Julie Keisler
email: julie.keisler@edf.fr

El-Ghazali Talbi
email: el-ghazali.talbi@univ-lille.fr

Sandra Claudel
email: sandra.claudel@edf.fr

Gilles Cabriel
email: gilles.cabriel@edf.fr

AN ALGORITHMIC FRAMEWORK FOR THE OPTIMIZATION OF DEEP NEURAL NETWORKS ARCHITECTURES AND HYPERPARAMETERS

Keywords: Metaheuristics, Evolutionary Algorithm, AutoML, Neural Architecture Search, Hyperparameter optimization, Directed Acyclic Graphs, Time Series Forecasting

In this paper, we propose an algorithmic framework to automatically generate efficient deep neural networks and optimize their associated hyperparameters. The framework is based on evolving directed acyclic graphs (DAGs), defining a more flexible search space than the existing ones in the literature. It allows mixtures of different classical operations: convolutions, recurrences and dense layers, but also more newfangled operations such as self-attention. Based on this search space we propose neighbourhood and evolution search operators to optimize both the architecture and hyper-parameters of our networks. These search operators can be used with any metaheuristic capable of handling mixed search spaces. We tested our algorithmic framework with an evolutionary algorithm on a time series prediction benchmark. The results demonstrate that our framework was able to find models outperforming the established baseline on numerous datasets.

Introduction

With the recent successes of deep learning in many research fields, deep neural networks (DNN) optimization stimulates the growing interest of the scientific community [START_REF] Talbi | Automated design of deep neural networks: A survey and unified taxonomy[END_REF]. While each new learning task requires the handcrafted design of a new DNN, automated deep learning facilitates the creation of powerful DNNs. Interests are to give access to deep learning to less experienced people, to reduce the tedious tasks of managing many parameters to reach the optimal DNN, and finally, to go beyond what humans can design by creating non-intuitive DNNs that can ultimately prove to be more efficient.

Optimizing a DNN means automatically finding an optimal architecture for a given learning task: choosing the operations and the connections between those operations and the associated hyperparameters. The first task is also known as Neural Architecture Search [START_REF] Elsken | Neural architecture search: A survey[END_REF], also named NAS, and the second, as HyperParameters Optimization (HPO). Most works from the literature try to tackle only one of these two optimization problems. Many papers related to NAS [START_REF] White | Bananas: Bayesian optimization with neural architectures for neural architecture search[END_REF][START_REF] Loni | DeepMaker: A multi-objective optimization framework for deep neural networks in embedded systems[END_REF], Wang et al., 2019b[START_REF] Sun | A Particle Swarm Optimization-based Flexible Convolutional Auto-Encoder for Image Classification[END_REF][START_REF] Zhong | DNA computing inspired deep networks design[END_REF] focus on designing optimal architectures for computer vision tasks with a lot of stacked convolution and pooling layers. Because each DNN training is time-consuming, researchers tried to reduce the search space by adding many constraints preventing from finding irrelevant architectures. It affects the flexibility of the designed search spaces and limits the hyperparameters optimization.

We introduce in this paper a new optimization framework for AutoML based on the evolution of Directed Acyclic Graphs (DAGs). The encoding and the search operators may be used with various deep learning and AutoML problems. We ran experiments on time series forecasting tasks and demonstrate on a large variety of datasets that our framework can find DNNs which compete with or even outperform state-of-the-art forecasters. In summary, our contributions are as follows:

• The precise definition of a flexible and complete search space based on DAGs, for the optimization of DNN architectures and hyperparameters. • The design of efficient neighbourhoods and variation operators for DAGs. With these operators, any metaheuristic designed for a mixed and variable-size search space can be applied. In this paper, we investigate the use of evolutionary algorithms. • The validation of the algorithmic framework on popular time series forecasting benchmarks [START_REF] Godahewa | Monash time series forecasting archive[END_REF]. We outperformed 13 statistical and machine learning models on 24 out of 40 datasets, proving the efficiency and robustness of our framework.

The paper is organized as follows: we review section 2, the literature on deep learning models for time series forecasting and AutoML. Section 3 defines our search space. Section 4 presents our neighbourhoods and variation operators within evolutionary algorithms. Section 5 details our experimental results obtained on popular time series forecasting benchmarks. Finally, section 6 gives a conclusion and introduces further research opportunities.

2 Related Work

Deep learning for time series forecasting

Time series forecasting has been studied for decades. The field has been dominated for a long time by statistical tools such as ARIMA, Exponential Smoothing (ES), or (S)ARIMAX, this last model allowing the use of exogenous variables. It now opens itself to deep learning models [START_REF] Liu | Forecast methods for time series data: A survey[END_REF]. These new models recently achieved great performances on many datasets. Three main parts compose typical DNNs: an input layer, several hidden layers and an output layer. In this paper, we define a search space designed to search for the best-hidden layers, given a meta-architecture (see Figure 5), for a specific time series forecasting task. Next, we introduce the usual DNN layers considered in our search space.

The first layer type from our search space is the fully-connected layer, or Multi-Layer Perceptron (MLP). The input vector is multiplied by a weight matrix. Most architectures use such layers as simple building blocks for dimension matching, input embedding or output modelling. The N-Beats model is a well-known example of a DNN based on fully-connected layers for time series forecasting [START_REF] Oreshkin | N-BEATS: neural basis expansion analysis for interpretable time series forecasting[END_REF].

