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A Saliency based Feature Fusion Model for EEG Emotion Estimation

Among the different modalities to assess emotion, electroencephalogram (EEG), representing the electrical brain activity, achieved motivating results over the last decade. Emotion estimation from EEG could help in the diagnosis or rehabilitation of certain diseases. In this paper, we propose a dual model considering two different representations of EEG feature maps: 1) a sequential based representation of EEG band power, 2) an image-based representation of the feature vectors. We also propose an innovative method to combine the information based on a saliency analysis of the imagebased model to promote joint learning of both model parts. The model has been evaluated on four publicly available datasets: SEED-IV, SEED, DEAP and MPED. The achieved results outperform results from state-of-the-art approaches for three of the proposed datasets with a lower standard deviation that reflects higher stability. For sake of reproducibility, the codes and models proposed in this paper are available at https://github.com/VDelv/Emotion-EEG.

I. INTRODUCTION

Emotion estimation is a trending topic in various research applications. Advances in this field could help to have a better understanding of language processing and nonverbal communication in the context of Human-Computer-Interaction (HCI). Although most of the proposed works consider voice/sound, video, images or text, recent works have shown that the emotional state can also be predicted from biomedical signals. An example is the MPED corpus [START_REF] Song | MPED: A Multi-Modal Physiological Emotion Database for Discrete Emotion Recognition[END_REF] presenting a dataset composed of physiological recordings, i.e. EEG, electrocardiogram (ECG), respiration and galvanic skin response (GSR), with an initial benchmark aiming to estimate emotional state are presented. Furthermore, other works have shown that eye-tracking signals can also be considered to estimate emotion [START_REF] Zheng | Multimodal emotion recognition using EEG and eye tracking data[END_REF].

During the last decade, Artificial Intelligence (AI) and specially Machine-Learning (ML) based algorithms have known an increase in interest. The reasons are varied: higher robustness, higher accuracy, technological democratisation and the growing simplicity of their development. Through the scientific community, ML-based algorithms are used in a wide range of technologies and domains including medical field with for instance: diseases and infections detection from physiological recordings [START_REF] Hatt | The first MICCAI challenge on PET tumor segmentation[END_REF], understanding of the human genomes [START_REF] Li | Genome-wide prediction of cis-regulatory regions using supervised deep learning methods[END_REF], human behaviour prediction [START_REF] Phan | A deep learning approach for human behavior prediction with explanations in health social networks: social restricted Boltzmann machine (SRBM+)[END_REF] or drugs discovery [START_REF] Antón Pastur-Romay | Deep artificial neural networks and neuromorphic chips for big data analysis: pharmaceutical and bioinformatics applications[END_REF].

On another side, the recent researches on Brain-Computer Interfaces (BCI) have led to an increase in their use in innovative applications and projects. BCI aims to create a connection between computers and users' brains through physiological signals, e.g. EEG, Magnetoencephalogram (MEG), Magnetic Resonance Images (MRI). This connection is invasive/non-invasive; open-loop (e.g. recording signals during a specific task on a computer) or closed-loop (e.g. video game evolving with the brain activity) depending on the considered application.

In the context of emotion estimation, an increase of research projects proposing BCI application have been noted. As reported by Craik et al. [START_REF] Craik | Deep learning for electroencephalogram (EEG) classification tasks: a review[END_REF], one paper out of 6 considering the use of Deep Learning (DL) algorithm for EEG is dedicated to emotion estimation tasks. The existing works present datasets to assess emotional state [START_REF] Zheng | Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks[END_REF], [START_REF] Zheng | Emotion-Meter: A Multimodal Framework for Recognizing Human Emotions[END_REF], [START_REF] Song | MPED: A Multi-Modal Physiological Emotion Database for Discrete Emotion Recognition[END_REF], [START_REF] Koelstra | Deap: A database for emotion analysis; using physiological signals[END_REF] and different models often based on DL algorithms to retrieve the emotional state from EEG signals [START_REF] Li | A Novel Bi-hemispheric Discrepancy Model for EEG Emotion Recognition[END_REF], [START_REF] Song | EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks[END_REF], [START_REF] Zong | A Novel Neural Network Model based on Cerebral Hemispheric Asymmetry for EEG Emotion Recognition[END_REF], [START_REF] Zhong | EEG-Based Emotion Recognition Using Regularized Graph Neural Networks[END_REF]. The proposed methodologies consider EEG under different forms: e.g. graph representation of EEG signals [START_REF] Song | EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks[END_REF], [START_REF] Zhong | EEG-Based Emotion Recognition Using Regularized Graph Neural Networks[END_REF], vectors separated between each hemispheres [START_REF] Li | A Novel Bi-hemispheric Discrepancy Model for EEG Emotion Recognition[END_REF], [START_REF] Zong | A Novel Neural Network Model based on Cerebral Hemispheric Asymmetry for EEG Emotion Recognition[END_REF] and even images based representation [START_REF] Van Noord | Insights of 3d input cnn in eeg-based emotion recognition[END_REF].

