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Abstract: This study presents the design and implementation of efficient architectures for finite Radon transform (FRAT) on a
field programmable gate array (FPGA). FPGA-based architectures with two design strategies have been proposed: direct
implementation of pseudo-code with a sequential or pipelined description, and a block random access memory-based
approach. Various medical images modalities have been deployed for both software evaluation and hardware implementation.
Xilinx DSP tool has been used to improve the implementation time and reduce the design cycle and the Xilinx software has
been used for generating a hardware description language from a high-level MATLAB description. Objective evaluation of
image denoising using FRAT is carried out and demonstrates promising results. Moreover, the impact of different block sizes
on image reconstruction has been analysed. Performance analysis in terms of area, maximum frequency and throughput is
presented and reveals significant achievements.
1 Introduction

In medical imaging systems, noise can be classified as additive
or multiplicative [1]. Noise reduction in medical imaging
applications is very important, as various types of noises
generated by medical imaging equipment, consequently, limit
the effectiveness of medical image diagnosis [2].

The contributions of transform domains in various
applications including image denoising, enhancement and
compression are undebatable facts. As an example, the
wavelet transform has been extensively used as a solution
to the problem of the short time Fourier transform (STFT)
and excels in isolation discontinuities and spikes [3].
However, the wavelet suffers from flexible directionality, as
it does not isolate the smoothness along edges. This demerit
of the wavelet is well addressed by the ridgelet and curvelet
transforms, as they extend the functionality of the wavelets
to higher dimensional singularities, and it is proven as an
effective tool to perform sparse directional analysis [3]. The
basic building block of these transforms is the finite Radon
transform (FRAT).

Since medical images contain several objects and curves,
doubtless, the curvelet and ridgelet with their main building
block FRAT play a major role in better image analysis. By
offloading the intensive processing procedures of these
transforms into a proper hardware platform, computational
acceleration can be achieved, and at the same time the
outcomes quality can be maintained.

The FRAT algorithm is stringent, as it is inherently serial,
iterative and has a long latency. To overcome these
862
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boundaries, there is a real need for hardware
implementation and acceleration of FRAT especially for
medical imaging applications. Existing limited hardware
implementation of the FRAT in medical imaging
applications opens a huge gap to be filled [3–7].

This paper presents the design and implementation of
FRAT on reconfigurable hardware using a field
programmable gate array (FPGA) for medical image
denoising using the Xilinx DSP tool. Two design strategies
have been proposed: direct implementation of pseudo-code
with a sequential or pipelined description and block random
access memory (BRAM)-based method. Analysis for both
software simulation and hardware implementation with
different medical image modalities has been carried out and
discussed. An evaluation of FRAT’s capability on medical
image denoising is also addressed.

The organisation of this paper is as follows. The related
work is presented in Section 2. An overview of the
algorithms used is presented in Section 3. Section 4
explains the proposed system implementation in two
aspects: denoising system and architectures. Experimental
results analysis of medical image denoising, using software
simulations and hardware implementations are explained in
Section 5. Finally, a summary is given in Section 6.

1.1 Related work

Several existing hardware implementations of FRAT are
discussed in this section. In [4], two architectures are
proposed, a generic and a standard FRAT-based pseudo-code.
IET Signal Process., 2012, Vol. 6, Iss. 9, pp. 862–870
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The generic architecture uses a combination of look-up tables,
matrix of accumulators and multiplexers to perform the
FRAT with time complexity O(p4), where p is the block size
in pixels. The second FRAT architecture is based on the
standard FRAT pseudo-code presented in [8] with a time
complexity of O (p4 (p + 1)).

Two architectures for FRAT suitable for FPGA
implementation are described in [5]. The first architecture is
a direct hardware implementation of a suitable modified
variant of the standard FRAT pseudo-code [8], called the
reference FRAT architecture. This reference architecture
comprises of an address logic initialiser (ALI), multiplexer,
accumulators and two memory blocks for storing transform
vectors. The second architecture is denoted as a memoryless
FRAT architecture, which operates in a parallel manner
with p times the throughput of the first architecture. The
proposed architectures use 7 × 7 size image blocks and are
prototyped for processing a common intermediate format
image sequence. The simulation and synthesis results on
Xilinx Virtex-II FPGA show that the core speeds of the two
proposed architectures are around 100 and 82 MHz,
respectively.