The second layer type [START_REF] Lecun | Deep learning[END_REF] is the convolution layer (CNN). Inspired by the human brain's visual cortex, it has mainly been popularised for computer vision. The convolution layer uses a discrete convolution operator between the input data and a small matrix called a filter. The extracted features are local and time-invariant if the considered data are time series. Many architectures designed for time series forecasting are based on convolution layers such as WaveNet [START_REF] Van Den Oord | Wavenet: A generative model for raw audio[END_REF] and Temporal Convolution Networks [START_REF] Lea | Temporal convolutional networks for action segmentation and detection[END_REF].

The third layer type is the recurrent layer (RNN), specifically designed for sequential data processing, therefore, particularly suitable for time series. These layers scan the sequential data and keep information from the sequence past in memory to predict its future. A popular model based on RNN layers is the Seq2Seq network [START_REF] Cho | Learning phrase representations using rnn encoder-decoder for statistical machine translation[END_REF]. Two RNNs, an encoder and a decoder, are sequentially connected by a fixed-length vector. Various versions of the Seq2Seq model have been introduced in the literature, such as the DeepAR model [START_REF] Salinas | Deepar: Probabilistic forecasting with autoregressive recurrent networks[END_REF], which encompasses an RNN encoder in an autoregressive model. The major weakness of RNN layers is the modelling of long-term dynamics due to the vanishing gradient. Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers have been introduced [START_REF] Hochreiter | Long short-term memory[END_REF]Schmidhuber, 1997, Chung et al., 2014] to overcome this problem.

Finally, the layer type from our search space is the attention layer. The attention layer has been popularized within the deep learning community as part of Vaswani's transformer model [START_REF] Vaswani | Attention is all you need[END_REF]. The attention layer is more generic than the convolution. It can model the dependencies of each element from the input sequence with all the others. In the vanilla transformer [START_REF] Vaswani | Attention is all you need[END_REF], the attention layer does not factor the relative distance between inputs in its modelling but rather the element's absolute position in the sequence. The Transformer-XL [START_REF] Dai | Transformer-xl: Attentive language models beyond a fixed-length context[END_REF], a transformer variant created to tackle long-term dependencies tasks, introduces a self-attention version with relative positions. [START_REF] Cordonnier | On the relationship between self-attention and convolutional layers[END_REF] used this new attention formulation to show that, under a specific configuration of parameters, the attention layers could be trained as convolution layers. Within our search space, we chose this last formulation of attention, with the relative positions.

The three first layers (i.e. MLP, CNN, RNN) were frequently mixed into DNN architectures. Sequential and parallel combinations of convolution, recurrent and fully connected layers often compose state-of-the-art DNN models for time series forecasting. Layer diversity enables the extraction of different and complementary features from input data to allow a better prediction. Some recent DNN models introduce transformers into hybrid DNNs. In [START_REF] Lim | Temporal fusion transformers for interpretable multihorizon time series forecasting[END_REF], the authors developed the Temporal Fusion Transformer, a hybrid model stacking transformer layers on top of an RNN layer. With this in mind, we built a flexible search space which generalizes hybrid DNN models including MLPs, CNNs, RNNs and transformers.

Search spaces for automated deep learning

Designing an efficient DNN for a given task requires choosing an architecture and tuning its many hyperparameters. It is a difficult fastidious, and time-consuming optimization task. Moreover, it requires expertise and restricts the discovery of new DNNs to what humans can design. Research related to the automatic design and optimization of DNNs has therefore risen this last decade [START_REF] Talbi | Automated design of deep neural networks: A survey and unified taxonomy[END_REF]. The first challenge with automatic deep learning (AutoDL), and more specifically the neural architecture search (NAS), is the search space design. If the solution encoding is too broad and allows too many architectures, we might need to evaluate many architectures to explore the search space. However, training many DNNs would require considerable computing time and become unfeasible. On the contrary, if the search space is too small, we might miss promising solutions. Besides, encoding of DNNs defining the search space should follow some rules [START_REF] Talbi | Automated design of deep neural networks: A survey and unified taxonomy[END_REF]:

• Completeness: all candidate DNNs solutions should be encoded in the search space.

• Connexity: a path should always be possible between two encoded DNNs in the search space.

• Efficiency: the encoding should be easy to manipulate by the search operators (i.e. neighbourhoods, variation operators) of the search strategy.

• Constraint handling: the encoding should facilitate the handling of the various constraints to generate feasible DNNs.

A complete classification of encoding strategies for NAS is presented in [START_REF] Talbi | Automated design of deep neural networks: A survey and unified taxonomy[END_REF] and reproduced in Figure 1. We can discriminate between direct and indirect encodings. With direct strategies, the DNNs are completely defined by the encoding, while indirect strategies need a decoder to find the architecture back. Amongst direct strategies, one can discriminate between two categories: flat and hierarchical encodings. In flat encodings, all layers are individually encoded [Loni et al., 2020a, Sun et al., 2018a[START_REF] Wang | Evolving deep convolutional neural networks by variable-length particle swarm optimization for image classification[END_REF], 2019a]. The global architecture can be a single chain, with each layer having a single input and a single output, which is called chain structured [START_REF] Assunção | DENSER: Deep Evolutionary Network Structured Representation[END_REF], but more complex patterns such as multiple outputs, skip connections, have been introduced in the extended flat DNNs encoding [START_REF] Chen | Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting[END_REF]. For hierarchical encodings, they are bundled in blocks [START_REF] Pham | Efficient neural architecture search via parameters sharing[END_REF], Shu et al., 2019[START_REF] Liu | Hierarchical representations for efficient architecture search[END_REF], Zhang et al., 2019]. If the optimization is made on the sequencing of the blocks, with an already chosen content, this is referred to as inner-level fixed [START_REF] Camero | Bayesian neural architecture search using a training-free performance metric[END_REF][START_REF] White | Bananas: Bayesian optimization with neural architectures for neural architecture search[END_REF]. If the optimization is made on the blocks' content with a fixed sequencing, it is called outer level fixed. A joint optimization with no level fixed is also an option [START_REF] Liu | Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation[END_REF]. Regarding the indirect strategies, one popular encoding is the one-shot architecture [START_REF] Bender | Understanding and simplifying one-shot architecture search[END_REF][START_REF] Brock | Smash: one-shot model architecture search through hypernetworks[END_REF]. One single large network resuming all candidates from the search space is trained. Then the architectures are found by pruning some branches. Only the best promising architectures are retrained from scratch. [START_REF] Talbi | Automated design of deep neural networks: A survey and unified taxonomy[END_REF].

