
HAL Id: hal-03982841
https://hal.science/hal-03982841

Submitted on 10 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Incremental Consistent Updating of Incomplete
Databases

Jacques Chabin, Mirian Halfeld Ferrari, Nicolas Hiot, Dominique Laurent

To cite this version:
Jacques Chabin, Mirian Halfeld Ferrari, Nicolas Hiot, Dominique Laurent. Incremental Consistent
Updating of Incomplete Databases: Extended Version. LIFO, Université d’Orléans, INSA Centre Val
de Loire; ENSEA. 2023. �hal-03982841�

https://hal.science/hal-03982841
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Incremental Consistent Updating of Incomplete Databases

(Extended Version - Technical Report)

Jacques Chabin , Mirian Halfeld Ferrari

LIFO – Université d’Orléans, INSA CVL – Orléans, France

Nicolas Hiot

LIFO – Université d’Orléans, INSA CVL – Orléans, France

EnnovLabs – Ennov – Paris, France

Dominique Laurent

ETIS – CNRS, ENSEA, CY Université – Cergy-Pontoise, France

February 10, 2023

Abstract

Efficient consistency maintenance of incomplete and dynamic real-life databases is a quality
label for further data analysis. In prior work, we tackled the generic problem of database
updating in the presence of tuple generating constraints from a theoretical viewpoint. The
current paper considers the usability of our approach by (a) introducing incremental update
routines (instead of the previous from-scratch versions) and (b) removing the restriction that
limits the contents of the database to fit in the main memory. In doing so, this paper offers
new algorithms, proposes queries and data models inviting discussions on the representation of
incompleteness on databases. We also propose implementations under a graph database model
and the traditional relational database model. Our experiments show that computation times
are similar globally but point to discrepancies in some steps.

1 Introduction

Incremental update algorithms are essential for incomplete real-life databases, often large and con-
stantly updated. Modern applications usually involve the analysis of large amounts of data with
missing and changing values. The quality of this analysis depends on the consistency of the data,
the maintenance of which requires calculations whose cost needs to be reduced.

To address this problem, we build upon our prior work [9] where the generic problem of database
updating in the presence of constraints was tackled from a theoretical point of view, and under the
restriction that the database content was meant to fit in main memory. Hence, for missing values, we
follow Reiter [28] who provides FOL (First-Order Logic) semantics to null values of type ‘value exists
but is currently unknown’. Constraints are expressed as tuple-generating dependencies (tgd), i.e.,
implications of the form (∀X,Y)(B(X,Y)⇒ (∃Z)L(X,Z)) where X , Y , Z are vectors of variables,
B(X,Y) is the conjunction of atoms of the form Li(Xi, Yi) where Xi and Yi are sub-vectors of X
and Y , respectively, and L(X,Z) is an atom.

1

https://orcid.org/0000-0003-1460-9979
https://orcid.org/0000-0003-2601-3224
https://orcid.org/0000-0003-4318-4906
https://orcid.org/0000-0002-7264-9576

In [9], our purpose was to allow for the insertions or the deletions of sets of tuples under the
following hypotheses:

• A fixed set C of constraints as specified just above is assumed over a given set of predicates.

• The database D to be updated is a set of instantiated atoms, in which marked nulls may occur.
Moreover, the database contains no redundancies caused by these nulls.

• D satisfies the constraints in C, meaning that, for every c in C, whenever there exists an
instantiation h of X and Y such that D contains all atoms in h(B(X,Y)) then h can be
extended to Z so as D also contains h(L(X,Z)).

• The updated database D′ satisfies the constraints in C and is not redundant, while being such
that the updates are performed, that is, all atoms to be inserted are present in D

′ and no
atoms to be deleted is present in D

′.

In this paper, we improve our work in [9] in two main aspects: (1) we propose an incremental
version of the approach and (2) we deal with data stored in database systems, contrary to the
in-memory version of [9].

Given an update u over a database instance D, our approach consists in generating (by the
activation of constraints in C) a set of new updates, U ′, as necessary side-effects to maintain the
database consistent. Contrary to from scratch algorithms, whereby the whole database instance and
the whole set C are involved in the generation of U ′, incremental algorithms minimize the amount
of data to be accessed and the constraints to be triggered.

Paper Organisation. We overview our approach and its evolution (from scratch towards an incre-
mental approach) through a motivating example in Section 2. Section 3 provides some background.
Section 4 introduces the operations over which the incremental core computation is built. Incre-
mental update algorithms, their implementation aspects and experimental results are introduced,
respectively in Sections 5, 6 and 7. After presenting related work in Section 8, Section 9 concludes
the paper.

2 Motivating Example

Figure 1 shows a set of constraints in the context of a university, researchers and students. Although
the intuitive meaning of these constraints should be clear, we point out that in the constraints c6,
c9, c10, c11 and c12, the right hand-side involves a variable not present in the left hand-side. Due
to such contraints, known in the literature as tuple generating dependencies (tgd), nulls values may
appear in the database instance, as explained below. Their intuitive meaning is as follows:

• the variable Z in PhDPaper(Y, P, Z) of c6 stands for the year the paper has been published;

• the variable Y in Cites(X,Y) of c9 stands for a publication cited by publication X ;

• the variable Y in Enrolled(X,Y) of c10 stands for a course student X is enrolled in;

• the variable Z in Degree(Y, Z) of c11 stands for the degree course Y is part of;

• the variable Z in Language(X,Y, Z) of c12 stands for the language in which is taught course
X of degree Y .

2

c1 : Supervises(X,Y) → Researcher(X)

c2 : Supervises(X,Y) → Student(Y)

c3 : Authors(X,Y) → Researcher(X)

c4 : Authors(X,Y) → Publication(Y)

c5 : Researcher(X) → Authors(X,Y)

c6 : Supervises(X,Y), Authors(X,P),
Authors(Y,P) → PhDPaper(Y,P, Z)

c7 : Cites(X,Y) → Publication(X)

c8 : Cites(X,Y) → Publication(Y)

c9 : Publication(X) → Cites(X,Y)

c10 : Student(X) → Enrolled(X,Y)

c11 : Enrolled(X,Y) → Degree(Y,Z)

c12 : Degree(X,Y) → Language(X,Y, Z)

c13 : Enrolled(X,Y) → GrantEligible(X)

Figure 1: Set of (general) constraints

Constraints from this set are used in subsequent examples to illustrate our proposes throughout
the paper. Let us start with C = {c1, . . . , c6} over the following database instance D:

D = { Researcher(Elin), Authors(Elin, P269), Publication(P235), Authors(Sten, P269),
Publication(P269), Student(Sten), Supervises(Elin, Sten), Researcher(Nils),
PhDPaper(Sten, P269, 2022) }

(A) Constraint satisfaction. First, constraints c1 and c2 are satisfied, because Supervises(Elin,

Sten), Researcher(Elin) and Sudent(Sten) are in D. Constraint c4 is satisfied as well because
Publication(P269) is in D. Similarly, c6 is satisfied becauseD contains PhDPaper(Sten, P269, 2022).

However, c3 is not satisfied because Authors(Sten, P269) is in D and Researcher(Sten) is not.
Similarly, c5 is not satisfied because Researcher(Nils) has no matching fact over Authors in D.
Constraint satisfaction is obtained by adding facts, generated by a process called chase:

1. Researcher(Sten) is added to satisfy c3.

2. In order to satisfy c5 one fact overAuthorsmust be added, but the value of the second argument
(i.e., the publication) is unknown. Despite that publications are present in D, those authored
by Nils are unknown. Marked nulls are used to account for this situation: Authors(Nils,N1)
is added, which is read as ‘Nils authored a publication, currently unknown but recognized as
N1’. The atom Publication(N1) is then inserted in order to satisfy c4.

In this case, we obtain D
′ = D ∪ {Researcher(Sten), Authors(Nils,N1), Publication(N1))}.

In the following items, we show differences between the from-scratch and incremental approaches
to updates.

(B) Updates. Updates are insertions or deletions.

(B.1) Insertions. Given a database instance D satisfying a set of constraints C, an updated
database is the result of inserting facts in D while maintaining constraint satisfaction.

LetC1 = {c1, c6, c7, c8},D1 = {Researcher(Elin), Supervises(Elin, Sten), Authors(Elin, P269)},
and the set of required insertions iRequest = {Authors(Sten, P269)}.

From-scratch approach. To reinforce constraints, side-effects are computed through a process called
chase, that applies the constraints in C1 on D1 ∪ iRequest, to generate a new set chase(D1). In
doing so, facts already in D1 might be generated again.

Incremental approach. Side-effects for insertions are computed based on iRequest as follows. In our
example, the only constraint to be triggered when inserting Authors(Sten, P269) is c6 because (i)

3

a query on D1 informs that the atoms Supervises(Elin, Sten) and Authors(Elin, P269) already
exist in D1, and (ii) c6 is impacted by the insertion. Then, the result of the insertion is D

′
1 =

D1 ∪ {Authors(Sten, P269), PhDPaper(Sten, P269, N2)}.

(B.2) Deletions. ConsiderD′ (from item (A) above) along with the constraints in C = {c1, . . . , c6}.

From-scratch approach. After removing from D
′ a given set of facts dRequest, the deletion process

includes the computation of chase(D′ \dRequest) to check constraint satisfaction. Then, if one atom
to be deleted is re-generated (up to null renaming), a backward chase is activated to identify the
side-effects of the deletion. This is illustrated through the following two cases.

Case 1. Let dRequest = {PhDPaper(Sten, P269, 2022)}. First the fact PhDPaper(Sten, P269, 2022)
is removed from D

′ and then, constraint satisfaction is checked as done for insertions. Here, D′ \
{PhDPaper(Sten, P269, 2022)} does not satisfy c6 because Sten is still present as an author of paper
P269. As above, consistency is restored by inserting PhDPaper(Sten, P269, N2). The resulting
database D

′′ = (D′\ {PhDPaper(Sten, P269, 2022)}) ∪ {PhDPaper(Sten, P269, N2)} is consistent
and implements the deletion because it does not contain the atom to be deleted.

Case 2. Consider now dRequest = {PhDPaper(Sten, P269, N2)} on D
′′. A processing similar to

the previous one would first remove the atom from D
′′ and then, insert PhDPaper(Sten, P269, N3)

to restore consistency with respect to the constraints. This result is not acceptable because the
generated set is equal to D

′′ (up to a null renaming), meaning that the deletion has not been
implemented. In this case, the processing is carried on by deleting all atoms responsible of the
generation of the atom to be deleted.

