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Distributed Exact Weighted All-Pairs Shortest Paths in Õ(n 5/4 ) Rounds

))approximation Õ(n)-time algorithms [LP15, Nan14], which are matched with Ω(n)-time lower bounds [Nan14, LPS13, FHW12] 1 . No ω(n) lower bound or o(m) upper bound were known for exact computation.

In this paper, we present an Õ(n 5/4 )-time randomized (Las Vegas) algorithm for exact weighted APSP; this provides the first improvement over the naive O(m)-time algorithm when the network is not so sparse. Our result also holds for the case where edge weights are asymmetric (a.k.a. the directed case where communication is bidirectional). Our techniques also yield an Õ(n 3/4 k 1/2 + n)-time algorithm for the k-source shortest paths problem where we want every node to know distances from k sources; this improves Elkin's recent bound [Elk17b] when k = ω(n 1/4 ).

We achieve the above results by developing distributed algorithms on top of the classic scaling technique, which we believe is used for the first time for distributed shortest paths computation. One new algorithm which might be of an independent interest is for the reversed r-sink shortest paths problem, where we want every of r sinks to know its distances from all other nodes, given that every node already knows its distance to every sink. We show an Õ(n √ r)-time algorithm for this problem. Another new algorithm is called short range extension, where we show that in Õ(n √ h) time the knowledge about distances can be "extended" for additional h hops. For this, we use weight rounding to introduce small additive errors which can be later fixed.

Remark: Independently from our result, Elkin recently observed in [Elk17b] that the same techniques from an earlier version of the same paper (https://arxiv.org/abs/ 1703.01939v1) led to an O(n 5/3 log 2/3 n)-time algorithm.

1 Θ, Õ and Ω hide polylogarithmic factors. Note that the lower bounds also hold even in the unweighted case and in the weighted case with polynomial approximation ratios.

i

Introduction

Distributed Graph Algorithms. Among fundamental questions in distributed computing is how fast a network can compute its own topological properties, such as minimum spanning tree, shortest paths, minimum cut and maximum flow. This question has been extensively studied in the so-called CONGEST model [START_REF] Peleg | Distributed Computing: A Locality-sensitive Approach[END_REF] (e.g. [Elk17b, PRS17, HKN16, Nan14, LPS13, DHK + 12, Elk06, PR00, GKP98]). In this model (see Section 2 for details), a network is modeled by a weighted n-node m-edge graph G. Each node represents a processor with unique ID and infinite computational power that initially only knows its adjacent edges and their weights. Nodes must communicate with each other in rounds to discover network properties, where in each round each node can send a message of size O(log n) to each neighbor. The time complexity is measured as the number of rounds needed to finish the task. It is usually expressed in terms of n, m, and D, where D is the diameter of the network when edge weights are omitted. Throughout we use Θ, Õ and Ω to hide polylogarithmic factors in n.

Note that the whole network can be aggregated to a single node in O(m) time. Thus any graph problem can be trivially solved within O(m) time. A fundamental question is whether this bound can be beaten, and if so, what is the best possible time complexity for solving a particular graph problem. This question has been studied for several decades, marked by a celebrated O(n log n)-time algorithm for the minimum spanning tree (MST) problem by Gallager et al. [START_REF] Gallager | A Distributed Algorithm for Minimum-Weight Spanning Trees[END_REF]. This result was gradually improved and settled with Θ( √ n + D) upper and lower bounds [PR00, GKP98, KP98, Awe87, CT85, Gaf85]. 2 Approximation vs. Exact Algorithms. Besides MST, almost no other problems were known to admit an o(m)-time distributed algorithm when we require the solution to be exact. More than a decade ago, a lot of attention has turned to distributed approximation, where we allow algorithms to return approximate solutions (e.g. [START_REF] Elkin | Distributed approximation: a survey[END_REF]). This relaxation has led to a rapid progress in recent years. For example, SSSP, minimum cut, and maximum flow can be (1 + o(1))-approximated in Õ( √ n + D) time [HKN16, BKK + 16, Nan14, NS14, GK13, GKK + 15] 3 , and all-pairs shortest paths can be (1 + o(1))-approximated in Õ(n) time [START_REF] Lenzen | Fast Partial Distance Estimation and Applications[END_REF][START_REF] Nanongkai | Distributed Approximation Algorithms for Weighted Shortest Paths[END_REF]; moreover, these bounds are essentially tight up to polylogarithmic factors [DHK + 12, Elk06, PR00, KKP13]. Given that approximating many graph properties are essentially solved, it is natural to turn back to exact algorithms. A fundamental question is:

Are approximation distributed algorithms more powerful than the exact ones? So far, we only have an answer to the MST problem: due to the lower bound of Das Sarma et al.

[DHK + 12] (building on [Elk06, PR00, KKP13]), any poly(n)-approximation algorithm requires Ω( √ n + D) rounds; thus, approximation does not help. For most other problems, however, answering the above question still seems to be beyond current techniques: On the one hand, we are not aware of any lower bound technique that can distinguish distributed (1 + o(1))-approximation from exact algorithms for the above problems. On the other hand, for most of these problems we do not even know any non-trivial (e.g. o(m)-time) exact algorithm. (One exception that we are aware of is SSSP where the classic Bellman-Ford 1 algorithm [START_REF] Bellman | On a Routing Problem[END_REF][START_REF] Ford | Network Flow Theory[END_REF] takes O(n) time. This bound was recently (in STOC'17) improved by Elkin [START_REF] Elkin | Distributed Exact Shortest Paths in Sublinear Time[END_REF].) All-Pairs Shortest Paths (APSP). Motivated by the above question, in this paper we attempt to reduce the gap between the upper and lower bounds for solving APSP exactly. The goal of the APSP problem is for every node to know the distances from every other node. 4 Besides being a fundamental problem on its own, this problem is a key component in, e.g., routing tables constructions [START_REF] Lenzen | Fast Routing Table Construction Using Small Messages[END_REF][START_REF] Lenzen | Fast Partial Distance Estimation and Applications[END_REF].

Nanongkai [START_REF] Nanongkai | Distributed Approximation Algorithms for Weighted Shortest Paths[END_REF] and Lenzen and Patt-Shamir [START_REF] Lenzen | Fast Routing Table Construction Using Small Messages[END_REF][START_REF] Lenzen | Fast Partial Distance Estimation and Applications[END_REF] presented (1 + o(1))approximation Õ(n)-time algorithms, as well as an Ω(n) lower bound which holds even when D = O(1), when the network is unweighted, and against randomized algorithms.5 Very recently, Censor-Hillel et al. [START_REF] Censor-Hillel | Quadratic and Near-Quadratic Lower Bounds for the CONGEST Model[END_REF] improved the lower bound to Ω(n). The same lower bound obviously holds for the exact case. Neither an ω(n) lower bound nor an o(m)-time algorithm was known, except for some special cases; a notable one is the unweighted case where there are O(n)-time algorithms [START_REF] Lenzen | Efficient Distributed Source Detection with Limited Bandwidth[END_REF][START_REF] Holzer | Optimal Distributed All Pairs Shortest Paths and Applications[END_REF][START_REF] Peleg | Distributed Algorithms for Network Diameter and Girth[END_REF].

Results. Our main result is an Õ(n 5/4 )-time exact APSP algorithm. Our algorithm is randomized Las Vegas: the output is always correct, and the time guarantee holds both in expectation and with high probability6 . This result provides the first improvement over the naive O(m)-time algorithm when the network is not so sparse, and significantly reducing the gap between upper and lower bounds.