Our search space can be categorized as a direct and extended flat encoding. Each layer is individually encoded by our search space. It is more flexible than the search spaces designed in literature. First, we tackle both the optimization of the architecture and the hyperparameters. Second, the diversity of candidate DNNs is much broader than what can be found in the literature. We allow a combination of recurrent, convolution, attention-based and fully connected layers, leading to innovative, original yet well-performing DNNs. To our knowledge, this encoding has never been investigated in the literature.

AutoML for time series forecasting

The automated design of DNNs called Automated Deep Learning (AutoDL), belongs to a larger field [START_REF] Hutter | Automated machine learning: methods, systems, challenges[END_REF] called Automated Machine Learning (AutoML). AutoML aims to automatically design well-performing machine learning pipelines, for a given task. Works on model optimization for time series forecasting mainly focused on AutoML rather than AutoDL [START_REF] Alsharef | Review of ml and automl solutions to forecast time-series data[END_REF]. The optimization can be performed at several levels: input features selection, extraction and engineering, model selection and hyperparameters tuning. Initial research works used to focus on one of these subproblems, while more recent works offer complete optimization pipelines.

The first subproblems, input features selection, extraction and engineering, are specific to our learning task: time series forecasting. This tedious task can significantly improve the prediction scores by giving the model relevant information about the data. Methods to select the features are among computing the importance of each feature on the results or using statistical tools on the signals to extract relevant information. Next, the model selection aims at choosing among a set of diverse machine learning models the best-performing one on a given task. Often, the models are trained separately, and the best model is chosen. In general, the selected model has many hyperparameters, such as the number of hidden layers, activation function or learning rate. Their optimization usually allows for improving the performance of the model.

Nowadays, many research works implement complete optimization pipelines combining those subproblems for time series forecasting. The Time Series Pipeline Optimization framework [START_REF] Morten | TSPO: an autoML approach to time series forecasting[END_REF], is based on an evolutionary algorithm to automatically find the right features thanks to input signal analysis, then the model and its related hyperparameters. AutoAI-TS [START_REF] Syed | Autoai-ts: Autoai for time series forecasting[END_REF] is also a complete optimization pipeline, with model selection performed among a wide assortment of models: statistical models, machine learning, deep learning models and hybrids models. Finally, the framework Auto-Pytorch-TS [START_REF] Deng | Efficient automated deep learning for time series forecasting[END_REF] is specific to deep learning models optimization for time series forecasting. The framework uses Bayesian optimization with multi-fidelity optimization.

Except for AutoPytorch-TS, cited works covering the entire optimization pipeline for time series do not deepen model optimization and only perform model selection and hyperparameters optimization. However, time series data becomes more complex, and there is a growing need for more sophisticated and data-specific DNNs. In this work, we only tackle the model selection and hyperparameters optimization parts of the pipeline. We made this choice to show the effectiveness of our framework for designing better DNNs. If we had implemented feature selection, it would have been harder to determine whether the superiority of our results came from the input features pool or the model itself. We discuss this further in Section 5.

Search space definition

The development of a complete optimization framework for AutoDL needs the definition of the search space, the objective function and the search algorithm. In this section, the handled optimization problem is formulated. Then, the search space and its characteristics are detailed.

Optimization problem formulation

Our optimization problem consists in finding the best possible DNN for a given time series forecasting problem. To do so, we introduce an ensemble Ω representing our search space, which contains all considered DNNs. We then consider our time series dataset D. For any subset D 0 = (X 0 , Y 0), we define the forecast error as:

: Ω × D → R f × D 0 → f (D 0) = Y 0 , f (X 0) .
The explicit formula for will be given later in the paper. Each element f from Ω is a DNN defined as an operator parameterized by three parameters. First, its architecture α ∈ A. A is the search space of all considered architectures and will be detailed in Subsection 3.2. Given the DNN architecture α, the DNN is then parameterized by its hyperparameters λ ∈ Λ(α), with Λ(α) the search space of the hyperparameters induced by the architecture α and defined Subsection 3.3. Finally, α and λ generate an ensemble of possible weights Θ(α, λ), from which the DNN optimal weights θ are found by gradient descent when training the model. The architecture α and the hyperparameters λ are optimized by our framework.

We consider the multivariate time series forecasting task. Our dataset D = (X, Y) is composed of a target variable Y = {y t } T t=1 , with y t ∈ R N and a set of explanatory variables (features) X = {x t } T t=1 , with x t ∈ R F1×F2 . The size of the target Y at each time step is T and F 1 , F 2 are the shapes of the input variable X at each time step. We choose to represent x t by a matrix to extend our framework's scope, but it can equally be defined as a vector by taking F 2 = 1.