In [6], the proposed FRAT architecture is a direct hardware
implementation of the pseudo-code that uses ALIs and a
controller to control the accumulators and the memory
blocks. The ALI along with controller block constitutes the
address generator that generates addresses, that is, Lk,l for
memory blocks. The accumulator is an Lo bit accumulator
that accumulates the Lth pixel value for the Kth Radon
projection. The design has been ported to the Xilinx Virtex-
II FPGA chip using Handel-C. Moreover, there was no
specific optimisation performed on the Radon block, since
this work is mainly for finite rigdelet transform (FRIT)
implementation.

In [7], two power efficient architectures for the FRAT with
time complexities O (p2 (p + 1)) and O (p2), respectively, are
proposed. The first architecture is a serial architecture based
on the FRAT pseudo-code and optimised for FPGA
implementation. The second architecture is based on a
parallelised version of the FRAT pseudo-code and consists
of a combination of read only memory-based control logic
and array-based buffers for input/outputs (I/Os).

The merit of a serial input architecture is that the FRAT
block can be easily included into a sequence of image
processing/compression steps such as the ridgelet or
curvelet, without imposing any restrictions on the nature of
the inputs. No clock cycles are wasted in buffering the
whole input block and the input section can be pipelined.
For the second architecture, the input buffer is a
linear distributed RAM with p2 address locations, with p
as the block size. On the contrary, the output buffer is a
linear array of shift registers with p locations. Both
architectures are implemented on the Virtex-E FPGA series
and prototyped on the Celoxica RC1000 development board.

The most recent implementation of the FRAT is described
in [3]. A parametrisable, scalable and high-performance core
of the FRAT sub-block was presented. To provide with
design reusability, the core of the FRAT is developed using
Handel-C and an efficient VHDL core from Xilinx
CoreGen. Two main strategies are imposed in this
architecture: re-mapping the FRAT pseudo-code in the
order of input signals and implementing a systolic array to
store the address de-referencing values rather than using
multiplexer or counter chains. The design is prototyped on
the Celoxica RC1000 board containing the Xilinx
XCV2000E FPGA and the results obtained reveal the
IET Signal Process., 2012, Vol. 6, Iss. 9, pp. 862–870
doi: 10.1049/iet-spr.2011.0392
design time and area complexity as O (p2) and O (2p2),
respectively.

Table 1 lists the important issues, such as the FPGA
devices used along with the programming approaches as
well as the target applications for different existing systems.
In terms of programming approaches, Handel-C seems to be
the most popular tool that has been used, because the target
FPGA device changes in line with FPGA technology
advancement. For the target applications, previous works
reported are mainly for general image processing evidenced
by the type of images used. To clearly show innovation and
improvement from the existing implementation of FRAT on
FPGA, each contribution with its important features and
invention is depicted in the research timeline as shown in
Fig. 1.

Hardware implementation of image denoising: Software
simulation of image denoising [1, 2, 9–13] has gained
much effort from the research community when compared
with hardware implementation.

In [14], the parallel implementation of an advanced
wavelet-domain noise filtering algorithm, which uses a non-
decimated wavelet transform and spatially adaptive
Bayesian wavelet shrinkage, is discussed. The system
implemented is computationally intensive; hence two
FPGAs have been deployed to work in parallel. Partial
reconfiguration could have been taken into account for
better system implementation as well as maintaining the
same performance.

An FPGA implementation of a block singular value
decomposition (SVD) method for image denoising is
presented in [15]. This method exploits the fact that only
the smallest SVD eigenvalues are affected by the noise and
therefore can be discarded leading to an efficient non-linear
image filtering. The architecture is based on the Brent Luk
Van (BLV) loan systolic array technique.

Another implementation of a flexible hardware architecture
for performing the DWT on a digital image for denoising is
addressed in [16]. A simple wavelet technique demonstrates
some improvement with a peak signal to noise ratio (PSNR)
up to 27 dB. The DWT core is modelled using MATLAB
and VHDL and implemented on Xilinx FPGA devices.
Results for hardware implementation show that about

Table 1 Summary of FFPGA-based architectures of FRAT

Refs. FPGA

devices

Programming

approaches

Target

applications

[3] Virtex-E Handel-C and CoreGen image processing

[4] Virtex-E N/A image processing

[5] Virtex-II Verilog image processing

[6] Virtex-II Handel-C image processing

[7] Virtex-E Handel-C image processing

Fig. 1 Review of FRAT’s FPGA-based implementation
863
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15 000 gates are utilised, at 2.185 MHz maximum clock
speed and 24 mW power consumption.