This amounts to apply the constraints backward (from the head to the body), removing one atom
from the body, to prevent the constraint from being triggered. To this end, for every constraint c, a
literal in its body is marked as the one to be deleted in such a situation (for the sake of simplicity,
let the leftmost literal in be the marked one). Here, Authors(Elin, P269) has to be deleted, due
to c6. Then, we proceed following the ideas already presented: the latter deletion, because of c5,
requires the insertion of Authors(Elin,N4) which in turn, because of c4, requires the insertion
Publication(N4), returning the database

D2 = (D′′ \ {PhDPaper(Sten, P269, N2), Authors(Elin, P269)}) ∪
{Authors(Elin,N4), Publication(N4)}.

Incremental approach. First, a backward chase is used to find the constraints impacted by the
required update. In our example, constraint c6, and then c5 are the only ones concerned by deletions.
Second, the chase is applied only on the rules detected just above and its result is analyzed as done
in the from-scratch approach. It is worth noting that, as data is stored in a database, queries are
used to detect whether constraints can be applied for chasing (backward or forward).

(C) Avoiding too many nulls. An important issue regarding side effects is making sure that
the processing terminates. Considering the set of constraints C1 = C ∪ {c7, c8, c9} on D

′, it is clear
that D

′′ does not satisfy c9, because Publication(P269) and Publication(P235) belong to D
′′ with

no associated citation. In order to satisfy c9, Cites(P269, N6) and Cites(P235, N7) must be inserted,
which triggers the insertions of Publication(N6) and of Publication(N7), due to c7. Then, to satisfy
c9, Cites(N6, N8) and Cites(N7, N9) have to be inserted, and we are clearly entering an infinite
loop, which is not acceptable.

To cope with this difficulty, every null N is associated with an integer called the degree of N and
denoted by δ(N). At each insertion, the degree of all nulls occurring in D are set to 0, and when a
constraint c is applied during the processing, all generated nulls are assigned a degree equal to δ+1
where δ is the maximal degree of the nulls in the atoms of the constraint body, or 0 if no null occurs
in the constraint body. Moreover, assuming a fixed maximal null degree δmax, insertion processing

4

is stopped as soon as a null N is such that δ(N) ≥ δmax, and the insertion is rejected, that is D is
not changed.

For example, in the case just above, we have δ(N6) = δ(N7) = 0, δ(N8) = δ(N6) + 1 = 1 and
δ(N9) = δ(N7) + 1 = 1, etc. If, for example δmax is set to 2, the generation of nulls will stop at
the next round and the insertion will be rejected. The verification of null degree is similar in both
From-scratch and incremental approaches (it was proven in [9] that by using δmax we accept only
consistent insertions).

(D) Avoiding redundancies (core). Side effects have to be computed in aminimal way to reflect
as much as possible the so-called minimal change requirement. To illustrate this point consider the
insertion in D

′ of Authors(Nils, P235). Adding this fact in D
′ provokes redundancies, because the

presence of Authors(Nils,N1) and of Publication(N1) is no longer required to ensure constraint
satisfaction. The result of this insertion is the set D′′′ defined by:

D
′′′ = (D′ \ {Authors(Nils,N1), Publication(N1)}) ∪ {Authors(Nils, P235)}

In our implementations, redundancies in D are eliminated through the computation of the core,
seeking for mapping nulls to constants or nulls so as to detect redundant atoms. In our example,
for h such that h(N1) = P235, we have:
− h(Authors(Nils,N1)) = Authors(Nils, P235) and
− h(Publication(N1)) = Publication(P235),
showing that Authors(Nils,N1) and Publication(N1) are redundant.

From-scratch approach. Once the updates are performed on the database, the whole instance is
considered for simplifications.

Incremental approach. This new proposal aims to retrieve only the facts involved in the update

operation. For instance, for D′ as in our example, in the incremental approach a query detects that
N1 is the only null value concerned by the update. No need to work with the whole instance D

′.

From-scratch and incremental approaches at a glance. Consider the update process that
includes the general ideas explained in items (B) and (C) above. Denote, respectively, by upd and
upd|U , its from-scratch and incremental versions. More precisely, when using the upd|U policy, only
the database portion impacted by U is concerned, while the whole database is concerned by upd

policy. The expression D♦U indicates the insertion/deletion of the required updates U in/from D.
In the from-scratch approach the new instance is denoted by D

′ = core(upd(D♦U)), while in the
incremental approach, the new instance is denoted by D

′ = core|NullBucket(upd|U (D♦U)), where
NullBucket, is the set of nulls impacted by the update policy (upd|U) applied to D♦U .

3 Preliminaries

We recall some formal definitions already used in [9]. We assume a standard FOL alphabet composed
of three pairwise disjoint sets, namely: const, a set of constants, var, a set of variables and pred,
a set of predicates, every predicate being associated with a positive integer called its arity. In this
setting, a term is a constant or a variable and an atomic formula, or an atom, is a formula of the
form P (t1, . . . , tn) where P is a predicate of arity n and t1, . . . , tn are terms. Every atom in which
no variables occur is called a fact.

A homomorphism from a set of atoms A1 to a set of atoms A2 is a mapping h from the terms of
A1 to the terms of A2 such that: (i) if t ∈ const, then h(t) = t, and (ii) if P (t1, ..., tn) is in A1, then
P (h(t1), ..., h(tn)) is in A2. The set A1 is isomorphic to the set A2 if there exists a homomorphism
h1 from A1 to A2 which admits an inverse homomorphism (from A2 to A1).

5

We denote by Φ the set of all formulas of the form (∃X)(ϕ1(X1) ∧ . . . ∧ ϕn(Xn)) where X

is a vector of variables made of all variables occurring in Xi (i = 1, . . . , n), and where for every
i = 1, . . . , n, ϕi(Xi) is an atomic formula in which the free variables are those in Xi. If φ denotes
such a formula in Φ, the set {ϕ1(X1), . . . , ϕn(Xn)} is denoted by atoms(φ).

Given φ in Φ, a model M of φ is a set of facts such that there exists a homomorphism from
atoms(φ) to M . In such a setting, for all φ1 and φ2 in Φ, φ1 ⇒ φ2 holds if each model of φ1 is a
model of φ2, and as usual, φ1 and φ2 in Φ are said to be equivalent, denoted by φ1 ⇔ φ2, if φ1 ⇒ φ2

and φ2 ⇒ φ1 both hold, that is if φ1 and φ2 have the same models.
For all φ1 and φ2 in Φ, φ1 is said to be simpler than φ2, denoted by φ1 � φ2, if (i) φ1 ⇔ φ2

holds, and (ii) atoms(φ1) ⊆ atoms(φ2). φ1 is also said to be a simplification of φ2. A simplification
φ1 of φ2 is said to be minimal if φ1 � φ2 and there is no φ′

1 such that φ′
1 ≺ φ1. For instance, let φ

be the formula (∃x, y)(P (a, x) ∧ P (a, y)); then (∃x)(P (a, x)) and (∃y)(P (a, y)) are two distinct but
equivalent simplifications of φ.

It is shown in [9] that if φ is in Φ and φ1 and φ2 two minimal simplifications of φ, then atoms(φ1)
and atoms(φ2) are isomorphic (in the literature, we find a similar result for graphs[22]). Minimal
simplifications are also called cores and the core of a given formula φ is denoted by core(φ).

Basically, a database instance is a formula φ in Φ that cannot be simplified, i.e., such that
core(φ) = φ. Formulas in Φ are ‘skolemized’ by replacing the variables with specific constants
referred to as Skolem constants or as (marked) nulls and by omitting the existential quantifier. We
thus assume an additional set of symbols in our alphabet, denoted by null, disjoint from the sets
const and var. Now a term can be of one of the following types: either a constant, or a null, or
a variable. Any atom of the form P (t1, . . . , tn) where for every i = 1, . . . , n, ti is in const ∪ null,
is called an instantiated atom. Given an instantiated atom A, denote by null(A) the set of nulls
appearing in A. Moreover, as usual, the transformed conjunctive formula is written as the set of its
conjuncts. In other words, a database instance is a set of instantiated atoms that can be written as
atoms(Sk(φ)) where Sk(φ) is the Skolem version of a formula φ in Φ such that core(φ) = φ.

4 Simplification with Respect to Nulls: a Basic Operation

In our approach, a database D is expected to be equal to its core to avoid data redundancy. It is
thus of paramount importance to enforce this property when updating. To this end, we propose
incremental algorithms, so as to deal with as few nulls as possible, based on those involved in the
update processing.

More formally, given a set of atoms I and a set of nulls ν occurring in I, we look for a homomor-
phism h such that for every N not in ν, h(N) = N and h(I) is minimal so as h(I) ⊆ I. However,
the following example shows that the choice of ν cannot be arbitrary. Indeed, given a set of nulls
ν0, with respect to which I is to be simplified, the set ν0 has to be expanded to the set ν of all nulls
‘linked’ (directly or indirectly) to a null in ν0 in some atom of I.

Example 1 Let ν0 = {N1} and I defined by:

I = { Student(Alice), Enrolled(Alice,N1), Degree(N1, N2), Enrolled(Alice,Math),
Degree(Math,N3), Degree(CS,N4), Degree(CS,BSc) }

To simplify I with respect to ν0, we should eliminate redundancies in I involving N1. As N1 occurs
in Degree(N1, N2) with the other null N2, the simplification should deal with N1 and N2. Since N1

and N2 are not linked with any other null in the atoms of I, we have ν = {N1, N2}. For h such that
h1(N1) = Math and h1(N2) = N3, we obtain a non-redundant instance I ′ = h(I) defined by

I ′ = { Student(Alice), Enrolled(Alice,Math), Degree(Math,N3),
Degree(CS,N4), Degree(CS,BSc) }.

6

Notice however that simplifications involving N3 or N4 have not to be considered. �

As shown by the above example, given I and ν0, nulls ‘linked’ in I to nulls in ν0 have to identified.
We do so through the computation for every N in ν0, of the set LinkedNullI,N as explained next.

We first define the sequence
(

LinkedNullkI,N

)

k≥0
by:

(i) LinkedNull0I,N = {Ai ∈ I | N ∈ null(Ai)}

(ii) LinkedNullkI,N = {Ai ∈ I | (∃Aj ∈ LinkedNullk−1
I,N)(null(Ai) ∩ null(Aj) 6= ∅)}.

It is easy to see that for every k ≥ 0, we have LinkedNullkI,N ⊆ LinkedNullk+1
I,N and LinkedNullkI,N ⊆ I.

Thus, the sequence
(

LinkedNull
k
I,N

)

k≥0
is bounded by I and is monotonic. As I is finite, the sequence

has a unique limit, which is precisely the sub-set of I denoted by LinkedNullI,N .
It therefore turns out that redundancy has only to be checked with respect to the atoms in

⋃

N∈ν0
LinkedNullI,N and the set ν of all nulls occurring in this set. Algorithm 1 shows how redun-

dancies are dealt with in this context.