Our algorithm also works with the same guarantees when edge weights are asymmetric, a.k.a. the directed case. In this case, an edge between nodes u and v can be viewed as two directed edges, one from u to v and another from v to u. These two edges might have different weights, and the weight can be set to infinity. (Note, however, that the infinite weight is not really necessary as it can be replaced by a large poly(n) weight.) We emphasize that the underlying network is undirected so neither edge direction or weight affect the communication. While the previous (1+o(1))-approximation Õ(n)-time algorithms for APSP also work for this case [START_REF] Nanongkai | Distributed Approximation Algorithms for Weighted Shortest Paths[END_REF][START_REF] Lenzen | Fast Partial Distance Estimation and Applications[END_REF], in general it is less understood than the undirected case. For example, while there are tight (1 + o(1))-approximation Õ( √ n + D)-time algorithms for SSSP [HKN16, BKK + 16] in the undirected case, the best known algorithms for the directed case are the (1 + o(1))-approximation Õ( √ nD + D)-time one [START_REF] Nanongkai | Distributed Approximation Algorithms for Weighted Shortest Paths[END_REF] and the Õ( √ nD 1/4 + D)-time algorithm for the special case called single-source reachability [START_REF] Ghaffari | Brief Announcement: Distributed Single-Source Reachability[END_REF].

Our techniques also yield an improved algorithm for the k-source shortest paths (k-SSP) problem. In this problem, some nodes are marked as source nodes initially (each node knows whether it is marked or not). The goal is for every node to know its distance from every source node. We let k denote the number of source nodes. We show a randomized Las-Vegas Õ(n 3/4 k 1/2 + n)-time algorithm. (Observe that our APSP algorithm is simply a special case when k = n.) Prior to our work, approximation algorithms and the unweighted case were often considered for this problem (e.g. [EN16, HW12, KKM + 12, Elk05]). The only non-trivial exact algorithm known earlier was the algorithm of Elkin [START_REF] Elkin | Distributed Exact Shortest Paths in Sublinear Time[END_REF]. The performance of such algorithm compared to ours is as follows. (We ignore the polylogarithmic terms below for simplicity. For a more precise time guarantee, see [START_REF] Elkin | Distributed Exact Shortest Paths in Sublinear Time[END_REF].)

1. When D = O(k √ n) and k = O( √ n),
Elkin's algorithm takes Õ(n 5/6 k 2/3 ) time. In this case our algorithm is faster when k = ω(n 1/4 ). 2. When k = Ω( √ n), Elkin's algorithm takes Õ(n 2/3 k) time. In this case our algorithm is faster when k = ω(n 1/3 ).

To conclude, our k-SSP algorithm is faster whenever k = ω(n 1/4 ).

Remarks.

1. The time guarantees of our algorithms depend on the number of bits needed to represent edge weights. This is typically polylog(n) since edge weights are usually assumed to be positive integers bounded from above by poly(n); see Section 2.1. This is the main drawback of the scaling technique that our algorithm heavily relies on (see below). The guarantees of other distributed algorithms we discussed, including Elkin's algorithm [START_REF] Elkin | Distributed Exact Shortest Paths in Sublinear Time[END_REF], do not have this dependency.

2. Throughout the paper we only show that the output is correct with high probability, but in O(n) time we can check the correctness as follows. First, every node lets its neighbors know about its distances from other nodes (this takes O(n) time). Then, every node checks if it can improve its distance from any node using the distance knowledge from neighbors. If the answer is "no" for every node, then the computed distance is correct. If some node answers "yes", it can broadcast its answer to all other nodes in O(n) time.

3. Independently from our result, Elkin recently observed in [START_REF] Elkin | Distributed Exact Shortest Paths in Sublinear Time[END_REF] that the same techniques from an earlier version of the same paper (https://arxiv.org/abs/1703.01939v1) led to an O(n 5/3 log 2/3 n)-time algorithm for APSP on undirected networks. Also very recently, Censor-Hillel et al. [START_REF] Censor-Hillel | Quadratic and Near-Quadratic Lower Bounds for the CONGEST Model[END_REF] showed that the standard Alice-Bob framework is incapable of providing a super-linear lower bound for exact weighted APSP, and raised the complexity of APSP as "an intriguing open question". They also showed an Ω(n 2 ) lower bound for exactly solving some NP-hard problems, such as minimum vertex cover, maximum independent set and graph coloring. This implies a huge separation between approximation and exact algorithms, since some of these problems can be solved approximately in O(polylog(n)) time.

Overview of Algorithms and Techniques.

Our algorithms are built on the scaling technique. This is a classic technique heavily studied in the sequential setting (e.g. [START_REF] Goldberg | Scaling Algorithms for the Shortest Paths Problem[END_REF][START_REF] Gabow | Faster Scaling Algorithms for Network Problems[END_REF][START_REF] Harold | Scaling Algorithms for Network Problems[END_REF]). As far as we know this is the first time it is used for shortest paths computation in the distributed setting. This technique (see Section 3 for details) allows us to assume that the distance between any two nodes is O(n) (i.e., the so-called weighted diameter is O(n)). The main challenge here is that edge weight can be zero (but cannot be negative); without the zero weight, there are already many Õ(n)-time exact algorithms available (e.g. [START_REF] Lenzen | Efficient Distributed Source Detection with Limited Bandwidth[END_REF][START_REF] Nanongkai | Distributed Approximation Algorithms for Weighted Shortest Paths[END_REF]). Our algorithms consist of two main subroutines developed for this case, which might be of independent interest. We discuss these subroutines below. To avoid the discussion being too complicated, readers may assume throughout the discussion that the input network has symmetric edge weight. Note however that in reality we have to deal with the asymmetric weights even if the original weight is symmetric. Additionally, we assume for simplicity that every pair of nodes has a unique shortest path.

1. Short-range extension. The first subroutine is called short-range-extension. For simplicity, let us first consider a special case called short-range problem. In this problem we are given a parameter h. The goal is for every node v to know the distance from every node u such that the shortest uv-path has at most h edges. Previously, this task can be achieved in Õ(nh) time by running the Bellman-Ford algorithm for h rounds from every node. By exploiting special properties obtained from the scaling technique, we develop an Õ(n √ h)-time algorithm for this problem. The main idea is as follows. First we increase the zero weight to a small positive weight ∆ = 1/ √ h. By a breadth-first-search (BFS) algorithm, we can solve APSP in the new network (with positive weights) in Õ(n/∆) time. This solution gives an upper bound to the APSP problem on the original network (with zero weights). Since we are interested in only shortest paths with at most h edges, it can be argued that the upper bound obtained has an additive error of h∆; i.e. it is only h∆ higher than the actual distance. We fix this additive error by running the Bellman-Ford algorithm for h∆ rounds from every node.

The short-range algorithm above can be generalized to the following short-range-extension problem. We are given an integer h, and initially some nodes in the network already know distances to some other nodes. For any nodes u and v, let (u = x 0 , x 1 , x 2 , . . . , x k = v) be the shortest uv-path. We say that (u, v) is h-nearly realized if at least one node among x k , x k-1 , . . . , x k-h knows its distance from u. (Note that the fact that (u, v) is h-nearly realized does not necessarily imply that (v, u) is also h-nearly realized.) At the end of our algorithm we want to make node v know the distance from u, for every nodes u and v such that (u, v) is h-nearly realized initially. Observe that the short-range problem is the special case where initially node u knows distances from no other nodes. By modifying the short-range algorithm, we can show that this problem can be solved in Õ(n √ h) time as well.

2. Reversed r-sink shortest paths. The second subroutine is called reversed r-sink shortest paths. Initially, we assume that every node v knows the distance from v to r sink nodes. The goal is for every sink to know its distance from every node. A naive solution is for every node v to broadcast to the whole network the distance from v to every sink. This takes O(nr) time since there are O(nr) distance information to broadcast. In this paper, we develop an Õ(n √ r)-time algorithm for this task. The main idea is for every node v to route the distance from v to every sink t through the shortest vt-path. If there is a node x that is contained in more than n √ r shortest paths (thus there will be too much information going through x), we will call x a bottleneck node. We can bound the number of bottleneck nodes to O( √ r) by a standard argument -we charge each bottleneck node to n √ r distinct shortest paths among nr of them. Now, for every shortest vt-path that does not contain a bottleneck node, we route the distance from node v and sink t as originally planned. This takes Õ(n √ r) time since there is Õ(n √ r) bits of information going through each node. For shortest vt-paths that contain bottleneck nodes, we do the following. For every bottleneck node c, we make every node know their distances from and to c by running the Bellman-Ford algorithm starting at c. Then every node broadcasts to the whole network its distance to and from every bottleneck node. Since there are √ r bottleneck nodes, this takes O(n √ r) time in total. It is not hard to show that every sink t knows the distance from every node v after this step.