A hardware architecture for video noise estimation is
discussed in [17] by Lapalme et al. The aim of this
architecture is to process two consecutive fields
simultaneously by acquiring data within two modules. This
concept implies a ‘ping-pong’ structure and refers to the
back and forth processing scheme to enable parallel
processing. The advantages of this architecture are the
design which is uniformly pipelined and digital clock
managers (DCMs) are used to accelerate the sorting
mechanism’s clock frequency, as well as maximise the
parallelism of arithmetic operations to achieve real-time
requirements. In terms of hardware implementation strategy,
the use of a generic VHDL contributes to a scalable
architecture that can accommodate different filter sizes.
Moreover, the experimental results reveal that the noise
variance generated was proven to be accurate in comparison
with the original software simulation findings.

Table 2 presents a summary for hardware implementation
of image and video denoising; and classification in terms of
algorithms or methods implemented, FPGA devices and
target applications. Design strategies that have been
manipulated such as systolic array, FPGA resources
optimisation and generic design style provide new
directions for future work to be carried out on hardware
implementation of image denoising using FRAT.

2 Mathematical background

This section presents the mathematical background for Radon
transform (RT) algorithms.

2.1 Radon transform

Mathematically, the RT in two dimensions is the integral
transform comprising of a function over straight lines. If a
straight line is represented parametrically by (1)

s = x cos u+ y sin u (1)

where s is the shortest distance from the straight line to the
origin and u is the angle which the line makes with the y-
axis, then the RT function R[ f ](u, s) can be given as follows

R[f ](u, s) =
∫+1

−1

∫+1

−1

f (x, y)d(x cos u+ y sin u− s) dx dy

(2)

where d is the Dirac impulse function. Based upon (1) and (2),
the inverse Radon transform (IRT) is given in (3), which is

Table 2 Hardware implementation of medical image denoising

Refs. Algorithms/method Platforms Target

applications

[14] advanced wavelet domain-

noise filtering

XC2V6000-

5

video denoising

[15] SVD XCV2000E-

6

image denoising

[16] Cohen Daubechies-CDF

5/3, 9/7

XCV300 image

processing

[17] structured-oriented noise

estimation

XC2V4000 PAL video

sequence
864
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used for image reconstruction.

f (x, y) =
∫2p

0

R[f ](a, x cosa+ y sina) da (3)

2.2 Finite Radon transform

The FRAT is defined as the summation of image pixels over a
certain set of lines. Those lines are defined in a finite
geometry in a similar way to the lines for continuous RT in
Euclidean geometry.

Consider a cyclic group Zp denoted by Zp ¼ (0, 1, . . .,
p 2 1) where p is a prime number. Let the finite grid Z2

p be
defined as the Cartesian product Zp × Zp. This finite grid
has (p + 1) non-trivial sub-groups, given by

Lk,l = (i, j):j = (ki + l)( mod p), i [ Zp, 0 ≤ kkp (4a)

Lp,l = (l, j):j| [ Zp (4b)

where each sub-group Lk,l, is the set of points that define a line
on the lattice Zp. The Radon projection of the function f on the
finite grid Z2

p is given by

rk [l] = FRATf (k, l) = 1��
p

√
∑

(i, j)[Lk,l

f [i, j]

⎛
⎝

⎞
⎠ (5)

From (4) and (5), it can be seen that the function f is treated as
a periodic function. Therefore the digital representation of the
line displays a ‘wrap around’ effect. Analogous to the
continuous case, as in Euclidean geometry, any two lines
intersect at only one point in the finite grid Z2

p
. Hence, the

inverse transform, the finite back projection (FBP) is given by

FBPr(i, j) = 1��
p

√
∑

(k,l)[Pi, j

rk[l], (i, j) [ Z2
p

⎛
⎝

⎞
⎠ (6)

where Pi,j ¼ (k, l ):l ¼ ( j 2 ki)(mod p), k| [ Zp. < (p, i)
Substituting (5) into (6), (7) and (8) proves that the FBP

provides a perfect inversion for the FRAT [8]. Also, the
algorithms for the FBP and FRAT are synonymous. As a
result, the same architecture can be used to implement both
the forward and inverse transforms.