Algorithm 1: Simplify(I, ν0)

1: PSet := {LinkedNullI,N | N ∈ ν0}
2: for all P ∈ PSet do

3: Build the query qcore and compute its answer qcore(I)
4: if | (qcore(I)) |> 1 then

5: hm := ChooseMostSpec(qcore(I))
6: I := (I \ P) ∪ hm(P)
7: return I

Algorithm 1 receives as input a set I of instantiated atoms, and a set of nulls ν0. For each N

in ν0, the algorithm computes the set LinkedNullI,N (line 1), which is stored in a set called PSet.
Therefore, the nulls occurring in PSet constitute the set ν with respect to which I is simplified.

On line 3, for each P in PSet, a query qcore : ans(X)← A1(X1), . . . , An(Xn) is built by replacing
each occurrence of Ni in P by xi. That is, Ai(Xi) is obtained from Ai in P by replacing the nulls
in Ai by the corresponding variables.

Thus, assuming that p nulls occur in P , when evaluating the answer qcore(I) of qcore, the tuple
(N1, . . . , Np) is obviously returned. However, it may happen that the answer contains other tuples,
each of which define a possible instantiation of the nulls in P . In this case, some atoms in P are
redundant, and thus can be removed. To implement these remarks, when the evaluation of qcore over
I returns more than one tuple (line 4), one most specific tuple is chosen (line 5), and denoting by
hm the associated homomorphism, I is simplified (line 6) by replacing all atoms A in P by hm(A).

Example 2 Considering I as in Example 1 and ν0 = {N1}, LinkedNullI,N1
consists of the atoms

Enrolled(Alice,N1) and Degree(N1, N2). Thus, the query qcore is defined by:

ans(x1, x2)← Enrolled(Alice, x1), Degree(x1, x2)

returning the answer {(N1, N2), (Math,N3)} with more than one tuple. Hence, hm such that
hm(N1) = Math and hm(N2) = N3 is returned line 5, and I is simplified as illustrated in Ex-
ample 1. �

To explain our method for computing the most specific homomorphism hm we introduce the notion
of P -homomorphism.

7

Definition 1 Given I a set of instantiated atoms and N a null occurring in I, let P = LinkedNullI,N .
A P -homomorphism is a homomorphism h such that h(I) ⊆ I and for every null N ′ in null(I) \
null(P), h(N ′) = N ′.

I is said to be P -reducible if there exists a P -homomorphism h such that h(I) is a strict subset
of I. �

In the following proposition, given a set I of instantiated atoms and a null N in ν0, we use the
following notation:

• P denotes the set of atoms LinkedNullI,N , and null(P) = {N1, . . . Np} denotes the set of nulls
occurring in P ;

• qcore(I) is the answer to qcore computed against I. That is, qcore(I) is the set {h1, . . . , hq} of
all possible P -homomorphisms defined over null(P). We suppose that h1 is the identity, i.e.,
for every j = 1, . . . , p, h1(Nj) = Nj ;

• HP denotes the table with p columns and q rows such that HP [i, j] = hi(Nj).

• Given a set of atoms Q, we denote by cons null(Q) the set of all symbols σ such that σ is a
constant or a null not in null(Q).

We recall that given two homomorphisms h1 and h2 over the same set of symbols Σ, h1 is said to
be less specific than h2, denoted by h1 � h2, if there exists a homomorphism h over Σ such that
h ◦ h1 = h2. Using these notation, the following proposition holds.

Proposition 1 Given hi and hi′ in qcore(I), hi � hi′ holds if and only if, for every j = 1, . . . , p,
we have:

1. If HP [i, j] is in cons null(P), then HP [i, j] = HP [i
′, j];

2. If HP [i, j] is a null N in null(P), then for every j′ 6= j such that HP [i, j] = HP [i, j
′] it holds

that HP [i
′, j] = HP [i

′, j′].

Proof. Let us first assume that hi � hi′ holds. In this case, there exists h such that h ◦hi = hi′ . If
Nj is such that hi(Nj) is a constant or a null not in null(P), then for every P -homomorphism hP ,
hP (hi(Nj)) = hi(Nj). Hence, hi′(Nj) = h ◦ hi(Nj) = hi(Nj), which shows item (1). If j and j′ are
such that hi(Nj) = hi(Nj′), then hi′(Nj) = hi′(Nj′) also holds, showing item (2).

Conversely, assume that for hi and hi′ , items (1) and (2) hold. Let h be defined for every
j = 1, . . . , p as follows: if there exists Nk such that hi(Nk) = Nj then h(Nj) = hi′(Nk), otherwise
h(Nj) = Nj . We first notice that h is well defined. Indeed, if k and k′ are such that hi(Nk) = hi(Nk′),
then we have two expressions defining h(Nj), namely h(Nj) = hi′(Nk) and h(Nj) = hi′(Nk′).
However, by item (2) we have hi′(Nk) = hi′(Nk′), and thus, these two expressions yield the same
value. We now prove that hi � hi′ , that is, that for every k = 1, . . . , p, then hi′(Nk) = h(hi(Nk)).
If hi(Nk) is not in null(P), then, we have hi(Nk) = hi′(Nk) = Nk, and by construction of h we also
have h(NK) = Nk. Therefore hi′(Nk) = h(hi(Nk)) = Nk. On the other hand, if hi(Nk) = Nj , by
definition of h, we have hi′(Nk) = h(Nj). Hence, hi′(Nk) = h(Nj) = h(hi(Nk)). Since for every
k = 1, . . . , p, we have hi′(Nk) = h(Nj) = h(hi(Nk)), it follows that hi � hi′ , and the proof is
complete. �

Example 3 Let I = {B(N1, N2), B(N2, N1), C(N1, a), C(N2, a), C(N3, a)} and ν0 = {N1}.
In this case, P = {{B(N1, N2), B(N2, N1), C(N1, a), C(N2, a)}} and thus null(P) = {N1, N2}

and cons null(P) = {a,N3}. This implies that P -homomorphisms should not change N3, or in other
words, N3 should be treated as constant. The query qcore is thus written as follows:

8

qcore : ans(x1, x2)← B(x1, x2), B(x2, x1), C(x1, a), C(x2, a)

and the table HP representing the answer qcore(I) is shown below.

HP x1 x2

1 N1 N2

2 N2 N1

HP has 2 columns (because null(P) contains two nulls), and 2 rows due to two answers in qcore(I).
It is easy to see that h1 � h2, and h2 � h1 meaning that there is no advantage in trying to simplify
the database instance in this case. Indeed, we have h1(I) = I, where h1 is the identity. We have
h2(I) = I as well, although h2 is not the identity. Remark that h2 does not satisfy h2 = h2 ◦ h2

(i.e., h2 is not idempotent) because h2(h2(N1)) = h2(N2) = N1, whereas h2(N1) = N2. As will be
seen shortly, detecting such homomorphisms allows for computational optimizations. �

The following corollary shows how to find one most specific homomorphism, based on Proposition 1.
To state the corollary, we use the following notation for i = 1, . . . , q:

• γi is the number of nulls N in null(P) such that hi(N) is in cons null(P);

• µi = {k ∈ {1, . . . , q} | (∀j = 1, . . . , p)(hi(Nj) ∈ cons null(P)⇒ hk(Nj) = hi(Nj))};

• πi is the number of distinct nulls in null(P) in the set hi(null(P)).

Intuitively speaking, considering that HP is the tableau, then γi is the number of columns that,
at row i, contain a symbol in cons null(P). On the other hand, µi is the set of all rows in HP

containing the same symbols of cons null(P) in the same columns as row i does (i.e., if hi(Nj) = c

then hk(Nj) = c). Then πi is the number of distinct nulls in nulls(P) occurring in row i.
The corollary below formalizes the following informal remarks:

1. If hi 6= hi ◦ hi, then hi cannot be one of the most specific homomorphisms, because in this
case, hi ≺ hi ◦ hi. For instance, in Example 3, we have h2 6= h2 ◦ h2.

2. Most specific homomorphisms are among the rows of HP with the largest number of symbols
in cons null(P). Indeed, let hi and hj be such that row i contains strictly more symbols in
cons null(P) than row j and hi ≺ hj . Then, there exists h such that h ◦ hi = hj , and so,
if N in null(P) is such that hi(N) is in cons null(P), we have h(hi(N)) = hi(N), and so
hi(N) = hj(N). Thus, row j has at least as many symbols in cons null(P) as row i, which
implies a contradiction. Hence, for every N in null(P), hi(N) is also in null(P), in which case
rows i and j have no symbols in cons null(P), which is another contradiction.

3. Considering one of the rows defined just above, say row i, among all rows having the same
symbols in cons null(P) in the same columns as row i, we argue that a row with as few distinct
nulls in null(P) defines one most specific homomorphism.

Corollary 1 Given I and P as above, denoting by {h1, . . . , hq} the set qcore(I), the following holds:

1. If hi is one of the most specific P -homomorphisms in qcore(I) then hi is idempotent, that is,
hi ◦ hi = hi.

2. hi is one of the most specific P -homomorphisms in qcore(I) if (a) γi = max1≤j≤q(γj), and (b)
πi = mink∈µi

(πk).

9

Proof. First, Proposition 1 implies that hi � hi ◦ hi holds for every hi. Moreover, as hi is a
P -homomorphism, we have hi(I) ⊆ I. Thus hi ◦ hi(I) ⊆ I, which implies that hi ◦ hi is a P -
homomorphism as well. The proof of item (1) is therefore complete.

