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ABSTRACT

This paper presents a framework for simultaneously translat-
ing multiple land-cover maps into a given one in a super-
vised way. Conversely to existing approaches working on
1-1 translation, we propose a multi-translation setup that in-
creases the generalizability and translation performance, es-
pecially on land-cover maps covering restricted spatial ex-
tents. The proposed method mainly assumes that the map of
interest spatially overlaps at least with one of the other maps.
High performance translation is achieved with a Convolu-
tional Neural Network (CNN) based encoder-decoder frame-
work trained with three goals: (i) high-quality translation; (ii)
self-reconstruction ability; (iii) mapping of all datasets into
a common representation space. Country-scale experimental
results show the method effectiveness in translating six highly
heterogeneous land-cover maps, achieving significantly better
results than the traditional semantic-based method and better
results than CNN trained for a 1-1 translation task (+ 9.7% in
Overall Accuracy (OA) and +12% in macro F1-score (mF1)).

Index Terms— Land-cover mapping, operational, trans-
lation, semantic segmentation, country-scale.

1. INTRODUCTION

Land-use/Land-cover (LULC) maps describe the Earth cov-
erage with discrete classes (the nomenclature) at a defined
spatial resolution. The chosen labels and resolutions highly
impact the land-cover map potential usage and subsequent
manipulations such as map fusion, harmonisation, compar-
ison or update. The challenge in map-to-map translation
lies in the difficult interleaved association of semantic and
spatial resolutions of both maps [1]. Usually, two different
LULC maps establish complex relationships between their
classes, and direct one-to-one association is most of the time
infeasible. The standard translation method consists of a
nomenclature-level semantic association such as LCCS [2],
followed by a spatial resampling strategy. However, such
approaches fail to translate complex relationships, acting
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as a word-by-word translation, disregarding natural multi-
ple possible associations, by hardly assigning each class to its
strongest correspondent in the other nomenclature. Moreover,
by processing the nomenclature translation separately from
the spatial resolution adaptation, such approaches neglect
semantic consideration on pixels holding multiple classes. To
relax the constraint of manually defining semantic relations,
[3] presented a Latent Dirichlet Allocation solution, which
defines the relation between classes by computing their spa-
tial co-occurrence. To obtain multiple translations of each
source class, they rely on the use of multiple maps, the trans-
lation of one pixel therefore depending on the composition
of each multiple source class. Conversely, we proposed to
integrate the map spatial context to obtain a context-based
translation of each source class, thus alleviating the need
for numerous maps on the same extent with close-by dates.
Despite encouraging results, the adopted asymmetrical U-
Net was only trained to translate one unique source map
into one unique target map. Recent advances in natural lan-
guage processing have shown that learning a single multiple
translation model achieved comparable results with learning
multiple one-to-one cases. However, the former yields more
robust results on languages with few samples and has better
generalisation abilities. Thus exploring multiple land-cover
translation models appears relevant.

This paper presents a supervised deep learning-based pro-
cedure to learn a single model for translating multiple maps
without a single remote sensing image. We train our method
to translate six land-cover maps with highly varying nomen-
clatures and scales. We satisfactorily apply our method on
the operational case of extending the spatial extent of one
land-cover map using another more comprehensive map. Our
experimentation, conducted at country-scale, outperforms
the traditional semantic-based method, and generalises better
than the multiple one-to-one models.

2. MULTI-MAP TRANSLATION FRAMEWORK

Our method includes two main steps: (i) dataset generation;
(ii) training a multi-LULC translation. Our framework as-
sumes that each map spatially overlaps with at least one of
the others. We do not use additional data such as geospatial
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imagery.

2.1. Dataset creation

Since no multi land-cover dataset was available, we created
a new one over France, with six land-cover maps, exhibiting
varying characteristics (global and continental to local scales,
see Table 1). To ensure that the number of land-cover changes
remains modest between our maps, we carefully selected as
close-by years as possible. The generation includes: (i) a cut-
off along the French borders, (ii) a projection into the offi-
cial French geographical system, (iii) a rasterization step for
maps available in vector format preserving the official prod-
uct resolution (iv) wide 6×6 km2 tilling procedure to keep
enough contextual information even for map with high mini-
mum mapping unit.

