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Abstract— This paper describes a non-contact method to characterize isotropic and 6 
anisotropic planar multilayer structures using a genetic algorithm. The method is based on 7 
the determination of critical angles, where the maxima of the modulus of transmission 8 
coefficient of the structure appear, and which correspond to the generation of guided waves. 9 
The optimization process minimizes the error between the reference critical angles and 10 
associated amplitudes of the transmission coefficient, with the corresponding estimated 11 
ones. The estimation of elastic parameters is demonstrated for acrylic and oak plates as well 12 
as for a bi-layered structure composed of oak and a thin layer of gesso. It is shown that to 13 
obtain satisfactory optimization results, it is necessary for guided modes of higher order than 14 
the zero ones to be taken into account. Results also show that some elastic constants such as 15 ��� and ��� retrieved from the transmission coefficient are very sensitive to the optimization.  16 

Keywords - guided waves, transmission coefficient, critical angles, genetic algorithm, 17 
optimization, isotropic and anisotropic structures 18 

1. Introduction 19 

The monitoring of structures and material characterization by nondestructive 20 
techniques has become widespread in automotive, aerospace, infrastructure construction 21 
and other industries. These techniques provide information about the condition and possible 22 
flaws, even for complex structures such as composites and multilayers. Thermograghy, X-23 
rays, ultrasonic waves, are some of the most common NDE methods applied in industry to 24 
analyze materials [1]. Ultrasonic techniques are particularly used to characterize elastic 25 
properties of materials because acoustic wave properties such as velocity and attenuation 26 
are directly linked to the material characteristics [2]. Such characterizations generally 27 
require a coupling medium between transducers and sample, which can be water-based gel, 28 
oil or glue (for contact measurements) or water (for immersion measurements). Classical 29 
transducers do not allow using air as a coupling medium due to the huge impedance 30 
mismatch. In some applications, the use of these coupling media is not feasible e.g. the 31 
characterization of cultural heritage paintings or of samples that react in contact with liquids 32 
[3], [4], [5], [6], [7]. Progress in air-coupled transducers in the last few years allows their use 33 
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for non-contact nondestructive inspections in research and industrial context [8], and has 34 
been considered for the inspection of artwork, in combination with a thermal technique [9]. 35 
For example, Hosten et al. [10] characterized an anisotropic material using bulk wave phase 36 
velocity measurements. However, only thick samples have been tested, because multi-path 37 
transmission signals overlap and cannot be separated in time. Castaings et al. in [11] used 38 
air-coupled ultrasonic transducers to estimate the elastic constants in of isotropic and 39 
anisotropic materials based on transmission field and numerical model using the Thomson-40 
Haskell matrix method. Despite giving coherent results, the method implies long 41 
computational times since the inverse process uses a combination of Simplex and Newton–42 
Raphson methods. Elastic constants of anisotropic and orthotropic materials were retrieved, 43 
by Hosten et al. in [12] and Dahmen et al. in [13], respectively, in a single side plate 44 
configuration, through a phase velocity measurement and minimization process based on a 45 
hybridization of Newton–Raphson and Simplex methods. The phase velocity was measured 46 
through 2D Fourier Transform of signals obtained by varying the distance between the 47 
transmit and receive (Tx & Rx) transducers in small steps. Zhang and Chimenti showed that 48 
the transmission coefficient could be reconstructed using the spectral sum of frequency and 49 
spatial signals [14]. They acquired transmitted signals by varying the incident angle and 50 
distance between transducers, on isotropic and anisotropic materials. The elastic constants 51 
are then estimated with a Simplex inversion process of the experimental transmission 52 
coefficient and a 3D transducer model. Considering a 3D representation of the wave 53 
produced by the transducer, results show a slight change compared to the hypothesis of a 54 
plane incident wave, with small variation in the imaginary part of the complex elastic 55 
constant, which corresponds to the attenuation of the wave inside the material. 56 

 57 
        This paper presents a procedure to characterize isotropic and anisotropic materials by 58 
estimating their elastic constants and mass density, through an optimization procedure 59 
based on the use of a Genetic Algorithm (GA) applied on the modulus of the transmission 60 
coefficient for varying incidence angles. 61 