FBPr(i, j) = 1

p

∑
(k,l)[Pi,j

∑
(i′,j′)[Lk,l

f [i′, j′]

⎛
⎝

⎞
⎠ (7)

FBPr(i, j) = 1

p

∑
(i′,j′)[Zp

f [i′, j′] + pf [i, j]

( )
= f [i, j] (8)

Computing the Kth Radon projection, that is, the Kth row of
the array, all pixels of the original image need to be passed
once and use p histograms: one for every pixel in the row.
At the end, all p histogrammed values are divided by p to
obtain the average values.

2.3 Image denoising

Medical acquisition technologies and systems introduce noise
and artefacts in the images that should be attenuated by the
denoising algorithms [12], likewise, the denoising process
IET Signal Process., 2012, Vol. 6, Iss. 9, pp. 862–870
doi: 10.1049/iet-spr.2011.0392
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must ensure that the anatomical details are retained for critical
computer-aided analysis of the images.

Mathematically, image denoising can be summarised as
follows. Let A(i, j) be the noise-free image and B(i, j) the
image contaminated with independent Gaussian noise Z(i, j)

B(i, j) = A(i, j) + sZ(i, j) (9)

where Z(i, j) has normal distribution N(0, 1). The problem is
to estimate the desired signal as accurately as possible
according to some criteria. In the Radon domain, the
problem can be formulated as follows

Y (i, j) = R(i, j) + N (i, j) (10)

where Y (i, j) is noisy Radon coefficient, R(i, j) is true
coefficient and N(i, j) is the noise.

2.4 Proposed architectures

Proposed system applications and an overview of the
architecture with different design strategies are described in
the following section.

2.5 Proposed denoising system

Fig. 2 illustrates an overview of our proposed 3D medical
image denoising system based on FRAT. In each block,
buffers have been used for storing intermediate results to be
processed.

It is well known that noise in medical images results in low
image quality and yet limits diagnostic effectiveness. In real
implementation, the proposed method can be modelled as
follows

Y = IRT(RT(X + N )) (11)

X, N and Y refer to the raw medical image, the noise
introduced by the equipment and the output image,
respectively. From (11), it is implied that

Y ≃ X + IRT(N ) (12)

and the noise in the medical image is approximately

IRT(N ) ≃ Y − X (13)

Therefore noise reduction for medical images is significantly
vital for the pre-processing stage before performing
compression. Generally, three steps are involved in image
denoising: calculate the transform of the noisy signal,
modify the noisy radon coefficients according to the
specific rule and compute the inverse transform using the
modified coefficients. To be more specific, the denoising
algorithm operates as follows:

Step 1: Adding a Gaussian white noise to the image, then
applying the FRAT to the noisy image;
Step 2: Calculating the threshold and thresholding the FRAT
coefficients with universal thresholding; and

Fig. 2 Proposed denoising system
IET Signal Process., 2012, Vol. 6, Iss. 9, pp. 862–870
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Step 3: Inverse transform of the thresholded coefficients.
It is worth noting that thresholding plays a significant role

in the denoising process [18] and finding an optimum
threshold is a tedious process. A universal threshold as
proposed by Donoho and Johnstone in [19] is defined as
follows

l = sn

�������
log2 N

√
(14)

where N refers to the image size and s is the noise standard
deviation.

3 Design method

To ease the process of transforming a MATLAB [20] floating
point design into a hardware module, Xilinx DSP tool
software is used for rapid prototyping of algorithms in
MATLAB into hardware [21]. The main feature of the
Xilinx DSP tool can be summarised as follows:

† A synthesisable register transfer level (RTL) design can be
obtained from the floating point M-code;
† A set of test-benches can be automatically generated; and
† Capability to invoke hardware description language (HDL)
simulation, synthesis and implementation tools.

Verification in each stage is very significant. The tool
verifies the generated module in each step to be as true as
the previous one, or to be subjectively acceptable with a
minor difference during the conversion from floating point
design to fixed point [21, 22]. There are two main parts in
the M-code: a script and function file [21]. In addition,
there are three functions of script files. It creates stimuli,
feeds the stimuli to the function in a streaming loop and
verifies the output from the function. On top of that, the
script file also serves as a source file for future test-bench
auto generation. Furthermore, the function file comprises
the actual function to be translated into HDL and it is
written as an ordinary MATLAB function with an interface
of input and output variables. In this study, the Xilinx DSP
tool has been selected, since it can be automatically
converted from high-level languages to RTL HDL and even
directly to an FPGA configuration bitstream [22]. This
feature is important for reducing the design cycle as well as
allowing more optimisation to be carried out on the
algorithmic and architectural levels.

