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ABSTRACT

In this paper, we propose an algorithmic framework to automatically generate efficient deep neural
networks and optimize their associated hyperparameters. The framework is based on evolving directed
acyclic graphs (DAGs), defining a more flexible search space than the existing ones in the literature.
It allows mixtures of different classical operations: convolutions, recurrences and dense layers, but
also more newfangled operations such as self-attention. Based on this search space we propose
neighbourhood and evolution search operators to optimize both the architecture and hyper-parameters
of our networks. These search operators can be used with any metaheuristic capable of handling
mixed search spaces. We tested our algorithmic framework with an evolutionary algorithm on a time
series prediction benchmark. The results demonstrate that our framework was able to find models
outperforming the established baseline on numerous datasets.

Keywords Metaheuristics · Evolutionary Algorithm · AutoML · Neural Architecture Search · Hyperparameter
optimization · Directed Acyclic Graphs · Time Series Forecasting

1 Introduction

With the recent successes of deep learning in many research fields, deep neural networks (DNN) optimization stimulates
the growing interest of the scientific community [Talbi, 2021]. While each new learning task requires the handcrafted
design of a new DNN, automated deep learning facilitates the creation of powerful DNNs. Interests are to give access to
deep learning to less experienced people, to reduce the tedious tasks of managing many parameters to reach the optimal
DNN, and finally, to go beyond what humans can design by creating non-intuitive DNNs that can ultimately prove to be
more efficient.

Optimizing a DNN means automatically finding an optimal architecture for a given learning task: choosing the
operations and the connections between those operations and the associated hyperparameters. The first task is also
known as Neural Architecture Search [Elsken et al., 2019], also named NAS, and the second, as HyperParameters
Optimization (HPO). Most works from the literature try to tackle only one of these two optimization problems. Many
papers related to NAS [White et al., 2021, Loni et al., 2020b, Wang et al., 2019b, Sun et al., 2018b, Zhong, 2020]
focus on designing optimal architectures for computer vision tasks with a lot of stacked convolution and pooling layers.
Because each DNN training is time-consuming, researchers tried to reduce the search space by adding many constraints
preventing from finding irrelevant architectures. It affects the flexibility of the designed search spaces and limits the
hyperparameters optimization.

We introduce in this paper a new optimization framework for AutoML based on the evolution of Directed Acyclic
Graphs (DAGs). The encoding and the search operators may be used with various deep learning and AutoML problems.
We ran experiments on time series forecasting tasks and demonstrate on a large variety of datasets that our framework
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can find DNNs which compete with or even outperform state-of-the-art forecasters. In summary, our contributions are
as follows:

• The precise definition of a flexible and complete search space based on DAGs, for the optimization of DNN
architectures and hyperparameters.

• The design of efficient neighbourhoods and variation operators for DAGs. With these operators, any meta-
heuristic designed for a mixed and variable-size search space can be applied. In this paper, we investigate the
use of evolutionary algorithms.

• The validation of the algorithmic framework on popular time series forecasting benchmarks [Godahewa et al.,
2021]. We outperformed 13 statistical and machine learning models on 24 out of 40 datasets, proving the
efficiency and robustness of our framework.

The paper is organized as follows: we review section 2, the literature on deep learning models for time series forecasting
and AutoML. Section 3 defines our search space. Section 4 presents our neighbourhoods and variation operators
within evolutionary algorithms. Section 5 details our experimental results obtained on popular time series forecasting
benchmarks. Finally, section 6 gives a conclusion and introduces further research opportunities.

2 Related Work

2.1 Deep learning for time series forecasting

Time series forecasting has been studied for decades. The field has been dominated for a long time by statistical tools
such as ARIMA, Exponential Smoothing (ES), or (S)ARIMAX, this last model allowing the use of exogenous variables.
It now opens itself to deep learning models [Liu et al., 2021]. These new models recently achieved great performances
on many datasets. Three main parts compose typical DNNs: an input layer, several hidden layers and an output layer. In
this paper, we define a search space designed to search for the best-hidden layers, given a meta-architecture (see Figure
5), for a specific time series forecasting task. Next, we introduce the usual DNN layers considered in our search space.

The first layer type from our search space is the fully-connected layer, or Multi-Layer Perceptron (MLP). The input
vector is multiplied by a weight matrix. Most architectures use such layers as simple building blocks for dimension
matching, input embedding or output modelling. The N-Beats model is a well-known example of a DNN based on
fully-connected layers for time series forecasting [Oreshkin et al., 2019].

The second layer type [LeCun et al., 2015] is the convolution layer (CNN). Inspired by the human brain’s visual cortex,
it has mainly been popularised for computer vision. The convolution layer uses a discrete convolution operator between
the input data and a small matrix called a filter. The extracted features are local and time-invariant if the considered
data are time series. Many architectures designed for time series forecasting are based on convolution layers such as
WaveNet [Oord et al., 2016] and Temporal Convolution Networks [Lea et al., 2017].

The third layer type is the recurrent layer (RNN), specifically designed for sequential data processing, therefore,
particularly suitable for time series. These layers scan the sequential data and keep information from the sequence past
in memory to predict its future. A popular model based on RNN layers is the Seq2Seq network [Cho et al., 2014]. Two
RNNs, an encoder and a decoder, are sequentially connected by a fixed-length vector. Various versions of the Seq2Seq
model have been introduced in the literature, such as the DeepAR model [Salinas et al., 2020], which encompasses an
RNN encoder in an autoregressive model. The major weakness of RNN layers is the modelling of long-term dynamics
due to the vanishing gradient. Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers have been
introduced [Hochreiter and Schmidhuber, 1997, Chung et al., 2014] to overcome this problem.