The transmission coefficient is computed based on the stiffness matrix method by 62 
Rokhlin and Wang in [15]. This method was adopted since it has higher stability, when the 63 
frequency-thickness product increases (roughly higher than 20 MHz.mm), compared to the 64 
classical transfer matrix one. This will be the case, especially when thick layers of wood will 65 
be studied in regard to wavelengths in our frequency range. Our optimization process is 66 
based on a Genetic Algorithm (GA), whose capability to estimate elastic constants has proved 67 
highly efficient in the last few years [16] [17] [18] [19]. The capacity to find solutions in non-68 
smooth and non-continuous objective functions and also the possibility to use large 69 
individuals’ boundaries, turns GA into a powerful optimization tool to estimate elastics 70 
constants. Furthermore, the process of minimization using GA can be easily parallelizable, 71 
decreasing the computational time to find the optimal solution. This work aims to show 72 
numerically the capability of a Genetic Algorithm to retrieve the elastic parameters of a 73 
sample, when using only critical angles and corresponding amplitude of the peaks that 74 
appear in the modulus of the transmission coefficient versus incidence angle, instead of using 75 
the whole of this coefficient. It allows to gain computation time and to highlight the fact that 76 



3 
 

these specific regions of the transmission coefficient are sufficient to determine the elastic 77 
properties of the sample.  78 

Experimental data used here is taken from the literature and references are given in the text. 79 
Furthermore, in an experimental analysis, this method would avoid the need for a calibration 80 
of the transducers in transmission mode. 81 

The transmission coefficient is computed both to simulate a measured one with targeted 82 
elastic parameters values, and to simulate the one with optimized elastic parameters. Section 83 
2 briefly describes the theory to calculate the transmission coefficient with the recursive 84 
matrix method and defines the objective function to be minimized. Section 3 defines the 85 
parameters of the inverse problem and presents the computation steps proposed to retrieve 86 
the material properties. Section 4 presents the simulation results, showing the capability of 87 
the method to retrieve elastic parameters for different types of materials. First, a plate of 88 
isotropic acrylic is studied, with two independent elastic constants. Then, the mass density 89 
of the same acrylic plate with independent elastic constants, is considered as unknown 90 
parameter. The method is also applied using Simplex as optimization algorithm for sake of 91 
comparison. Finally, a simulated orthotropic material based on oak properties and a double 92 
layer consisting of a thin layer of gesso coated on a thick oak layer, are studied. Gesso is an 93 
element of old panel paintings, also known as ground layer. It was traditionally composed of 94 
rabbit-skin glue and ground chalk, allowing a smooth paintable surface on wood panels. This 95 
is a typical structure of heritage paintings for which it is difficult to determine the elastic 96 
properties and density. Indeed, since the common practice involves hand manipulation and 97 
contact methods, such measurements could damage the structure and paintings. Therefore, 98 
the use of a sample surrounded by air for this application is a technical alternative to 99 
mechanically evaluate and characterize the artwork. 100 

2. Forward problem 101 

The principle of our method is sketched in Fig. 1. An ultrasonic longitudinal wave, 102 
assumed to be a plane wave, is generated in air by a transmitting transducer and a receiving 103 
transducer is placed on the other side of the sample. The sample can be turned by an angle �� 104 
along the �� axis, while the two transducers operating in through-transmission mode are 105 
fixed. Concerning the sample surface, the angle ��  thus corresponds to the incident angle of 106 
the longitudinal wave emitted by the transmitter. The incident wave then propagates through 107 
the entire thickness d of the plate and can be partly converted into transverse waves. 108 
Depending on the angle ��, the longitudinal and transverse waves can combine to give guided 109 
waves that radiate a part of their energy into the air. These transmitted waves are received 110 
on the opposite side of the sample with the same angle ��. For a specific frequency the 111 
transmission coefficient is calculated as a function of the incidence angle ��. 112 
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 113 

Fig. 1. Air-coupled through-transmission system. 114 

 115 

The transmission coefficient is computed based on the stiffness matrix method 116 
described by Rokhlin and Wang [15]. This method has the advantage of having higher 117 
numerical stability than the Thomson-Haskell method that was used for example in [11] and 118 
[12], mainly when the frequency-thickness product increases. The stiffness method 119 
considers three displacement and stress vectors on the top face of each layer and three 120 
displacement and stress vectors on its bottom face. Hence, a recursive matrix operation 121 
computes the global matrix, instead of the inverse matrix multiplication that is implemented 122 
in the transfer matrix method, and which is unstable for high frequency-thickness products 123 
due to exponential matrix operations. The calculation of the transmission coefficient through 124 
this method can be summarized as follows:  125 

Considering a displacement vector �	 and stress vector 
	 for a mth layer. 126 

 
�	 = � 
������������(����) + ������������(������)�	�

� !
× ��(�#$��%&�'()