Assume that hi satisfies (2) and let hk be a P -homomorphism such that hi � hk. By Proposi-
tion 1, if hi(Nj) is in cons null(P), then hi(Nj) = hk(Nj). Therefore, γi ≤ γk, and as γk ≤ γi, this
implies γi = γk. Thus, k is in µi, which implies that hi(Nj) is in null(P) if and only if so is hk(Nj).
By Proposition 1, if j and j′ are such that hi(Nj) = hi(Nj′) then we also have hk(Nj) = hk(Nj′). It
therefore follows that less nulls in null(P) occur for hk, that is πk ≤ πi. As πi ≤ πk must hold, we
obtain that πi = πk, meaning that hi and hk are equal up to a null renaming. The proof is therefore
complete. �

Algorithm 2: ChooseMostSpecific(qcore(I))

1: Build HP as explained in Proposition 1
{HP has q rows and p columns}

2: row max := 1 ; count max := 0 ; i := 2
3: for all i = 2, . . . , q do

4: idemPot := true

5: count curr := 0 ; j := 1
6: while idemPot = true and j ≤ p do

7: if HP [i, j] is in cons null(P) then
8: count curr := count curr + 1
9: else

10: Let Nk = HP [i, j] {Nk is in null(P)}
11: if HP [i, k] 6= Nk then

12: idemPot := false {hi is not idem-potent}
13: Mark row HP [i]
14: j := j + 1
15: if idemPot = true then

16: if count curr > count max then

17: row max := i

18: count max := count curr

19: row spec := row max

20: Let count min be the number of distinct nulls in null(P) occurring in HP [row max]
21: for all i = 2, . . . , q do

22: if row HP [i] is not marked and i 6= row max then

23: match := true ; j := 1
24: while match = true and j ≤ p do

25: if HP [row max, j] is in cons null(P) and HP [row max, j] 6= HP [i, j] then
26: match := false

27: j := j + 1
28: if match = true then

29: Let count null be the number of distinct nulls in null(P) occurring in HP [i]
30: if count null < count min then

31: row spec := i

32: count min := count null

33: return hm, the homomorphism defined by HP [row spec]

10

As a consequence, finding a most specific P -homomorphism in qcore(I) amounts to (i) discard any
row not defining an idem-potent homomorphism and (ii) among the remaining rows, identify one
homomorphism satisfying item 2 of Corollary 1. Algorithm 2 shows how to compute such a most
specific homomorphism, and we notice that this does not require data access. To end the section,
we illustrate Algorithm 2 as follows.

Example 4 We first consider the context of Example 3, where I = {B(N1, N2), B(N2, N1), C(N1, a),
C(N2, a), C(N3, a)} and P = {B(N1, N2), B(N2, N1), C(N1, a), C(N2, a)}.

In this case, null(P) = {N1, N2}, cons null(P) = {N3}, and the associated table HP has been
shown already. Applying Algorithm 2 based on the table HP , the following computations are
achieved.

The first loop line 3 aims at marking rows defining non idempotent P -homomorphisms (that is,
such that h◦h 6= h) and mean-while to find one unmarked row with as many symbols in cons null(P)
as possible, in reference to Corollary 1(2). These computations return the following:

• When processing row 2 of HP , we have HP [2, 1] = N2 where N2 is in null(P), and HP [i, 2] =
N1. Since N1 6= N2, idemPot is set to false and row 2 is marked on line 13.

• Since there is no other row to process, the loop line 3 returns row max = 1 and count curr = 0.

Hence, Algorithm 2 returns row spec = 1 and so, hm is defined by hm(N1) = N1 and hm(N2) = N2.
In other words, I is not simplified, which is indeed the expected result.

We now illustrate further Algorithm 2, using two more sophisticated cases. First, let ν0 =
{N1} and I1 = {B(N1, N2), B(a,N2), B(a,N3), B(N4, N3), C(N2, N2), C(N3, N3)}. In this case,
LinkedNullI,N1

= {N1, N2} and thus, PSet = {P} where P = {B(N1, N2), B(a,N2), C(N2, N2)}.
Moreover, the query

qcore : ans(x1, x2)← B(x1, x2), B(a, x2), C(x2, x2)

is generated and its answer against I1, qcore(I1), is defined in the following table H1
P :

H1
P x1 x2

1 N1 N2

2 a N2

3 a N3

4 N4 N3

H1
P has 2 columns and 4 rows due to four possible answers in qcore(I1). Moreover, h1 � h2, h2 � h3

and h2 � h4. Notice that h3 and h4 are not comparable because a,N3 and N4 are in cons null(P).
Applying Algorithm 2 based on the table H1

P , the first loop line 3 achieves the following:

• No row is marked as non-idempotent on line 13. This is so because for every i = 1, . . . , 4, and
every j = 1, 2, if H1

P [i, j] = Nk where Nk is N1 or N2, H
1
P [i, k] = Nk.

• Regarding the value of count curr, the computed value is 0 for the first row, 1 for row 2, and 2
for rows 3 and 4 (because a,N3 and N4 are in cons null(P)). Thus, applying the test line 16,
count curr to set to 2, and on line 17, row max is set to 3. Indeed, although for row 4, we
have count curr = 2, the test line 16 fails, and thus the value of row max is not changed.
Then, row spec is set to 3 on line 19 and cont min is set to 0 on line 20.

Therefore, processing the loop line 21 yields no change and Algorithm 2 returns hm defined by
hm(N1) = a and hm(N2) = N3, in which case, hm(I1) = {B(a,N3), B(N4, N3), C(N3, N3)}, which
is not redundant, when considering N3 and N4 as particular ‘constants’.

11

As a more sophisticated illustration of Algorithm 2, let ν0 = {N1} and I2 = {B(N1, N2),
B(a,N2), C(N2, N2), C(N2, N3)}. Here, LinkedNullI,N1

= {N1, N2, N3} and thus, PSet = {P}
where P = {B(N1, N2), B(a,N2), C(N2, N2), C(N2, N3)}. Moreover, the query:

qcore : ans(x1, x2, x3)← B(x1, x2), B(a, x2), C(x2, x2), C(x2, x3)

is generated and qcore(I2), is defined in the following table H2
P :

H2
P x1 x2 x3

1 N1 N2 N3

2 N1 N2 N2

3 a N2 N3

4 a N2 N2

H2
P has 3 columns and 4 rows due to four possible answers in qcore(I2). Moreover, h1 ≺ h2, h1 ≺ h3,

h2 ≺ h4 and h3 ≺ h4. Applying Algorithm 2 based on the table H2
P , the loop line 3 achieves the

following:

• As above, no row is marked as non idempotent on line 13. This is so because for i = 1, . . . , 4,
and j = 1, 2, 3, if H2

P [i, j] = Nk where Nk is N1, N2 or N3, H
2
P [i, k] = Nk.

• As above, on line 17, row max is set to 3 and thus, row spec is set to 3 on line 19. Here,
count min is set to 2 on line 20 because N2 and N3 are in null(P).

When processing the loop line 21, the only row to be considered is row 4, for which match is
true, thus implying that the test on line 28 succeeds. Since for row 4, the value of count null
is 1 (because row 4 contains the only null N2), the value of row spec is set to 4, line 31. Hence,
Algorithm 2 returns hm defined by hm(N1) = a, hm(N2) = N2 and hm(N3) = N2. In this case,
hm(I2) = {B(a,N2), C(N2, N2)}, which is not redundant. �

Homomorphisms have been used in database theory during the last decades, in the field of query
optimization [4, 10] (we refer to [2] for an overview). We notice in this respect that, in [4], a partial
pre-ordering between homomorphisms is defined using the same criteria as in Proposition 1, showing
that our approach to simplification is closely related to the field of query optimization. Roughly,
in our approach, we compare all the answers (h1, . . . hq) for qcore and chose one (hm) among the
most specific ones (which are incomparable). From another point of view, if we consider queries Q1,
Q2, . . . , Qq as the instantiations of qcore by h1, . . . hq, respectively, then hm is a homomorphism
such that hm(body(Qi)) = body(Q) for all Q ⊆ Qi. Actually, our simplification technique is based
on tableau optimization, as done in [4] for query optimization, where the sets of variables and
of distinguished variables are, respectively, called, in our approach, the null(P) and cons null.
However, the contexts and the expectations in our approach are fundamentally different from those
summarized in [2]. Indeed:

• In [2], the tableau is built up from the query body, whereas in our approach, the tableau is
built up from the answer to a given query.

• Our approach generates one most specific homomorphism, where as the approach shown in [2]
aims at discarding all non most specific.

As a result, the problem we deal with can be seen as more specific than the general case considered
in [2, 4], thus resulting in a specific algorithm.

12

Query Algo Purpose
qbucket(I)[S] 3, 5 retrieves all nulls in I appearing in an atom

p(...) such that p is a predicate in a given set S
qdegree(I)[S,δmax] 3 for each N in S, checks if N is in I and if

δ(N) < δmax

qδ(I)[S,d] 3 for each N in S, if N is in I, sets δ(N) to d

qIso(I)[S] 5 retrieves in I all atoms isomorphic to those in S

Figure 2: Queries used in our algorithms

5 Incremental Updating

In [9], update algorithms work on in-memory data, using no DataBase Management System (DBMS).
This version considers a DBMS, based on which data access is implemented through queries. In this
section, we show how to implement updates by restricting data access as much as possible.

5.1 Insertion

Algorithm 3 describes the insertion in D of the atoms in the set iRequest. On line 1, the side-effects
of the insertion are computed and stored in the set ToIns, and then the instance D

′ = D∪ ToIns is
simplified on line 3 through the computation of its core. If all nulls in the simplified instance have
a degree less than the specified maximal degree δmax (on line 4), null degrees are all set to 0 (on
line 5) and D

′ is returned since, as shown in [9], it is always consistent; otherwise, the database is
not modified.

Algorithm 3: Insert(D,C, δmax, iRequest)

1: ToIns := Chase4Insert(D,C, δmax, iRequest)
2: NullBucket := {Nj | Nj is a null obtained by qbucket(D ∪ ToIns)[ToIns]}
3: D

′ := Simplify(D∪ ToIns,NullBucket)
4: if qdegree(D

′)[NullBucket,δmax] then

5: qδ(D
′)[NullBucket,0]

6: return D
′

7: else

8: return D

Contrary to the algorithms in [9], the main steps in Algorithm 3 are designed in an incremental
manner. First, to avoid generating any non necessary side effect atoms, an incremental version of
the chase procedure considered. According to this procedure, a constraint c is activated only when
the following conditions hold:

(i) body(c) contains at least one atom that maps to one being inserted, and
(ii) atoms in body(c) that do not respect (i) map to atoms in the database instance D.

This new chase differs from the one in [9] in the following aspects: (a) only the rules c concerned by
insertions are triggered and (b) queries are built to find in D instantiations for atoms in body(c).

Algorithm 4, called on line 1, implements our incremental chase procedure. The set ToIns

initially stores iRequest (line 1) and then, stores the generated side-effects (line 3) through the while
loop on line 2, defined by the following conditions:

13

Algorithm 4: Chase4Insert(D,C, δmax, iRequest)

1: ToIns := iRequest

2: while ∃c ∈ C and ∃h such that h(body(c)) ⊆ D ∪ ToIns and h(body(c)) ∩ ToIns 6= ∅ and
δ(h′(head(c)) ≤ δmax, where h′ ⊇ h maps to new nulls all existential variables in head(c),
and there does not exist h′′ such that h′′(h′(head(c)) ∈ D ∪ ToIns do

3: ToIns := ToIns ∪ {h′(head(c))}
{Degrees of new nulls in h′(head(c)) are set to dmax + 1, where dmax is the maximal
degree in h(body(c)), or 0 if h(body(c)) contains no null}

4: return ToIns

• A constraint c is triggered only if at least one atom in body(c) is instantiated to an atom in
ToIns.