One of the major concerns for the use of ML algorithms in medical applications and especially for EEG processing is the explainability of models. Recent works [START_REF] Li | The Perils and Pitfalls of Block Design for EEG Classification Experiments[END_REF] have shown that biases may exist in several works considering ML-based processing of EEG. In this context, it is important to consider interpretable models. Different approaches have been designed for this purpose. For instance, the signal can be projected in a latent space to have a better representation of the signals [START_REF] Vishal | Latent space sparse subspace clustering[END_REF] to help in the classification. Another approach [START_REF] Ramprasaath R Selvaraju | Grad-cam: Visual explanations from deep networks via gradient-based localization[END_REF] consists in visualizing the elements (i.e. pixels of an image, point of a graph or element of an array) used by the model to make a decision.

In this context, a framework aiming to estimate emotion from EEG is presented. This framework is composed of two parallel modules: (1) a higher-level network considering an image-inspired representation of EEG to benefit from advantages of computer vision models; (2) a lower-level network considering each electrode contribution through an array representation of EEG. The contributions of the two networks are then combined to estimate the corresponding emotion state from a given EEG trial.

II. METHOD

As in previous works, the proposed framework follows a general pipeline to estimate emotion from EEG signals. In this section, each step composing this pipeline is presented.

A. Feature extraction

Let's consider an EEG sample ∈ R n channels ×n samples with n channels the number of electrodes on the EEG headset and n samples = duration * f sampling the sample size for each trial. It is possible to manually extract n f eatures for each EEG segments considered as time series to have a representation of EEG in a smaller subspace ∈ R n channels ×n f eatures . The considered features may represent temporal, spatial (i.e. related to electrodes location on the scalp) or frequential (i.e. feature related to the contribution of different frequential bands) information from signals. Due to the difficulty to characterize raw EEG signals and their trend to be affected by noise (e.g. electrical noise and muscles given their close frequency to EEG [START_REF] Muthukumaraswamy | High-frequency brain activity and muscle artifacts in MEG/EEG: A review and recommendations[END_REF]), a majority of dataset proposed denoised EEG and pre-extracted features [START_REF] Zheng | Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks[END_REF], [START_REF] Song | MPED: A Multi-Modal Physiological Emotion Database for Discrete Emotion Recognition[END_REF], [START_REF] Zheng | Emotion-Meter: A Multimodal Framework for Recognizing Human Emotions[END_REF]. Among the most commonly considered feature extraction methods for emotion estimation, two have been kept: 1) the power spectral density (PSD) representing the contribution of each frequential band in the EEG signal, 2) the differential entropy (DE) reflecting the temporal evolution of EEG segments [START_REF] Duan | Differential entropy feature for EEGbased emotion classification[END_REF]. The feature extraction methods can be considered separately or combined by computing DE on EEG signals filtered at specific frequencies. The choice of these feature extraction methods is motivated by their encouraging results for emotion estimation [START_REF] Van Noord | Insights of 3d input cnn in eeg-based emotion recognition[END_REF], [START_REF] Duan | Differential entropy feature for EEGbased emotion classification[END_REF], [START_REF] Zheng | Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks[END_REF], [START_REF] Ahern | Differential lateralization for positive and negative emotion in the human brain: EEG spectral analysis[END_REF].

From the array representation, it is also possible to consider spatial information through more visual representation image-based EEG feature maps [START_REF] Bashivan | Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks[END_REF]. Given the location of the electrodes in a 3D frame (i.e. cartesian coordinate of the position on the scalp), it is possible to consider an azimuthal projection to represent their locations in 2D. Finally, after assigning the feature values to each electrode in the 2D discrete representation an image is created by interpolating the values in the two projected dimensions. Finally, the constituted images will have the following shape [n f eatures × h × w] with the height h and width w taken arbitrarily.

B. Images estimation

From the image representation of EEG signals ∈ R n f eat ×h×w , two-family of models, initially dedicated to image processing, have been considered: convolutional neural networks (CNN) and capsule networks.

The CNN approach consists of a VGG-inspired model [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] with an architecture composed of three modules each of them respectively composed of 4, 2 and 1 convolutional layers followed by batch normalization layers. Each module is separated by a max-pooling layer.