The framework can be applied to univariate signals by taking T = 1. We partition our time indexes into three groups of successive time steps and split accordingly D into three datasets: D train , D valid and D test .

After choosing an architecture α and a set of hyperparamaters λ, we build the DNN f α,λ and use D train to train f α,λ and optimize its weights θ by stochastic gradient descent:

θ ∈ arg min θ∈Θ(α,λ) (f α,λ θ , D train) .
The forecast error of the DNN parameterized by θ on D valid is used to assess the performance of the selected α and λ.

The best architecture and hyperparameters are optimized by solving:

(α, λ) ∈ arg min α∈A arg min λ∈Λ(α) (f α,λ θ , D valid) .
The function (α, λ) → (f α,λ θ , D valid) corresponds to the objective function of our algorithmic framework. We finally will evaluate the performance of our algorithmic framework by computing the forecast error on D test using the DNN with the best architecture, hyperparameters and weights:

(f α, λ θ , D test).
In practice, the second equation optimizing α and λ can be solved separately or jointly. If we fix λ for each α, the optimization is made only on the architecture and is referred to as Neural Architecture Search (NAS). If α is fixed, then the optimization is only made on the model hyperparameters and is referred to as HyperParameters Optimization (HPO). Our algorithmic framework allows us to fix α or λ during parts of the optimization to perform a hierarchical optimization: ordering optimisation sequences during which only the architecture is optimised, and others during which only the hyperparameters are optimised. In the following, we will describe our search space Ω = (A × {Λ(α), α ∈ A}). First, we define our architecture search space A. We propose to model a DNN by a Directed Acyclic Graph (DAG) with a single input and output [START_REF] Fiore | The algebra of directed acyclic graphs[END_REF]. A DAG Γ = (V, E) is defined by its nodes (or vertices) set V = {v 1 , ..., v n } and its edges set E ⊆ {(v i , v j)|v i , v j ∈ V}. Each node v represents a DNN layer as defined in Subsection 2.1, such as a convolution, a recurrence, or a matrix product. To eliminate isolated nodes, we impose each node to be connected by a path to the input and the output. The graph acyclicity implies a partial ordering of the nodes. If a path exists from the node v a to a node v b , then we can define a relation order between them: v a < v b . Acyclicity prevents the existence of a path from v b to v a . However, this relation order is not total. When dealing with symmetric graphs where all nodes are not connected, several nodes' ordering may be valid for the same graph. For example in Figure 2a, the orderings v 1 > v 2 and v 2 > v 1 are both valid.

Architecture Search Space

Input v 1 v 2 v 3 v 4 Output (a) Architecture Input v 1 v 2 v 3 v 4 Output 1 1 1 1 1 1 1 1 (b)
Hence, a DAG Γ is represented by a sorted list L, such that |L| = m, containing the graph nodes, and its adjacency matrix M ∈ R m×m [START_REF] Zhang | D-vae: A variational autoencoder for directed acyclic graphs[END_REF]. The matrix M is built such that:

M (i, j) = 1 ⇔ (v i , v j) ∈ E.
Because of the graph's acyclicity, the matrix is upper triangular with its diagonal filled with zeros. The input node has no incoming connection, and the output node has no outcoming connection, meaning m i=1 M i,1 = 0 and m j=1 M m,j = 0. Besides, the input is necessarily connected to the first node and the last node to the output for any graph, enforcing: M 1,2 = 1 and M m-1,m = 1. As isolated nodes do not exist in the graph, we need at least a non-zero value on every row and column, except for the first column and last row. We can express this property as: ∀i < m :

m j=i+1 M i,j > 0 and ∀j > 1 : m i=j+1 M i,j > 0.
Finally, the ordering of the partial nodes does not allow a bijective encoding: several matrices M may encode the same DAG.

To summarize, we have A = {Γ = (V, E) = (L, M)}. The graphs Γ are parameterized by their size m which is not equal for all graphs. As we will see in Section 4.1 the DNNs size may vary during the optimization framework.

Hyperparameters Search Space

For any fixed architecture α ∈ A, let's define our hyperparameters search space induced by α : Λ(α). As mentioned above, the DAG nodes represent the DNN hidden layers. A set of hyperparameters λ, also called a graph node, is composed of a combiner, a layer operation and an activation function (see Figure 2c). Each layer operation is associated with a specific set of parameters, like output or hidden dimensions, convolution kernel size or dropout rate. We provide in Appendix A a table with all available layer types and their associated parameters. The hyperparameters search space Λ(α) is made of sets λ composed with a combiner, the layer's parameters and the activation function.

First, we need a combiner as each node can receive an arbitrary number of input connections. The parents' latent representations should be combined before being fed to the layer type. Taking inspiration from the Google Brain Team Evolved Transformer [START_REF] So | The evolved transformer[END_REF], we propose three types of combiners: element-wise addition, element-wise multiplication and concatenation. The input vectors may have different channel numbers and the combiner needs to level them. This issue is rarely mentioned in the literature, where authors prefer to keep a fixed channel number [START_REF] Liu | Darts: Differentiable architecture search[END_REF]. In the general case, for element-wise combiners, the combiner output channel matches the maximum channel number of latent representation. We apply zero-padding on the smaller inputs. For the concatenation combiner, we consider the sum of the channel number of each input. Some layer types, for instance, the pooling and the convolution operators, have kernels. Their calculation requires that the number of channels of the input vector is larger than this kernel. In these cases, we also perform zero-padding after the combiner to ensure that we have the minimum number of channels required.