• The condition δ(h′(head(c)) ≤ δmax ensures that only (side-effect) atoms whose degree is less
than the maximum null degree are kept. The instantiation h′ extends h by assigning new null
values to existential variables in head(c). When performing a chase step, the degree of new
nulls are also computed.

• The last condition ensures termination along with a simplification. Indeed, if an instantiation
of h′(head(c)), referred to as h′′(h′(head(c))), exists in D ∪ ToIns, the constraint is satisfied,
and no atom is inserted in ToIns. For instance, suppose D1 = {Authors(Elin, P2)}, C = {c5}
(Figure 1) and iRequest = {Researcher(Elin)}. The atom Authors(Elin,N1), generated by
c5, is not inserted since it maps to Authors(Elin, P2).

Another difference between the algorithm in [9] and Algorithm 3, is the simplification step on line 3
to maintain the database instance irredundant. Indeed, based on our earlier discussion in Section 4,
D∪ToIns is simplified with respect to the nulls in NullBucket, computed through the query qbucket
on line 2. Thus, only the nulls in NullBucket and their ‘linked’ nulls are considered, thus optimizing
the computation of the core of D ∪ ToIns.

Example 5 Let C = {c1, c3, c4, c10, c11, c12}, δmax = 3 and the following database instance:

D = { Authors(N1, P2), Authors(Alice,N2), Publication(P2), Publication(N2),
Researcher(N1), Researcher(Alice), Supervises(N1, N3) }

Let iRequest = {Authors(Alice, P5), Student(Bob)}. Running Algorithm 3 in this case is as follows.
Constraint c4 is triggered due to the insertion of Authors(Alice, P5) and constraints c10, c11, c12 are
triggered due to the insertion of Student(Bob). Line 1 returns the following set ToIns, where null
degrees are shown as exponents:

ToIns = { Authors(Alice, P5), Publication(P5), Student(Bob), Enrolled(Bob,N0
5),

Degree(N0
4 , N

1
5), Language(N

0
4 , N

1
5 , N

2
6) }.

To simplify D ∪ ToIns, the query qBucket retrieves in D the nulls concerning Authors (i.e., N1

and N2), Publication (i.e., N2), Enrolled (i.e., N4), Degree (i.e., N4, N5) and Language (i.e.,
N4, N5, N6). Therefore, NullBucket = {N1, N2, N4, N5, N6}, and by Algorithm 1, we obtain
that LinkedNullsD,N1

= {N1, N3}, LinkedNullsD,N2

= {N2}, and for i = 4, 5, 6, LinkedNullsD,Ni

=

{N4, N5, N6}. The simplification of D ∪ ToIns (line 3 of Algorithm 3) results in:

D
′ = { Authors(N1, P2), Authors(Alice, P5), Publication(P2), Publication(P5), Researcher(N1),

Researcher(Alice), Supervises(N1, N3), Student(Bob), Enrolled(Bob,N4),
Degree(N4, N5), Language(N4, N5, N6) }.

14

Notice also that, since the degree of nulls is checked only during the chase, before returning the
updated instance, the degrees of all nulls are set to 0 on line 5 of Algorithm 3. �

5.2 Deletion

Algorithm 5: Delete(D,C, δmax, dRequest)

1: isoDel := qIso(D)[dRequest] {isoDel contains atoms in D that have to be deleted}

2: ToDel, T oIns := Chase4Delete(D,C, δmax, isoDel)
3: D

′ := (D ∪ ToIns) \ ToDel

4: NullBucket := {Nj | Nj is a null obtained by qbucket(D
′)[ToIns∪ToDel]}

5: D
′ := Simplify(D′, NullBucket)

6: return D
′

Our incremental algorithm for the deletion from D of atoms in dRequest is displayed as Algo-
rithm 5. On line 1, all atoms in D isomorphic to one in the set dRequest are retrieved through
the query qiso. For instance, if dRequest = {P (a,N1)} and D1 = {P (a,N5)}, then query qiso re-
turns {P (a,N5)}. The side-effects are then computed on line 6, recalling from Section 2 that the
side effects involve not only atoms to be deleted, but also atoms to be inserted as side-effects. In
Algorithm 5, the corresponding sets are respectively denoted by ToDel and ToIns.

Once these side-effects have been incorporated in D to produce D
′ (line 3), this new instance

is simplified as in the case of insertion: impacted nulls are generated on line 4 and the simplified
instance is computed on line 5. We notice that, contrary to insertions, deletions are never rejected.

As for insertions, side effects are computed incrementally through Algorithm 6. First, it may
happen that the deletion of an instantiated atom A makes the database inconsistent when it is a
consequence of a constraint c. To find all such constraints c, we reason backward on C to find an
instantiation h such that h(head(c)) = A. Then h is extended to verify, in a forward reasoning,
whether body(c) can be triggered and generate A again.

The idea is to check whether c generates an atom isomorphic to an atom being deleted (Algo-
rithm 6, line 3). If so, at least one atom in h(body(c)) should be deleted in order to prevent c from
being triggered. This atom is then inserted in ToDel (line 4). Notice that, to avoid non-determinism,
it is assumed that the atom to be deleted has been marked as ‘−’ during rule design.

If no atom isomorphic to an atom to be deleted is generated, a new set called NewToIns is
generated as the side-effects of inserting the new instance of head(c) and all atoms in ToIns (line 6).
If no atom in NewToIns meets an atom to be deleted and if the degrees of the involved nulls are
less that δmax, then these atoms are inserted in ToIns (line 8). Otherwise, the marked atom from
h(body(c)) is inserted in ToDel (line 10).

Example 6 Let D0 = {GrantEligible(Sten), Student(Sten), Enrolled(Sten, CS)}, C = {c10, c13}
and dRequest = {GrantEligible(Sten)}.

On line 2, Algorithm 5 calls Algorithm 6 to perform an incremental chase. ToIns and ToDel

are respectively initialized to ∅ and {GrantEligible(Sten)}, and a first iteration of the loop on
line 2 is run. Constraint c13 is concerned by the deletion, because for h such that h(head(c13)) =
GrantEligible(Sten), as Enrolled(Sten, CS) is in D, c13 generates GrantEligible(Sten) (line 3).
Therefore, ToDel is set to {GrantEligible(Sten), Enrolled (Sten, CS)} and ToIns remains empty.

In the second iteration of the loop, c10 is detected to be concerned by the deletion of the
atom Enrolled(Sten, CS). With Student(Sten) in D, c10 generates Enrolled(Sten,N1), which

15

Algorithm 6: Chase4Delete(D,C, δmax, isoDel)

1: ToIns := ∅ and ToDel := isoDel

2: while there exist c ∈ C and h such that h(head(c)) ∈ ToDel and
h(body(c)) ⊂ (D \ ToDel) ∪ ToIns do

3: if ∃h′ such that h′(body(c)) = h(body(c)) and h′(head(c)) is isomorphic
to h(head(c)) then

4: ToDel := ToDel ∪ {h′(body−(c))}
5: else

6: NewToIns := Chase4Insert(D,C, δmax, T oIns ∪ {h′(head(c))})
7: if NewToIns = Del = ∅ and δ(N) < δmax for all nulls N in NewToIns then

8: ToIns = ToIns ∪NewToIns

9: else

10: ToDel := ToDel ∪ {h′(body−(c))}
11: return ToDel, T oIns

is not isomorphic to Enrolled(Sten, CS) (line 3). The next step consists in testing whether the
atom Enrolled(Sten,N1) should be added to ToIns. To this end, Algorithm 6 chases forward,
starting with Enrolled(Sten,N1) (line 6) to generate GrantEligible(Sten). This atom being in
ToDel (line 7), Student(Sten) is added to ToDel, and nothing is added in ToIns. Algorithm 6
returns ToDel = {Student(Sten), GrantEligible(Sten), Enrolled(Stem,CS), Enrolled(Sten,N1)},
and ToIns = ∅. Algorithm 5 then performs the deletions and the resulting database instance is
empty. �

6 Queries for Incremental Processing

By implementing our method using graph and relational database models, our goal is to study
performance aspects, and to raise issues concerning the database design regarding queries.

6.1 Graph Data Model

The DBMS considered in this work is Neo4J, which deals with attributed graphs. Cypher is a well-
established language for querying and updating property graph databases. As explained in [16], ‘a
Cypher query takes as input a property graph and outputs a table. These tables can be thought of
as providing bindings for parameters that witness some patterns in a graph, with some additional
processing done on them’. The central concept in Cypher queries is pattern matching. The MATCH
clause searches for homomorphisms identifying a given pattern in the queried graph. The returned
result is an instance over a table where attributes correspond to the variables in the Cypher query.

Our approach involves managing null values that have to be retrieved based on their co-occurrences
as arguments of atoms (Section 4). Given a null N1 we need to efficiently detect atoms having N1

as one of its arguments, and then for every N occurring with N1, to recursively access the atoms
having N as argument. In doing so, the set of nulls is partitioned into blocks whose elements are
those nulls that have to be considered in the simplification steps. To make such retrieval efficient,
we adopt a model close to the logical formalism used in our previous explanations, composed of
three types of nodes. Given an atom P (t1, . . . , tn) our graph database represents P as a node, linked
to other nodes representing the terms t1, . . . , tn. In this context, nodes in our graph database are

16

of three possible types distinguished by labels, and all nodes have properties, among which one is
symbol. More precisely:

• Nodes of type Atom have one label :Atom representing the predicate symbol in an atom. This
predicate symbol is the value of property symbol of such a node.

• Nodes of type Constant representing constant values. Such nodes have two labels, :Element

and :Constant, and the value of their property symbol is the constant itself.

• Nodes of type Null reprensenting nulls. Such nodes have two labels, :Element and :Null,
and the value of their property symbol is the name of the null prefixed with ‘ ’.

An edge links nodes with label :Atom to nodes with label :Element. Moreover, an edge has the
property rank, allowing to refer to the terms of an atom by their positions.

Figure 3 illustrates the schema of the atom P (t1, . . . , tn) by representing constant terms by ti
and nulls by tj . Notation below edges indicates the cardinality of the relationship between an atom
and its terms: an element is connected to at least one atom and atoms may have no terms.

Figure 4 illustrates part of our database instance (rectangular nodes are atoms and circular nodes
are elements).

:Atom
symbol: P

terms: {t1, . . . , tn}

:Element
:Constant
symbol: ti

:Element
:Null

symbol: tj
0..∗1..∗

{ rank: i }

0..∗ 1..∗

{ rank: j }

Figure 3: Graph database schema.