The capsule-based model consists of the general architecture presented by Sabour et al. [START_REF] Sabour | Dynamic Routing Between Capsules[END_REF]. One of the advantages of this network is its ability to extract the spatial information between elements composing an image, e.g. automatically taking into account the nose or mouth position for face detection systems. In our method, the initial dynamic routing between capsules has been adapted to match EEG images. The consideration of this novel approach allows us to study the spatial relevance among EEG images. Moreover, the use of capsule networks remains also interesting for their lower computational cost compared to other CNN architectures during inference.

C. Array estimation

On the other hand, a more understandable approach compared to the previously presented models has also been considered. This last consists of a recurrent neural network (RNN) composed of the succession of hierarchical subnetworks, each of these networks aiming to extract information at different levels: electrodes, physiological regions or hemispheres based relationships. This model has been inspired by the hierarchical RNN (H-RNN) [START_REF] Wang | Hierarchical recurrent neural network for skeleton based action recognition[END_REF] aiming to classify motor movements from skeleton recordings at different locations and levels, e.g. fingers, hands, arms, trunk.

The network aims at considering the contribution of each element at each spatial level: relative electrodes positions, physiologically defined electrodes regions and hemispheres. A representation of the framework with the H-RNN is shown in Figure 1. During the training, it is possible to compute the activation of each level and then to measure the contribution of each element composing the feature array to estimate the emotional state.

More, RNN has shown motivating results on various public EEG datasets and especially for emotion estimation [START_REF] Li | A Novel Bi-hemispheric Discrepancy Model for EEG Emotion Recognition[END_REF].

D. Merging models methodology

From the results provided by the models presented above, a combination of these last has been considered to merge their strengths and improve the classification accuracy. Different methodologies can be considered depending on the fusion location of the models: 1) output fusion considering a linear combination of both estimated classes; 2) feature fusion consisting in concatenating of the features vectors extracted by the two DL models.

To promote the synchronised learning of both networks and help transfer learning between modules, a novel approach based on saliency analysis has been considered. This last consists of estimating the most salient electrodes/regions of the scalp to make the estimation for the RNN and to integrate this information during the training of the imagebased network. The feature vector saliency from the RNN is computed as Saliency = ∂Class ∂X . These vectors measure the importance of each electrodes' feature to estimate emotion. From the saliency vector, an image representation is considered and used to weigh the image representation of the feature vector. This process aims to concentrate the learning around the most important region of the EEG.

III. EXPERIMENT

In this section, the considered datasets for training the proposed model are presented, then its implementation details are presented and an adversarial training methodology as a domain classification is proposed. 

A. Datasets

We consider four different datasets to evaluate our approach. The choice of working with four different datasets, despite optimizing only one of them, is done to promote a general approach working on different participants of different backgrounds.

• SEED IV [START_REF] Zheng | Emotion-Meter: A Multimodal Framework for Recognizing Human Emotions[END_REF] contains EEG recordings of 15 different participants spread over 3 sessions each consisting of 24 trials. One trial consists of EEG recording during video clips promoting several emotions, during which several physiological signals are recorded (eye positions and EEG). In this dataset, four emotion classes have been considered: happy, sad, neutral and fear.

• SEED [START_REF] Zheng | Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks[END_REF] is composed of recordings from 3 sessions repeated for 15 participants, each session is composed of 15 trials. The experimental setup consists of the recording of EEG during video promoting specific emotion. In the SEED dataset, emotions have been separated into three more general classes: positive, negative and neutral.

• MPED [START_REF] Song | MPED: A Multi-Modal Physiological Emotion Database for Discrete Emotion Recognition[END_REF] contains the recordings of several physiological signals (EEG, ECG, GSR) for a total of 30 participants. Similarly, the recordings have been made during video clips. The promoted emotion during the videos have been separated into seven classes: joy, funny, anger, disgust, fear, sad and neutrality.

• DEAP [START_REF] Koelstra | Deap: A database for emotion analysis; using physiological signals[END_REF] is a multi-modal dataset composed of EEG, electromyogram (EMG) and electrooculogram (EOG) recordings of 32 participants. During the dataset creation, it has been asked to participants to look at the video and to self-assess emotion state according to three dimensions: arousal (i.e. from excitation to disinterest), valence (i.e. from pleasant to unpleasant) and dominance (i.e. the ability to control the feelings from weak to empowered) considered as the labels of the physiological recordings.