Putting things together. Finally, we sketch how all tools are put together. First we run the short-range algorithm with parameter h = √ n. Then we sample Õ( √ n) nodes uniformly at random called centers so that every h-hop path contains a center with high probability. Each center c broadcasts to the whole network its distances to some centers that it learns from the short-range algorithms. At this point, every node knows its distance to every center. We invoke the reversed r-sink shortest paths algorithm with centers as sink nodes (so r = Õ( √ n)), so that every center knows its distance from every node. At this point, it is not hard to prove that every pair of nodes is h-nearly realized. So, we finish by invoking the short-range-extension algorithm with parameter h = √ n. The total time is

Õ(n √ r + n √ h) = Õ(n 5/4
). To extend the above idea to the k-source shortest paths problem, we need slight modifications here and there; in particular, (i) we modify the short-range extension and reversed r-sink shortest paths algorithms to deal with k source nodes, and (ii) we treat the sampled centers as source nodes since we need to know the distances from and to them.

Preliminaries

The Model

In a nutshell, we consider the standard CONGEST model, except that instead of an undirected graph the underlying graph is modeled by a bidirected graph, i.e. a directed graph in which the reverse of every edge is also an edge. This is because we have to deal with asymmetric edge weight (even when the initial network has symmetric weights). Additionally, for simplicity we assume that nodes IDs are in the range of {0, 1, . . . , n-1}. (This assumption can be achieved in O(n) time.)

More precisely, we model a network by a bidirected unweighted n-node m-edge graph G, where nodes model the processors and edges model the bounded-bandwidth links between the processors. Let V (G) and E(G) denote the set of nodes and (directed) edges of G, respectively. The processors (henceforth, nodes) are assumed to have unique IDs in the range of {0, 1, . . . , n -1} and infinite computational power. (Note again that typically nodes' IDs are assumed to be in the range of {1, . . . , poly(n)}. But in O(n) time the range can be reduced to {0, 1, . . . , n -1}.) Each node has limited topological knowledge; in particular, it only knows the IDs of its neighbors and knows no other topological information (e.g., whether its neighbors are linked by an edge or not). Nodes may also accept some additional inputs as specified by the problem at hand.

For the case of graph problems, the additional input is edge weights. Let w : E(G) → {1, 2, . . . , poly(n)} be the edge weight assignment. 7 We refer to network G with weight assignment w as the weighted network, denoted by G(w). The weight w(u, v) of each edge (u, v) is known only to u and v. As commonly done in the literature, we will assume that the maximum weight is poly(n); so, each edge weight can be sent through an edge (link) in one round. We refer to the weight function as symmetric, or sometimes undirected, if for every (directed) edge (u, v), w(u, v) = w(v, u). Otherwise, it is called asymmetric, or sometimes directed. We note again that the symmetric case is the typical case considered in the literature, but we have to deal with the asymmetric case in our algorithm.

We measure the performance of algorithms by its running time, defined as the worst-case number of rounds of distributed communication. At the beginning of each round, all nodes wake up simultaneously. Each node u then sends an arbitrary message of O(log n) bits through each edge (u, v), and the message will arrive at node v at the end of the round. We assume that nodes always know the number of the current round. In this paper, the running time is analyzed in terms of the number of nodes (n). Since n can be computed in O(D) time, where D is the diameter of G, we will assume that every node knows n.

Problems and Notations

For every nodes s and t in a weighted network G(w), let dist w (s, t) be the distance from s to t in G(w). Note that if w is asymmetric then it might be the case that dist w (s, t) = dist w (t, s). Let P * w (s, t) be the shortest path from s to t in G(w); if there are more than one such path, we let P * w (s, t) be the one with the least number of edges (if there are still more than one, break tie arbitrarily). We refer to P * w (s, t) as the shortest st-path. The goal of the all-pairs shortest paths (APSP) problem is for every node t to know dist w (s, t) for every node s. In the case of k-source shortest paths (k-SSP) problem, there is a set S of k source nodes (every node knows whether it is in S or not). The goal is for every node t to know dist w (s, t) for every source s ∈ S. When k = 1, the problem is called single-source shortest paths (SSSP).

We say that an event holds with high probability (w.h.p.) if it holds with probability at least 1 -1/n c , where c is an arbitrarily large constant.

Basic Distributed Algorithms

The Bellman-Ford Algorithm. We note the following algorithm for SSSP on network G(w), known as Bellman-Ford [START_REF] Bellman | On a Routing Problem[END_REF][START_REF] Ford | Network Flow Theory[END_REF] Let congestion be such that there are at most congestion messages, each of size O(log n), sent through each edge (counted over all rounds), when we run all algorithms together. We note the following result of Ghaffari [Gha15]:

Theorem 2.1 ([Gha15]). There is a distributed algorithm that can execute A

1 , A 2 . . . , A k altogether in O(dilation + congestion • log n) time.
Broadcasting. We need to follow fact following from basic upcasting and downcasting techniques [START_REF] Peleg | Distributed Computing: A Locality-sensitive Approach[END_REF]. (The statement is from [START_REF] Lenzen | Efficient Distributed Source Detection with Limited Bandwidth[END_REF].) Lemma 2.2. Suppose each v ∈ V holds k v ≥ 0 messages of O(log n) bits each, for a total of K = v∈V k v messages. Then all nodes in the network can receive these K messages within O(K + D) rounds.

Sampling the Centers

In the beginning of each iteration, a special node (with ID 0) chooses a subset of centers uniformly random and broadcasts this information (their IDs) to all other nodes. Here we use a lemma of Ullman and Yannakakis [UY91, Lemma 2.2].

Lemma 2.3 ([UY91]

). If we choose z distinct nodes uniformly at random from an n-node graph, then the probability that a given (acyclic) path has a sequence of more than (cn log n)/z nodes, none of which is distinguished, is, for sufficiently large n, bounded above by 2 -αc for some positive α.

The special node chooses

√ n polylog(n) centers at random and broadcasts this information (the broadcasting can be done in O(

√ n polylog(n) + D) = O(n) rounds).
Then the following lemma is a direct consequence of the previous one.

Lemma 2.4. Let w be any non-negative weight function. For any nodes s and t, let P * w (s, t) be the shortest st-path in G(w) as defined in Section 2.2. Then, with high probability, every P * w (s, t) can be decomposed into a set of subpaths P 0 = (s = u 0 , . . . , u 1 ), P 1 = (u 1 , . . . , u 2 ), . . ., P k-1 = (u k-1 , . . . , u k = t), where

• the u i are centers for 1 ≤ i ≤ k -1.
• each subpath has at most √ n -1 edges.

The Scaling Framework

Let w denote the given (possibly asymmetric) weight function of the input graph G. We want every node t to know the distances from other nodes s to itself with respect to w. We emphasize that every edge (u, v) is directed, i.e., (u, v) is an ordered pair. We need the following definitions:

Definition 3.1. Let β be the integer such that 2 β-1 ≤ max (u,v)∈E(G) w(u, v) < 2 β . For any 0 ≤ i ≤ β and edge (u, v), let w i (u, v) = w(u, v)/2 β-i . That is, w i (u, v)
is the number represented by the first i most significant bits of w(u, v) (when we treat the β-th bit as the most significant one). Let b i (u, v) ∈ {0, 1} be the i-th bit in the binary representation of

w(u, v), i.e., w(u, v) = β-1 i=0 b i (u, v)2 i . Note that β = O(log n) because the weights of edges in G are polynomial. For any edge (u, v), w 0 (u, v) = 0, w β (u, v) = w(u, v), and w i+1 (u, v) = 2w i (u, v) + b β-i (u, v) for 0 < i < β.
For each i, we can treat w i and b i as a weight function. Definition 3.2. For any (asymmetric) weight function ŵ, we denote by d u ŵ(s, t) the knowledge of the node u about dist ŵ(s, t), i.e., the distance from s to t with respective the weight ŵ.