Finally, the layer type from our search space is the attention layer. The attention layer has been popularized within the
deep learning community as part of Vaswani’s transformer model [Vaswani et al., 2017]. The attention layer is more
generic than the convolution. It can model the dependencies of each element from the input sequence with all the others.
In the vanilla transformer [Vaswani et al., 2017], the attention layer does not factor the relative distance between inputs
in its modelling but rather the element’s absolute position in the sequence. The Transformer-XL [Dai et al., 2019], a
transformer variant created to tackle long-term dependencies tasks, introduces a self-attention version with relative
positions. Cordonnier et al. [2019] used this new attention formulation to show that, under a specific configuration
of parameters, the attention layers could be trained as convolution layers. Within our search space, we chose this last
formulation of attention, with the relative positions.

The three first layers (i.e. MLP, CNN, RNN) were frequently mixed into DNN architectures. Sequential and parallel
combinations of convolution, recurrent and fully connected layers often compose state-of-the-art DNN models for time
series forecasting. Layer diversity enables the extraction of different and complementary features from input data to

2



Optimization framework for AutoDL

allow a better prediction. Some recent DNN models introduce transformers into hybrid DNNs. In Lim et al. [2021], the
authors developed the Temporal Fusion Transformer, a hybrid model stacking transformer layers on top of an RNN
layer. With this in mind, we built a flexible search space which generalizes hybrid DNN models including MLPs, CNNs,
RNNs and transformers.

2.2 Search spaces for automated deep learning

Designing an efficient DNN for a given task requires choosing an architecture and tuning its many hyperparameters. It is
a difficult fastidious, and time-consuming optimization task. Moreover, it requires expertise and restricts the discovery
of new DNNs to what humans can design. Research related to the automatic design and optimization of DNNs has
therefore risen this last decade [Talbi, 2021]. The first challenge with automatic deep learning (AutoDL), and more
specifically the neural architecture search (NAS), is the search space design. If the solution encoding is too broad and
allows too many architectures, we might need to evaluate many architectures to explore the search space. However,
training many DNNs would require considerable computing time and become unfeasible. On the contrary, if the search
space is too small, we might miss promising solutions. Besides, encoding of DNNs defining the search space should
follow some rules [Talbi, 2021]:

• Completeness: all candidate DNNs solutions should be encoded in the search space.

• Connexity: a path should always be possible between two encoded DNNs in the search space.

• Efficiency: the encoding should be easy to manipulate by the search operators (i.e. neighbourhoods, variation
operators) of the search strategy.

• Constraint handling: the encoding should facilitate the handling of the various constraints to generate feasible
DNNs.

A complete classification of encoding strategies for NAS is presented in Talbi [2021] and reproduced in Figure 1. We
can discriminate between direct and indirect encodings. With direct strategies, the DNNs are completely defined by
the encoding, while indirect strategies need a decoder to find the architecture back. Amongst direct strategies, one
can discriminate between two categories: flat and hierarchical encodings. In flat encodings, all layers are individually
encoded [Loni et al., 2020a, Sun et al., 2018a, Wang et al., 2018, 2019a]. The global architecture can be a single chain,
with each layer having a single input and a single output, which is called chain structured [Assunção et al., 2018], but
more complex patterns such as multiple outputs, skip connections, have been introduced in the extended flat DNNs
encoding [Chen et al., 2021]. For hierarchical encodings, they are bundled in blocks [Pham et al., 2018, Shu et al., 2019,
Liu et al., 2017, Zhang et al., 2019]. If the optimization is made on the sequencing of the blocks, with an already chosen
content, this is referred to as inner-level fixed [Camero et al., 2021, White et al., 2021]. If the optimization is made on
the blocks’ content with a fixed sequencing, it is called outer level fixed. A joint optimization with no level fixed is also
an option [Liu et al., 2019]. Regarding the indirect strategies, one popular encoding is the one-shot architecture [Bender
et al., 2018, Brock et al., 2017]. One single large network resuming all candidates from the search space is trained. Then
the architectures are found by pruning some branches. Only the best promising architectures are retrained from scratch.

Solution Encoding

Direct Indirect

Flat Hierarchical

Chain
structured

Extended
Flat DNNs

Outer
Level fixed

Inner
Level Fixed

No level
fixed

One-shot

Figure 1: Classification of encoding strategies for NAS [Talbi, 2021].

Our search space can be categorized as a direct and extended flat encoding. Each layer is individually encoded by our
search space. It is more flexible than the search spaces designed in literature. First, we tackle both the optimization of
the architecture and the hyperparameters. Second, the diversity of candidate DNNs is much broader than what can be
found in the literature. We allow a combination of recurrent, convolution, attention-based and fully connected layers,
leading to innovative, original yet well-performing DNNs. To our knowledge, this encoding has never been investigated
in the literature.
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2.3 AutoML for time series forecasting

The automated design of DNNs called Automated Deep Learning (AutoDL), belongs to a larger field [Hutter et al.,
2019] called Automated Machine Learning (AutoML). AutoML aims to automatically design well-performing machine
learning pipelines, for a given task. Works on model optimization for time series forecasting mainly focused on AutoML
rather than AutoDL [Alsharef et al., 2022]. The optimization can be performed at several levels: input features selection,
extraction and engineering, model selection and hyperparameters tuning. Initial research works used to focus on one of
these subproblems, while more recent works offer complete optimization pipelines.

The first subproblems, input features selection, extraction and engineering, are specific to our learning task: time series
forecasting. This tedious task can significantly improve the prediction scores by giving the model relevant information
about the data. Methods to select the features are among computing the importance of each feature on the results or
using statistical tools on the signals to extract relevant information. Next, the model selection aims at choosing among a
set of diverse machine learning models the best-performing one on a given task. Often, the models are trained separately,
and the best model is chosen. In general, the selected model has many hyperparameters, such as the number of hidden
layers, activation function or learning rate. Their optimization usually allows for improving the performance of the
model.