Each dataset has been recorded with biomedical EEG headsets following the 10/20 electrodes placement of the 62 electrodes for [START_REF] Zheng | Emotion-Meter: A Multimodal Framework for Recognizing Human Emotions[END_REF], [START_REF] Zheng | Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks[END_REF], [START_REF] Song | MPED: A Multi-Modal Physiological Emotion Database for Discrete Emotion Recognition[END_REF] and 32 electrodes for [START_REF] Koelstra | Deap: A database for emotion analysis; using physiological signals[END_REF] (proposed model has been adapted to fit the number of considered electrodes). Moreover, the provided feature vectors have been considered in this experiment: DE in five frequency bands (δ, θ, α, β and γ bands) in [START_REF] Zheng | Emotion-Meter: A Multimodal Framework for Recognizing Human Emotions[END_REF], [START_REF] Zheng | Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks[END_REF]. For [START_REF] Song | MPED: A Multi-Modal Physiological Emotion Database for Discrete Emotion Recognition[END_REF], [START_REF] Koelstra | Deap: A database for emotion analysis; using physiological signals[END_REF] PSD has been considered with the same frequency bands limit and methodologies as in the original paper [START_REF] Koelstra | Deap: A database for emotion analysis; using physiological signals[END_REF].

B. Domain classification

It has been noted that the recent advance in DL leads to novel training methodology increasing estimation accuracy. One of them aims at transferring the information from a dataset to another [START_REF] Ganin | Unsupervised domain adaptation by backpropagation[END_REF]. This method consists in training the network with the original dataset similarly to regular cross-validation methods with an additional step. During this step, both datasets are used but their labels are hidden (thus considered as unknown by the network) and the goal for the network during this step is to estimate the source dataset of the considered element. This additional step allows to add knowledge from other datasets and also to extract information from input regardless of their source.

In the context of EEG processing, a similar approach has been proposed [START_REF] Lan | Domain adaptation techniques for eeg-based emotion recognition: a comparative study on two public datasets[END_REF] and consider the training and validation as the two different datasets. The methodology remains valid since the labels are not used during the domain classification. The domain classification helps to improve the crossvalidation accuracy by promoting more general processing of information by the DL model [START_REF] Lan | Domain adaptation techniques for eeg-based emotion recognition: a comparative study on two public datasets[END_REF]. Model Accuracy (µ/σ) [%] SVM [START_REF] Li | A Novel Bi-hemispheric Discrepancy Model for EEG Emotion Recognition[END_REF] 31.46/9.20 DGCNN [START_REF] Song | EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks[END_REF] 52.82/9.83 BiDANN [START_REF] Zong | A Novel Neural Network Model based on Cerebral Hemispheric Asymmetry for EEG Emotion Recognition[END_REF] 65.59/10.39 BiHDM [START_REF] Li | A Novel Bi-hemispheric Discrepancy Model for EEG Emotion Recognition[END_REF] 69.03/8.66 RGNN [START_REF] Zhong | EEG-Based Emotion Recognition Using Regularized Graph Neural Networks[END_REF] 73 

C. Implementation details

In image-based representation, the number of channels for the three CNN sub-modules has been respectively set to 16, 64 and 128. Moreover, we consider 32 × 32 images to consider square shape images that better fit with convolution. For the other representation, the hidden dimension of the RNN has been set to 32. During the training phase, a crossentropy loss has been considered, moreover, adam optimizer with an adaptative learning rate has been considered: l r = 10-3 and weight decay, w d = 10 -8 . The number of epochs has been fixed to 150, if the loss was not evolving favourably during 5 epochs the training was stopped. All the models have been implemented with Pytorch library and were trained on one 24 GB Nvidia Titan RTX GPU. For the sake of reproducibility, the model architecture is freely available online. 1

IV. RESULTS AND DISCUSSION

To assess the results provided by the proposed models, we have first considered the training and validation of the different approaches proposed above on the SEED-IV dataset [START_REF] Zheng | Emotion-Meter: A Multimodal Framework for Recognizing Human Emotions[END_REF], this last being the bigger. Then, the best approaches have been compared to the state-of-the-art models on the three other datasets [START_REF] Zheng | Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks[END_REF], [START_REF] Song | MPED: A Multi-Modal Physiological Emotion Database for Discrete Emotion Recognition[END_REF], [START_REF] Koelstra | Deap: A database for emotion analysis; using physiological signals[END_REF].

The considered metric for model evaluation is the Leave One Subject Out (LOSO) cross-validation accuracy. With this evaluation methodology, all the subjects except one are used to train the model and the evaluation is made on the remaining one. This evaluation is repeated for each participant and the corresponding mean and standard deviation are computed. The LOSO cross-validation accuracy has been chosen to assess the model ability to generalise to participants never met previously. EEG signals being very person-specific [START_REF] Li | The Perils and Pitfalls of Block Design for EEG Classification Experiments[END_REF], a large gap is often noted for the cross-validation accuracy between participant dependant and participant independent (i.e. LOSO). Nevertheless, BCI applications are supposed to be directly used on the participant in real-life, i.e. their signals are not used during the training of the DL model. It was thus decided to consider LOSO cross-validation to monitor the model ability to generalise.

