Moreover, if G has an induced subdigraph H isomorphic to a member of B k-1 , then at least one of its vertices must have a maxdegree equal to k, otherwise G = H is a k-tree, a contradiction. Hence, G must contain some special vertices, and every subdigraph of G isomorphic to a member of B k-1 contains a special vertex.

Assume there exists a special vertex v such that H v is not a k-tree. If G -v is connected, then v satisfies the output of the theorem. So G -v is not connected.

Assume first v has only one neighbour a in G -H v . Let G a be the connected component of G -v containing a. We may assume G a is a k-tree, otherwise v satisfies the output of the theorem. If G a is isomorphic to a member of B k-1 , then G a is a k-leaf of G (direct of cyclic depending if a and v are linked by a single arc of a digon), if G a is a cyclic composition of members of B k-1 , then G contains a cyclic k-leaf, and otherwise G a has at least two k-leaves, one of the two does not contain a and is thus a k-leaf of G. Each case contradicts [START_REF] Aboulker | Decomposing and colouring some locally semicomplete digraphs[END_REF].

So v has at least two neighbors a and b in G -H v , and a = b. If a and b are in two distinct connected component G a and G b of G -v, then one of G a or G b must be a k-tree, for otherwise v satisfies the output of the theorem, and we find a k-leaf as in the previous case.

So we may assume that G -H v is connected. Moreover, G -H v must be a k-tree, for otherwise v satisfies the output of the theorem. If G-H v has a k-leaf disjoint from {a, b}, then it is a k-leaf of G, a contradiction to [START_REF] Aboulker | Decomposing and colouring some locally semicomplete digraphs[END_REF]. So G -H v is isomorphic to a member of B k-1 or is a cyclic composition of members of B k-1 or has exactly two leaves, T a and T b containing respectively a and b.

If G -H v is a member of B k-1 , then G -a is connected and is not a k-tree, so a satisfies the output of the theorem. If G -H v is a cyclic composition of members of B k-1 , then a cannot be a cutvertex of G -H v (otherwise d max (a) > k), and thus G -a is connected and is not a k-tree, so again a satisfies the output of the theorem.

So H v has exactly two leaves T a , T b as explained above. Observe that the only vertex of T a with maxdegree k in G is a, for otherwise G -a is connected and is not a k-tree, so a satisfies the theorem. Same holds for T b and b. Let T be an induced subdigraph of G -H v isomorphic to a member of B k-1 that does not contain a nor b. If T has at least 3 vertices of maxdegree k, then G -H v contains a k-leaf disjoint from {a, b}, a contradiction to [START_REF] Aboulker | Decomposing and colouring some locally semicomplete digraphs[END_REF]. If T has exactly two vertices of maxdegree k, then deleting one leads to a connected digraph which is not a k-tree and we are done. So we may assume that each subdigraph of G -H v isomorphic to a member of B k-1 contains exactly one vertex of maxdegree k. It implies that G -H v is a k-path and that G is a cyclic composition of members of B k-1 and thus a k-tree, a contradiction.

We may now assume that for every special vertex v, H v is a k-tree. Let x be a special vertex and assume without loss of generality that d -(x) = k. Let S the set of vertices in T x with in-degree k. If T x -S is non-empty, there must exists an arc st where s ∈ S and t ∈ T x -S (because T x is strongly connected). Since H s is a k-tree, t must have in-degree at least k -1 in G -s, and thus has in-degree k in G, a contradiction. So every vertex of T x has in-degree k. Let y be an in-neighbour of x in T x . As H x is a k-tree, y has out-degree at least k -1 in H x , and thus has out-degree k in G. Now, by the same reasoning as above, we get that every vertex of T x has out-degree k. This proves that for every special vertex v, every vertex u in T v has in-and out-degree k.