When building the DNN, we dimension asynchronously each layer operation. We first compute the layer operation input shape according to the input vectors and the combiner. After building the operation we compute its output shape for the next layer. Finally, the node's remaining part is the activation function. We choose this last parameter among a large set detailed in Appendix A. To summarize, we define every node as the sequence of combiner → layer type → activation function. In our search space Λ(α), the nodes are encoded by arrays containing the combiner name, the layer type name, the value of each layer operation's parameters and finally, the activation function name. The set L mentioned in the previous section, which contains the nodes, is then a variable-length list containing the arrays representing each node.

Search algorithm

The search space Ω = (A × {Λ(α), α ∈ A}) that we defined in the previous Section is a mixed and variable space: it contains integers, float, and categorical values, and the dimension of its elements, the DNNs, is not fixed. We need to design a search algorithm able to efficiently navigate through this search space. While several metaheuristics can solve mixed and variable-size optimization problems [START_REF] Talbi | Metaheuristics for variable-size mixed optimization problems: a survey and taxonomy[END_REF], we chose to start with an evolutionary algorithm. For the manipulation of directed acyclic graphs, this metaheuristic was the most intuitive for us. It has been used in other domains, for example on graphs representing logic circuits [START_REF] Hernández | Evolutionary synthesis of logic circuits using information theory[END_REF]. The design of other metaheuristics in our search space and their comparison with the evolutionary algorithm are left to future work.

Evolutionary algorithm design

Evolutionary algorithms represent popular metaheuristics which are well adapted to solve mixed and variable-space optimization algorithms [START_REF] Talbi | Metaheuristics for variable-size mixed optimization problems: a survey and taxonomy[END_REF]. They have been widely used for the automatic design of DNNs [START_REF] Li | Survey on evolutionary deep learning: Principles, algorithms, applications and open issues[END_REF].

The idea is to evolve a randomly generated population of DAGs to converge towards an optimal DNN. An optimal solution should be a DNN with a small error on our forecasting task. The designed metaheuristic is based on several search operators: selection, mutation, crossover and replacement. The initial population is randomly generated. We then evolve this population during G generations. At the beginning of each new generation g, we build the new population starting from the scores obtained by the individuals from the previous generation. We use the tournament selection to pick the best individual among randomly drawn sub-groups. Part of the individuals from this new population comes from the tournament selection, while we randomly draw the remaining ones. The randomly drawn individuals ensure the algorithm to not be dependent on the initial population. Afterwards, the DAGs composing the new population are transformed using variation operators such as crossover and mutation, described thereafter. The generated individuals are called offsprings. After their evaluation, the worst offsprings are replaced by the best individuals from the previous generation. Therefore, the best individuals are kept in memory and used for evolution during the entire process. The replacement rate should stay small to prevent a premature convergence of the algorithm toward a local optimum. The complete framework is shown in Figure 3. To design the algorithm evolution operators, we split them into two categories: hyperparameters specific operators and architecture operators. The idea is to allow a sequential or joint optimization of the hyperparameters and the architecture. The involved layer types do not have the same hyperparameters. Thus, drawing a new layer means modifying all its parameters and one can lose the optimization made on the previous layer type. Using sequential optimization, the algorithm can first find well-performing architectures and layers types during the architecture search and then fine-tune the found DNNs during the hyperparameters search.

Architecture evolution

In this section, we introduce the architecture-specific search operators. By architecture, we mean the search space A defined above: the node's operations and the edges between them. The mutation operator is made of several simple operations inspired by the transformations used to compute the Graph Edit Distance [START_REF] Abu-Aisheh | An exact graph edit distance algorithm for solving pattern recognition problems[END_REF]: insertion, deletion and substitution of both nodes and edges. Given a graph Γ = (L, M), the mutation operator will draw the set L ⊆ L and apply a transformation to each node of L . Let's have v i ∈ L the node that will be transformed:

• Node insertion: we draw a new node with its combiner, operation and activation function. We insert the new node in our graph at the position i + 1. We draw its incoming and outgoing edges by verifying that we do not generate an isolated node.

• Node deletion: we delete the node v i . In the case where it generates other isolated nodes, we draw new edges.

• Parents modification: we modify the incoming edges for v i and make sure we always have at least one.

Optimization framework for AutoDL

• Children modification: we modify the outgoing edges for v i and make sure we always have at least one.

• Node modification: we draw the new content of v i , the new combiner, the operation and/or the activation function.

The crossover idea is to inherit patterns belonging to both parents. The primary crossover operator applies on two arrays and swaps two subparts of those arrays. We draw two subgraphs from our parents, which can be of different sizes, and we swap them. This transformation has an impact on edges. To reconstruct the offsprings, we tried to preserve at most the original edges from the parents and the swapped subgraphs. An illustration of the crossover can be found in Figure 4.

Hyperparameters evolution

One of the architecture mutations consists in disturbing the node content. In this case, the node content is modified, including the operation. A new set of hyperparameters is then drawn. To refine this search, we defined specific mutations for the search space Λ(α). In the hyperparameters case, edges and nodes number are not affected. As for architecture-specific mutation, the operator will draw the set L ⊆ L and apply a transformation on each node of L . For each node v i from L , we draw h i hyperparameters, which will be modified by a neighbouring value. The hyperparameters in our search space belong to three categories:

• Categorical values: the new value is randomly drawn among the set of possibilities deprived of the actual value. For instance, the activation functions, combiners, and recurrence types (LSTM/GRU) belong to this type of categorical variable.

• Integers: we select the neighbours inside a discrete interval around the actual value. For instance, it has been applied to convolution kernel size and output dimension.