The high-level description of the denoising algorithms for
FRAT, inverse FRAT and thresholding are synthesised to
generate a device-specific HDL RTL description of a
hardware implementation targeting of an FPGA. The RTL
description is co-simulated using Modelsim to verify a low-
level functionality of the system and generate the switching
activities for power analysis. To perform a more precise
estimation of maximum frequency, area as well as power,
the synthesis results are then imported in the ISE tool.

4 Proposed architectures

Fig. 3 shows the reference architecture [3, 7] for the FRAT
based on the FRAT’s pseudo-code. This reference
architecture has been used as an illustration of the FRAT
algorithm to explain the concept. To exploit the hardware
resources available, the operations of the various counters
used to track the addresses of the output vectors are
865
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parallelised and pipelined. This has been carried out by
changing rollover conditions and count limits suitably.

The number of counters required remains the same, and
only the triggering conditions, order and reset logic are
modified suitably. It must be highlighted that although the
algorithm is still serial and cycles through p × (p + 1)
iterations, the number of steps in the algorithm have been
reduced, thereby improving latency. The architecture has
serial I/Os and a serial core. The total latency of the core is
O (p2 × (p + 1)). The input section consists of a one-
dimensional (1-D) random access memory (RAM) of width
8 bits and a depth of p2.

Although each input image block is a square tile of side p,
buffering it in a 1-D RAM reduces the computational
complexity of the control logic associated with data access.

Fig. 3 Proposed reference architecture for FRAT [3, 7]
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& The Institution of Engineering and Technology 2012
This is because, a two-dimensional RAM is implemented
on the FPGA as a number of 1-D RAMs and uses
additional multiplexing logic to dereference the address
locations. The FRAT operation requires reading and writing
from the same memory location within a single clock pulse.
This is compactly and effectively implemented using a dual
ported RAM at the output section instead of an array-based
buffer. The output buffer is a 1-D dual port RAM of width
log2 p.256 and depth p. Only a single FRAT vector is
buffered and the final values are written to the output port
in serial fashion at the end of each iteration. At the end of
(p + 1) iterations, the entire image block is transformed to
the FRAT domain.

Based on the FRAT architecture, three design strategies
have been proposed as shown in Figs. 4a–c, with ‘R ’, ‘E ’
and ‘W ’ referring to ‘Read’, ‘Enable’ and ‘Write’ processes,
respectively.

For the sequential fashion, the following modes involve:

Mode 1: Transfer data, a block of p × p pixels, pixel by pixel;
Mode 2: Compute FRAT; and
Mode 3: Transfer results, a block of p × p pixels, pixel by
pixel.

On the other hand, the pipelined implementation modes are
as follows:

Mode 1: Transfer data in pipelined fashion, read a block of
p × p pixels, 7 column, column by column (7 pixels at a
time) simultaneously write a block of p + p × p pixels, 7
column, column by column (7 pixels at a time); and
Mode 2: Compute FRAT.

In the case of the BRAM-based method, the processes
involved can be described as follows:
Fig. 4 Implementation strategies

a Sequential
b Pipelined
c BRAM-based method
IET Signal Process., 2012, Vol. 6, Iss. 9, pp. 862–870
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Mode 1: Compute the FRAT block in BRAM 1, and write the
computed FRAT block in BRAM 2; and
Mode 2: Compute the FRAT block in BRAM 2, and write the
computed FRAT block in BRAM 1.

The proposed architectures for the FRAT algorithm are
applicable to executing the process of inverse FRAT
because of the similarities between these two algorithms,
FRAT and inverse FRAT. FRAT, denoising and inverse
FRAT are described as functions. The FRAT function takes
an image block as an input argument and its output is used
as an input argument for the denoising function. Finally, the
inverse FRAT generates a filtered image block. In the
following section, the implementation results of the FRAT
algorithm with a comparison with existing similar
architectures; and the implementation of the complete
denoising systems will be given.