 (1) 

 

	 = � 
���)��������(����) + ���)��������(������)�	�

� !
× ��(�#$��%&�'()

 (2) 

 127 

 128 

 129 

where the displacement vector �	 possesses the components (�!	,��	,��	) and the 130 
stress vector 
	 possesses the components (
�!,
��,
��). The components of the stress 131 
vector, 
�� (j=1,2,3), correspond to components that are applied on a surface possessing a 132 
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normal along the (z) axis where  ���� are the wave amplitudes, ���� is the displacement 133 

polarization vector, )��� is the stress polarization vector, *����  are the wavenumbers in −, 134 
and +, directions, respectively, ,	 and ,	�! are the local coordinates of each layer, where 135 
(, = ,	�!) for the waves propagating in the −, direction and (, = ,	) for waves propagating 136 
in the +, direction, - is the angular frequency and / the time. 137 

 138 
Considering the submatrices 0�=[�!�,���,���], 0�=[�!�,���,���], 1�=[)!�,)��,)��], 1�=[)!�,)��,)��] 139 

and 2�=Diag[������3� ,�����43� ,�����53�], 2�=Diag[�������3� ,������43� ,������53�], and ℎ	= 140 ,	�! − ,	 being the thickness of the 7th layer, Eq. (1) and Eq. (2) can be written in a matrix 141 
form of Eq. (3) and Eq. (4): 142 

 8
	�!
	 9 = 
 1� 1�2�
1�2� 1� � :;	�;	� < (3) 

 8�	�!�	 9 = 
 0� 0�2�
0�2� 0� � :;	�;	� < (4) 

The stiffness matrix =	  of the m-th layer is then calculated substituting the amplitudes of 143 
Eq. (3) in Eq. (4), as a result this is a (6 × 6) matrix written as: 144 

 =	 = 
 1� 1�2�
1�2� 1� � 
 0� 0�2�

0�2� 0� ��!
 (5) 

The stiffness matrix of the layered media can be obtained by combining the stiffness matrix 145 
of each layer in a recursive calculation. For example, in the case of a bi-layered structure 146 
with the first stiffness matrix =! and the second stiffness matrix =�, the total stiffness 147 
matrix Eq.(8) is computed by relating 
? and �? to 
� and �� and suppressing 
! and �! 148 
from Eqs.(6) and (7): 149 

 8
?
!9 = @=!!! =!�!
=�!! =��! A 8�?�!9 (6) 

 150 

 8
!
�9 = @=!!� =!��
=�!� =��� A 8�!��9 (7) 

 151 
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 8
?
�9 = B=!!! + =!�! (=!!� − =��! )�!=�!! =!�! (=!!� − =��! )�!=!��
=�!� (=!!� − =��! )�!=�!! =��� + =�!� (=!!� − =��! )�!=!�� C 8�?��9 (8) 

Generalizing this method to a multilayered structure of M layers, the global stiffness matrix 152 
is obtained recursively using Eq. (8): 153 

 =D = B=!!D�! + =!�D�!(=!!	 − =��D�!)�!=�!D�! =!�D�!(=!!	 − =��D�!)�!=!�	
=�!	(=!!	 − =��D�!)�!=�!D�! =��	 + =�!	(=!!	 − =��D�!)�!=!�	C (9) 

where =D is the total stiffness matrix for the top 7 layers, =��D�! is the total stiffness matrix 154 
for the top 7 − 1 layers, and =��	 are the stiffness matrix elements for the mth layer. Fig. 2 155 
shows a multilayer structure, consisting of N arbitrary anisotropic layers. 156 

 157 

 158 

Fig. 2. Multilayer structure 159 

 Following the procedure described by Rokhlin and Wang in [15], the transmission coefficient 160 
in air, in which only longitudinal waves propagate, is therefore obtained when the upper and 161 
bottom shear stresses are set to zero. Relating the normal displacement and stress of the last 162 
layer with the transmission field into the coupling fluid, the equation which describes the 163 
transmission coefficient is written as: 164 