• Float: we select the neighbours inside a continuous interval around the actual value. Such a neighbourhood has been defined for instance to the dropout rate.

5 Experimental study

Experimental protocol

We evaluated our optimization algorithm framework on the established benchmark of Monash Time Series Forecasting Repository [START_REF] Godahewa | Monash time series forecasting archive[END_REF]. For these experiments, we configured our algorithm to have a population of 40 individuals and a total of 100 generations. We investigated a sequential optimization of the architecture and the hyperparameters. We alternate at a certain generation frequency between two scopes: search operators applied to the architecture α with λ fixed, and search operators applied to the hyperparameters λ with α fixed. Thus, the architecturecentred sections of the optimization will diversify the population DNNs, while the hyperparameter-centred parts will perform a finer optimization of the obtained DNNs. We ran our experiments on 5 cluster nodes, each equipped with 4 Tesla V100 SXM2 32GB GPUs, using Pytorch 1.11.0 and Cuda 10.2. The experiments were all finished in less than 72 hours.

The Monash time series forecasting archive is a benchmark containing more than 40 datasets and the results of 13 forecasting models on each of these prediction tasks [START_REF] Godahewa | Monash time series forecasting archive[END_REF]. The time series are of different kinds and have variable distributions. More information on each dataset from the archive is available B. It allows us to test our framework generalization and robustness abilities.

Time Series input

Deep Neural Network:

f α,λ θ Directed Acyclic Graph: Γ = f α,λ
Multi-layer Perceptron Time Series Prediction The paper's authors accompanied their dataset with a GitHub allowing them to directly and very easily compare different statistical, machine learning and deep learning models on the forecast of different time series. We followed the indications to integrate new deep learning models, and only changed the models' core. We kept their data preparation functions, data loaders, training parameters (number of epochs, batch size), as well as the training and evaluation functions, to have the most accurate comparison possible. For each dataset, we also took over the configurations of the directory, notably the prediction horizons and lags. Figure 5 represents our meta-model which was used to replace the repository's models. The Multi-layer Perceptron at the end of the model is used to retrieve the time series output dimension, as the number of channels may vary within the Directed Acyclic Graph.

We compared our results with the benchmark models, which are composed of statistical models, machine learning and deep learning models. The metric used to evaluate the models' performance, our forecast error , is the Mean Absolute Scaled Error (MASE), an absolute mean error divided by the average difference between two consecutive time steps [START_REF] Rob | Another look at measures of forecast accuracy[END_REF]. Given a time series Y = (y 1 , ..., y n) and the predictions Ŷ = (ŷ 1 , ..., ŷn), the MASE can be defined as: The results are reported in Table 1. Our model succeeded in outperforming the best baseline for 24 out of 40 datasets.

MASE(Y, Ŷ) = n-1 n × n t=1 |yt-ŷt| n t=2 |yt-yt-1| . In our case, for f ∈ Ω, D 0 = (X 0 , Y 0) ⊆ D, we have (Y 0 , f (X 0) = MASE Y 0 , f (X 0) .
For the remaining 16 datasets, our framework obtained errors close to the best baseline. It is worth noting that our model outperformed the machine learning and deep learning models from the benchmark for 34 out of 40 datasets and was among the top 3 models for 34 out of 40 datasets. In Figure 6 we show the convergence of the evolutionary algorithm. At the right positions, we displayed the mean loss for each generation and the best individual loss. On the mean loss for each generation curve, we can identify the phases where the architecture is optimized, where we have more variability and the phases where the hyperparameters are optimized, with less variability. On the left positions, we represented heatmaps with the loss for each individual at each generation. The best individual is not over-represented in the population before the optimization ends.

Best models analysis

In the AutoDL literature, few efforts are usually made to analyze the generated DNNs. In Shu and Cai [2019] the authors established that architectures with wide and shallow cell structures are favoured by the NAS algorithms and that they suffer from poor generalization performance. We can rightfully ask ourselves about the efficiency of our framework and some of these questions may be answered thanks to a light models analysis. By the end of this section, we will try to answer some inquiries about our framework outputs. To answer those questions we defined some structural indicators, and we computed them in Table 2 for the best model for each dataset from [START_REF] Godahewa | Monash time series forecasting archive[END_REF]:

• Nodes: it represents the number of nodes (i.e. operations) in the graph.

• Width: it represents the network width which can be defined as the maximum of incoming or outgoing edges to all nodes within the graph. • Depth: it defines the network depth which corresponds to the size of the longest path in the graph.

• Dim: it is the maximum channel dimension, relative to the number of input and output channels (ratio). It indicates how complex the latent spaces from the neural network might become, compared to the dataset complexity. • Edges: it represents the number of edges, relative to the number of nodes in the graph. It indicates how complex the graph can be and how sparse the adjacency matrix is. • The last 7 indicators correspond to the number of the appearance of each layer type within the DNN.

Do our framework always converge to complex models, or is it able to find simple DNNs?

From Table 2 and Figure 7a, one can see that we have multiple simple graphs with only two layers. Knowing that the last feed-forward layer is enforced by our meta-model (see Figure 5), our DAG is only composed of one layer. Another indicator of this simplicity is the percentage of feed-forward layers found in the best models. 41% of the layers are feed-forward according to the table 2 although our search space offers more complex layers such as convolution, recurrence or attention layers less frequently picked. This proves that even without regularization penalties, our algorithmic framework does not systematically search for over-complicated models.

Do our algorithmic framework always converge to similar architectures for different datasets?