The full dataset with more details is available at https:
//doi.org/10.5281/zenodo.5843595.

2.2. Multi-land cover translation

Our goal is to jointly translate the spatial resolution and the
nomenclature using spatial context information. Our method
relies on Convolutional Neural Networks (CNN) since they
efficiently integrate the pixel semantics with its spatial con-
text. We cast our problem as a multi-task one in which one
LULC map must be translated into several others. Inspired by
recent work on multi-task learning, we propose to train sepa-
rate encoders (U-Net) and decoders (Spatial Pyramidal Pool-
ing) for each map. All maps are first resampled at the maxi-
mum resolution, then go through their respective encoders to
provide a joint embedding with the same dimensions (Fig. 1).
The resampling back to the original resolution is performed
by specified decoders. Encoders and decoders are trained
with three goals: (i) translation, (ii) self-reconstruction, (iii)
and defining a common latent representation for all maps. The
translation strategy implies that a given map A going through
its encoder and decoder B should result in map B. This is
achieved by using a cross-entropy loss denoted Ltra, between
the resulting translation and map B. The self-reconstruction
goal implies that a given map A going through its encoder
and decoder A should result in the original map A. This en-
sures that the learnt embedding keeps all information. This
is achieved by using a cross-entropy loss denoted Lrec, be-
tween the resulting reconstruction and map A. Lastly, to en-
sure high generalisation ability, we enforce similar features
to be mapped closely into the common representation space
across all maps by adding a constraint between the encoded
version of two maps covering the same areas. This constraint
is enforced through the computation of the mean square error
between two maps covering the same area (denoted as Lemb).
The total loss L is then computed as :

L = Lrec + Ltra + Lemb. (1)

Fig. 1. A multiple cross encoder-decoder is designed to learn
to simultaneously translate and self-reconstruct each land-
cover map among a heterogeneous set.

As in our previous paper [1], we assume that the translation
of a LULC element may co-variate with its spatial coordi-
nates (latitude and longitude). To take into account vast geo-
graphical structures (e.g., mountainous areas), we thus insert
a geographical-context sub-module taking the coordinates of
the patch to translate. Coordinates are encoded using a po-
sitional encoder strategy and given to a single hidden layer
perceptron. The resulting coordinate embedding is then mul-
tiplied by the embedding (Fig. 1).

Source code for the implementation and training details
are provided at https://github.com/LBaudoux/
MLULC.git.

3. EXPERIMENTS

The method is trained on the 6 maps included in our dataset.
Fig 2 shows translations of randomly selected pairs of source
and target patches based on either: (i) an expert-based pure
semantic association between nomenclatures, (ii) the statisti-
cal most probable association, (iii) a translation using a CNN
explicitly trained for this source/target pair (mono-LC model
[1]), (iv) and the results of our multi-LC model. The tradi-
tional semantic-based and statistic methods which do not use
spatial context fail to replicate the minimum mapping unit of
maps like Corine Land Cover, resulting in higher geometric
accuracy than the original and predicted CLC. In contrast,
mono and multi-LC translations using spatial context give a
significantly higher thematic accuracy of the translated maps
(visible when translating OSGE-use to CGLS-LC100 in the
second column). This finer nomenclature is especially exac-
erbated when translating classes with no correspondence in
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Name CGLS-LC100 [4] CLC [5] OSO [6] OCS-GE cover [7] OCS-GE use [7] MOS

Extent World Europe France West+South France West+South France Paris area
Selected year 2018 2018 2018 2014-2015 2014-2015 2017
Number of classes 12 44 23 14 17 11
Raster spatial resolution 1ha 25ha 0.01ha 0.01ha 0.01ha 0.02ha

Table 1. Main characteristic of the six selected land-cover maps (see references for more details).