 F = 2HI�!��
(I!!�� + H)((I���� − H) − (I�!��I!���) (10) 

where I==�! is the compliance matrix calculated from the inverse of the global stiffness 165 
matrix, I���� are the (3,3) elements of each sub-matrix of the compliance matrix I and H is 166 
defined as: 167 
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 H = JKL��M-NOPO (11) 

where NO and PO are the mass density and speed of sound of air. 168 
 169 

For a given frequency, the modulus of the transmission coefficient has a pattern with 170 
different peaks as a function of the incidence angle ��. When the impedance of the multilayer 171 
structure is much higher than the one of the surrounding media, the peak locations coincide 172 
with  the critical angles that form Lamb modes inside the medium. Brekhovskikh and Godin 173 
have named this the "coincidence rule” in [20] .  Since these critical angles are function of the 174 
values of the elastic constants ���, mass density N, and thickness ), they will be used 175 
specifically for the inverse problem in order to retrieve these elastic parameters. 176 

3. Inverse problem 177 

From the transmission coefficient computed for a given sample as indicated in the 178 
previous section, the material parameters will be estimated by a minimization process. The 179 
function to be minimized is an error function which compares the modulus of a simulated 180 
transmission coefficient taken as a reference, with the modulus of a transmission coefficient 181 
that is computed with the set of guessed parameters generated by an optimization algorithm. 182 
The simulated transmission coefficient that will serve as reference, named FQ , is computed 183 
with the known property values of the material, ���, N and ) as described in section 2, and its 184 
critical angles and corresponding peaks are compared with those of the transmission 185 
coefficient, named FR, which is generated at each step of the optimization process. Thus, the 186 
objective function to be minimized is formulated by comparing the peak amplitudes [;Q , ;R] 187 
and the corresponding critical angles [�Q, �R] of the transmission coefficient modulus FQ with 188 
those of FR.  189 

Hence, the objective function is defined as: 190 

 S(���) = ∑U∑(�Q − �R)� + ∑(AQ − AR)�W (12) 

where ;Q  and ;R are the amplitudes of the peaks corresponding to the critical angles [�Q,�R]. 191 

The estimation of the elastic constants is obtained by an optimization process using a 192 
Genetic Algorithm (GA), an algorithm based on Darwin’s theory of evolution. The population 193 
(solution) randomly changes slightly and slowly in each generation converging to a best 194 
solution. Preliminary trials of elastic parameters optimization with the GA reveals that when 195 
the constraints have unknown parameters (individuals) that are comprised in a wide range 196 
of values, and far away from the expected ones, different combinations of elastic constants 197 ���, minimize the objective function with the same peak locations in the transmission 198 
coefficient, whatever the frequency. However, depending on the elastic constants found by 199 



8 
 

solving the inverse problem, the multiple peaks differ in amplitude, making the information 200 
of amplitude crucial to estimate the right solution.  201 

One of the limitations of GA is the fact that the solution sometimes cannot converge to 202 
the minimum global point, and instead, can be trapped in a local minimum. A non-uniform 203 
mutation decreases the chances of this occurrence. However, since large boundaries are 204 
applied - and GA is a stochastic model - it does not guarantee convergence to the global 205 
minimum, but an approximation of it. In order to extract and perform statistical analysis of 206 
the results, the GA runs twenty times each optimization for each material, giving stochastic 207 
information about results (mean and standard deviation) as sketched in the organizational 208 
chart of Fig. 3. 209 

The GA is based on elitism selection, in which the best individuals are automatically 210 
selected for the new generation without any modification, and a roulette selection of 211 
"parents" for the next generation based on stochastic simulation. The crossover fraction is 212 
defined to be 0.8 which means that 80% of the "children" from next generation are built 213 
through crossover operation and the other 20% generated through mutation operation. The 214 
mutation function chooses a mutation rate for each individual in the parent vector, following 215 
a Gaussian distribution. The mutation function parameters force a higher mutation rate in 216 
the first generations, which decreases to 0 in the final step, while the total number of 217 
generations is fixed at 200. These parameters were pre-tuned with different combinations to 218 
give good results in the inversion process for the same objective function. Once the 219 
parameters were found, they were kept constant for the following different cases. The tests 220 
were performed by using a computer based on an Intel® core i7 processor 8th gen., with 16 221 
GB of RAM.   222 

 223 

Fig. 3. GA Flowchart 224 
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4. Elastic constants estimation results 225 

In order to demonstrate the capability of our backward method that uses a GA 226 
optimization process applied in a certain angular range of the transmission coefficient, we 227 
will present the optimization results on samples of different types and symmetries. The 228 
transmission coefficient is computed based on Eq. (10) , that allows to simulate a viscoelastic 229 
and homogeneous medium surrounded by air of plane wave velocity XY�Q  = 343 m/s and mass 230 
density NY�Q = 1.22 *Z/7�. The incident angle has a range from 0° to 60°, that allows to 231 
visualize all the guided modes appearing in the different samples. 232 