5 Results and analysis

Three types of images [23] have been used for software
simulation and hardware implementation: medical resonance

Table 3 PSNR quantitative results of noisy image with Gaussian

white noise and MRI image

S Noisy, dB Denoising, dB

Block sizes, p

7 17 31

0.01 31.15 43.60 39.51 36.48

0.02 30.63 41.68 37.75 34.67

0.04 30.30 39.34 35.47 32.38

0.08 30.06 36.98 32.95 29.89

0.16 29.91 34.48 30.44 27.39
IET Signal Process., 2012, Vol. 6, Iss. 9, pp. 862–870
doi: 10.1049/iet-spr.2011.0392
imaging (MRI) scan of human brain (940 × 940), chest
body computerised tomography (CT) (128 × 128) and
positron emission tomography (PET) scan of normal human
brain (109 × 109). To evaluate the quality of the processed
images and to demonstrate the effectiveness of FRAT,
PSNR has been calculated to quantitatively estimate noise
suppression.

5.1 Medical image denoising

To analyse the effectiveness of FRAT in medical image
denoising, a Gaussian white noise with mean m zero and
various standard deviations s has been added to the
experimental images.

By utilising FRAT in medical image noise reduction, the
results obtained have shown promising results. The
denoising results obtained reveal that FRAT implementation
is effective in reducing Gaussian noise. Table 3 shows
quantitative results for MRI images, whereas Figs. 5a– f
illustrate the significant achievement of 13.25 and 22.6%
denoising for the MRI image using FRAT.

5.2 Software simulation

Figs. 6a– l show FRAT domain visualisation of MRI and PET
slices. The averaging impact of FRAT on image blockiness in
the transform domain can be observed as p increases.

It is worth noting that the FBP is a mathematically perfect
inversion for FRAT and the PSNR depends only on the
accuracy required. The truncation or rounding step that
follows the FRAT determines the PSNR values. As it is
usually used as a sub-block in other transforms such as
FRIT and curvelets and is followed by a wavelet stage in
these transforms, the rounding or truncation process can
easily be incorporated along with the wavelet block with no
extra computational effort by suitably modifying the
wavelet coefficients Table 4.
Fig. 5 Gaussian noise reduction experimental results on MRI, CT images

a and d Original
b and e Noisy
c and f Denoising
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Fig. 6 FRAT domain visualisation of MRI, PET and CT slices

a, e, i Original images
b–d, f–h, j–k Blockiness images
However, to illustrate the effect of bit-width limitations on
the PSNR, Fig. 7 shows the relationship of the PSNR values
for the reconstructed medical images with various block sizes
p. The results obtained exhibit that the PSNR of the
reconstructed image drops by 7.93, 21.70 and 21.80 dB for
MRI, CT and PET, respectively, when the block size
increases from p ¼ 7 to 31. This is because as p increases,
the rounding error becomes more significant. Using a
divider with greater precision can reduce the rounding error.

5.3 Hardware implementation

For all the three cases of hardware implementation:
sequential, pipelined and BRAM-based method, pseudo-
codes have been implemented in MATLAB and the Xilinx
DSP tool has been used for architecture development and
synthesis exploration.

The designs have been implemented on the Virtex-5
(XC5VLX110 T) FPGA device. As the prime aim of this
paper is to examine the best hardware implementation
applied for medical image denoising, results for both

Table 4 Analysis of PSNR with different block sizes (p)

Block sizes, p MRI PET CT

5 51.94 52.20 41.90

7 49.76 50.20 41.70

11 47.17 41.10 36.70

17 45.36 38.20 29.80

31 41.83 28.50 19.90
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medical image denoising as well as the software simulation
justify hardware implementation with p ¼ 7. Comparison of
performance metrics for the proposed FRAT architectures
with the existing work is presented in Table 5.

The implementation results of the proposed architectures
show the estimated number of occupied slices. In the
pipelined architecture, all the loops are unrolled which
explains the augmentation of the occupied slices. Even
though the number of occupied slices is more important in
a pipelined architecture compared with the others, this type
of implementation has been adopted because of its high
performance capabilities.

To the best of our knowledge, there is no complete hardware
implementation of the denoising system based on FRAT. The
existing software solutions generally present the quality of
filtering without mentioning the utilisation of resources as
well as other important parameters such as power
consumption. Hence, Table 6 gives the implementation
results for the pipelined architecture of the FRAT compared
with the sequential and the overall system.