Nowadays, many research works implement complete optimization pipelines combining those subproblems for time
series forecasting. The Time Series Pipeline Optimization framework [Dahl, 2020], is based on an evolutionary algorithm
to automatically find the right features thanks to input signal analysis, then the model and its related hyperparameters.
AutoAI-TS [Shah et al., 2021] is also a complete optimization pipeline, with model selection performed among a
wide assortment of models: statistical models, machine learning, deep learning models and hybrids models. Finally,
the framework Auto-Pytorch-TS [Deng et al., 2022] is specific to deep learning models optimization for time series
forecasting. The framework uses Bayesian optimization with multi-fidelity optimization.

Except for AutoPytorch-TS, cited works covering the entire optimization pipeline for time series do not deepen model
optimization and only perform model selection and hyperparameters optimization. However, time series data becomes
more complex, and there is a growing need for more sophisticated and data-specific DNNs. In this work, we only
tackle the model selection and hyperparameters optimization parts of the pipeline. We made this choice to show the
effectiveness of our framework for designing better DNNs. If we had implemented feature selection, it would have been
harder to determine whether the superiority of our results came from the input features pool or the model itself. We
discuss this further in Section 5.

3 Search space definition

The development of a complete optimization framework for AutoDL needs the definition of the search space, the
objective function and the search algorithm. In this section, the handled optimization problem is formulated. Then, the
search space and its characteristics are detailed.

3.1 Optimization problem formulation

Our optimization problem consists in finding the best possible DNN for a given time series forecasting problem. To do
so, we introduce an ensemble Ω representing our search space, which contains all considered DNNs. We then consider
our time series dataset D. For any subset D0 = (X0, Y0), we define the forecast error ` as:

` : Ω×D → R
f ×D0 7→ `

(
f(D0)

)
= `
(
Y0, f(X0)

)
.

The explicit formula for ` will be given later in the paper. Each element f from Ω is a DNN defined as an operator
parameterized by three parameters. First, its architecture α ∈A. A is the search space of all considered architectures
and will be detailed in Subsection 3.2. Given the DNN architecture α, the DNN is then parameterized by its hyper-
parameters λ ∈ Λ(α), with Λ(α) the search space of the hyperparameters induced by the architecture α and defined
Subsection 3.3. Finally, α and λ generate an ensemble of possible weights Θ(α, λ), from which the DNN optimal
weights θ are found by gradient descent when training the model. The architecture α and the hyperparameters λ are
optimized by our framework.

We consider the multivariate time series forecasting task. Our dataset D = (X,Y ) is composed of a target variable
Y = {yt}Tt=1, with yt ∈ RN and a set of explanatory variables (features) X = {xt}Tt=1, with xt ∈ RF1×F2 . The size
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of the target Y at each time step is T and F1, F2 are the shapes of the input variable X at each time step. We choose to
represent xt by a matrix to extend our framework’s scope, but it can equally be defined as a vector by taking F2 = 1.
The framework can be applied to univariate signals by taking T = 1. We partition our time indexes into three groups of
successive time steps and split accordingly D into three datasets: Dtrain, Dvalid and Dtest.

After choosing an architecture α and a set of hyperparamaters λ, we build the DNN fα,λ and use Dtrain to train fα,λ
and optimize its weights θ by stochastic gradient descent:

θ̂ ∈ arg min
θ∈Θ(α,λ)

(
`(fα,λθ ,Dtrain)

)
.

The forecast error of the DNN parameterized by θ̂ on Dvalid is used to assess the performance of the selected α and λ.
The best architecture and hyperparameters are optimized by solving:

(α̂, λ̂) ∈ arg min
α∈A

(
arg min
λ∈Λ(α)

(
`(fα,λ

θ̂
,Dvalid)

))
.

The function (α, λ) 7→ `(fα,λ
θ̂

,Dvalid) corresponds to the objective function of our algorithmic framework. We finally
will evaluate the performance of our algorithmic framework by computing the forecast error on Dtest using the DNN
with the best architecture, hyperparameters and weights:

`(f α̂,λ̂
θ̂

,Dtest).

In practice, the second equation optimizing α and λ can be solved separately or jointly. If we fix λ for each α, the
optimization is made only on the architecture and is referred to as Neural Architecture Search (NAS). If α is fixed, then
the optimization is only made on the model hyperparameters and is referred to as HyperParameters Optimization (HPO).
Our algorithmic framework allows us to fix α or λ during parts of the optimization to perform a hierarchical optimization:
ordering optimisation sequences during which only the architecture is optimised, and others during which only the
hyperparameters are optimised. In the following, we will describe our search space Ω = (A × {Λ(α), α ∈A}).

3.2 Architecture Search Space

Input

v1v2

v3

v4

Output

(a) Architecture

Input

v1

v2

v3

v4

Output

1 1 1

1

1

1 1

1

(b) Adjacency matrix representation

Combiner

Layer Type

Params

Act. function

(c) Inside node vi

Figure 2: DNN encoding as a directed acyclic graph (DAG). The elements in blue (crosshatch) are fixed by the
framework, the architecture elements from α are displayed in beige and the hyperparameters λ are in pink (dots).