4.1. Acrylic Plate Sample 233 

The first analyzed sample is an isotropic 3mm thick acrylic plate with a mass density 234 
of 1200 *Z/7�. The reference transmission coefficient FQ  is generated with the set of elastic 235 
constants and mass density measured by Dodd et al. in [21]. Since the sample is isotropic, it 236 
possesses only two independent elastic constants, �!! and �!�, where ��� follows the 237 
relationship 238 

 ��� = (�!! − �!�)/2 (13) 

The elastic constant matrix of this acrylic plate is thus defined as: 239 
 240 

U�\]W =
_̂_
__̀
8.6 4.4 4.4 0 0 04.4 8.6 4.4 0 0 04.4 4.4 8.6 0 0 00 0 0 2.1 0 00 0 0 0 2.1 00 0 0 0 0 2.1ef

ff
fg Uh0�W 241 

 242 

The critical angles and their associated amplitudes that appear in the modulus of FQ  243 
are compared with the corresponding ones of FR created at each GA generation. The lower 244 
and upper boundaries of the population chosen for this simulation are 5 GPa and 15 GPa for 245 �!! and 2 GPa and 7 GPa for �!�.  246 

 247 

4.1.1.  Characterization of elastic parameters at 200 kHz 248 

In a first trial to characterize the elastic constants, a frequency of 200 kHz is chosen to 249 
generate the transmission coefficient, whose modulus is represented in Fig. 4. The estimated 250 
transmission coefficient is calculated using the mean elastic parameters, given in  Table 1. In 251 
Fig. 4 one can observe two peaks located at the critical angles using the reference and two 252 
other peaks using the mean values of estimated elastic constant. These peaks correspond to 253 
the zero-order Lamb modes A0 and S0. The shift in the incident angles is quite significant, 254 
due to unsatisfactory optimization.   255 
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                           256 

Fig. 4. Comparison between transmission coefficients for reference and estimated acrylic plate 257 
constants at 200 kHz . 258 

 259 

 260 

With such a difference in the mean values and a high value of standard deviation of 261 �!� and �!!, the estimation cannot be considered as satisfactory. Indeed, the results have 262 
shown that other individuals can minimize the objective function with a transmission 263 
coefficient that contains the same critical angle locations and very close amplitudes. 264 
However, increasing the frequency to 1MHz allows to excite more modes, of higher order, as 265 
illustrated in Fig. 5. Hence, with more peaks in the transmission coefficient, the GA has better 266 
chance to find the global minimum of the objective function.  267 

 268 

4.1.2. Characterization of elastic parameters at 1 MHz 269 

 270 
            For this frequency value of 1 MHz, it was found that the values of �!! and �!� were 271 
correctly retrieved, for the same lower and upper boundaries of the population parameters. 272 
Then, even if the sample is isotropic, the elastic constant ��� was considered as an unknown 273 
parameter in the inversion problem, in order to evaluate the robustness of the optimization 274 
method and verify that the equality Eq. (13) remains valid. The boundaries of ��� were set 275 
between 1 GPa and 3 GPa. Table 1 shows the three estimated parameters at 1 MHz. 276 

 
N°of modes �!!(GPa) �!�(GPa) ���(GPa) 

Reference 1 MHz 8 8.6 4.4 2.1 

Estimated 200kHz 2 8.32±1.53 3.81±1.92 - 

Estimated 1 MHz 6 8.61±0.09 4.40±0.09 2.08±0.01 
Table 1 Estimated parameters of acrylic, mean value standard deviation after twenty rounds 

of optimization 
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 277 

Fig. 5. Comparison between transmission coefficient of reference and estimation for 3mm 278 
acrylic plate at 1MHz. Dashed circle shows the location of a mode with very small transmission 279 

It is possible to see in Fig. 5 that the transmission coefficient contains six peaks, both 280 
for the reference and estimated values. However, a small peak that represents the symmetric 281 
mode S2, whose location is marked by the dashed circle in Fig. 5 is also present in the 282 
transmission coefficient. It was not taken into account in the computation since its peak 283 
amplitude would be too small to be observable. The modes A0 and S0 are combined in a single 284 
peak, due to their proximity. Therefore, at 1MHz, the acrylic plate has eight modes as can be 285 
seen in the dispersion curve of Fig. 6. The dispersion curves are here represented as a 286 
function of the incidence angle, instead of phase velocity, over frequency. Indeed, one can 287 
obtain the incident angle according to �� = LMj�!( klmn