The algorithm will runs in β iterations. At the i-th iteration, we assume that for every node t knows the distances from all other nodes s to itself with respect to the weight w i-1 , i.e. d t w i-1 (s, t) = dist w i-1 (s, t) for all s and t. The goal is to use this information to so that at the end of the iteration the knowledge of the distances with respect to w i , i.e. we have d t w i (s, t) = dist w i (s, t) for all s and t. Note that the assumption about the knowledge holds in the very beginning when i = 1, because d t w 0 (s, t) = dist w 0 (s, t) = 0 for all s and t by Definition 3.1.

For convenience, throughout the paper, we fix the iteration i. We denote the weight functions w := w i , w := w i+1 and b

:= b β-i . That is, we have w (u, v) = 2w(u, v) + b(u, v)
for every edge (u, v). In the beginning, we have d t w (s, t) = dist w (s, t) and we want to have d t w (s, t) = dist w (s, t) at the end.

Upper Bounding the Distances

As dist w (s, t) can be a large polynomial for some s, t, we can avoid this by working with a set of reduced weights r s defined as follows.

Definition 3.3. For any node s and edge e = (u, v), let

r s (u, v) = 2dist w (s, u) + w (u, v) -2dist w (s, v).
(

We note that r w is an asymmetric weight function even if w and w are symmetric. The next lemma states some useful properties of r s : Lemma 3.4. Let r s be defined as in Definition 3.3. Then the following holds.

(i) For any edge e = (u, v), r s (u, v) ≥ 0.

(ii) For any nodes s and t, dist rs (s, t) ≤ n -1.

(iii) For any nodes s and t, dist w (s, t) = 2dist w (s, t) + dist rs (s, t). In fact, any path is a shortest st-path in G(w ) if and only if it is a shortest st-path in G(r s ).

Proof.

For (i), observe that r s (u, v) = 2dist w (s, u) + w (u, v) -2dist w (s, v) ≥ 2dist w (s, u) + 2w(u, v) -2dist w (s, v) ≥ 0
, where the last inequality follows from the triangle inequality. For (ii), first notice that r s (P ) = w (P ) -2dist w (s, t), for any st-path P .

(2)

The above inequality follows easily from definition.

Let P = (s = v 0 , v 1 , . . . , t = v k ), for some k ≤ n -1. Then, r s (P ) = k-1 j=0 r s (v j , v j+1 ) = k-1 j=0 2dist w (s, v j ) + w (v j , v j+1 ) -2dist w (s, v j+1 ) = ( k-1 j=0 w (v j , v j+1 )) -2dist w (s, v k ) = w (P ) -2dist w (s, t) .
Now assume that P is a shortest st-path in G(w). Then

dist rs (s, t) ≤ r s (P ) ≤ w (P ) -2dist w (s, t) = ( k-1 j=0 2w(v j , v j+1 ) + b(v j , v j+1 )) -2dist w (s, t) = ( k-1 j=0 b(v j , v j+1 )) + 2w(P ) -2dist w (s, t) = k-1 j=0 b(v j , v j+1 ) ≤ n -1.
Here the second inequality follows from (2), the fifth equality from the assumption that P is a shortest path in G(w) and the last inequality from the fact that k ≤ n -1 and b(v j , v j+1 ) ∈ {0, 1}. This proves (ii).

Finally for (iii), let P = (s = v 0 , v 1 , . . . , t = v k ) be a shortest st-path in G(w ). Then

dist rs (s, t) ≤ r s (P ) = w (P ) -2dist w (s, t) = dist w (s, t) -2dist w (s, t),
where the last equality holds as P is a shortest st-path in G(w ). On the other hand, let

P = (s = v 0 , v 1 , . . . , t = v k ) be a shortest path in G(r s ). Then dist w (s, t) ≤ w (P ) = r s (P ) + 2dist w (s, t) = dist rs (s, t) + 2dist w (s, t),
where the last equality holds because P is a shortest path in G(r s ). The above two inequalities establish the first part of (iii), while the second part follows from the first part.

Lemma 3.4(ii) implies that shortest path tree with a source s, based on r s , has depth at most n. However, we cannot construct such a tree using the standard BFS starting from s in just O(n) rounds, the difficulty being that it can happen that r s (u, v) = 0 for some edge (u, v). We also note that Lemma 3.4(ii) does not imply that every edge in the shortest paths has 0/1-weight.

Main Algorithm

In this section, we show the main algorithm described in Algorithm 1 which is the algorithm for one iteration in the scaling framework from Section 3. The setting is that there are three weight functions w, w and b such that, for every edge (u, v) of the input graph G, b(u, v) ∈ {0, 1} and

w (u, v) = 2w(u, v) + b(u, v).
(3)

In We first explain the high-level ideas behind our algorithm. In Algorithm 1, Step 1 is for sampling the centers. Step 2 is needed for the execution of Steps 3 and 6. Note that the implementation details of Steps 3, 5 and 6 will be elaborated in the subsequent sections.

Correctness: Let h = √ n.
For any nodes s and t, we will argue that, after executing Steps 3 to 6, every node t knows the distance w.r.t. w from s to t, i.e., d t w (s, t) = dist w (s, t). Let c s be the first node in the path P * w (s, t)|C, i.e. P * w (c s , t) = P * w (s, t)|C. From the definition, if there is no centers in P * w (s, t) then c s = s and otherwise c s is the last center appeared in the path P * w (s, t) from s to t. We claim that after Step 5, the node c s will know the distance w.r.t. w from s to c s , i.e., d cs w (s, c s ) = dist w (s, c s ). If c s = s, this is trivial. Suppose c s = s. Consider the shortest path P * w (s, c s ) from s to c s . By Lemma 2.4, we can partition P * w (s, c s ) into subpaths, say P 0 = (u 0 := s, . . . , u 1 ), P 1 = (u 1 , . . . , u 2 ), . . ., P k-1 = (u k-1 , . . . , u k := c s ) so that each subpath P j has at most h -1 edges for 0 ≤ j ≤ k -1, and the u j 's are centers for 1 ≤ j ≤ k -1. As subpath P j has at most h -1 edges, the short-range algorithm guarantees in Lemma 4.5 that u j knows d

u j w (u j , u j+1 ) = dist w (u j , u j+1 ) for 0 ≤ j ≤ k -1 after Step 3 in Algorithm 1. In Step 4, d u j
w (u j , u j+1 ), for 1 ≤ j ≤ k -1, will broadcast and be known to s. Therefore, after Step 4, the node s would be able to calculate dist w (s, c s ) and so d s w (s, c s ) = dist w (s, c s ). Then, by the guarantee from Lemma 4.12 of the reversed r-sink shortest paths algorithm in Step 5, the knowledge is "exchanged" and so c s knows dist w (s, c s ), i.e. 

d
+ D) = Õ(n) in total.
Step 2 easily takes O(n) rounds (by Theorem 2.1 we have congestion = n and dilation = 1). In the following three subsections, we will show that Steps 3, 5 and 6 take Õ(n 1.25 ) rounds each. In particular, Lemmas 4.5 and 4.8 state that the short-range algorithm in Step 3 and the short-range-extension algorithm in Step 6 both take Õ(n √ h). Lemma 4.12 states that the reversed r-sink shortest paths algorithm in Step 5 takes Õ(n |C|). In total, the running time in each iteration is Õ(n 1.25 ) rounds.

Theorem 4.1. At the end of Algorithm 1, with high probability, for every node t, d t w (s, t) = dist w (s, t) for all nodes s. Furthermore, the algorithm takes Õ(n 1.25 ) rounds.