The framework is meanwhile able to find complex models as in Figure 7b, which partially answers our question. The indicators in Table 2 suggest that we found models with various numbers of nodes, from 2 to 10 and with diverse edge densities. The best model for the electricity hourly dataset (see Figure 7d) has an average of 1.5 incoming or outgoing edges by node whereas the best model for the electricity weekly dataset has an average of 3 incoming or outgoing edges by nodes. This is true even within performing graphs for the same dataset. In Figure 8 we displayed two different graphs having similar (and good) performance on the Dominick dataset. Both graphs do not have the same number of nodes and different architectures, the first one being a deep sparse graph while the other is wider with a lot of edges.

What is the diversity of the layer types within the best models?

The graphs from Figure 8 have also quite different layer types. If both are mainly based on identity, pooling and feed-forward operations, the second graph introduces convolution and dropout layers. In general, to answer this question, the fully-connected layers seem to dominate all layer types, as it represents 41% of the chosen layers in the best models (see Table 2). The identity layer is also more frequently picked. It is finally interesting to notice that all other layers are selected at the same frequency.

Are the best models still "deep" neural networks or are they wide and shallow as stated in Shu and Cai [2019]?

To answer this question, the observations from Shu and Cai [2019] also apply to our results. Our models are often almost as wide as they are deep. This observation needs more investigation as one of the reasons mentioned in the paper: the premature evaluation of architecture before full convergence does not apply here. Our models are smaller than the ones studied in the paper and thus converge faster, even when they are a bit deeper.

A last remark is related to the latent spaces generated by our models. Except for a few models, our models tend to always generate bigger latent space than the number of input and output channels. On average, the maximum size of the latent representation within a network is 17 times bigger than the input and/or output channels number.

Nondeterminism and instability of DNNs

An often overlooked robustness challenge with DNN optimization is their uncertainty in performance [START_REF] Summers | Nondeterminism and instability in neural network optimization[END_REF]. A unique model with a fixed architecture and set of hyperparameters can produce a large variety of results on a dataset. Figure 9 shows the results on two datasets: M3 Quarterly and Electricity Weekly. For both datasets, we selected the best models found with our optimization and drew 80 seeds summing all instability and nondeterministic aspects of our models. We trained these models and plotted the MASE Figure 9. On the M3 Quarterly, the MASE reached values two times bigger than our best result. On the Electricity Weekly, it went up to five times worst. To overcome this problem, we represented the parametrization of stochastic aspects in our models as a hyperparameter, which we added to our search space. Despite its impact on the performance, we have not seen any work on NAS, HPO or AutoML trying to optimize the seed of DNNs. Our plots of Figure 9 showed that the optimization was effective as no other seeds gave better results than the one picked by our algorithmic framework.

Conclusion and Future Work

In this work, we introduced a novel algorithmic framework for the joint optimization of DNNs architectures and hyperparameters. We first introduced a search space based on Directed Acyclic Graphs, highly flexible for the architecture, and also allow for fine-tuning of hyperparameters. Based on this search space we designed search operators compatible with any metaheuristic able to handle a mixed and variable-size search space. The algorithmic framework is generic and has been efficient on the time series forecasting task using an evolutionary algorithm.

Further work would be dedicated to the investigation of other metaheuristics (e.g. swarm intelligence, simulated annealing) to evolve the DAGs. The reformulation of the studied optimization problems by including multiple objectives (e.g. complexity of DNNs) and robustness represent also important perspectives. To further improve the performance on time series forecasting tasks we can develop a more complete pipeline including a features selection strategy.

We can imagine further research work testing our framework on different learning tasks. Considering the forecasting task, the output models show that combining different state-of-the-art DNN operations within a single model is an interesting lead to improve the models' performance. Such models are quite innovative within the deep learning community and studies on their conduct and performances could be carried out.

Figure 2 :

 2 Figure 2: DNN encoding as a directed acyclic graph (DAG). The elements in blue (crosshatch) are fixed by the framework, the architecture elements from α are displayed in beige and the hyperparameters λ are in pink (dots).

Figure 3 :

 3 Figure 3: Evolutionary algorithm framework.

Figure

 Figure 4: Crossover operator illustration.

Figure 5 :

 5 Figure 5: Meta model for Monash time series datasets.

Figure 6 :

 6 Figure 6: Evolutionary algorithm convergence. Left: heatmap with the loss for each individual for every generation. Right: population mean loss and best individual's loss through generations. Darker grey backgrounds represent generations during which the architecture is optimized, and lighter grey backgrounds represent generations during which the hyperparameters are optimized.

 Figure 8: Two different models having similar good performance on Dominick dataset.

Figure 9 :

 9 Figure 9: Mape histogram of the best model performances with multiple seeds for two datasets.

Table 1 :

 1 Mean MASE for each dataset, we only reported: the best MASE for statistical models, machine learning models and our optimization framework results. Statistical models: SES, Theta, TBATS, ETS, ARIMA. Machine Learning models: PR, CatBoost, FFNN, DeepAR, N-Beats, WaveNet, Transformer, Informer.