koplqr). The six observable peaks are used 288 

with their associated angle and amplitude values for computation in the optimization 289 
process.  Table 1 also shows the results for the case where the acrylic plate is exposed to 290 
higher frequency, which allows to have better estimated values of the elastic parameters. The 291 
standard deviation also helps to evaluate the quality of the optimization and increasing the 292 
number of peaks in the transmission coefficient also allows to considerably decrease the 293 
standard deviation. The dependent elastic constant ��� has a value of 2.08 GPa ± 0.01 proving 294 
that the algorithm is robust since the isotropic mathematical relationship Eq. (13) can be 295 
verified for the optimized value of ��� that was considered as an independent parameter. 296 
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 297 

Fig. 6. Dispersion curve of 3 mm acrylic plate with eight modes generated at 1MHz. 298 

 299 

In order to further evaluate the robustness of our method, it is then tested with one 300 
more parameter to be obtained. The mass density is now also considered as an unknown 301 
parameter whose values are very different from those of elastic constants. With four 302 
unknown parameters to be retrieved, the algorithm is more susceptible to find other 303 
combinations that also minimize the objective function instead of the reference values. The 304 
bottom and upper mass density boundaries used in the optimization are 1000 and 1400 305 *Z/7�, respectively. The results of the mean values and standard deviation are shown in 306 
Table 2. The elastic constants standard deviations are roughly 8 times, 4 times and 10 times 307 
higher for C11, C13 and C55, respectively, compared to values from Table 1 this result shows 308 
that, for different trials, the G.A. finds other parameters near the reference ones, that 309 
minimize the objective function, but the mean values are still very close to the reference ones. 310 
Fig. 7 shows the good agreement between the reference and fitted angles of the transmission 311 
coefficient when using the corresponding reference and mean estimated parameters, 312 
respectively.  313 
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 314 

Fig. 7. Transmission coefficient of 3mm acrylic plate at 1MHz with elastic constants and mass 315 
density as unknown parameters. 316 

 317 

 318 

4.1.3. Comparison of optimization performance between of the GA and the Simplex 319 
methods  320 

In this section we will compare two methods of optimization: the GA and the Simplex. 321 
The simplex algorithm is a typical method of optimization that has been used to find elastic 322 
constants of material using ultrasound [22]. A variation of the classical Simplex, that does not 323 
use numerical gradients, known as the “Nelder-Mead (NM) Simplex” [23]  is adopted to 324 
compare with GA. This method is suitable for any type of objective function, i.e. linear or not, 325 
with or without discontinuities, and therefore proper to compare with the GA. The NM 326 
method does not use constraints and the optimization starts by an initial vector with the size 327 
of the variable to be estimated.  The estimated values using the NM method are computed 328 
starting from different initial guesses of elastic constant values to test the capacity to retrieve 329 
those of the previously studied acrylic sample. Only the two independent elastic constants 330 
are considered as the input of the optimization. The initial values were chosen by considering 331 
a polar coordinate where the x-axis is the parameter C11 and y-axis the parameter C13. The 332 
radius is fixed to 1GPa with the angles varying from 0 to 2π by steps of π/32 and the origin 333 
at the target values of C11 and C13.   334 

 335 

 �!!(GPa) �!�(GPa) ���(GPa) N(kg/m^3) 

Reference 8.6 4.4 2.1 1200 

Estimated 8.58 ± 0.75 4.39 ± 0.41 2.08 ± 0.17 1194.8 ± 100 

Table 2 Elastic constants and mass density estimated for acrylic at 1MHz. 
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 336 

Fig. 8. Optimization of acrylic plate elastic constants by the NM Simplex method. 337 

Fig. 8 shows the initial values marked by a dot (°) and the final values (after 338 
optimization) marked by an asterisk (*) of elastic constants C11 and C13. The optimization is 339 
found to be very dispersive for many initial guess values, with few final values that reach the 340 
neighborhood of the target one. This result allows to conclude that the GA is more efficient 341 
and robust than the NM Simplex method to find the right estimated parameters, mainly when 342 
the initial guess is far from the target value or when the target value is completely unknown. 343 
However, if time-consumption is crucial and the initial guess is near the target one, the NM 344 
Simplex can be an alternative since it is faster than GA, where at least an hour is required to 345 
reach a solution.   346 

4.2. Oak wood 347 

The method is not limited to isotropic samples. In order to study a material with four 348 
independent elastic parameters, an oak wood sample is now considered. The sample 349 
thickness is 3mm with a mass density of 670 *Z/7� and elastic parameters defined by Kumar 350 
in [24] as: 351 