Short-Range Algorithm

In this section we show how to implement Step 3 of Algorithm 1 so that every node s knows give exactly what we want for Step 3 of Algorithm 1 is that, later in Section 4.2, we will extend Algorithm 2 and obtain the short-range-extension algorithm. This formulation of Algorithm 2 simplifies the modification a lot. From now on, we will call Algorithm 2 the short-range algorithm as well.

d s w (s, t) ≥ dist w (s,
Recall that we mentioned earlier that some edges (u, v) may have r s (u, v) = 0 and this poses difficulty. Our main idea is to deal with a strictly positive weight function r s , defined as r s rounded up to the next multiple of ∆ = 1/h. More precisely, Definition 4.2. Let ∆ = 1/h. For every node s and every edge (u, v), let 

r s (u, v) = ∆ if r s (u, v) = 0,
(dilation + congestion) = Õ(n/∆ + h + n) = Õ(n/∆).
dist rs (s, t) = dist rs (s, x) + r s (x, t) = d x rs (s, x) + r s (x, t), (4) 
where the first equality holds because P * w (s, t) = P * rs (s, t) is a shortest path in G(r s ) by Lemma 3.4(iii). The second inequality then holds by the induction hypothesis. We will be done if the following claim holds.

Claim:

x sends the message "d x rs (s, x) = dist rs (s, x)" to t in round |P * w (s, x)| + 1 or before that (equivalently, d x rs (s, x) is decreased to dist rs (s, x) by round |P * w (s, x)| ≤ h -1 or before that).
To see why we will be done, observe that the claim implies that t can update d t rs (s, t) to dist rs (s, t) using Equation (4) in round |P * w (s, t)| or before that. Note that t knows r s (x, t) from the initial knowledge. To prove the claim, we just need to show that d x r s (s, x) -

dist rs (s, x) ≤ (h -1)∆. We have dist r s (s, x) ≤ dist rs (s, x) + |P * rs (s, x)|∆ by the definition of r s ≤ dist rs (s, x) + |P * w (s, x)|∆ by Lemma 3.4(iii) ≤ dist rs (s, x) + (h -1)∆ ≤ n + (h -1)∆ by Lemma 3.4(ii)
By Lemma 4.3, we have d x r s (s, x) = dist r s (s, x). By the second last inequality, we conclude that d x r s (s, x) -dist rs (s, x) ≤ (h -1)∆. This proves the claim and the entire lemma.

By flipping the direction of edges in the graph, we can conclude the result that is used in the main algorithm: 

Short-Range-Extension Algorithm

In this section we show how to implement Step 6 of Algorithm 1 with the algorithm called short-range-extension algorithm. We are in the setting such that in the beginning, every center c already knows d c w (s, c) = dist w (s, c) for all nodes s. By Lemma 2.4, this implies with high probability that for every pair s and t, (s, t) is h-nearly realized. Indeed, let P * w (s, t) = (s = x 0 , x 1 , x 2 , . . . , x k = t) be the shortest path from s to t with respect to w . We have that there is a center c s ∈ {x k , x k-1 , . The short-range-extension algorithm is a minor modification of the short-range algorithm in Algorithm 2, with the same running time and almost identical implementation. But, in this setting, the centers have additional initial knowledge: every center t already knows dist w (s, t) and hence dist rs (s, t) for all nodes s, i.e., d t rs (s, t) = dist rs (s, t). The following changes exploit this knowledge:

• For any node s, let G s be the graph obtained from G by adding imaginary edges into G: for every center t, there is an additional edge (s, t) with weight dist rs (s, t). We call G s the s-augmented graph. We define the weight function r s for G s in the same way as how we define the weight function r s for G. That is, for each original edge (u, v) in G s , we set r s (u, v) = r s (u, v), and, for each imaginary edge (s, t) where t is a center, we set r s (s, t) = ∆ if dist rs (s, t) = 0, and ∆ dist rs (s, t)/∆ otherwise. Let dist r s (u, v) denote the distance from u to v with respect to r s in the s-augmented graph G s .

Algorithm 3: Reversed r-Sink Shortest Paths Algorithm Input: r sink nodes v 1 , • • • , v r . Every node s knows dist w (s, v i ) for all 1 ≤ i ≤ r, i.e., d s w (s, v i ) = dist w (s, v i ) Output: Each sink node v i knows dist w (s, v i ) for all nodes s, i.e., d v i w (s, v i ) = dist w (s, v i ) Every node s sends dist w (s, v i ), for each 1 ≤ i ≤ r, to all its neighbors. For each 1 ≤ i ≤ r and every node s, s uses the information dist w (x, v i ) from all its neighbors x to decide which neighbor x * is its parent in the v i -sink shortest path tree. The node s then informs x * that it is a child of x * in the v i -sink shortest path tree. Set B = ∅. // B is the set of bottleneck nodes.

For each 1 ≤ i ≤ r and every node s, s waits until it receives the message #(i, x j ) from all its children x j in the v i -sink shortest path tree. If the node s ∈ B, let #(i, s) = 1 + j #(i, x j ); otherwise #(i, s) = 0. The node s sends #(i, s) to its parent in the v i -sink shortest path tree. If any node s ∈ B ∪ {v i } r i=1 has r i=1 #(i, s) > For each 1 ≤ i ≤ r and each node s, dist w (s, v i ) is relayed to sink v i through the path P * w (s, v i ) in the v i -sink shortest path tree if P * w (s, v i ) ∩ B = ∅. That is, every node x ∈ V \ B sends dist w (x, v i ) to its parent in the v i -sink shortest path tree. When a node v ∈ V \ B receives a message dist w (x, v i ), it sends such message to its parent in the v i -sink shortest path tree. Each sink v i , for 1 ≤ i ≤ r, computes dist w (s, v i ) for all nodes s.

Proof. Observe that originally the total number of nodes in all v i -sink shortest path trees, for 1 ≤ i ≤ r, is nr. Each time a new node becomes a bottleneck, all its descendants (at least Ω(n √ r) of them) are pruned from these trees. Thus, we can create up to at most O( nr n √ r ) = O( √ r) bottlenecks and accordingly Steps 4 and 5 repeat the same number of times.

When there is no more bottleneck to be created, Step 6 simply relays the information dist w (s, v i ) to sink v i through the v i -sink shortest path tree, for each 1 ≤ i ≤ r, as long as 1) s ∈ B is a bottleneck, or 2) s is not a bottleneck and the path from s to v i in the v i -sink shortest path tree does not contain a bottleneck, i.e. Finally, we conclude with the lemma that is used in the main algorithms:

d v i w (b, v i ) = dist w (b, v i ) is known to v i . Therefore, v i can use these pieces of information to correctly compute dist w (s, v i ) = d v i w (s, b) + d v i w (b, v i ). The lemma
Lemma 4.12. Every node s knows dist w (s, v i ) for all sinks v i where 1 ≤ i ≤ r, i.e., d s w (s, v i ) = dist w (s, v i ). Then, running Algorithm 3, each sink node v i knows dist w (s, v i ) for all nodes s, i.e.,

d v i w (s, v i ) = dist w (s, v i ). Furthermore, Algorithm 3 takes Õ(n √ r) rounds.

k-Source Shortest Paths

In this section, we show how to extend the algorithms presented in Section 4 to solve the k-source shortest paths (k-SSP) problem. Recall that in this problem we want every node v to know its distance from every of k sources. We let S be the set of sources. Initially, every node knows whether it is a source or not.

We modify the APSP algorithm as follows. First, we pick β sets of random centers8 , where each set has size

ζ = min(k, √ n) polylog(n).
Denoted these sets by C 1 , C 2 , . . . , C β . (Observe that this step can be done in Õ( √ n + D) time since there are only Õ( √ n) centers in total.) Now we run each iteration of the scaling framework as in Section 4, except that in each iteration we only compute shortest paths from only some sources (instead of all nodes). In particular, the set of sources at iteration i is

S i = C i+1 ∪ C i+2 ∪ ... ∪ C β ∪ S.
Thus, we can assume that every node knows its distance from all nodes in S i-1 = C i ∪ C i+1 ∪ . . . ∪ C β ∪ S. We will use C i as a set of random centers in iteration i, in the same way we use C in Algorithm 1. Algorithm 4 describes the new algorithm in details. In this algorithm, we also need to modify the short-range, reversed r-sink shortest paths, and short-range-extension so that they can run faster when there are only q sources, where q = |S i |. This is done as in Algorithm 4. q-Source Short-Range(-Extension) Algorithms. We round up edge weights to multiples of ∆ as done previously. However, we only run the BFS algorithm from q sources (the depth is still n + h∆). We also run the modification of the Bellman-Ford algorithm with q-sources. By the same analysis as in Sections 4.1 and 4.2, the running time of the q-source short-range and short-range-extension algorithms becomes Õ(n/∆ + h + qh∆) which is Õ( nqh) when we set ∆ = n/qh.