As explained before, our model benefits certain operations. However, it increases the cost of
conversions between the graph-format and the logic-format for an atom. Such conversions are essen-
tial for the communication between the database and the procedures performing some computations
locally. To optimize these conversions and graph traversals, we introduce the following redundancies
in our database model, which have significantly improved our implementation (see Section 7).

• To avoid edge traversal.

For each node :Atom, we store, as its attribute, an ordered list containing all its terms.
In Figure 3, the rectangular node shows this new attribute: terms. For example, to
obtain atom Authors(Elin, P269) from the instance in Figure 4 starting with the node
n117, instead of traversing edges r19 and r20, we just have to retrieve the attributes terms
of node n117.

• To allow efficient access to nodes.

(a) A uniqueness constraint is added on the Element symbol (implying, e.g., that there is a
unique node in the database to represent Elin).

(b) An index is built on the symbol of each atom, and a uniqueness constraint is defined on
the couple symbol/terms (implying, e.g., that there is a unique node in the database to
represent atom Authors(Elin, P269).

The algorithms presented in the previous sections involve the construction of queries in Cypher to
be evaluated on our Neo4J database. We now focus on two of them: one needed when chasing and
one that computes the set LinkedNull.

17

n6

Elin

n127

Supervises

n128

Supervises

n7

Sten

n8

Linda

n129

Supervises

n10

Thor

n102

Researcher

n103

Researcher

n104

Student

n105

Student

n116

Authors

n117

Authors

n118

Authors

n5

P240

n9

P269

n11

N1

n121

Cites

n124

Cites

n12

N2

n111

Publication

n112

Publication

r2

rank: 0

r3

rank: 0

r4

rank: 0

r5 rank: 0

r11

rank: 0

r12

rank: 0

r17

rank: 0

r18

rank: 1

r19

rank: 0

r20

rank: 1

r21

rank: 0

r22

rank: 1

r27 rank: 0

r28 rank: 1

r33 rank: 0

r34 rank: 1

r39rank: 0

r40rank: 1

r41rank: 0

r42

rank: 1

r43rank: 0

r44rank: 1

Figure 4: Graph database instance (extract). Optimization labels and attributes are omitted.

Query for chasing. Chasing means applying constraints. The application of a constraint happens
when its body can be instantiated by facts in the database. Thus, to decide on the application of a
constraint c, we need a query capable of :

(1) Verifying whether the database instance contains the facts necessary for the instantiation of
body(c) and

(2) returning a non-empty answer only if a corresponding instantiation for head(c) does not already
exist in the database.

In a logic formalism, if c is of the form c : L1(α1), . . . , Lm(αm) → L0(α0), we should write the
query qch : Q(α) ← L1(α1), . . . , Lm(αm), not L0(α0), where α is the list of variables corresponding
to variables in body(c), that is, variables universally quantified variables of c. The idea here is: if
ht is an instantiation such that ht(body(c)) ⊆ D, the query qch has a non empty answer only if
h′
t(L0(α0)) 6∈ D for any extension h′

t of ht.
Figure 5 shows the Cypher template of query qch. We first look for atoms that match body(c).

On the line 3 in Figure 5, the WHERE NOT EXISTS clause is used to check that no instance of the
head(c) exists. Two expressions are built (expr1 and expr2). Terms in α are treated orderly.
Notice that expr1 is built for dealing with atoms in body(c) and expr2 is built for dealing with the

18

1 MATCH (xk : Element {va lue : ti })
2 MATCH (a1 : Atom { symbol : ‘L1 ‘}) , . . . , (am :Atom { symbol : ‘Lm ‘})
3 WHERE expr1 and NOT EXISTS {
4 MATCH (a : Atom { symbol : ‘L0 ‘})
5 WHERE expr2
6 } RETURN {α|1 : x1, α|2 : x2, . . . , α|k : xk}}

Figure 5: Cypher template for chasing

1 MATCH (x0 : Element : Constant { va lue : ’Bob ’ }) ,
2 (x1 : Element : Constant { va lue : ’ P 1 ’ })
3 MATCH (a0 :Atom { symbol : ’ Authors ’ }) ,
4 (a1 :Atom { symbol : ’ Authors ’ }) ,
5 (a2 :Atom { symbol : ’ Supervise ’ })
6 WHERE (a0) − [: Authors { rank : 0}]−>(x2) ,
7 (a0) − [: Authors { rank : 1}]−>(x1) ,
8 (a1) − [: Authors { rank : 0}]−>(x0) ,
9 (a1) − [: Authors { rank : 1}]−>(x1) ,

10 (a2) − [: Superv i se { rank : 0}]−>(x2) ,
11 (a2) − [: Superv i se { rank : 1}]−>(x0)
12 and NOT EXISTS {
13 MATCH (a :Atom { symbol : ’PhDPaper ’ })
14 WHERE (a) − [:PhDPaper { rank : 0}]−>(x0) ,
15 (a) − [:PhDPaper { rank : 1}]−>(x1)
16 } RETURN { ‘X ‘ : x2 . value , ‘Y‘ : x0 . value , ‘P ‘ : x1 . va lue} AS sub

Figure 6: Cypher template for Example 7

atom in head(c). The first MATCH acts as a starting point of the graph traversal. It is built with
constants or nulls (e.g., (xk:Element:Constant {symbol:ti})) as we usually consider constraints
instantiated by insertions. Then the pattern, built with the second MATCH and the WHERE clause,
links the constants to the positions in the atoms of the body.

Separating the two MATCH allows us to guide the query planner to first search the constants
(called node seeking) and then look for the connected nodes to find the atoms. This is important
because, in doing so we drastically reduce the search space, because constants are unique values
retrieved in O(1), and only :Atom connected nodes are searched, thus avoiding to visit all instance
nodes of the predicate.

Example 7 Considering the insertion of Authors(Bob, P1) in the database instance

D = {Supervises(Alice, Bob), Authors(Alice, P1)}

with the only constraint c6 defined by:

c6 : Authors(X,P), Authors(Y, P), Supervises(X,Y)→ PhDPaper(Y, P, Z)

Two instantiations h and h′ should be checked: one on the first atom Authors (h(X) = Bob,
h(P) = P1) and one for the second atom Authors (h′(Y) = Bob, h′(P) = P1). Figure 6 shows the
chase query for the instantiation h′ of the constraint c6. �

Query to find LinkedNull sets. Figure 7 presents the Cypher query that implements the Linked-

Null definition (Section 4) for building partitions of atoms. The clause UNWIND can transform any list
into individual rows. For instance, if we consider a list [’Elin’, ’Sten’] of constant symbols, the
clause UNWIND over such a list gives a table with one column c and two rows whose values are ’Elin’
and ’Sten’. In Figure 7, the clause UNWIND (line 1) is used to set nulls from a given list to our initial
table with one row for each null. The goal of the first MATCH (line 2) is to select sub-graphs with

19

atoms sharing the same null. On the line 3, the range of the relationship (*1..) indicates that node
nullValueNode can be connected to a node endNode by a path pathP of arbitrary length. Moreover,
the direction is ↔ indicates that pathP can be composed by edges having any orientation.

The MATCH clause looks for paths starting with the null of the nullValueNode to any other node
representing an atom which is not nullValueNode itself (condition imposed by the WHERE clause).
On the line 6, the WITH clause performs a ‘group by’. It allows to structure our working table with
tuples where each null nullValueNode is associated to a list of endNodes (the nodes reached by
paths pathP). On the line 7 a new organisation is built: linkedNodes is divided into two lists, one
containing nodes that represent predicate symbols (linkedAtoms) and one for those representing
nulls (linkedNulls). Notice that we place the initial node nullValueNode in the first position of
the latter. The resulting table partitions the atoms: each atom is associated to a list of nulls (those it
is concerned by). In the worst case, the former list contains all atoms having a null in the database.

1 UNWIND $nu l l s AS nullPredName
2 MATCH (nullValueNode : Element : Nul l { va lue : nullPredName}) ,
3 pathP = (nullValueNode) − [∗1 . . maxPathLength]−(endNode)
4 WHERE endNode <> nullValueNode AND
5 ALL(n IN nodes (pathP) WHERE NOT (n : Constant))
6 WITH COLLECT(DISTINCT endNode) AS l inkedNodes , nullValueNode
7 WITH
8 [n IN l inkedNodes WHERE (n :Atom)] AS linkedAtoms ,
9 [nullValueNode] + [n IN l inkedNodes WHERE (n : Nul l)] AS l i nkedNu l l s

10 UNWIND linkedAtoms AS a
11 RETURN a . symbol as a , a . terms as e , l i nkedNu l l s

Figure 7: Cypher template to find LinkedNull sets

Example 8 Considering the graph of Figure 4, if we search for atoms whose nulls are linked to N1,
i.e., $nulls = [’_N1’], after the first MATCH in Figure 7, we have:

nullValueNode endNode pathP
n11 n111 [n11, r11, n111]
n11 n118 [n11, r22, n118]
n11 n124 [n11, r33, n124]
n11 n12 [n11, r33, n124, r34, n12]
n11 n112 [n11, r33, n124, r34, n12, r12, n112]

After the first WITH line 6, we have:

nullValueNode linkedNodes
n11 [n111, n118, n124, n12, n112]

After the second WITH line 7, we have:

linkedAtoms linkedNulls
[n111, n118, n124, n112] [n11, n12]

�

6.2 Relational Data Model

Given an instantiated atom P (t1, . . . , tn) in the logical representation oinf a database, our relational
model consists in defining a table whose schema is RP [A1, . . . An] where all attributes are of type

20

text. Notice that P (t1, . . . , tn) represents a tuple on RP and, thus, (t1, . . . , tn) are values that can be
constants or nulls (nulls have the symbol as a prefix). The translation of logical queries into SQL
is straightforward. However, some operations require the construction of procedures to implement
recursive queries. Algorithm 7 shows the implementation of LinkedNull in the relational context.

We argue in this respect that implementing Algorithm 7 using a recursive SQL query is not
efficient. Indeed, to do so an additional table for storing the pairs of linked nulls is needed, and the
following steps are necessary: (a) a recursive SQL query to compute the transitive closure and (b)
a scan of the whole database to retrieve all corresponding atoms. Moreover, the additional table
needs to be maintained up to date after each update, which requires further processing.