First, we define our architecture search space A. We propose to model a DNN by a Directed Acyclic Graph (DAG) with
a single input and output [Fiore and Devesas Campos, 2013]. A DAG Γ = (V,E) is defined by its nodes (or vertices)
set V = {v1, ..., vn} and its edges set E ⊆ {(vi, vj)|vi, vj ∈ V}. Each node v represents a DNN layer as defined in
Subsection 2.1, such as a convolution, a recurrence, or a matrix product. To eliminate isolated nodes, we impose each
node to be connected by a path to the input and the output. The graph acyclicity implies a partial ordering of the nodes.
If a path exists from the node va to a node vb, then we can define a relation order between them: va < vb. Acyclicity
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prevents the existence of a path from vb to va. However, this relation order is not total. When dealing with symmetric
graphs where all nodes are not connected, several nodes’ ordering may be valid for the same graph. For example in
Figure 2a, the orderings v1 > v2 and v2 > v1 are both valid.

Hence, a DAG Γ is represented by a sorted list L, such that |L| = m, containing the graph nodes, and its adjacency
matrix M ∈ Rm×m [Zhang et al., 2019]. The matrix M is built such that: M(i, j) = 1⇔ (vi, vj) ∈ E. Because of the
graph’s acyclicity, the matrix is upper triangular with its diagonal filled with zeros. The input node has no incoming
connection, and the output node has no outcoming connection, meaning

∑m
i=1Mi,1 = 0 and

∑m
j=1Mm,j = 0. Besides,

the input is necessarily connected to the first node and the last node to the output for any graph, enforcing: M1,2 = 1
and Mm−1,m = 1. As isolated nodes do not exist in the graph, we need at least a non-zero value on every row and
column, except for the first column and last row. We can express this property as: ∀i < m :

∑m
j=i+1Mi,j > 0 and

∀j > 1 :
∑m
i=j+1Mi,j > 0. Finally, the ordering of the partial nodes does not allow a bijective encoding: several

matrices M may encode the same DAG.

To summarize, we have A = {Γ = (V,E) = (L,M)}. The graphs Γ are parameterized by their size m which is not
equal for all graphs. As we will see in Section 4.1 the DNNs size may vary during the optimization framework.

3.3 Hyperparameters Search Space

For any fixed architecture α ∈A, let’s define our hyperparameters search space induced by α : Λ(α). As mentioned
above, the DAG nodes represent the DNN hidden layers. A set of hyperparameters λ, also called a graph node, is
composed of a combiner, a layer operation and an activation function (see Figure 2c). Each layer operation is associated
with a specific set of parameters, like output or hidden dimensions, convolution kernel size or dropout rate. We provide
in Appendix A a table with all available layer types and their associated parameters. The hyperparameters search space
Λ(α) is made of sets λ composed with a combiner, the layer’s parameters and the activation function.

First, we need a combiner as each node can receive an arbitrary number of input connections. The parents’ latent
representations should be combined before being fed to the layer type. Taking inspiration from the Google Brain Team
Evolved Transformer [So et al., 2019], we propose three types of combiners: element-wise addition, element-wise
multiplication and concatenation. The input vectors may have different channel numbers and the combiner needs to level
them. This issue is rarely mentioned in the literature, where authors prefer to keep a fixed channel number [Liu et al.,
2018]. In the general case, for element-wise combiners, the combiner output channel matches the maximum channel
number of latent representation. We apply zero-padding on the smaller inputs. For the concatenation combiner, we
consider the sum of the channel number of each input. Some layer types, for instance, the pooling and the convolution
operators, have kernels. Their calculation requires that the number of channels of the input vector is larger than this
kernel. In these cases, we also perform zero-padding after the combiner to ensure that we have the minimum number of
channels required.

When building the DNN, we dimension asynchronously each layer operation. We first compute the layer operation input
shape according to the input vectors and the combiner. After building the operation we compute its output shape for the
next layer. Finally, the node’s remaining part is the activation function. We choose this last parameter among a large set
detailed in Appendix A. To summarize, we define every node as the sequence of combiner→ layer type→ activation
function. In our search space Λ(α), the nodes are encoded by arrays containing the combiner name, the layer type name,
the value of each layer operation’s parameters and finally, the activation function name. The set L mentioned in the
previous section, which contains the nodes, is then a variable-length list containing the arrays representing each node.

4 Search algorithm

The search space Ω = (A × {Λ(α), α ∈A}) that we defined in the previous Section is a mixed and variable space: it
contains integers, float, and categorical values, and the dimension of its elements, the DNNs, is not fixed. We need to
design a search algorithm able to efficiently navigate through this search space. While several metaheuristics can solve
mixed and variable-size optimization problems [Talbi, 2023], we chose to start with an evolutionary algorithm. For
the manipulation of directed acyclic graphs, this metaheuristic was the most intuitive for us. It has been used in other
domains, for example on graphs representing logic circuits [Aguirre and Coello Coello, 2003]. The design of other
metaheuristics in our search space and their comparison with the evolutionary algorithm are left to future work.

4.1 Evolutionary algorithm design

Evolutionary algorithms represent popular metaheuristics which are well adapted to solve mixed and variable-space
optimization algorithms [Talbi, 2023]. They have been widely used for the automatic design of DNNs [Li et al., 2022].
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The idea is to evolve a randomly generated population of DAGs to converge towards an optimal DNN. An optimal
solution should be a DNN with a small error on our forecasting task. The designed metaheuristic is based on several
search operators: selection, mutation, crossover and replacement. The initial population is randomly generated. We then
evolve this population during G generations. At the beginning of each new generation g, we build the new population
starting from the scores obtained by the individuals from the previous generation. We use the tournament selection to
pick the best individual among randomly drawn sub-groups. Part of the individuals from this new population comes
from the tournament selection, while we randomly draw the remaining ones. The randomly drawn individuals ensure
the algorithm to not be dependent on the initial population. Afterwards, the DAGs composing the new population are
transformed using variation operators such as crossover and mutation, described thereafter. The generated individuals
are called offsprings. After their evaluation, the worst offsprings are replaced by the best individuals from the previous
generation. Therefore, the best individuals are kept in memory and used for evolution during the entire process. The
replacement rate should stay small to prevent a premature convergence of the algorithm toward a local optimum. The
complete framework is shown in Figure 3.