U�\]W =
_̂_
__̀
14.3 0.8 1.5 0 0 00.8 1.0 1.0 0 0 01.5 1.0 2.1 0 0 00 0 0 0.3 0 00 0 0 0 0.7 00 0 0 0 0 0.8ef

ff
fg Uh0�W 352 

The analyzed plane of symmetry is the 1-3 plane that is parallel to the fibers of the 353 
wood, which has four independent elastic constants. Optimization results for oak reveals that 354 
the size of the population must be increased to 300 individuals to have satisfactory results. 355 
This can be explained by the range of elastic constant boundaries, comprised between 356 
roughly 0 and 20 GPa, which is applied to each elastic constant, and by the fact that 357 
orthotropic materials have elastic constant values with high deviation between them. Table 358 
3 shows the results of the estimation for the oak sample. Despite the standard deviation of 359 �!! and �!� of around 10 %, the estimated values are convincing, showing that GA can find 360 
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parameters that approach the global minimum. One can also note that in an orthotropic 361 
sample, the optimization is more sensitive to elastic constants ��� and ���: the optimization 362 
can better retrieve the values of these two parameters than those of �!! and �!�. 363 
Furthermore, it was verified that a second round of optimization using an initial population 364 
based on the results of the first round gives better results. 365 

 366 

 367 

Fig. 9 shows the transmission coefficient using the mean estimated values and the 368 
reference one. It is not possible to see all the modes that can be generated in the sample in 369 
Fig. 9 since some have very small transmission amplitudes. However, the "hidden" modes, S3 370 
and A3, can be seen on the dispersion curve in Fig. 10. Since these two modes have very small 371 
amplitudes, they were not computed in the optimization process. Thus, the optimization 372 
process can estimate the parameters even without using all the modes for a given sample 373 
when an orthotropic sample is considered. 374 

 375 

Fig. 9. Comparison between transmission coefficient of reference and estimaion for oak at 376 
1MHz. 377 

 �!!(GPa) ���(GPa) �!�(GPa) ���(GPa) 

Reference 14.3 2.1 1.5 0.7 

Estimated 14.4±1.3 2.1±0.07 1.4±0.3 0.7±0.003 

Table 3 Elastic constants estimated for oak (plane 1-3) 
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 378 

Fig. 10. Dispersion curve of a 3 mm oak plate, showing the different modes excited at 1MHz. 379 

 380 

4.3. Oak-gesso two layer structure 381 

Our method is now applied to a bi-layer medium consisting of a thin layer of gesso laid 382 
on a thick layer of oak. Gesso can be considered as an isotropic material with Young’s 383 
modulus v = 3.6 GPa and poisson ratio w = 0.2, which gives �!!, ��� and �!� equal to 4 GPa, 384 
1.5 GPa and 1 GPa, respectively. The density varies from 500 to 800 *Z/7� [25] and [26].  In 385 
old paintings, mainly from the renaissance epoch, the panels had a thickness in the range 386 
roughly from 2 to 15 mm. Following this consideration, a 10 mm panel made of oak oriented 387 
in 1-3 plane is chosen to be the support while a gesso layer with a thickness of 132 xm is 388 
deposited to obtain a two-layer structure. Two different optimization configurations are 389 
considered for this structure. In the first case, the two independent elastic constants of gesso 390 
as well as the third elastic constant were the parameters to be retrieved by the minimization 391 
process. In the second case, the density of gesso is also supposed unknown and a value to be 392 
estimated through the optimization. Fig. 11 shows the transmission coefficient of a single 393 
10mm thick layer of oak superimposed with the one corresponding to the two-layer 394 
structure formed with the addition of the 132 xm gesso layer. The guided modes that 395 
correspond to transmission coefficients lower than 10-2 are not considered in the 396 
optimization process. This gives a total of 16 modes to be used in the inversion process. 397 
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 398 

Fig. 11 Comparison between transmission coefficient of oak and oak-gesso bi-layer at 1 MHz. 399 

One can observe the shift of the critical angles even when only a very thin layer of 400 
gesso covers the surface of the wood. The number of modes increases due to the presence of 401 
modes that mainly belong to the wood layer itself, but also to the gesso layer, and finally to 402 
the global structure (called coupling modes). The population size is set to have 100 403 
individuals with the boundaries ranging from 0 to 5 GPa for the elastic constants, and from 404 
500 to 800 *Z/7� for the mass density when it is also considered unknown. Table 4 gives 405 
the mean values of the estimated elastic constants after 20 rounds and Table 5 shows the 406 
mean result when adding the mass density as an unknown. 407 

 408 
 409 
 410 

 411 
 412 

 �!!(GPa) �!�(GPa) ���(GPa) 

Reference 4 1 1.5 

Estimated 3.98 ± 0.03 0.94 ± 0.11 1.52 ± 0.04 

Table 4 Elastic constants: reference and estimated for gesso at 1MHz. 