Let x be a special vertex. We know that H x is a k-tree. So every vertex of H x is contained in a subdigraph isomorphic to a member of B k-1 , and thus has in-and out-degree k in G. Hence, every vertex of H x has in-and out-degree k in H x except the neighbours of v. So H v has at most k vertices of mindegree k -1. If k ≥ 3, it implies that H x is isomorphic to ← → K k and thus G = ← → K k+1 , a contradiction. And if k = 2, it implies that H x is a symmetric path of odd length (obtained by doing a sequence of cyclic composition of digons) and thus G is a symmetric cycle of odd length, a contradiction. ✷ partitions of G with the minimum number of obstructions, choose P = (V 1 , V 2 ) and a maximal P -acceptable path v 1 . . . v ℓ so as to minimize ℓ.

Throughout the proof, we often move some vertex u that belongs to an obstruction A. Since this destroys A, the minimality of P implies that the move creates a new obstruction. Moreover, this new obstruction must contain u and the neighbours of u in the other part. Finally, the obtained partition has the minimum number of obstructions.

Let A and B be the P -components containing v 1 and v ℓ respectively. Let X = N A (v ℓ ). If |X| = 0, then moving v 1 creates a new (r 1 , r 2 )-normal partition P ′ . Since v 1 is adjacent to v 2 , the new obstruction contains v 2 . So v 2 , v 3 . . . v ℓ is a maximal P ′ -acceptable path, violating the minimality of ℓ. Hence |X| ≥ 1.

Assume now that |X| ≥ 2 and let x 1 , x 2 be two vertices in X. Assume without loss of generality that x 1 v ℓ ∈ E(G). Since moving x 1 or x 2 creates an obstruction, B ∪ x 1 and B ∪ x 2 are obstructions, we must have x 2 v ℓ ∈ E(G). This is because x 1 v ℓ is an edge and obstruction are regular. By moving x 1 and v ℓ , we get that (A \ x 1 ) ∪ v ℓ is an obstruction, so x 2 x 1 ∈ E(G) (again because obstruction are regular). Similarly, (A \ x 2 ) ∪ v ℓ is an obstruction and thus x 1 x 2 ∈ E(G). So x 1 and x 2 are linked by a digon. We deduce that G[X] is a symmetric complete graph and v ℓ is linked to x 1 and x 2 by digons. Let us now prove that A induces a symmetric complete graph (that must be equal to ← → K r 1 +1 ). Since x 1 and x 2 are linked by a digon, A must induce a symmetric digraph. If A = {x 1 , x 2 } we are done, so we may assume that A has at least three vertices. Since (A \ x 1 ) ∪ v ℓ is an obstruction, v ℓ has at least two neighbors in (A \ x 1 ) ∪ v ℓ and thus |X| ≥ 3. Since X induces a complete symmetric graph, A contains a symmetric triangle and thus must be a symmetric complete graph. Let us now prove that B also induces a symmetric complete graph. For every x ∈ X, B ∪ x is an obstruction, so each vertex of X share the same neighborhood in B. Since B ∪ {x 1 , x 2 } \ v ℓ is an obstruction (because mooving x 1 , v ℓ , x 2 creates an obstruction) and ← → K k+1 , a contradiction with the hypothesis that G is not a member of B k . We may assume from now on that |X| = 1. Assume first that X = {v 1 }. Moving v 1 creates an obstruction containing both v 2 and v ℓ , so ℓ = 2. Since P is maximal, v 2 has no neighbor in the other part beside v 1 . Hence, after moving v 1 and v 2 , v 2 is the only vertex of its component, and thus cannot be in an obstruction, a contradiction.

So instead X = {x} and x = v 1 . Move each v 1 , . . . , v ℓ in turns. Moving v 1 destroy A and thus must create a new obstruction containing v 2 and for 1 ≤ i ≤ ℓ, the obstruction created by moving v i is destroyed by moving v i+1 . So after the moves, v ℓ is in an obstruction and this obstruction can only contain v ℓ and x. This implies that v ℓ and x are linked by a digon and that A only contains x and v 1 and induces a digon. Moreover, we have r 1 = 1.

