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Abstract. Research on hand action recognition has achieved very inter-
esting performance in recent years, notably thanks to deep learning meth-
ods. With those improvements, we can see new visions towards real appli-
cations of new Human-Machine interfaces (HMI) using this recognition.
Such new interactions and interfaces need data to develop the best user
experience iteratively. However, current datasets for hand action recog-
nition in an egocentric view, even if perfectly useful for these problems of
recognition, they generally lack of a limited but coherent context for the
proposed actions. Indeed, these datasets tend to provide a wide range of
actions, more or less in relation to each other, which does not help to
create an interesting context for HMI application purposes. Thereby, we
present in this paper a new dataset, FirstPiano, for hand action recog-
nition in an egocentric view, in the context of piano training. FirstPiano
provides a total of 672 video sequences directly extracted from the sen-
sors of the Microsoft HoloLens Augmented Reality device. Each sequence
is provided in depth, infrared and grayscale data, with 4 different points
of view for the last one, for a total of 6 streams for each video. We also
present the first benchmark of experiments using a Capsule Network
over different classification problems and different stream combinations.
Our dataset and experiments can therefore be interesting for research
communities of action recognition and human-machine interface.

Keywords: Action recognition · Human machine interaction · Hand
action dataset

1 Introduction

Augmented reality (AR) and virtual reality (VR) technologies have reached lev-
els that were fantasized a few decades ago. However, the promises of new and
natural interactions associated with the manipulation of a virtual world and
the portability of these devices are still far from being fulfilled. Indeed, if VR
devices have so far favored the use of joysticks, AR technologies, on the other
hand, have mainly decided to use basic hand gesture recognition to permit the
user to manipulate their interfaces. In both cases, hand action recognition has



yet been fully considered and implemented. Still, hand action is certainly the
principal activity in everyday of a human being since we interact with the world
around us with our hands. Hence, it would be interesting for AR and VR appli-
cations to draw all potential of hand action recognition features.

For such applications, algorithms for hand action recognition are needed,
and for such algorithms, datasets for training them are needed. However, most
of these datasets focus their efforts on providing a diversity of actions like object
and environment manipulations and also interactions with people instead of
focusing on a specific task. Hence, it is difficult to train such an algorithm that
can be used into a real AR or VR application since these datasets do not provide
a clear and useful context.

Thereby, we propose in this paper a new hand action dataset, FirstPiano,
which provides data for action recognition purposes, but also for training some
algorithms that can be used for useful AR applications and so helping HMI
research field. The acquisition of the data of FirstPiano was thus motivated to
capture an egocentric point of view of hand action within a strict and focus
context for such AR purposes. This also motivated us to obtain the data from
an easily reproducible setup. Hence, FirstPiano is a dataset capturing a context
of piano learning acquired directly from the integrated sensors of the Microsoft
HoloLens device. It contains 672 video sequences spread over up to 16 labels.
Each sequence is provided with 6 different video streams, depth, infrared and
grayscale images. A first benchmark using a recently developed neural network
architecture is also described to propose a first estimation of results on our
dataset on different data inputs and classification problem configurations.

2 Related Work

Hand Action Datasets: With the emergence and greater accessibility of RGB
or depth sensors at the beginning of the 2010s, many researchers have increas-
ingly focused on the problems of hand action recognition. We can then find a
lot of datasets that offer a common base to compare different proposed algo-
rithms. All hand action datasets are in an egocentric point of view, but we
can find two different contexts. The first one is the context of only grasping an
object [2,3,25], where it is interesting to analyze the exact position of the hand
depending on the nature of the grasped object, such as by the fingertips when
grasping a pencil, or pliers shape for holding a can. These datasets most focus
on analyzing the shape of the hand, and the object grasped rather than the tem-
poral evolution of the gesture of the hand. The second context is that of daily
activities [1,11–13,17,19,22,28]. In this case, the object grasped is manipulated
into fine action, such as pouring milk or cleaning glasses. First Person Hand
Action dataset, presented by Hernando et al. [12], is certainly the current most
elaborate dataset in this context with 1,175 sequences over 45 labels, but with
RGB and depth data for each one of its sequences and also the exact position
of the joints of the hand doing the action. EGTEA, presented by Li et al. [17],
the evolution of GTEA [11] contains 28 h of daily activities with RGB videos,