Training and evaluation
of each model

Tournament selection
Random

Reproduction:
crossover and mutation

Replacement

Iteration number < G?

→ Random population initialization

Yes No
Best model

Figure 3: Evolutionary algorithm framework.

To design the algorithm evolution operators, we split them into two categories: hyperparameters specific operators and
architecture operators. The idea is to allow a sequential or joint optimization of the hyperparameters and the architecture.
The involved layer types do not have the same hyperparameters. Thus, drawing a new layer means modifying all its
parameters and one can lose the optimization made on the previous layer type. Using sequential optimization, the
algorithm can first find well-performing architectures and layers types during the architecture search and then fine-tune
the found DNNs during the hyperparameters search.

4.2 Architecture evolution

In this section, we introduce the architecture-specific search operators. By architecture, we mean the search space A
defined above: the node’s operations and the edges between them. The mutation operator is made of several simple
operations inspired by the transformations used to compute the Graph Edit Distance [Abu-Aisheh et al., 2015]: insertion,
deletion and substitution of both nodes and edges. Given a graph Γ = (L,M), the mutation operator will draw the set
L′ ⊆ L and apply a transformation to each node of L′. Let’s have vi ∈ L′ the node that will be transformed:

• Node insertion: we draw a new node with its combiner, operation and activation function. We insert the new
node in our graph at the position i+ 1. We draw its incoming and outgoing edges by verifying that we do not
generate an isolated node.

• Node deletion: we delete the node vi. In the case where it generates other isolated nodes, we draw new edges.
• Parents modification: we modify the incoming edges for vi and make sure we always have at least one.
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• Children modification: we modify the outgoing edges for vi and make sure we always have at least one.

• Node modification: we draw the new content of vi, the new combiner, the operation and/or the activation
function.

The crossover idea is to inherit patterns belonging to both parents. The primary crossover operator applies on two arrays
and swaps two subparts of those arrays. We draw two subgraphs from our parents, which can be of different sizes, and
we swap them. This transformation has an impact on edges. To reconstruct the offsprings, we tried to preserve at most
the original edges from the parents and the swapped subgraphs. An illustration of the crossover can be found in Figure
4.

Figure 4: Crossover operator illustration.
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(a) 1st step: we select the layers that would be exchanged with dotted lines)
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(c) 3rd step: we insert the layers and reconstruct the edges.

4.3 Hyperparameters evolution

One of the architecture mutations consists in disturbing the node content. In this case, the node content is modified,
including the operation. A new set of hyperparameters is then drawn. To refine this search, we defined specific
mutations for the search space Λ(α). In the hyperparameters case, edges and nodes number are not affected. As for
architecture-specific mutation, the operator will draw the set L′ ⊆ L and apply a transformation on each node of
L′. For each node vi from L′, we draw hi hyperparameters, which will be modified by a neighbouring value. The
hyperparameters in our search space belong to three categories:
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• Categorical values: the new value is randomly drawn among the set of possibilities deprived of the actual
value. For instance, the activation functions, combiners, and recurrence types (LSTM/GRU) belong to this
type of categorical variable.

• Integers: we select the neighbours inside a discrete interval around the actual value. For instance, it has been
applied to convolution kernel size and output dimension.

• Float: we select the neighbours inside a continuous interval around the actual value. Such a neighbourhood
has been defined for instance to the dropout rate.

5 Experimental study

5.1 Experimental protocol

We evaluated our optimization algorithm framework on the established benchmark of Monash Time Series Forecasting
Repository [Godahewa et al., 2021]. For these experiments, we configured our algorithm to have a population of
40 individuals and a total of 100 generations. We investigated a sequential optimization of the architecture and the
hyperparameters. We alternate at a certain generation frequency between two scopes: search operators applied to the
architecture α with λ fixed, and search operators applied to the hyperparameters λ with α fixed. Thus, the architecture-
centred sections of the optimization will diversify the population DNNs, while the hyperparameter-centred parts will
perform a finer optimization of the obtained DNNs. We ran our experiments on 5 cluster nodes, each equipped with 4
Tesla V100 SXM2 32GB GPUs, using Pytorch 1.11.0 and Cuda 10.2. The experiments were all finished in less than 72
hours.

The Monash time series forecasting archive is a benchmark containing more than 40 datasets and the results of 13
forecasting models on each of these prediction tasks [Godahewa et al., 2021]. The time series are of different kinds and
have variable distributions. More information on each dataset from the archive is available B. It allows us to test our
framework generalization and robustness abilities.

Time Series input

Deep Neural Network:
fα,λθ

Directed Acyclic
Graph: Γ = fα,λ

Multi-layer Perceptron

Time Series Prediction

Figure 5: Meta model for Monash time series datasets.

The paper’s authors accompanied their dataset with a GitHub allowing them to directly and very easily compare
different statistical, machine learning and deep learning models on the forecast of different time series. We followed the
indications to integrate new deep learning models, and only changed the models’ core. We kept their data preparation
functions, data loaders, training parameters (number of epochs, batch size), as well as the training and evaluation
functions, to have the most accurate comparison possible. For each dataset, we also took over the configurations of
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the directory, notably the prediction horizons and lags. Figure 5 represents our meta-model which was used to replace
the repository’s models. The Multi-layer Perceptron at the end of the model is used to retrieve the time series output
dimension, as the number of channels may vary within the Directed Acyclic Graph.