Moving x creates an obstruction containing v ℓ , so the neighbors of x in the other part must be included in B. Moving v 1 creates an obstruction containing v 2 . In the new partition, the path v 2 v 3 . . . v ℓ x is maximal. So the obstruction containing v 2 (the first obstruction of a maximal path) must be a ← → K 2 (for the same reason A must induce a ← → K 2 ), so v 1 and v 2 are linked by a digon, and v 2 is the only vertex of its P -component. The same argument can be applied to the path v 2 v 3 . . . v ℓ x implying that v 3 is linked to v 2 by a digon and is the only vertex of its P -component. Similarly, each v i for i = 2, . . . , ℓ -1 is the only vertex of its P -component, and is linked to v i+1 Let φ be a k-dicolouring of G. For every vertex u, assign to u -and u + the colour φ(u), and the k -1 other colours to {u 1 , . . . , u k-1 }. We claim this is a proper k-dicolouring of G ′ . Suppose it is not. Let C be a monochromatic directed cycle in G ′ . It cannot use any vertex u i as these vertices have a colour distinct from all of their neighbours. Thus C only uses arcs of the form u -u + or u + v -which easily implies the existence of a monochromatic directed cycle in G, a contradiction. This proves (1).

(2)If G ′ is k-dicolourable, then G is too.

Let φ be a k-dicolouring of G ′ . For every vertex u ∈ V (G), for i = 1, . . . , k -1, vertices u i receive pairwise distinct colours. So, φ(u + ) = φ(u -). Hence, for every vertex u ∈ V (G), assigning the colour φ(u + ) to u gives a valid k-dicolouring of G. This proves [START_REF] Aboulker | Extension of Gyarfas-Sumner conjecture to digraphs[END_REF]. ✷

Theorem 1 . 2 (

 12 [START_REF] Mohar | Eigenvalues and colourings of digraphs[END_REF][START_REF] Harutyunyan | Gallai's Theorem for list coloring of digraphs[END_REF]) Let G be a connected digraph, then χ(G) ≤ ∆ max (G) + 1 and equality holds if and only if one of the following occurs: (a) G is a directed cycle or, (b) G is a symmetric cycle of odd length or, (c) G is a symmetric complete graph on at least 4 vertices.

x 1 and x 2

 2 are linked by a digon, B induces a symmetric digraph. If B = {v ℓ } we are done, so B has at least two vertices. Hence B ∪ {x 1 , x 2 } \ {v ℓ } must contain a symmetric triangle, and thus B must be a complete symmetric digraph. All together, this proves that G[A] = ← → K r 1 +1 , G[B] = ← → K r 2 and every vertex in A is linked by a digon to every vertex in B. So A ∪ B induces ← → K r 1 +r 2 +1 = ← → K k+1 and since G is k-regular, G =

 Theorem 4.3Let G be a connected digraph with ∆ max (G) = k. Then χ(G) ≤ k + 1 and equality occurs if and only if G is a member of B k .

proof -We proceed by induction on k, so we may assume k ≥ 2. If G is a member of B k , then we are done. If G is a k-tree, then it is k-dicolourable because members of B k-1 are k-dicolourable, and compositions preserve k-dicolourability.

So, by Lemma 4.2, G has a vertex v 1 with d max (v 1 ) = k and such that no connected component of G -{v 1 } is a k-tree. Let G 2 , . . . , G r be the connected components of G -{v 1 }. Observe first that each G i has a vertex with mindegree at most k -1, so it is not a member of B k . For each G i , either ∆ max (G i ) ≤ k -1 and since G i is not a k-tree, it is k -1-dicolourable by induction, or, by Lemma 4.2, G i contains a vertex v i such that the maxdegree of v i in G i equal k and no connected component of G i -{v i } is a k-tree. In the latter case, we choose such a vertex v i , and continue this procedure on the connected components of G i \ {v i } and so on.