and also the gaze information and the mask of the hand. Still, these datasets,
even if very interesting for hand action recognition training, lack a concrete, pre-
cise, and focused context by providing a lot of different actions, not necessarily
linked to each other and whose recognition would not be of interest for an AR
application. However, from a third person point of view, we can find interesting
hand gesture datasets that offer precise context for applications. For example,
Molchanov et al., with NVGesture [20], proposed a dataset of hand gestures for
designing touchless interfaces while using a car so the user can focus on driving.
De Smedt et al. proposed DHG 14/28 [5] with a coarse and fine gesture that is
executed both with the all hand opens or with only the index that can be used
for interacting with computer interfaces.

Hand Action Recognition Algorithms: The last few years, deep learning
algorithms have become one the most efficient method in many fields especially
hand action recognition. Recently, even handcrafted approaches finally use neural
network by extracting manually very precise and fine features before passing
them to a network [31] or by using a neural network in parallel of handcrafted
features then by merging them together [15,30]. Specialized algorithms for hand
action recognition are quite rare to find in the state of the art in contrast to
hand gesture recognition, where we can find neural networks that are specially
designed to hand understanding by using hand skeleton with RNN architecture
[4] or graph convolutional network [16]. Hand action recognition solutions are
generally the same as those for human body activities [7,14,24] since both can
consider a skeleton based representation as a sequence of joints [6], or 2D/3D
CNN when this representation is not rich enough to capture the movement and
analyze the manipulated object. Lin et al. [18] implemented a temporal shift
module to share temporal information from a frame to the next inside a simple
2D CNN. Duarte et al. [8] proposed a first implementation of a 3D capsule
network [26] for video understanding of human activities.

Human-Machine Interfaces on AR Device: Just before the arrival of aug-
mented reality devices to the general public, such as the Microsoft HoloLens,
some research groups have already developed their own smart glasses with hand
action recognition solution integrated. For example, Schröder et al. [27] proposed
smart glasses with RGB and depth sensors connected to an external computer
to process an action made by the user to then display contextual information
over the glasses. Essig et al. [9] proposed a similar project, but with a long-term
vision to be fully personalized to the user by progressively constructing a mental
representation of the user to display precise feedback over his glasses.



3 FirstPiano: Egocentric Dataset of Piano Interaction

3.1 Dataset Overview

FirstPiano is a hand action dataset focused on hand action recognition and to
be used for AR applications. For this purpose, it contains a set of 672 actions
videos with 6 different modalities for each of them for a total of 4,032 videos
and 473,892 frames. We propose a context of piano training where a subject is
asked to play a major scale in a right way or a wrong way for a total of up to
16 labels.

To understand how we get to 16 labels, we need to explain how a major scale
is constructed in the musical field. The western musical language has 7 different
notes (C,D, E, F , G, A, B), which are the white keys on a piano and 2 variations
for each of them, flat or sharp, which are the black keys. Two musical notes are
separated by what is called an interval, the smallest one being the half interval
which can be observed on a piano between two consecutive keys (for example,
between white A and black B! or between white B and white C). A full interval
is a succession of two half intervals (for example, between white C and white D,
between black G" and black B! or between white E and black F "). To construct
a major scale, one need to take a base note, which give the name of the scale,
and to take the 7 next notes by following this series of intervals: 1, 1, 1/2, 1, 1,
1, 1/2. We propose examples for C and F major scales on Fig. 1.

Do Re Mi Fa Sol La Si Do

1 1 1/2 1 1 1 1/2

C D E F G A B C

Fa Sol La

F G A

1 1

Sib
Bb

1/2

Do

C

1 1 2/11

Re Mi Fa

D E F

Fig. 1. Example of C and F major scale construction on a piano

Moreover, to be considered as rightly-played, we impose a precise gesture.
Let’s consider the fingers on a hand as 1 for the thumb, 2 for the index, 3 for
the middle, 4 for the ring finger and 5 for the little finger. When played with the
right hand, the 8 notes of a major scale must be played in ascending way on the
following order: 1, 2, 3, 1, 2, 3, 4, 5. When played with the left hand the order
is different: 5, 4, 3, 2, 1, 3, 2, 1. For descending way, the order for both hands
is reversed. An example of this precise gesture with the left hand on a D major
can be seen on Fig. 2.