We compared our results with the benchmark models, which are composed of statistical models, machine learning and
deep learning models. The metric used to evaluate the models’ performance, our forecast error `, is the Mean Absolute
Scaled Error (MASE), an absolute mean error divided by the average difference between two consecutive time steps
[Hyndman and Koehler, 2006]. Given a time series Y = (y1, ...,yn) and the predictions Ŷ = (ŷ1, ..., ŷn), the MASE
can be defined as:

MASE(Y, Ŷ ) = n−1
n ×

∑n
t=1 |yt−ŷt|∑n
t=2 |yt−yt−1| .

In our case, for f ∈ Ω, D0 = (X0, Y0) ⊆ D, we have `(Y0, f(X0) = MASE
(
Y0, f(X0)

)
.

Table 1: Mean MASE for each dataset, we only reported: the best MASE for statistical models, machine learning models and our
optimization framework results. Statistical models: SES, Theta, TBATS, ETS, ARIMA. Machine Learning models: PR, CatBoost,
FFNN, DeepAR, N-Beats, WaveNet, Transformer, Informer.

Name Models
Dataset Stat. models ML/DL models Our framework

Aus. elec 1.174 0.705 0.893
Births 1.453 1.537 1.233

Bitcoin 2.718 2.664 4.432
Carparts 0.897 0.746 0.744

Covid deaths 5.326 5.459 4.535
Dominick 0.582 0.705 0.510

Elec. hourly 3.690 1.606 1.652
Elec. weekly 1.174 0.705 0.652

Fred MD 0.468 0.601 0.489
Hospital 0.761 0.769 0.751

KDD 1.394 1.185 1.161
Kaggle weekly 0.622 0.628 0.561

M1 monthly 1.074 1.123 1.081
M1 quart. 1.658 1.700 1.683
M1 yearly 3.499 4.355 3.732

M3 monthly 0.861 0.934 0.926
M3 other 1.814 2.127 2.227
M3 quart. 1.174 1.182 1.099
M3 yearly 2.774 2.961 2.800
M4 daily 1.153 1.141 1.066

M4 hourly 2.663 1.662 1.256
M4 monthly 0.948 1.026 0.993

M4 quart. 1.161 1.239 1.198
M4 weekly 0.504 0.453 0.430
NN5 daily 0.858 0.916 0.898

NN5 weekly 0.872 0.808 0.739
Pedestrians 0.957 0.247 0.222
Rideshare 1.530 2.908 1.410
Saugeen 1.425 1.411 1.296

Solar 10mn 1.034 1.450 1.426
Solar weekly 0.848 0.574 0.511

Sunspot 0.067 0.003 0.002
Temp. rain 1.174 0.687 0.686

Tourism monthly 1.526 1.409 1.453
Tourism quart. 1.592 1.475 1.469
Tourism yearly 3.015 2.977 2.690
Traffic hourly 1.922 0.821 0.729
Traffic weekly 1.116 1.094 1.030
Vehicle trips 1.224 1.176 1.685

Weather 0.677 0.631 0.614
Total bests 11 5 24
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The results are reported in Table 1. Our model succeeded in outperforming the best baseline for 24 out of 40 datasets.
For the remaining 16 datasets, our framework obtained errors close to the best baseline. It is worth noting that our
model outperformed the machine learning and deep learning models from the benchmark for 34 out of 40 datasets
and was among the top 3 models for 34 out of 40 datasets. In Figure 6 we show the convergence of the evolutionary
algorithm. At the right positions, we displayed the mean loss for each generation and the best individual loss. On the
mean loss for each generation curve, we can identify the phases where the architecture is optimized, where we have
more variability and the phases where the hyperparameters are optimized, with less variability. On the left positions, we
represented heatmaps with the loss for each individual at each generation. The best individual is not over-represented in
the population before the optimization ends.
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(a) M4 Hourly dataset, best MASE: 1.288
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(b) Electricity weekly dataset, best MASE: 0.652
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(c) NN5 weekly dataset, best MASE: 0.739

Figure 6: Evolutionary algorithm convergence. Left: heatmap with the loss for each individual for every generation.
Right: population mean loss and best individual’s loss through generations. Darker grey backgrounds represent
generations during which the architecture is optimized, and lighter grey backgrounds represent generations during
which the hyperparameters are optimized.

5.2 Best models analysis

In the AutoDL literature, few efforts are usually made to analyze the generated DNNs. In Shu and Cai [2019] the
authors established that architectures with wide and shallow cell structures are favoured by the NAS algorithms and that
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they suffer from poor generalization performance. We can rightfully ask ourselves about the efficiency of our framework
and some of these questions may be answered thanks to a light models analysis. By the end of this section, we will
try to answer some inquiries about our framework outputs. To answer those questions we defined some structural
indicators, and we computed them in Table 2 for the best model for each dataset from Godahewa et al. [2021]:

• Nodes: it represents the number of nodes (i.e. operations) in the graph.
• Width: it represents the network width which can be defined as the maximum of incoming or outgoing edges

to all nodes within the graph.
• Depth: it defines the network depth which corresponds to the size of the longest path in the graph.
• Dim: it is the maximum channel dimension, relative to the number of input and output channels (ratio). It

indicates how complex the latent spaces from the neural network might become, compared to the dataset
complexity.

• Edges: it represents the number of edges, relative to the number of nodes in the graph. It indicates how
complex the graph can be and how sparse the adjacency matrix is.

• The last 7 indicators correspond to the number of the appearance of each layer type within the DNN.

Do our framework always converge to complex models, or is it able to find simple DNNs?