We obtain a set of ordered vertices v 1 , . . . , v s (we apply the procedure level by level, putting an arbitrary order inside each level) such that v i has either no in-neighbour or no out-neighbour in {v 1 , . . .

Partitioned dicolouring

In this section, we adapt a proof of Brooks' Theorem based on specific partition of the vertices introduced by Lovász in [START_REF] Lovász | On decomposition of graphs[END_REF], see section 5 of [START_REF] Cranston | Brooks' Theorem and Beyond[END_REF] for the no-otiented version of the proof as well as a short history of the involved methods. Same kind of methods has been recently used in [START_REF] Bang-Jensen | Digraphs and variable degeneracy[END_REF] to prove a generalisation of the directed Brooks' Theorem.

Let G = (V, E) be a digraph. We say that G is r-special if for every vertex u ∈ V , either

Let P be a (r 1 , r 2 )-normal partition. We define the P -components of G as the connected components of

Observe that if a P -component contains an obstruction, then the obstruction is the whole P -component. A path v 1 . . . v k in the underlying graph of G is P -acceptable if v 1 is in an obstruction and for all i, j ∈ {1 . . . k}, v i and v j are in distinct P -components. We say that a P -acceptable path is maximal if every neighbour of v k is in the same P -component as some vertex in the path.

Given a partition P , to move a vertex u is to move it to the other part of P . Note that if P is (r 1 , r 2 )-normal with r 1 + r 2 = ∆ max (G), and u is in an obstruction, then the partition formed by moving u is again (r 1 , r 2 )-normal.

proof -Suppose the lemma is false and let G be a counterexample. Among the (r 1 , r 2 )-normal by a digon. This implies that G contains a symmetric cycle of odd length (namely v 1 v 2 . . . v ℓ xv 1 ), and since G is k-regular and we clearly have r 1 = r 2 = 1, G is equal to this symmetric odd cycle, a contradiction. ✷ Theorem 5.2 A connected digraph G has dichromatic number at most ∆ max (G) + 1 and equality occurs if and only it is a member of B ∆max(G) .

proof -Let G be a counter-example minimizing ∆ max . Set k = ∆ max (G). We must have k ≥ 2 and G is k-regular. Moreover, we may assume that G is not isomorphic to a member of B k . So, by Lemma 5.1, there exists a (1,

As explained in the introduction, every digraph G can be dicoloured with ∆ min (G) + 1 colours. In this section, we prove that given a digraph G, deciding if it is ∆ min (G)-dicolourable is N P -complete.

It is thus unlikely that digraphs satisfying χ(G) = ∆ min (G) + 1 admit a simple characterization, contrary to the digraph satisfying χ(G) = ∆ max (G) + 1.

It is known that for all k ≥ 2, k-dicolourability is NP-complete [START_REF] Bokal | The circular chromatic number of a digraph[END_REF], where kdicolourability is the following problem: Input: A digraph G. Question: Is G k-dicolourable ? Theorem 6.1 For all k ≥ 2, k-dicolourability is N P -complete even when restricted to digraph G with ∆ min (G) = k.

proof -Let k ≥ 2 be a fixed integer. As is customary, membership to N P is clear. Given a digraph G, we are going to construct a digraph

Let G = (V, E) be a digraph. We construct G ′ as follow:

• For every vertex u of G, put k + 1 vertices in G ′ : u -, u + , u 1 , . . . , u k-1 .

• for each vertex u, G ′ [{u -, u 1 , . . . , u k-1 }] and G ′ [{u + , u 1 , . . . , u k-1 }] are complete symmetric digraph, and u -u + ∈ E(G ′ ).

• For every uv ∈ E(G), u + v -∈ E(G ′ ). (1)If G is k-dicolourable, then G ′ is too.