 �!!(GPa) �!�(GPa) ���(GPa) N(*Z/7�) 

Reference 4 1 1.5 800 

Estimated 4.02±0.20 0.87 ±0.56 1.57±0.20 799.77±1.04 

Table 5 Elastic constants and mass density: reference and estimated for gesso at 1MHz. 
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 413 

 414 

 415 

Fig. 12. Transmission coefficient of two layer oak-gesso structure, reference and estimated. 416 
Case 1 - three unknown elastic constants of gesso and Case 2 - three unknown elastic constants 417 

and unknown mass density of gesso. 418 

 419 

As expected, the mean standard deviation in Table 5 is higher than the one of Table 4 420 
since a new variable (mass density) must be determined by the Genetic Algorithm. However, 421 
this error can be decreased by increasing the size of population in GA, at the cost of increasing 422 
the computation time. Now looking at the mean estimated results in Table 4 and Table 5, it is 423 
possible to notice that the estimated values are close to the reference ones for �!! and ���. 424 
The small thickness of gesso also suggests that the mass density is a parameter sensitive to 425 
optimization. However, �!� has a huge error compared to the reference values, even though 426 
the critical angles are very close to the estimated mean values and the reference ones as 427 
illustrated in Fig. 12 for the two cases. This occurs because the value of �!� does not impact 428 
the transmission coefficient of a very small layer as pointed out by Rokhlin and Wang in [27]. 429 

5. Conclusion 430 

A numerical method to estimate elastic parameters of both isotropic and orthotropic 431 
plate samples, based on stiffness matrix model and a Genetic Algorithm has been developed. 432 
The optimization is based on an objective function that uses only the critical angles and the 433 
corresponding peak amplitudes - linked to guided modes in the sample - that appear in the 434 
transmission coefficient. The optimization is performed taking into account areas of the 435 
transmission coefficient that are located around the peaks (angles and amplitudes) of these 436 
modes, and not with the whole transmission coefficient, which avoids the need for a 437 
calibration of transducers. The recursive stiffness matrix method was chosen due to its 438 
stability when computing the transmission coefficient, particularly on thick samples. The 439 
optimization performed by a Genetic Algorithm implemented with wide boundaries provides 440 
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quite satisfactory estimations of unknown elastic parameters. However, numerical analysis 441 
reveals a higher estimation error when there are only two peaks in the transmission 442 
coefficient, which was the case for a 3mm acrylic plate at a frequency of 200 kHz. The elastic 443 
constants of acrylic, however, have been well estimated by increasing the frequency to 1MHz, 444 
which leads to an increase of the number of guided modes that are considered, from two at 445 
200 kHz to five at 1 MHz. GA also appears to be a robust method since it demonstrates its 446 
capability of retrieving the right ��� value of the acrylic plate when it is considered as an 447 
unknown parameter: the estimation verifies the mathematical relationship with �!! and �!� 448 
As expected, the size of the GA population impacts the results of the estimation. With four 449 
elastic constants to determine in an oak sample, a population of 300 individuals was required 450 
for the optimization to reach satisfactory estimated parameters. The method also worked 451 
quite well on a bi-layer structure made of oak and a thin layer of gesso. The huge difference 452 
of thickness between these two layers did not prevent a good estimation of the elastic 453 
constants of Gesso, even when the mass density was considered as an unknown. The 454 
optimization was showed to be more sensitive to certain elastic constants than others, for 455 
both isotropic and anisotropic samples. In a bi-layer structure where gesso forms a very thin 456 
layer deposited on oak, a large sensitivity to mass density was also observed. The 457 
optimization using Simplex showed worse results than with the GA, even when the algorithm 458 
was used to estimate only two parameters. Future work will include using experimental 459 
transmission coefficients instead of simulated ones to test the robustness of the method and 460 
evaluate the impact of ultrasonic transducer diffraction. The method could also be applied to 461 
recover complex elastic moduli by considering the imaginary part of elastic constants, thus 462 
taking into account attenuation in samples. 463 
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