From Table 2 and Figure 7a, one can see that we have multiple simple graphs with only two layers. Knowing that
the last feed-forward layer is enforced by our meta-model (see Figure 5), our DAG is only composed of one layer.
Another indicator of this simplicity is the percentage of feed-forward layers found in the best models. 41% of the layers
are feed-forward according to the table 2 although our search space offers more complex layers such as convolution,
recurrence or attention layers less frequently picked. This proves that even without regularization penalties, our
algorithmic framework does not systematically search for over-complicated models.

Do our algorithmic framework always converge to similar architectures for different datasets?

The framework is meanwhile able to find complex models as in Figure 7b, which partially answers our question. The
indicators in Table 2 suggest that we found models with various numbers of nodes, from 2 to 10 and with diverse edge
densities. The best model for the electricity hourly dataset (see Figure 7d) has an average of 1.5 incoming or outgoing
edges by node whereas the best model for the electricity weekly dataset has an average of 3 incoming or outgoing edges
by nodes. This is true even within performing graphs for the same dataset. In Figure 8 we displayed two different
graphs having similar (and good) performance on the Dominick dataset. Both graphs do not have the same number of
nodes and different architectures, the first one being a deep sparse graph while the other is wider with a lot of edges.

What is the diversity of the layer types within the best models?

The graphs from Figure 8 have also quite different layer types. If both are mainly based on identity, pooling and
feed-forward operations, the second graph introduces convolution and dropout layers. In general, to answer this question,
the fully-connected layers seem to dominate all layer types, as it represents 41% of the chosen layers in the best models
(see Table 2). The identity layer is also more frequently picked. It is finally interesting to notice that all other layers are
selected at the same frequency.

Are the best models still “deep” neural networks or are they wide and shallow as stated in Shu and Cai [2019]?

To answer this question, the observations from Shu and Cai [2019] also apply to our results. Our models are often
almost as wide as they are deep. This observation needs more investigation as one of the reasons mentioned in the
paper: the premature evaluation of architecture before full convergence does not apply here. Our models are smaller
than the ones studied in the paper and thus converge faster, even when they are a bit deeper.

A last remark is related to the latent spaces generated by our models. Except for a few models, our models tend to
always generate bigger latent space than the number of input and output channels. On average, the maximum size of the
latent representation within a network is 17 times bigger than the input and/or output channels number.

5.3 Nondeterminism and instability of DNNs

An often overlooked robustness challenge with DNN optimization is their uncertainty in performance [Summers and
Dinneen, 2021]. A unique model with a fixed architecture and set of hyperparameters can produce a large variety of
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Table 2: Structural indicators of the best model for each dataset found by our algorithmic framework.
Name Structural Features

Dataset Number of Nodes by layer types
nodes width depth dim edges MLP Att CNN RNN Drop Id Pool

Aus. elec 3 2 3 1.02 1.33 2 0 0 0 0 1 0
Births 10 7 8 16.26 3.0 3 1 1 1 0 3 1

Bitcoin 9 5 7 14.2 2.11 3 0 1 2 2 1 0
Carparts 6 4 6 8.7 2.0 3 1 0 0 1 0 1

Dominick 8 6 6 40.4 2.22 5 0 1 0 1 1 1
Elec. hourly 6 3 6 2.88 1.5 4 0 0 0 0 0 2
Elec. weekly 10 8 8 8.75 3.0 4 1 1 1 1 1 1

Fred MD 8 6 7 12.0 2.38 2 2 0 0 2 1 1
Hospital 9 6 6 20.0 2.2 2 1 2 0 0 2 2

KDD 4 3 4 2.29 1.75 4 0 0 0 0 0 0
Kaggle
weekly 5 3 5 25.3 1.6 4 0 0 0 0 0 1

M1
monthly 4 3 4 16.1 1.75 2 1 0 1 0 0 0

M1 quart. 10 6 8 56.38 3.0 5 1 0 1 0 3 0
M1 yearly 7 4 5 52.3 1.71 3 1 1 0 1 0 1

M3
monthly 8 5 7 11.27 2.25 3 2 0 2 0 1 0

M3 other 4 2 3 33.88 1.25 2 0 0 0 0 2 0
M3 quart. 2 1 2 20.6 1.0 2 0 0 0 0 0 0
M3 yearly 10 7 8 67.0 3.0 4 0 0 3 0 2 1
M4 daily 2 1 2 32.29 1.0 2 0 0 0 0 0 0

M4 hourly 6 4 5 2.9 1.83 2 0 1 2 0 1 0
M4

monthly 3 2 3 10.06 1.33 2 0 0 0 0 1 0

M4 quart. 5 4 4 38.0 1.8 3 0 1 0 0 1 0
M4 weekly 7 6 5 3.37 2.14 1 1 2 0 0 2 1
NN5 daily 6 4 5 5.6 1.67 4 0 0 0 2 0 0

NN5 weekly 4 3 3 1.0 1.5 1 0 1 0 0 0 2
Pedestrians 9 5 6 3.97 2.33 2 1 1 1 1 2 1
Rideshare 4 3 4 1 1.5 3 0 0 0 0 1 0
Saugeen 2 1 2 0.3 1 1 0 0 0 0 1 0

Solar 10mn
Solar

weekly 12 7 9 51.67 2.75 3 1 0 0 4 1 3

Sunspot 8 4 7 0.25 1.75 3 0 2 0 1 1 1
Temp. rain 8 5 6 12.4 2 4 1 0 0 1 0 2

Tourism
monthly 4 2 4 8.38 1.5 2 0 1 0 0 1 0

Tourism
quart. 7 5 6 25.75 2.14 2 0 1 2 0 2 0

Tourism
yearly 9 6 6 68.0 2.22 3 1 1 1 1 2 0

Traffic
hourly 9 6 7 2.76 2.44 4 1 1 0 2 0 1

Traffic
weekly 7 5 5 2.20 1.71 1 0 3 1 0 2 0

Vehicle
trips 8 5 7 9.83 2 2 1 0 3 0 0 2

Weather 8 4 6 38.8 2.38 2 1 3 0 0 1 1

Summary 6.4 4.13 5.25 17.2 1.91 41% 8.2% 9.8% 8.5% 7.8% 14.4% 10.1%
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(a) M4 Daily, MASE: 1.066
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Figure 7: Best DNNs output by our algorithmic framework.
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Figure 8: Two different models having similar good performance on Dominick dataset.