	Name		Models	
	Dataset	Stat. models ML/DL models Our framework
	Aus. elec	1.174	0.705	0.893
	Births	1.453	1.537	1.233
	Bitcoin	2.718	2.664	4.432
	Carparts	0.897	0.746	0.744
	Covid deaths	5.326	5.459	4.535
	Dominick	0.582	0.705	0.510
	Elec. hourly	3.690	1.606	1.652
	Elec. weekly	1.174	0.705	0.652
	Fred MD	0.468	0.601	0.489
	Hospital	0.761	0.769	0.751
	KDD	1.394	1.185	1.161
	Kaggle weekly	0.622	0.628	0.561
	M1 monthly	1.074	1.123	1.081
	M1 quart.	1.658	1.700	1.683
	M1 yearly	3.499	4.355	3.732
	M3 monthly	0.861	0.934	0.926
	M3 other	1.814	2.127	2.227
	M3 quart.	1.174	1.182	1.099
	M3 yearly	2.774	2.961	2.800
	M4 daily	1.153	1.141	1.066
	M4 hourly	2.663	1.662	1.256
	M4 monthly	0.948	1.026	0.993
	M4 quart.	1.161	1.239	1.198
	M4 weekly	0.504	0.453	0.430
	NN5 daily	0.858	0.916	0.898
	NN5 weekly	0.872	0.808	0.739
	Pedestrians	0.957	0.247	0.222
	Rideshare	1.530	2.908	1.410
	Saugeen	1.425	1.411	1.296
	Solar 10mn	1.034	1.450	1.426
	Solar weekly	0.848	0.574	0.511
	Sunspot	0.067	0.003	0.002
	Temp. rain	1.174	0.687	0.686
	Tourism monthly	1.526	1.409	1.453
	Tourism quart.	1.592	1.475	1.469
	Tourism yearly	3.015	2.977	2.690
	Traffic hourly	1.922	0.821	0.729
	Traffic weekly	1.116	1.094	1.030
	Vehicle trips	1.224	1.176	1.685
	Weather	0.677	0.631	0.614
	Total bests	11	5	24

Table 2 :

 2 Structural indicators of the best model for each dataset found by our algorithmic framework.

	Name						Structural Features					
	Dataset								Number of Nodes by layer types		
		nodes	width	depth	dim	edges	MLP	Att	CNN	RNN	Drop	Id	Pool
	Aus. elec	3	2	3	1.02	1.33	2	0	0	0	0	1	0
	Births	10	7	8	16.26	3.0	3	1	1	1	0	3	1
	Bitcoin	9	5	7	14.2	2.11	3	0	1	2	2	1	0
	Carparts	6	4	6	8.7	2.0	3	1	0	0	1	0	1
	Dominick	8	6	6	40.4	2.22	5	0	1	0	1	1	1
	Elec. hourly	6	3	6	2.88	1.5	4	0	0	0	0	0	2
	Elec. weekly	10	8	8	8.75	3.0	4	1	1	1	1	1	1
	Fred MD	8	6	7	12.0	2.38	2	2	0	0	2	1	1
	Hospital	9	6	6	20.0	2.2	2	1	2	0	0	2	2
	KDD	4	3	4	2.29	1.75	4	0	0	0	0	0	0
	Kaggle weekly	5	3	5	25.3	1.6	4	0	0	0	0	0	1
	M1 monthly	4	3	4	16.1	1.75	2	1	0	1	0	0	0
	M1 quart.	10	6	8	56.38	3.0	5	1	0	1	0	3	0
	M1 yearly	7	4	5	52.3	1.71	3	1	1	0	1	0	1
	M3 monthly	8	5	7	11.27	2.25	3	2	0	2	0	1	0
	M3 other	4	2	3	33.88	1.25	2	0	0	0	0	2	0
	M3 quart.	2	1	2	20.6	1.0	2	0	0	0	0	0	0
	M3 yearly	10	7	8	67.0	3.0	4	0	0	3	0	2	1
	M4 daily	2	1	2	32.29	1.0	2	0	0	0	0	0	0
	M4 hourly	6	4	5	2.9	1.83	2	0	1	2	0	1	0
	M4 monthly	3	2	3	10.06	1.33	2	0	0	0	0	1	0
	M4 quart.	5	4	4	38.0	1.8	3	0	1	0	0	1	0
	M4 weekly	7	6	5	3.37	2.14	1	1	2	0	0	2	1
	NN5 daily	6	4	5	5.6	1.67	4	0	0	0	2	0	0
	NN5 weekly	4	3	3	1.0	1.5	1	0	1	0	0	0	2
	Pedestrians	9	5	6	3.97	2.33	2	1	1	1	1	2	1
	Rideshare	4	3	4	1	1.5	3	0	0	0	0	1	0
	Saugeen	2	1	2	0.3	1	1	0	0	0	0	1	0
	Solar 10mn												
	Solar weekly	12	7	9	51.67	2.75	3	1	0	0	4	1	3
	Sunspot	8	4	7	0.25	1.75	3	0	2	0	1	1	1
	Temp. rain	8	5	6	12.4	2	4	1	0	0	1	0	2
	Tourism monthly	4	2	4	8.38	1.5	2	0	1	0	0	1	0
	Tourism quart.	7	5	6	25.75	2.14	2	0	1	2	0	2	0
	Tourism yearly	9	6	6	68.0	2.22	3	1	1	1	1	2	0
	Traffic hourly	9	6	7	2.76	2.44	4	1	1	0	2	0	1
	Traffic weekly	7	5	5	2.20	1.71	1	0	3	1	0	2	0
	Vehicle trips	8	5	7	9.83	2	2	1	0	3	0	0	2
	Weather	8	4	6	38.8	2.38	2	1	3	0	0	1	1
	Summary	6.4	4.13	5.25	17.2	1.91	41%	8.2%	9.8%	8.5%	7.8%	14.4%	10.1%

Acknowledgments

This work has been funded by Electricité de France (EDF). The supercomputers used to run the experiments belong to EDF.

A Available operations and hyperparameters

Table 3: Operations available in our search space and used for the Monash time series archive dataset and their hyperparameters that can be optimized.

Operation

Optimized