Hence, each major scale is constructed from a start note is unique and need to
have a precise gesture during its execution. We decided to limit the dataset to the



Fig. 2. Gesture imposed to right play a major scale. Example with left hand on D
major

7 major scale that can be constructed from any white key. Each of these scales
has multiple start emplacement in the piano and is performed with the right and
the left hand, both in two other ways, crescendo and crescendo-decrescendo. We
decided not to differentiate all those different playing configurations directly;
therefore, for rightly-executed scale, there is 7 labels, one for each scale. Since
the note compositions of all major scales are unique and different and since
there is only a unique and precise gesture for playing a scale, we introduce in
the dataset a set of sequences of wrongly-played executed scales. Some of them
with wrong notes, extra notes, fewer notes and wrong gestures. Knowing that a
sequence can multiply these mistakes, we reached a total of 16 different labels
in the dataset.

3.2 Sensors and Acquisition Modalities

For the data acquisition, we decided to directly use the integrated sensors of
the Microsoft HoloLens device thanks to the HoloLensForCV project1 for data
extraction. This AR headset directly provides an accessible and constant setup
unlike other dataset that use a custom one. The Microsoft HoloLens is equipped
with 8 different sensors. Since the frontal RGB camera has a too small view-
ing angle and since the long throw depth does not provide interesting data,
we decided to keep the other 6 sensors to know: the short depth, long throw
reflectivity, and the 4 peripheral grayscale sensors (see Fig. 3).

With a total of 66,320 of short throw depth frames, this sensor provides
interesting information, especially to have precision to know if a key is pressed
on the piano or else to let the possibility to extract hand pose and its skeleton
1 https://github.com/microsoft/HoloLensForCV.



IR sensor

4 x Peripherical
grayscale sensors

Depth sensor

Fig. 3. The 6 sensors of the HoloLens device used and an example of each one inside
the FirstPiano dataset

[10,21]. With 66,194 frames, the long throw reflectivity sensor permits to get a
good central field of view of the hand of the player. The 4 peripheral grayscale
sensors, with a total of 341,378 frames provide a full field of view on the entire
piano, divided into 4 more precise points of view.

The acquisition was made in 2 different places and with 3 different sub-
jects to provide a bit of diversity into the speed of execution and ease to play.
Finally, each of the 7 major scales has 12 recordings, all with a rightly-played
and wrongly-played recording, each in 4 different gestures, with the right hand
or the left hand in a crescendo and crescendo-decrescendo way for a total of 672
sequences.

4 Benchmark Evaluation

4.1 Method: 2D Deep Video Capsule Network

We decided to use the 2D Deep Video Capsule Network approach (2D DVCN)
[29] for the evaluation of FirstPiano. 2D DVCN architecture consists of the
implementing of the temporal shift module [18], which permits adding temporal
information into 2D neural network architecture that analyse spatial features,
into a deep capsule network [23,26]. Briefly, a capsule is quite similar to a convo-
lutional layer in its function since it captures and analyzes spatial features thanks
to convolutional operations. The difference being that a capsule groups together
the result of many convolutional operations to encapsulate many complex spa-
tial features. We implemented a temporal shift module applied on the capsule
by shifting part or all of the convolution operations composing the capsule of all
or part of the capsule in a layer, leading us into 3 different implementations. The
first one is shifting the first convolutions of the first capsules so that we share
partial spatial information of some capsules to let the network to work with both
past and current information. The second one is shifting first convolutions of all
the capsules, since all capsules capture independent complex spatial features, it
seems logical to consider all of them equally. In the last one is shifting all the
convolutions of the first capsules of a layer, since all the convolutions of a capsule
are linked together to represent a complex spatial feature, it also seems logical
to shift all of them inside a same capsule.



While training 2D DVCN, one of these temporal shift module implementation
is initially chosen and does not change during all the training. The shift module
is also applied to all capsule layers of the network, whose architecture can be
observed on Fig. 4. More precision of all this information can be found in [29].