Reversed q-Source r-Sink Shortest Paths. The algorithm proceeds as in Section 4.3 except that:

• Bottleneck nodes are defined to be those that have g = √ nqr messages sent through them.

• In Step 6 the messages are relayed in the shortest path trees only from each source node (and not each node). rounds. Other steps can be easily seen to take Õ(n) rounds. Thus, Algorithm 4 takes Õ(n + n 3/4 k 1/2 ) rounds in total. Apply the q-source short-range-extension algorithm so that every node t knows d t w (s, t) ≥ dist w (s, t) for all nodes s ∈ S i , and if |P * w (s, t)|C| ≤ h, d t w (s, t) = dist w (s, t). // This step takes Õ( √ nqh) = Õ(n + n 3/4 k 1/2 ) rounds.

Open Problems

The main question is whether distributed APSP can be solved in Õ(n) time. Both superlinear lower bound or near-linear upper bound will be a major result. Another related problem is SSSP, where there is still a gap between the lower bound of [DHK + 12] and upper bound of [START_REF] Elkin | Distributed Exact Shortest Paths in Sublinear Time[END_REF]. In general, it is very interesting to close the gap between approximation and exact distributed algorithms. We found this question particular interesting for exact maximum matching and minimum cut; these problem admit an Ω( √ n) lower bound while no non-trivial upper bound is known (even an O(n) one). Note that the existing Ω( √ n) lower bound for minimum cut does not hold for a natural special case of checking whether the network has small, e.g. O(1), edge connectivity. Given that small edge connectivity may indicate the network's likeliness to fail, it is interesting to determine their time complexity exactly. Currently there is a big jump from O(D) time for checking edge connectivity of at most two [START_REF] Thurimella | Sub-Linear Distributed Algorithms for Sparse Certificates and Biconnected Components[END_REF][START_REF] Pritchard | Fast Computation of Small Cuts via Cycle Space Sampling[END_REF] to Õ( √ n) for higher values [START_REF] Nanongkai | Almost-Tight Distributed Minimum Cut Algorithms[END_REF].

  All centers c ∈ C broadcast their knowledge of d c w (c, c ), for all centers c ∈ C, to all other nodes in the network. Every node s internally uses this knowledge to calculate d s w (s, c) = dist w (s, c) for all centers c ∈ C. // This step takes Õ(n) rounds Apply the reversed r-sink shortest paths algorithm (in Section 4.3) with nodes in C as sinks so that every center c ∈ C knows d c w (s, c) = dist w (s, c) for all nodes s.// This step takes Õ(n 1.25 ) rounds.

  and ∆ r s (u, v)/∆ otherwise.Running Time: In Algorithm 2, Steps 1, 2 and 5 takes no time. For a single source s, the BFS in Step 3 has dilation = O((n + h∆)/∆) = O(n/∆ + h) rounds. As in BFS each node sends messages only once and we run the BFS in parallel from all nodes s, we have congestion = O(n). By Theorem 2.1, we have that Step 3 takes Õ

  s broadcasts its intent of becoming a new bottleneck. (ii) Node 0 chooses one of the candidates (say the one with the smallest ID) as the new bottleneck b and broadcasts its ID to all nodes. Set B = B ∪ {b}. (iii) Apply the Bellman-Ford algorithm to build the b-sink shortest path tree and the b-source shortest path tree, so that every node s knows d s w (s, b) = dist w (s, b) and d s w (b, s) = dist w (b, s). (iv) Every node s broadcasts dist w (s, b) to all nodes (in particular, to all sinks), so that every sink v i knows d v i w (s, b) = dist w (s, b) for all nodes s. (v) Go back to Step 4.

  above concludes the correctness of Algorithm 3. Now we analyze the running time. Lemma 4.11. Algorithm 3 takes Õ(n √ r) rounds.Proof. We will use extensively Theorem 2.1 by analyzing dilation and congestion in each step. In Steps 1 and 2, each node only sends r messages to its neighbors. So dilation = 1 and congestion = r, and so this takes Õ(r) rounds. In Step 4, for every sink v i , every node s sends a message once along the v i -sink shortest path tree. As there can be a path of n hops in the tree, dilation = n. Parallelizing the processes for all sinks v i yields congestion = r. So this step takes Õ(n + r) = Õ(n). Now, we analyze Step 5. In Step 5(i), at most n nodes need to broadcast one message. By Lemma 2.2, this takes O(n + D) = O(n) rounds. In Step 5(ii), only one node broadcast a message and this takes O(D) rounds. In Step 5(iii), running Bellman-Ford algorithm for finding the b-sink shortest path tree, for one node b, takes O(n). In Step 5(iv), every node broadcasts one messages and this takes O(n + D) = O(n) rounds by Lemma 2.2. By Lemma 4.9, Steps 4 and 5 repeat O( √ r) times. In total, this takes Õ(n √ r) rounds. Next, in Step 6, the messages are relayed in the shortest path trees, and so dilation = n. Moreover, congestion = O(n √ r) because all the nodes s which are descendants of bottlenecks in any tree do not send messages. So this step also takes O(n √ r) rounds. Therefore, the total number of rounds of the algorithm is O(n √ r).

  Since there are qr source-sink pairs, there are |B| ≤ qr/g = O(1 + qr/n) bottleneck nodes. By following the proof of Lemma 4.11, the running time of this algorithm becomesÕ(r + |B|n + √ nqr) = Õ(n + √ nqr).Total Time of Algorithm 4. The q-source short-range and short-range-extension algorithms take Õ(√ nqh) = Õ(n • (k + ζ)/ζ) = Õ(n + n 3/4 k 1/2 ) rounds. The reversed q-source r-sink shortest paths algorithm takes Õ(n + √ nqr) = Õ(n + n(k + ζ)ζ) = Õ(n + n 3/4 k 1/2 )

  n • (k + ζ)/ζ) = Õ(n + n 3/4 k 1/2 ) rounds.All centers c ∈ C broadcast their knowledge of d c w (c, c ), for all centers c ∈ C, to all other nodes in the network. Every node s ∈ S i internally uses this knowledge to calculate d s w (s, c) = dist w (s, c) for all centers c ∈ C. // This step takes Õ(ζ 2 ) = Õ(n) rounds Apply the reversed q-source r-sink shortest paths algorithm with nodes in S i as sources and nodes in C as sinks, so that every center c ∈ C knows d c w (s, c) = dist w (s, c) for all nodes s ∈ S i . // This step takes Õ(n + √ nqr) = Õ(n + n(k + ζ)ζ) = Õ(n + n 3/4 k 1/2 ) rounds.

  . Let s be the source node. For any node t, let d t Clearly, the above algorithm takes O(n) rounds. Moreover, it can be proved that when the algorithm terminatesd t Consider k distributed algorithms A 1 , A 2 . . . , A k .Let dilation be such that each algorithm A i finishes in dilation rounds if it runs individually.

w (s, t) denote the knowledge of t about dist w (s, t). Initially, d t w (s, t) = ∞ for every node t, except that d s w (s, s) = 0. The algorithm proceeds as follows.