results on a dataset. Figure 9 shows the results on two datasets: M3 Quarterly and Electricity Weekly. For both datasets,
we selected the best models found with our optimization and drew 80 seeds summing all instability and nondeterministic
aspects of our models. We trained these models and plotted the MASE Figure 9. On the M3 Quarterly, the MASE
reached values two times bigger than our best result. On the Electricity Weekly, it went up to five times worst. To
overcome this problem, we represented the parametrization of stochastic aspects in our models as a hyperparameter,
which we added to our search space. Despite its impact on the performance, we have not seen any work on NAS, HPO
or AutoML trying to optimize the seed of DNNs. Our plots of Figure 9 showed that the optimization was effective as no
other seeds gave better results than the one picked by our algorithmic framework.
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Figure 9: Mape histogram of the best model performances with multiple seeds for two datasets.

6 Conclusion and Future Work

In this work, we introduced a novel algorithmic framework for the joint optimization of DNNs architectures and
hyperparameters. We first introduced a search space based on Directed Acyclic Graphs, highly flexible for the
architecture, and also allow for fine-tuning of hyperparameters. Based on this search space we designed search operators
compatible with any metaheuristic able to handle a mixed and variable-size search space. The algorithmic framework is
generic and has been efficient on the time series forecasting task using an evolutionary algorithm.
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Further work would be dedicated to the investigation of other metaheuristics (e.g. swarm intelligence, simulated
annealing) to evolve the DAGs. The reformulation of the studied optimization problems by including multiple objectives
(e.g. complexity of DNNs) and robustness represent also important perspectives. To further improve the performance
on time series forecasting tasks we can develop a more complete pipeline including a features selection strategy.

We can imagine further research work testing our framework on different learning tasks. Considering the forecasting
task, the output models show that combining different state-of-the-art DNN operations within a single model is an
interesting lead to improve the models’ performance. Such models are quite innovative within the deep learning
community and studies on their conduct and performances could be carried out.
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A Available operations and hyperparameters

Table 3: Operations available in our search space and used for the Monash time series archive dataset and their
hyperparameters that can be optimized.

Operation Optimized hyperparameters
Identity -
Fully-Connected (MLP) Output shape Integer

Attention Initialization type [convolution, random]
Heads number Integer

1D Convolution Kernel size Integer

Recurrence Output shape Integer
Recurrence type [LSTM, GRU, RNN]

Pooling Pooling size Integer
Pooling type [Max, Average]

Dropout Dropout Rate Float

Activation functions, ∀x ∈ RD

• Id: id(x) = x

• Sigmoid: sigmoid(x) = 1
1+e−x

• Swish: swish(x) = x× sigmoid(βx) = x
1+e−βx

• Relu: relu(x) = max(0, x)

• Leaky-relu: leakyRelu(x) = relu(x) + α×min(0, x), in our case: α = 10−2

• Elu: elu(x) = relu(x) + α×min(0, ex − 1)

• Gelu: gelu(x) = xP(X ≤ x) ≈ 0.5x(1 + tanh[
√

2/π(x+ 0.044715x3)])

• Softmax: σ(x)j = exj∑D
d=1 exd

∀j ∈ {1, . . . , D}
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B Monash datasets presentation

Table 4: Information about the Monash datasets [Godahewa et al., 2021].
Dataset Domain Nb of series Multivariate Lag Horizon

Aus. elec Energy 5 No 420 336
Births Nature 1 No 9 30

Bitcoin Economic 18 No 9 30
Carparts Sales 2674 Yes 15 12

Dominick Sales 115704 No 10 8
Elec. hourly Energy 321 Yes 30 168
Elec. weekly Energy 321 Yes 65 8

Fred MD Economic 107 Yes 15 12
Hospital Health 767 Yes 15 12

KDD Nature 270 No 210 168
Kaggle
weekly Web 145063 Yes 10 8

M1
monthly Multiple 1001 No 15 -

M1 quart. Multiple 1001 No 5 -
M1 yearly Multiple 1001 No 2 -

M3
monthly Multiple 3003 No 15 -

M3 other Multiple 3003 No 2 -
M3 quart. Multiple 3003 No 5 -
M3 yearly Multiple 3003 No 2 -
M4 daily Multiple 100000 No 9 -

M4 hourly Multiple 100000 No 210 -
M4

monthly Multiple 100000 No 15 -

M4 quart. Multiple 100000 No 5 -
M4 weekly Multiple 100000 No 65 -
NN5 daily Banking 111 Yes 9 -

NN5 weekly Banking 111 Yes 65 8
Pedestrians Transport 66 No 210 24
Rideshare Transport 2304 Yes 210 168
Saugeen Nature 1 No 9 30

Solar 10mn Energy 137 Yes 50 1008
Solar

weekly Energy 137 Yes 6 5

Sunspot Nature 1 No 9 30
Temp. rain Nature 32072 Yes 9 30

Tourism
monthly Tourism 1311 No 2 -

Tourism
quart. Tourism 1311 No 5 -

Tourism
yearly Tourism 1311 No 2 -

Traffic
hourly Transport 862 Yes 30 168

Traffic
weekly Transport 862 Yes 65 8

Vehicle
trips Transport 329 No 9 30

Weather Nature 3010 No 9 30
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