Input
2D

Convolution
CapsCell

ConvCaps

x2
x3

ConvCaps FlattenCaps Classification

Dense
2D

Deconvolution Reconstruction

x6

Fig. 4. Illustration of 2D DVCN [29]. ConvCaps is a standard 2d convolutional capsule
layer but with temporal shift applied on it. CapsCell is a set of 3 ConvCaps with a
residual branch between the first and the last

4.2 Experiments

For our experiments, we use the Keras library with Tensorflow in backend. 2D
DVCN was trained on the following hardware configuration: Intel i9 9900k,
Nvidia RTX Titan and 32 GB RAM. We used the Adam Optimizer during
training with a starting learning rate of 0.001 and trained the network over 500
epochs.

Binary Recognition of Major Scales: For our first experiments, we consid-
ered a problem of binary classification. Even if we described that the sequences
of FirstPiano are distributed over 16 labels, we firstly decided to consider only
two labels, one when the major scale is rightly-played and the other if it is played
wrongly-played, whatever the major scale. We justify the approach for two rea-
sons, first one is that it permits us to test our dataset on an easy problem. The
second one is that a rightly-played major scale is unique and can be deduced
from the very first note. We can then justify having a network for this binary
classification and a second method dedicated to identify the major scale with
the first frames of a sequence classified as justify.

We start by using only two of the grayscale sensors, the central left and
the central right since these two sensors are enough to get a full vision of the
piano. Moreover, in this configuration, we let the network learns which hand is
playing instead of giving him directly the right sensor associated with the playing
hand. The two frames are simply juxtaposed as a panorama before being sent
to the network. In this configuration, we reach an accuracy of 76.58% of good
classification when using the shifting on the first convolutions of all capsules (see
Table 1).



Table 1. Comparison of 2D DVCN results depending on the temporal shift imple-
mentation used over our FirstPiano dataset considering 2 labels and using 2 grayscale
streams

Temporal shift Accuracy (%)

1rst convolutions of the 1rst capsules 75.71

All convolutions of the 1rst capsules 76.26

1rst convolutions of all capsules 78.56

No shifting 76.13

We then decided to feed the network with only the depth data. This stream
has a sufficient angle of view to observe the majority of the piano and since we
did not acquire some playing on the extreme sides of the piano, the depth stream
is sufficient alone. Moreover, in addition to being visually interpreted the same
as a grayscale image, with fewer details, it also contains additional information
such as the distance of each pixel to the sensor. We obtain similar results than
the configuration of using as input both grayscale streams, with the temporal
shift of the first convolutions of all capsules returning the best result. however,
it seems that the depth stream alone does not provide as much information as
the two grayscale streams since we only reached an accuracy of 73.33% of good
classification in this case (see Table 2).

Table 2. Comparison of 2D DVCN results depending on the temporal shift implemen-
tation used over our FirstPiano dataset considering 2 labels and using depth stream
only

Temporal shift Accuracy (%)

1rst convolutions of the 1rst capsules 69.14

All convolutions of the 1rst capsules 69.91

1rst convolutions of all capsules 73.33

No shifting 70.57

Combining all the 3 previously described video streams by juxtaposing them
leads us towards very similar results to those of the case using only depth data
(see Table 3). However, given that we are using both grayscale video streams, we
can expect to get at least similar results to the case using them only. The most
logical conclusion is that the way 2D DVCN was implemented was probably not
deep enough to process such high dimensional input and since capsules work
with convolutional operations, the juxtaposition of depth and grayscale into a
unique image lost them.



Table 3. Comparison of 2D DVCN results depending on the temporal shift implemen-
tation used over our FirstPiano dataset considering 2 labels and using 3 video streams

Temporal shift Accuracy (%)

1rst convolutions of the 1rst capsules 70.14

All convolutions of the 1rst capsules 73.56

1rst convolutions of all capsules 72.54

No shifting 69.14

Multi Labelling of Major Scales Recognition: Since we obtained pretty
good results in the easy configuration of binary classification, we decided to com-
plicate the problem by multi labelling all the major scales. We then considered
8 labels, one for each different rightly-played major scale, for a total of 7 and
the last one, which includes all wrongly-played scales. We can justify this choice
because, even if a wrongly-played scale is associated to a note in the hierarchy
of our dataset, it can be difficult, even impossible, to tell from which scale there
have been wrong notes. Moreover, we think it will be far more interesting to have
a specialised method to precisely identify what mistake is made in a wrongly-
played scale, especially the exact frames it occurs. Since a single network cannot
deal with so many particularities and special cases, we decided it was the best
configuration to a multi labelling problem from a unique method.