Algorithm 7: FindLinkedNull(D, NullBucket)

1: newNull := ∅, allNulls := ∅, linkedNullSet := ∅
2: while NullBucket 6= ∅ do
3: allNulls := allNulls∪NullBucket

4: for all table RP in the database schema do

5: for all tuple u in (select ∗ from RP where (A1 in NullBucket) or . . .

or (An in NullBucket)) do
6: build atom P (u); add P (u) in linkedNullSet

7: for all null value N ∈ null(u) do
8: if N 6∈ allNulls then

9: add N in newNull

10: NullBucket := newNull

11: newNull := ∅
12: return linkedNullSet

We also notice that the implementation of an incremental chase in the relational model follows
the idea of setting up query qch (as explained in Section 6.1) which can be written as an SQL query
involving a NOT EXISTS clause.

6.3 Discussion

Querying graph database is significantly impacted by graph schema design. The schema we have
chosen transforms nulls into first-citizen elements and facilitates operations where, by ’picking’ a null,
we can easily detect all atoms connected (directly or indirectly) to it. For instance, in Figure 4, if we
’pick’ the null N1 (the gray node n11), we detect the atoms connected to it together with other nulls
(i.e., N2, the blue node n12). In other words, this model optimizes queries looking for linked nulls.
However, it may not be appropriate for other kinds of queries. For instance, in the chase query, our
model generates complex patterns that can be costly. The relational model is less flexible than graph
models, and thus its impact on querying is weaker. However, relational model is not appropriate
for the implementation of recursion, and nulls cannot be set as first-citizen element (identical null
values appear repeatedly in the database instance). Algorithm 7 shows that to implement LinkedNull
we have to check null values for each table, compromising the idea of an incremental approach. On
the other hand, the graph model is well suited for implementing incremental algorithms, because as
seen in Section 6.1, this model allows implementing LinkedNull by visiting only the atoms linked to
nulls in NullBucket, as expected when considering an incremental computation.

21

7 Experimental Results

We gauge the performance of our incremental updating approach by analysing experiment results
over a benchmark working on a graph (Neo4J) and a relational (MySQL) DBMS. A benchmark run
executes an update on a database instance.

To build our database instances, we firstly view the original data sets from a FOL point of view.
Roughly speaking, a node or a relationship in the original data sets corresponds to a predicate sym-
bol, while their properties are the terms. The conversion to our database models is straightforward,
as presented in Section 6. Nulls are inferred from already missing properties. Constraints are hand-
crafted, created from data observation and added to the databases we use for experiments. The
following three data sets are the basis of our instances:

• Movie1 , available as a Neo4J instance, is a collection of data concerning movies, actors, directors.
This data set contains 7 predicate symbols (with arity 2-4).

• GOT 2, available as a Neo4J instance, deals with the interactions between different characters in
the book Game of Throne. This data set contains 19 predicate symbols (artiy 2-14).

• LDBC 3, available as a data set of the Linked Data Benchmark Council, offers synthetic data sets
for benchmarking. This data set contains 23 predicate symbols (artiy 1-2).

From the LDBC data sets we build several instances, by varying their size or the number of nulls. To
control the size of instances, their construction is the result of: (i) randomly selecting k facts, respect-
ing the distribution of the original data set and, then, (ii) applying the 39 hand-made constraints
on them. The result is a consistent database instance with nulls. Figure 8 presents a summary of
our database instances (or samples). It is worth noting that, for example, an instance denoted as
LDBC 1K, comes from a random selection of 1000 facts which evolves to 2248 after the chase and
core processing. To control the number of nulls, we proceed as follows: we take the largest LDBC
instance, i.e., with 10 000 facts, and replace all nulls with constants. Then, we choose, randomly,
some constants that are replaced by linked nulls. Figure 8 presents database instances used in our
runs, eight having nulls, and one non-null instance. All the database instances are generated just
once. By following this creation process, they are consistent and minimal.

Database Nb of facts Nb of nulls Nb of rules Null/Facts (τ)

Movie 604 340 12 0.56
GameOfThrone 24818 17232 32 0.69
LDBC 1K 2248 190 39 0.08
LDBC 10K 16559 1183 39 0.07
LDBC 10K 0N 16559 0 39 0.00
LDBC 10K 50N 16559 50 39 0.00
LDBC 10K 100N 16559 100 39 0.01
LDBC 10K 500N 16559 500 39 0.03
LDBC 10K 1000N 16559 1000 39 0.06

Figure 8: Database instances (our samples).

1https://github.com/neo4j-graph-examples/movies
2https://github.com/neo4j-graph-examples/graph-data-science
3https://ldbcouncil.org/benchmarks/graphalytics/

22

https://github.com/neo4j-graph-examples/movies
https://github.com/neo4j-graph-examples/graph-data-science
https://ldbcouncil.org/benchmarks/graphalytics/

Runs are built from instances in Figure 8 by (i) varying the update type (insertion or dele-
tion); (ii) altering the size of the update (1, 5, 10 and 20 atoms) and (iii) augmenting artificially the
number of facts in an instance. This latter step is done through the duplication of data n-times (1,
2 and 5), together with the renaming of the constants and the null names at each copy.

Each run performs 10 iterations plus 3 warm-up iterations (i.e., an ordinary iteration used to
preload the system and database cache) not counted in the execution time. Between each iteration,
the original database instance is restored, and the Java garbage collector is triggered for consistent
time measuring. The benchmarks are implemented in Java 16 with MySQL 8 and Neo4J 4.1 and
executed on a Rocky Linux 8.7 virtual server with 4 vCPU and 16GB of memory (8 reserved for
the database and 5 for the Java program) through docker 20.10.21. In the docker container of a
database instance, the average of read/write on disk is 1GB s−1. The same server hosts: (i) one
database server at the time and (ii) the benchmarks with only 4 vCPU.

Notice that, even if this configuration allows us to assess our implementations over different
DBMS, our experiment performances are not representative of real world situations, where more
powerful and dedicated hardware is available.

We first compare the incremental approach presented in this paper to the from-scratch in-memory
approach in [9]. For this aspect, comparisons are performed only on the database Movie because
the from-scratch in-memory version requires a huge amount of memory for its computation. We
have an average of 9017ms for an update with the in-memory version and scale of 1 (initial size of
the instance). MySQL has an average of 151ms and Neo4J has 2380ms. For this small instance,
the incremental approach is comparable with the from-scratch approach. Considering an instance
five times larger, we get an average of 888 966ms for the in-memory version, 595ms for MySQL and
2706ms for Neo4J. Thus, it should be clear that using a DBMS in which an incremental version of
update processing is implemented, allows for efficiently updating large databases that do not fit in
main memory.

Next, we analyse the performance of incremental updating with respect to the number of atoms
(database size) and nulls of an instance. We denote by incompleteness degree the number of distinct
LinkedNull sets on a database. We also investigate the number of queries generated to interact with
the DBMS. Figure 10 presents our experiment results. On each plot, the right axis, indicates the
total number of facts in the instance. The curves show the average of resulting values for all runs
corresponding to the displayed abscissa.

We first note that the update type (insertion or deletion) has no real impact on the performance
of our approach. Figure 10a shows that the number of queries is linear on the number of nulls,
except for three down spikes when the degree of incompleteness of the database instance is low.
This is the case for the database Movies, and the down spikes coincide to a situation where only
this database is concerned. Indeed, thanks to the use of multiple data sets, we observe here that
the predicate arity (i.e., the number of edges per node or the number of columns in a table) may
have an impact on our results. Linearity with respect to the number of nulls is explained by the
fact that consistency preservation implies the generation of new data linked by their nulls. Thus,
due to our construction method, bigger databases imply more linked nulls (i.e., bigger LinkedNull

sets). Incremental updates generate qBucket queries to retrieve impacted nulls. Bigger databases
likely have more impacted nulls willing to be simplified during the core computation, increasing the
number of necessary qcore queries.

Consequences of bigger LinkedNull sets are:

(i) in MySQL, Algorithm 7 generates a large amount of queries and

(ii) in Neo4J, the unique query needed to retrieve a LinkedNull set is more complex and, thus, more
time-consuming.

23

MySQL

Neo4J

5.35

910.9

46.95

30.73

194.05

7.63

166.8

161.3

Chase Null bucket LinkedNulls Simplifications

Figure 9: Average time of each operation per DBMS (ms) removing outsiders with more than 30 s
differences

However, this augmentation is negligible as our model is designed to optimize such a query (Fig-
ure 10d).

Experimental results in terms of execution time of our updating approach is shown in Figures 10b
and 10c. In MySQL (Figure 10b), update execution time is linear in the number of nulls while the
database size has little impact. Indeed, as the number of queries increases with the number of nulls,
update execution time in MySQL increases accordingly. In Neo4J (Figure 10c), update execution
time is more significantly impacted by the size of the instance.

The explanation of this discrepancy comes from the separate analysis of the performance of the
main operations of our approach (Figures 9 and 10d). The data model chosen in the Neo4J version
optimizes the retrieval of LinkedNull, but is not appropriate to operations involving simplification
(Section 4). Such operations involve complex pattern matching which are known to be expensive.
The chase (Figure 9) is the most expensive operation for Neo4J, mainly due to the fact that it
includes a simplification step (e.g., if A(a, b) ∈ D and A(a,N1) is generated by a constraint, then
the insertion of A(a,N1) is canceled).

For the sake of readability, plots do not show results on GOT instances with more than 17 000
nulls. The results on this data set are similar: execution time evolves linearly with respect to nulls
in MySQL and follows the size of the database in Neo4J. With the GOT runs, we achieve a mean
execution time of 14 634ms with MySQL and 5216ms with Neo4J for 24 818 facts and 17 232 nulls.
Increasing the size to 124 090 facts and 86 160 nulls rises run time to 156 132ms with MySQL and
to 203 140ms with Neo4J.

Reproducibility. Results obtained by our experiments are reproducible through the use of the
benchmarks and implementation available in https://gitlab.com/jacques-chabin/UpdateChase.

24

https://gitlab.com/jacques-chabin/UpdateChase

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500
0

1,000

2,000

3,000

4,000

5,000

6,000

Nb of nulls

N
b
o
f
q
u
er
ie
s

MySQL (INS) MySQL (DEL) Neo4J (INS) Neo4J (DEL)

0

20,000

40,000

60,000

80,000

N
b
o
f
fa
ct
s

Number of facts

(a) Number of queries per null

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Nb of nulls

T
im

e
[m

s]

Insert Delete

0

20,000

40,000

60,000

80,000

N
b
o
f
fa
ct
s

Number of facts

(b) Time per null for MySQL

Figure 10: Benchmarks results of 540 scenarios, average over 10 runs

25

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500
0

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

Nb of nulls

T
im

e
[m

s]

Insert Delete

0

20,000

40,000

60,000

80,000

N
b
o
f
fa
ct
s

Number of facts

(c) Time per null for Neo4J

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500
0

1 · 105

2 · 105

3 · 105

4 · 105

Nb of nulls

T
im

e
[m

s]

MySQL (chase) MySQL (null bucket) MySQL (linked nulls) MySQL (simplifications)

Neo4J (chase) Neo4J (null bucket) Neo4J (linked nulls) Neo4J (simplifications)

0

20,000

40,000

60,000

80,000

N
b
o
f
fa
ct
s

Number of facts

(d) Time of operations per null

Figure 10: Benchmarks results of 540 scenarios, average over 10 runs

26

8 Related Works

Our work goals include four important features of modern applications: incompleteness, consistency
as a measure of quality, incremental tools for efficient data processing and adaptability to graph
data models.