As can be expected, the parallel with loops unrolled
architecture of FRAT outperforms the sequential
architecture with minimum power. On top of that, the
performances of the overall system composed of FRAT,
filtering and inverse FRAT are not degraded compared with
FRAT. The system can filter a 7 × 7 block in 0.344 ms,
which corresponds to 142.5 million pixels per second
(MPPS).

In this study, Xpower tool from the Xilinx design suite has
been fully utilised to estimate power consumption. The results
obtained also reveal the quiescent power of these three
architectures with 1044 mW which depends mainly on the
IET Signal Process., 2012, Vol. 6, Iss. 9, pp. 862–870
doi: 10.1049/iet-spr.2011.0392



IET Signal Proce
doi: 10.1049/iet-s

www.ietdl.org
Table 5 Comparison of performance with the existing architectures of FRAT for the case p ¼ 7

Type Platform Design F, MHz T (MPPS) A (Slices)

sequential Virtex-E [3] 94.46 45.01 245

Virtex-II [7] 69.00 6.90 345

[3] 79.973 37.32 215

[5] 100.1 9.87 159

[6]:A1 112.87 11.13 198

[6]:A2 67.3 6.64 131

Virtex-5 proposed 238.10 3.5 110 + 1 BRAM

pipelined Virtex-5 proposed (1) 200 200 1687

BRAM-based Virtex-5 proposed 188.90 188 637+ 4 BRAMs

Note: (1) Loops unrolled
target device. The proposed architecture also exhibits 0.32 mJ
of energy, which can also be considered as efficient energy
consumption compared with the sequential architecture.

The results achieved for hardware implementation
demonstrate various trade-offs with sequential and pipelined
descriptions yielding better achievement for maximum
frequency (F ) and throughput (T ), respectively. Moreover,
the BRAM-based method also reveals less area (A)
occupied and better maximum frequency. To visualise the
design and implementation of the FRAT, Fig. 7 illustrates
the chip layout for sequential implementation on
XC5VLX110 T FPGA device. Fig. 8 illustrates the chip

Table 6 Comparison of different FRAT architectures and system

architectures

Parameter (unit) Proposed architecture

Sequential

bit accurate

(FRAT)

Loop

unrolled

(FRAT)

Loop

unrolled

(System)

min. period, ns 4.20 4.97 4.98

max. frequency

(MHz)

238.10 200 200

∗latency, cycles 3297 49 69
∗latency, time ms 13 847 0.244 0.344

throughput, MPPS 3.5 200.8 142.5

total power, mW 1122 1,301 1,608

total slices 110 1,687 4,627

power.time, W.ms 15.5 0.32 0.55

Note: ∗Execution for a 7 × 7 block of data

Fig. 7 Chip layout for sequential implementation
ss., 2012, Vol. 6, Iss. 9, pp. 862–870
pr.2011.0392
layout for parallel implementation on the same device with
footprints of ‘radon’, ‘denoise’ and ‘iradon’ sub-modules,
depicted separately on the right side.

A detailed comparison for both hardware implementation
and software simulation with test medical images has been
carried out. As shown in Table 7, software simulation
achieved better PSNR over hardware implementation with
the percentage difference being 12.92, 21.47 and 33.09%
for p ¼ 7, 17 and 31, respectively. This is due to the use of

Table 7 Comparison of PSNR Values for CT images

Implementation PSNR, dB

Block sizes, p

7 17 31

Hardware 46.30 38.13 30.30

Software 53.71 48.56 45.29

Fig. 8 Chip layout for parallel implementation of the full
denoising system (foot prints for radon, denoise and iradon
modules depicted separately on the right side)
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a floating point in MATLAB, which yields better PSNR
values compared with a fixed point model in hardware
implementation.

6 Conclusion

An FPGA-based architecture with three different design
strategies has been proposed for efficient implementation of
FRAT. An in-depth analysis of the results obtained with
various medical imaging modalities using the proposed
denoising system has been conducted. Image denoising
implementation using the FRAT exhibits a significant
achievement to reduce Gaussian white noise in medical
images. An evaluation of the implementation results
outperforms the existing architectures in terms of maximum
frequency, throughput and area. The hardware implementation
of the overall denoising system including FRAT, filtering and
inverse FRAT can process up to 142.5 MPPS.
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