Table 4. Comparison of 2D DVCN results depending on the temporal shift imple-
mentation used over our FirstPiano dataset considering 8 labels and using 2 grayscale
streams

Temporal shift Accuracy (%)

1rst convolutions of the 1rst capsules 59.09

All convolutions of the 1rst capsules 61.93

1rst convolutions of all capsules 61.36

No shifting 60.20

Since the problem has become more difficult, we can observe a degradation
of the classification accuracy. Using the two grayscale video streams, we reached
61.93% of good classification when shifting all convolutional operations of the
first capsules of a layer (see Table 4). Slightly worse results were obtained using
all 3 depth and grayscale streams. We reached 59.45% of good classification using
the same temporal shift, we also found similar degradation of results using the
depth stream juxtapose next to the grayscale ones (see Table 5). These results
are coherent with the complication of the classification problem. Indeed, we can
explain it since the network now has to also focus exactly on the notes played
and not only on the gesture or the number of notes played.



Table 5. Comparison of 2D DVCN results depending on the temporal shift implemen-
tation used over our FirstPiano dataset considering 8 labels and using 3 video streams

Temporal shift Accuracy (%)

1rst convolutions of the 1rst capsules 57.23

All convolutions of the 1rst capsules 59.45

1rst convolutions of all capsules 56.46

No shifting 56.89

5 Conclusion

In this paper, we proposed a new dataset for hand action recognition oriented
towards AR applications, FirstPiano. The dataset provides 672 video sequences,
each one with 6 different video streams, of rightly and wrongly played major
scale on a piano in various configurations. Data are extracted directly from the
integrated sensors on the Microsoft HoloLens device so that the acquisition setup
can be constant for everyone wanted to use the dataset for AR applications or
even to complete it. We also provide the first benchmark to evaluate FirstPiano
on different configurations, such as binary and multi classification using 1 to 3
video streams as input.

As future works, it could be interesting to complete the dataset even for
current actions provided but also with new piano exercises such as dissocia-
tion between the left hand and the right hand during playing or even different
rhythms. It would also be interesting to deepen the notation of labels, especially
by including, for each sequence, the frames when a new note is being played as
right as the finger used so that it could be possible to train a precise algorithm
that can find the exact location of mistakes.

We believe that this work presenting a new dataset in addition to the tested
benchmark can encourage new research in the hand action recognition but also
in the human computer interface fields.

References

1. Bambach, S., Lee, S., Crandall, D.J., Yu, C.: Lending a hand: Detecting hands and
recognizing activities in complex egocentric interactions. In: IEEE International
Conference on Computer Vision (ICCV). pp. 1949–1957 (2015)

2. Bullock, I.M., Feix, T., Dollar, A.M.: The yale human grasping dataset: Grasp,
object, and task data in household and machine shop environments. The Interna-
tional Journal of Robotics Research 34(3), 251–255 (2015)

3. Cai, M., Kitani, K.M., Sato, Y.: A scalable approach for understanding the visual
structures of hand grasps. In: IEEE International Conference on Robotics and
Automation (ICRA). pp. 1360–1366 (2015)

4. Chen, X., Guo, H., Wang, G., Zhang, L.: Motion feature augmented recurrent
neural network for skeleton-based dynamic hand gesture recognition. IEEE Inter-
national Conference on Image Processing (ICIP), September 2017



5. De Smedt, Q., Wannous, H., Vandeborre, J.P., Guerry, J., Saux, B.L., Filliat, D.:
3D hand gesture recognition using a depth and skeletal dataset: Shrec 2017 track.
In: Proceedings of the Workshop on 3D Object Retrieval. 3Dor 2017, pp. 33–38.
Eurographics Association, Goslar, DEU (2017)

6. De Smedt, Q., Wannous, H., Vandeborre, J.-P.: 3D hand gesture recognition by
analysing set-of-joints trajectories. In: Wannous, H., Pala, P., Daoudi, M., Flórez-
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