Fig. 2. Comparison between different translation methods with varying source and target maps. Semantic refers to a simple
expert knowledge-based translation, Statistic refers to a translation of each source class by its most frequently associated target
class in the dataset, mono-LC to a CNN trained on a specific source-target pair, multi-LC is our method. G1 stands for OCS-GE
cover and G2 for OCS-GE use
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Source C P O M G1 G2
Target O M G1 G2 P C O M G1 G2 C M G1 G2 P C O P C O G2 P C O G1 P

OA

semantic 49 79 67 77 65 52 42 75 56 70 59 81 69 76 62 76 59 80 41 34 87 56 40 31 75 57
statistic 55 79 71 78 68 54 44 75 65 70 61 82 73 80 65 81 62 83 44 49 89 57 40 41 78 57
mono-LC 59 80 72 80 74 64 57 76 69 78 69 85 80 86 77 83 63 85 58 58 93 71 54 53 79 69
multi-LC 59 80 72 81 74 64 56 77 69 78 66 85 78 86 76 84 64 86 58 58 92 70 54 53 80 69

mF1

semantic 26 42 36 28 46 13 17 24 22 15 19 38 36 20 38 19 19 38 10 17 27 27 9 8 29 20
statistic 32 42 33 30 47 13 18 24 19 16 18 39 34 20 36 17 18 32 10 20 27 27 9 10 27 20
mono-LC 37 41 36 31 57 30 33 31 29 20 39 53 45 26 61 30 23 45 34 31 43 52 29 25 40 52
multi-LC 35 41 37 26 59 30 29 34 30 19 36 52 43 23 56 36 23 48 34 32 37 50 30 26 43 49

Table 2. Correspondence between our translation and the original target maps. OA: Overall accuracy, mF1: macro F1-score,
C: CLC, O: OSO, M: MOS, G1: OCS-GE cover, G2: OCS-GE use, P: CGLS-LC100.

the target nomenclature or on classes defined by their spa-
tial arrangement, such as the CLC class heterogeneous crops.
For quantitative assessment, we compare the translated map
to their respective target with the original resolution (Table 2.
The first observation is that the semantic and statistical-based
methods give significantly lower results than the mono and
multi-LC models, both in terms of overall accuracy (+9.7%
in average between multi-LC and semantic models) and mean
f1-score (+12% in average). Moreover, the mono and multi-
LC scenarios give comparable results but with some dispar-
ities depending on the source map used for the translation.
When the source is the OSO map, results tend to be a little
better for the mono-LC, especially in terms of mean f1-score.
This behaviour is mainly attributed to a better ability to trans-
late some specific erroneous classes in the OSO map (higher
noise robustness). Conversely, the multi-LULC model tends
to slightly outperform the mono-LC model when the source
data initially covers a small spatial extent (MOS, OCS-GE
use, OCSGE cover), making it more easily generalizable.

However, some classes are poorly translated by all the
methods, especially those mixing land-use with land-cover
such as Artificial non-agricultural vegetated areas. Moreover,
the obtained translation performance results are below the six
maps’ official expected accuracies, making the method not
yet adapted to operational purposes. Lastly, further improve-
ments are still required on geometric accuracy, especially on
linear structures (e.g., fourth row of Fig. 2).

4. CONCLUSION

In this paper, a multi-LC translation method for joint nomen-
clature and resolution translation was presented and satisfac-
torily assessed at a country wide-scale over France. The fully
automatic method relies neither on additional data nor expert
knowledge of translated maps. The analysis of the results re-
veals that the proposed method gives satisfactory results even
in difficult situations with no semantic relationship between
the source and the target classes. The method significantly
outperforms traditional baselines and gives on par results with
multiple one-to-one LULC translation methods using only a
single model. This paves the way for higher interoperability
between land-cover maps, improving result studies on opera-

tional setups such as updating old maps with more recent ones
or for map fusion tasks.

The method is also time-efficient since training the multi-
LC model France for our 6 maps (resulting in 30 possible
translations) is achieved in less than 24 hours with a single
Nvidia-V100 and 8 CPUs. For comparison, a mono-LULC
model (1 translation) is trained in 12 hours. As future work,
we aim to improve the geometric accuracy and evaluate it un-
der various operational constraints.
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