(i) In round 0, every node t sends d t w (s, t) to all its neighbors. (ii) When a node t receives the message about d x w (s, x) from its neighbors x, it uses the new information to decrease the value of d t w (s, t). (iii) If d t w (s, t) decreases, then node t sends the new value of d t w (s, t) to all its neighbors. (iv) Repeat (ii) and (iii) for n rounds. w (s, t) = dist w (s, t); i.e. t knows dist w (s, t). Scheduling of Distributed Algorithms.

  the beginning, we have d t w (s, t) = dist w (s, t) and we want that every node t knows dist w (s, t) for every node s, i.e., d t w (s, t) = dist w (s, t) at the end of the algorithm. For every pair of nodes s and t, recall that P * w (s, t) is the shortest st-path in G(w ); if there are more than one shortest st-paths in G(w ), pick the one with the least number of edges (if there are still more than one, break tie arbitrarily). Let C be the set of centers decided in Step 1 of Algorithm 1. Next, we define an important definition for our algorithm. Let P * w (s, t)|C denote the subpath of P * w (s, t) from the last center in C ∩ P to t. If there is no center in P , let P * Recall that by Lemma 3.4(iii), dist w (s, t) differs from dist rs (s, t) by 2dist w (s, t), which is known to t. So if every node t knows that the distances w.r.t. r s from each node s, i.e., d t

w (s, t)|C = P * w (s, t). Let |P * w (s, t)| be the number of edges in P * w (s, t); similarly, |P * w (s, t)|C| is the number of edges in P * w (s, t)|C. rs (s, t) = dist rs (s, t), then each node t can deduce the the distances w.r.t. to w as well, i.e., d t w (s, t) = dist w (s, t) for all s.

  Every node t knows dist w (s, t) for every node s, i.e. d t centers (collectively denoted as C) and broadcast their IDs to all other nodes. // This steps takes O(n) rounds. Node t sends dist w (s, t), for all nodes s, to its neighbors x in G. The neighbor x internally uses this knowledge to compute r

	Algorithm 1: Main APSP Algorithm (for one iteration in the scaling framework)
	Input: A graph G and the weight functions w, w , and b satisfying Equation (3).
	Every node t knows dist w (s, t) for every node s, i.e., d t w (s, t) = dist w (s, t). Let h = √ n.
	Output: Node 0 randomly samples	√	npolylog(n)
	cs w (s, c s ) = dist w (s, c s ). By Lemma 2.4, we also have that P * w (c s , t) = P * w (s, t)|C has at most h -1 edges. As w (s, c s ) = dist w (s, c s ), by the guarantee of the short-range-extension algorithm by d cs Lemma 4.8, we have after Step 6 the node t knows the distance dist w (s, t), i.e. d t w (s, t) =
	dist w (s, t) and we are done.		

w (s, t) = dist w (s, t). s (x, t), for all nodes s, as defined in Definition 3.3. // This steps takes O(n) rounds. Apply the short-range algorithm (in Section 4.1) so that every node s knows d s w (s, t) ≥ dist w (s, t) for all nodes t, and if |P * w (s, t)| ≤ h, d s w (s, t) = dist w (s, t).

// This step takes Õ(n 1.25 ) rounds.

  = dist w (s, t). // This step takes Õ(n 1.25 ) rounds. There are O(|C|) messages to be broadcasted in Step 1, and O(|C| 2 ) messages in Step 4. By Lemma 2.2, this takes O(|C| 2

	Running Time:

Apply the short-range-extension algorithm (in Section 4.2) so that every node t knows d t w (s, t) ≥ dist w (s, t) for all nodes s, and if |P * w (s, t)|C| ≤ h, d t w (s, t)

  t) for all nodes t, and if|P * w (s, t)| ≤ h, d s w (s, t) = dist w (s, t).The main algorithm in this section is precisely described in Algorithm 2. However, it yields a slightly different output: after finishing, every node t knows d t As they are completely symmetric, we can use Algorithm 2 as an algorithm for Step 3 of Algorithm 1 just by switching the direction of every edge in the graph. The reason for presenting Algorithm 2 that does not

w (s, t) ≥ dist w (s, t) for all nodes s, and if |P * w (s, t)| ≤ h, d t w (s, t) = dist w (s, t).

  Every node t knows dist w (s, t) and r s (t, x) for all nodes s and all t's neighbors x in G. Output: For every pair of nodes s and t, node t knows d t w (s, t) ≥ dist w (s, t) and if |P * w (s, t)| ≤ h, d t w (s, t) = dist w (s, t). For every edge (u, v) and all nodes s, both u and v internally compute r s (u, v) according to Definition 4.2. For every node t, initially set d t r not send any message in this step yet. // Note that we count the number of rounds from 0. By Theorem 2.1, parallelizing n such algorithms takes Õ(h + n • h∆) = Õ(nh∆) rounds. Now it can be concluded that Algorithm 2 takes Õ(n/∆ + nh∆) = Õ(n √ h) rounds. Next, we show the correctness of Algorithm 2 using the following lemmas. After Step 3 of Algorithm 2, every node t knows d t r s (s, t) ≥ dist r s (s, t) for all nodes s and in particular d t r s (s, t) = dist r s (s, t) if dist r s (s, t) ≤ n + h∆. Proof. The first part follows from the property of the BFS. For the second part, first notice that ∆ divides dist r s (s, t) for all nodes s and t. By a straightforward induction, it can be shown that by round = dist r s (s, t), if 0 ≤ dist r s (s, t) ≤ n + h∆. After Step 4 of Algorithm 2, every node t knows d t rs (s, t) ≥ dist rs (s, t) for all nodes s, furthermore, if |P * w (s, t)| ≤ h, then d t rs (s, t) = dist rs (s, t); in particular, d t rs (s, t) is decreased to dist rs (s, t) in round |P * w (s, t)| or before.Observe that the correctness of output of the algorithm follows from this lemma, since in Step 5, every note t can correctly compute d t The intuition behind the proof is to show that dist r s (s, t) (stored as d t r s (s, t)) computed in Step 3 is not very far from dist rs (s, t); i.e dist r s (s, t) -dist rs (s, t) ≤ h∆. Intuitively, this is because |P * This allows us to modify the Bellman-Ford algorithm in Step 4 to allow a node to speak only when d t r follows easily from induction on the number of rounds. We prove the rest by induction on |P * = 0 in the beginning of Step 4. Now consider any pair of s and t, and assume that the lemma holds for any t such that |P *

	Algorithm 2: Short-Range Algorithm Input: Lemma 4.3. dist r s (s,t) ∆ , d t r s (s, t) Lemma 4.4.
	Step 4 is essentially the Bellman-Ford algorithm except the
	following modifications:
	1. we start with d t rs (s, t) = d t r s (s, t) instead of d t rs (s, t) = ∞, and 2. a node t sends its updated value of d t rs (s, t) only when d t rs (s, t) ≥ d t r s (s, t) -h∆ (instead of sending it every time d t rs (s, t) is decreased); see Step 4.(iii).
	We run the modified Bellman-Ford algorithm for every node s in parallel. This algorithm for a single source node s has dilation = O(h) and congestion = O(h∆) = O( √ h) since every
	node sends a message to its neighbors at most O(h∆) times (due to the second modification).

s (s, t) = ∞ for all nodes s = t and d t r t (t, t) = 0. For every node s, compute SSSP tree from s up to depth n + h∆ in terms of r s by implementing the following BFS: each node t( = s) updates d t r s (s, t) according to the message d x r s (s, x) it receives from its neighbor x. If d t r s (s, t) ≤ n + h∆, then in round d t r s (s, t)/∆, the node t sends d t r s (s, t) to all its neighbors in G, if t did Every node t sets d t rs (s, t) = d t r s (s, t) for all nodes s. (Note that d t rt (t, t) = 0.) Run the following algorithm (which is a modification of the Bellman-Ford algorithm) for every node s, in parallel: (i) In round 0, every node t sends d t rs (s, t) to all its neighbors. (ii) When a node t receives the message about d x rs (s, x) from its neighbors x, it uses the new information to decrease the value of d t rs (s, t) (as an upper estimate of dist rs (s, t)). Note that d t rs (s, t) is always an integer. (iii) If d t rs (s, t) decreases and d t rs (s, t) ≥ d t r s (s, t) -h∆, then the node t sends the new value of d t rs (s, t) to all its neighbors. (iv) Repeat (ii) and (iii) for h rounds. Every node t calculates d t w (s, t) = 2dist w (s, t) + d t rs (s, t) for all nodes s. Correctness: w (s, t) = dist w (s, t) if |P * w (s, t)| ≤ h and otherwise d t w (s, t) ≥ dist w (s, t). w (s, t)| ≤ h, and for each edge (u, v), 0 ≤ r s (u, v) -r s (u, v) ≤ ∆. s (s) -d t rs (s, t) ≤ h∆. Proof of Lemma 4.4. The fact that after Step 4, d t rs (s, t) ≥ dist rs (s, t) w (s, t)|. For the base case where |P * w (s, t)| = 0, i.e. s = t, the claim trivially holds as we set d t rt (t, t) w (s, t )| < |P * w (s, t)| ≤ h. Let x be the neighbor of t in P * w (s, t), i.e. dist w (s, t) = dist w (s, x) + w (x, t). Note that

  Lemma 4.5. After running Algorithm 2 on a graph where the direction of each edge is flipped, every node s knows d s rs (s, t) ≥ dist rs (s, t) for all nodes t, furthermore, if |P * w (s, t)| ≤ h, then d s rs (s, t) = dist rs (s, t). Moreover the algorithm takes Õ(n

	√	h) rounds.