As reported in Table I, all the described approaches previously mentioned have been trained on the SEED-IV [START_REF] Zheng | Emotion-Meter: A Multimodal Framework for Recognizing Human Emotions[END_REF] dataset. As shown, the best results for the primary study (standalone approach without models combination) were found for the image-based approach with CNN. Besides, lower results were also noted for the hierarchical RNN with higher stability among participants (i.e. lower standard deviation). For this reason, it has been chosen to consider the combination of these two models to merge their advantages.

Three different approaches have been used to merge the models: concatenating the output estimation (Output Fusion), concatenating feature vectors with saliency extraction from the low-level model (Saliency Fusion) and without saliency (Feature Fusion). As reported in Table I, the merged models present better results, especially the saliency-based combination that exceeds the results from state-of-the-art methods but also our previous experiments. Another advantage of the saliency-based feature fusion is its low standard deviation compared to other models. This expresses the fact that saliency-based fusion presents similar results independently of the participants. The improvements provided by the saliency-based approach are explained by this dual methodology considering in parallel the sequential information provided by the H-RNN and the more general region activation highlighted by the CNN. Furthermore, focusing the training on the specific region of the imagebased EEG with a raw attention mechanism presents better performance than a simple concatenation.

In Table III, a comparison of the results of two of the previously mentioned models are presented with state-of-theart models for emotion estimation from EEG. As shown, our approaches present the best results for some datasets and remain on the same scale for other datasets that proved their ability to estimate emotion in various cases. More, our approach presents better results than [START_REF] Van Noord | Insights of 3d input cnn in eeg-based emotion recognition[END_REF], however, the exact scores being not given in their paper, our results have been compared to their results in their presented Figures. As seen in Table III, the results obtained by our saliency-based approach exceed those obtained by previous works. Although this last may seem only slightly better than previous works, it is important to note that the proposed approach is able, at least, to achieve a comparable subject independent crossvalidation accuracy as previous works. The purpose of the proposed method is to present a general model instead of a finely tuned approach working only in a specific context. Leave One Subject Out cross-validation accuracy for emotion estimation on several datasets: SEEED-IV [START_REF] Zheng | Emotion-Meter: A Multimodal Framework for Recognizing Human Emotions[END_REF], SEEED [START_REF] Zheng | Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks[END_REF], MPED [START_REF] Song | MPED: A Multi-Modal Physiological Emotion Database for Discrete Emotion Recognition[END_REF] and DEAP [START_REF] Koelstra | Deap: A database for emotion analysis; using physiological signals[END_REF]. * denotes the results obtained from our model experiments.

V. CONCLUSION

In this paper, we proposed a novel framework aiming to estimate emotion from EEG. The proposed model is composed of a dual approach considering the spatial relationship between EEG channels through a hierarchical RNN and a DL representation through CNN. The proposed method shows encouraging results on three datasets. In further work, it could be interesting to consider novel ML models with different representations (e.g. graph neural network) and more understandable approaches with other feature extraction methods.

In the next few years, emotion estimation from EEG could be used in various applications covering several fields, e.g. entertainment or medical domain.
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 1 Fig. 1: Overview of the framework composed of the feature extraction and represenation (left part), the H-RNN (top part), the CNN (bottom part) and the emotion and domain classification (right part). The saliency maps extracted by the H-RNN are used to weight input images of the CNN.

TABLE I :

 I Leave One Subject Out cross-validation accuracy for emotion estimation on SEED-IV dataset[START_REF] Zheng | Emotion-Meter: A Multimodal Framework for Recognizing Human Emotions[END_REF]. * denotes the results obtained from our model experiments.

		.84/8.02
	H-RNN *	63.56/5.74
	Image EEG (CNN) *	64.97/6.15
	Image EEG (Capsule) *	60.83/8.53
	Output Fusion *	69.34/5.14
	Feature Fusion *	71.48/5.02
	Saliency Fusion *	74.42/4.76

TABLE II

 II 

	Dataset	SEED-IV	SEED	DEAP	MPED
	BiHDM [13]	69.03/8.6	85.40/7.5	-	28.27/4.9
	RGNN [27]	73.84/8.1	85.30/6.7	-	-
	RODAN [10] 60.75/10.4	-	56.60/3.5	-
	Saliency *	74.42/4.8	84.11/2.9	78.47/4.9	32/4.7
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