Solid basis have been established for treating incompleteness of relational databases [12, 18,
23, 28, 32], particularly for querying. Much less attention has been given to updates on incom-
plete databases, although important work, such as [1, 13, 31] can be cited. Today, integrating and
exchanging data are very common, leading to the proliferation of applications involving dynamic
incomplete data on emerging data models that deal with more general graph-structured data. In-
completeness beyond the relational data model has received much less attention [30], and, in this
context, updating with respect to constraints is rarely considered. Indeed, consistency maintenance
is usually left aside in favour of efficiency, which can prove costly when we are concerned with the
quality of analytical results. Work such as [21, 25, 29] witnesses the complexity of the problem of
keeping a database consistent with respect to constraints in a dynamic environment. In [15, 19, 20]
we find newer proposals, adapted to the RDF world, that considers constraints in our traditional
database viewpoint (i.e., not in the web semantic standard way, where constraints are just inference
rules [17, 24, 27]). It is worth noting that the use of tuple generating constraints (TGD) increases
expressiveness at the cost of difficulties that involve a chase procedure (cf. a survey in [26], a bench-
mark in [7]) to compute semantics and the generation of side effects in an update context - imposing
extra insertions or deletions (with respect to those required by the user) to preserve consistency.
The literature offers sufficient conditions to avoid a non-terminating chase which consist in limiting
the format of constraints. We instead introduce δmax, keeping the possibility of dealing with any
kind of constraints while avoiding infinite processing. Furthermore, we use simplifications to keep
the database instance as small as possible and to avoid the presence of useless nulls, i.e., database
maintenance consists in keeping its core (which follows the ideas in [11]) whose implementation is
ensured by a simplification routine performed in association to update routines.

In brief, data analytic tools become essential in different application domains and their quality
relies on data consistency. But in order to deal with huge scale applications, we must aim at efficient
data processing solutions [30], bringing incremental solutions to the front of the stage, particularly
when working with new data models (as done in the XML context [3, 6, 8]). In the context of
graph databases, the approach in [14] proposes a method for ‘incrementalizing’ graph algorithms
abstracted in a fix-point model. Our approach cannot be summarized by that proposal. As seen
before, we can outline our method in the expression D

′ = core|NullBucket(upd|U ((D♦U)) where U is
the set of user’s required updates - this set is increased through an inference process that generates
side-effects. The proposal in [14] needs a ’complete’ set of updates as input. In other words, our
fix-point operation involves changes on the update set while in [14] the update set is fixed. Their
goal is to incrementally compute new answers on an updated graph and not to incrementally update
the graph. As the core computation is not a fix-point one, it is not in the scope of [14].

Finally, our experiments reinforce the idea that graph schema design has a significant impact
on query performance. Our graph schema is designed to optimize one type of query and performs
badly to those that differ widely. Schema optimization may be a solution: as in [5], in this paper, it
is done through techniques that reduce edge transversal.

9 Conclusions

This paper contributes to improve the maintenance of consistent incomplete databases by proposing
incremental routines that interact with database systems. It extends prior work in [9] where a from-

27

scratch in-memory method was proposed. Two implementations of our approach, one under a graph
database model and one under the traditional relational database model, are presented. Experiment
results raise questions about the representation of nulls in a graph database. Indeed, this work is
also a step towards incremental updating attributed graphs with incomplete data. It illustrates the
impact of schema graph design in querying and, consequently, in the performance of an incremental
updating approach that relies on two main queries: one that looks for linked nulls and another
that looks for redundant atoms willing to be simplified. Property graph model has an increasingly
important role today, the handling of nulls in such a model is related to schema definition and query
optimization issues that need to be further explored.

References

[1] Abiteboul, S., and Grahne, G. Mise-à-jour des bases de données contenant de l’information
incomplète. In Journées Bases de Données Avancés, 6-8 Mars 1985, St. Pierre de Chartreuse
(Informal Proceedings). (1985).

[2] Abiteboul, S., Hull, R., and Vianu, V. Foundations of databases, vol. 8. Addison-Wesley
Reading, 1995.

[3] Abrão, M. A., Bouchou, B., Halfeld Ferrari, M., Laurent, D., and Musicante,
M. A. Incremental constraint checking for XML documents. In XSym (2004), no. 3186 in
LNCS, pp. 112–127.

[4] Aho, A. V., Sagiv, Y., and Ullman, J. D. Efficient optimization of a class of relational
expressions. ACM Trans. Database Syst. 4, 4 (1979), 435–454.

[5] Alotaibi, R., Lei, C., Quamar, A., Efthymiou, V., and Özcan, F. Property graph
schema optimization for domain-specific knowledge graphs. In 37th IEEE International Con-
ference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021 (2021), IEEE,
pp. 924–935.

[6] Balmin, A., Papakonstantinou, Y., and Vianu, V. Incremental validation of xml docu-
ments. ACM Trans. Database Syst. 29, 4 (2004), 710–751.

[7] Benedikt, M., Konstantinidis, G., Mecca, G., Motik, B., Papotti, P., Santoro,
D., and Tsamoura, E. Benchmarking the chase. In Proceedings of the 36th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, Chicago, IL,
USA, May 14-19, 2017 (2017), pp. 37–52.

[8] Bouchou, B., and Halfeld Ferrari Alves, M. Updates and incremental validation of
XML documents. In The 9th International Workshop on Data Base Programming Languages
(DBPL) (2003), Springer, Ed., no. 2921 in LNCS.

[9] Chabin, J., Halfeld Ferrari, M., and Laurent, D. Consistent updating of databases
with marked nulls. Knowl. Inf. Syst. 62, 4 (2020), 1571–1609.

[10] Chandra, A. K., and Merlin, P. M. Optimal implementation of conjunctive queries in
relational data bases. In Symposium on the Theory of Computing (1977).

[11] Fagin, R., Kolaitis, P. G., and Popa, L. Data exchange: getting to the core. ACM Trans.
Database Syst. 30, 1 (2005), 174–210.

28

[12] Fagin, R., Kuper, G. M., Ullman, J. D., and Vardi, M. Y. Updating logical databases.
Advances in Computing Research 3 (1986), 1–18.

[13] Fagin, R., Ullman, J. D., and Vardi, M. Y. On the semantics of updates in databases.
In Proceedings of the Second ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, Colony Square Hotel, Atlanta, Georgia, USA (1983), pp. 352–365.

[14] Fan, W., Tian, C., Xu, R., Yin, Q., Yu, W., and Zhou, J. Incrementalizing graph
algorithms. In SIGMOD ’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021 (2021), G. Li, Z. Li, S. Idreos, and D. Srivastava, Eds., ACM, pp. 459–
471.

[15] Flouris, G., Konstantinidis, G., Antoniou, G., and Christophides, V. Formal foun-
dations for RDF/S KB evolution. Knowl. Inf. Syst. 35, 1 (2013), 153–191.

[16] Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T., Marsault, V.,
Plantikow, S., Rydberg, M., Selmer, P., and Taylor, A. Cypher: An evolving query
language for property graphs. In Proceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018 (2018),
G. Das, C. M. Jermaine, and P. A. Bernstein, Eds., ACM, pp. 1433–1445.

[17] Gottlob, G., Orsi, G., and Pieris, A. Ontological queries: Rewriting and optimization. In
Proceedings of the 27th International Conference on Data Engineering, ICDE, Germany (2011),
pp. 2–13.

[18] Grahne, G. The Problem of Incomplete Information in Relational Databases, vol. 554 of
Lecture Notes in Computer Science. Springer, 1991.

[19] Halfeld Ferrari, M., Hara, C. S., and Uber, F. R. RDF updates with constraints. In
Knowledge Engineering and Semantic Web - 8th International Conference, KESW, Szczecin,
Poland, Proceedings (2017), pp. 229–245.

[20] Halfeld Ferrari, M., and Laurent, D. Updating RDF/S databases under constraints. In
Advances in Databases and Information Systems - 21st European Conference, ADBIS, Nicosia,
Cyprus, Proceedings (2017), pp. 357–371.

[21] Halfeld Ferrari Alves, M., Laurent, D., and Spyratos, N. Update rules in datalog
programs. J. Log. Comput. 8, 6 (1998), 745–775.

[22] Hell, P., and Nesetril, J. The core of a graph. Discrete Mathematics 109, 1-3 (1992),
117–126.

[23] Imielinski, T., and Lipski Jr., W. Incomplete information in relational databases. J. ACM
31, 4 (1984), 761–791.

[24] Lausen, G., Meier, M., and Schmidt, M. Sparqling constraints for RDF. In EDBT,
11th International Conference on Extending Database Technology, France, Proceedings (2008),
pp. 499–509.

[25] Link, S., and Schewe, K. An arithmetic theory of consistency enforcement. Acta Cybern.
15, 3 (2002), 379–416.

29

[26] Onet, A. The chase procedure and its applications in data exchange. In Data Exchange,
Integration, and Streams. 2013, pp. 1–37.

[27] Patel-Schneider, P. F. Using description logics for RDF constraint checking and closed-
world recognition. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence, USA. (2015), pp. 247–253.

[28] Reiter, R. A sound and sometimes complete query evaluation algorithm for relational
databases with null values. J. ACM 33, 2 (1986), 349–370.

[29] Schewe, K., and Thalheim, B. Limitations of rule triggering systems for integrity mainte-
nance in the context of transition specifications. Acta Cybern. 13, 3 (1998), 277–304.

[30] Sirangelo, C. Representing and Querying Incomplete Information: a Data Interoperability
Perspective. 2014.

[31] Winslett, M. Updating Logical Databases. Cambridge University Press, New York, NY, USA,
1990.

[32] Zaniolo, C. Database relations with null values. J. Comput. Syst. Sci. 28, 1 (1984), 142–166.

30

	Introduction
	Motivating Example
	Preliminaries
	Simplification with Respect to Nulls: a Basic Operation
	Incremental Updating
	Insertion
	Deletion

	Queries for Incremental Processing
	Graph Data Model
	Relational Data Model
	Discussion

	Experimental Results
	Related Works
	Conclusions