  . . , x k-h } who knows its distance from s to itself with high probability by Lemma 2.4. The goal is that, at the end, every node t knows the distance dist w (s, t) for all nodes s. Moreover, it suffices to show that, at the end, every node t knows d t w (s, t) ≥ dist w (s, t) for all nodes s, and if |P *

	d t w (s, t) = dist w (s, t).	w (s, t)|C| ≤ h,

  P * w (s, v i ) ∩ B = ∅. The last step finishes the algorithm. In Step 7, each sink v i , for 1 ≤ i ≤ r, correctly computes dist w (s, v i ) for all nodes s, i.e.,d v i w (s, v i ) = dist w (s, v i ). Proof.Consider the path P * w (s, v i ) from s to v i in the v i -sink shortest path tree. There are two cases. First, if s ∈ B or P * w (s, v i ) ∩ B = ∅, then, by Step 6, dist w (s, v i ) is relayed to v i and we are done. Second, if s is not a bottleneck and there is a bottleneck b in P * w (s, v i ), then, by Step 5(iv), dist w (s, b) is known to v i ; i.e. d v i

	Lemma 4.10.

w (s, b) = dist w (s, b). Also, by Step 5(iii),

  Algorithm 4: k-SSP Algorithm (for iteration i in the scaling framework)Input: A graph G, weight functions w, w , and b, and set of k sources S. Every node knows whether it is a source or not. Every node t knows dist w (s, t), i.e.d t w (s, t) = dist w (s, t), for every node s ∈ S i-1 = C i ∪ . . . ∪ C β ∪ S. Let h = n/ζ = max(n/k, √ n). Output: Every node t knows dist w (s, t) for every node s ∈ S i = C i+1 ∪ . . . ∪ C β ∪ S, i.e. d t w (s, t) = dist w (s, t). Let C = C i .Node t sends dist w (s, t), for all nodes s ∈ S i-1 , to its neighbors x in G. The neighbor x internally uses this knowledge to compute r s (x, t), for all nodes s ∈ S i-1 , as defined in Definition 3.3. // This steps takes O(q) rounds. Apply the q-source short-range algorithm with nodes in S i as sources and h as above so that every node s ∈ S i knows d s

w (s, t) ≥ dist w (s, t) for all nodes t, and if |P * w (s, t)| ≤ h, d s w (s, t) = dist w (s, t). // This step takes Õ(

This problem is sometimes referred to as name-independent routing schemes. See, e.g.[START_REF] Lenzen | Fast Routing Table Construction Using Small Messages[END_REF][START_REF] Lenzen | Fast Partial Distance Estimation and Applications[END_REF] for discussions and results on another variant called name-dependent routing schemes which is not considered in this paper.

In fact, the lower bound holds even for poly(n)-approximation algorithms when the network is weighted and for (polylog(n))-approximation algorithms when the network is unweighted. The same lower bound also holds even for the easier problem of approximating the network diameter[START_REF] Frischknecht | Networks cannot compute their diameter in sublinear time[END_REF]. In particular, for the weighted case, the lower bound holds even for poly(n)-approximation algorithms. For the unweighted case, the lower bound holds even for (3/2 -)-approximating the diameter, and even for sparse networks[START_REF] Abboud | Near-Linear Lower Bounds for Distributed Distance Computations, Even in Sparse Networks[END_REF].

We say that an event holds with high probability (w.h.p.) if it holds with probability at least 1 -1/n c , where c is an arbitrarily large constant.

Note that it might be natural to include ∞ as a possible edge weight. But this is not necessary since it can be replaced by a large weight of value poly(n).

Recall the β is the number of bits needed to represent edge weight (see Section 3).
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• In Step 2, every pair of nodes s and t, initially set d t r s (s, t) = ∞ and d t r s (t, t) = 0, unless t itself is a center. In this case, let d t r s (s, t) = ∆ if dist rs (s, t) = 0, and ∆ dist rs (s, t)/∆ otherwise. This is possible because each center t already knows dist rs (s, t) for all nodes s.

• In Step 3, for every node s, we compute the same SSSP tree w.r.t. r s instead of r s .

Observe that, for every node s, running the BFS with respect to r s is the same as simulating Step 3 of the original short-range algorithm in the s-augmented graph G s . 

By Lemma 4.6, we have d x r s (s, x) = dist r s (s, x). By the second last inequality, we conclude that d x r s (s, x) -dist rs (s, x) ≤ h∆. And this completes the induction step and the entire proof.

Note that the knowledge about dist rs (s, t) implies the knowledge about dist w (s, t). So now we can conclude the lemma that is used in the main algorithm: 

Reversed r-Sink Shortest Paths Algorithm

In this section, we assume that r special sink nodes v 1 , . . . , v r are given and every node s knows d t w (s, v i ) = dist w (s, v i ) for all sink nodes v i . (Note that these r special sinks correspond to the centers C in Algorithm 1.) We present an Õ(n √ r)-time algorithm so that each sink v i , 1 ≤ i ≤ r, acquires the knowledge

) for all nodes s in the end. The algorithm is described in Algorithm 3. Here, we write the t-sink shortest path tree to mean the shortest path tree (w.r.t. w ) that has t as the sink. Now, we explain the idea of Algorithm 3. By Steps 1 and 2, for every sink v i , each node s can decide which neighbor x * is its parent in the v i -sink shortest path tree: if dist w (s, v i ) = w (s, x * ) + dist w (x * , v i ), then x * is the parent of s. Also, every node s knows which neighbors are its children because the children informed s in Step 2.

The basic idea is to propagate dist w (v i , t) for all node t upwards to v i in the v i -sink shortest path tree (as done in Step 5) until v i receives all the informations. However, a brute-force implementation of this idea leads to O(nr) time complexity, since some nodes may need to send out O(nr) messages.

We overcome this issue by creating a set B of bottleneck nodes (or just bottlenecks for short), which is empty initially. Intuitively, these nodes are the bottlenecks of the above propagation process. We will let them become a sort of "ad-hoc" sinks, namely, if b ∈ B, we will let all nodes s know d s w (s, b) = dist w (s, b). Furthermore, for all 1 ≤ i ≤ r, the v i -shortest path trees will be "pruned" from these bottlenecks downwards in the following sense. In Step 4, a node s, if not a bottleneck in B, aggregates the number of its descendants (including s itself) in the v i -sink shortest path tree, for each 1 ≤ i ≤ r, and then informs its parent in the same tree. On the other hand, if t is a bottleneck, it informs its parent in the v i -sink shortest path trees, for all 1 ≤ i ≤ r, that it has no descendants, i.e., it is a leaf. (this can be regarded as our pruning the v i -sink shortest path trees from the bottlenecks downwards).

In Step 5, if some nodes t, which are neither bottlenecks nor the original sinks, have more than n √ r descendants, it declares itself as a potential candidate to become a new bottleneck. The special node with ID 0 will then decide on a unique node b to be the new bottleneck (so B = B ∪ {b}) and broadcasts this decision. Then we build the b-sink shortest path tree and b-source shortest path tree using the Bellman-Ford algorithm so that all nodes s knows d