Chien-Chung Huang

François Sellier

Semi-Streaming Algorithms for Submodular Function Maximization Under b-Matching, Matroid, and Matchoid Constraints

Keywords: 2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear time algorithms; Theory of computation → Approximation algorithms analysis Maximum weight matching, submodular function maximization, streaming, matroid, matchoid

We consider the problem of maximizing a non-negative submodular function under the b-matching constraint, in the semi-streaming model. When the function is linear, monotone, and non-monotone, we obtain the approximation ratios of 2 + ε, 3 + 2 √ 2 ≈ 5.828, and 4 + 2 √ 3 ≈ 7.464, respectively. We also consider a generalized problem, where a k-uniform hypergraph is given, along with an extra matroid or a k ′ -matchoid constraint imposed on the edges, with the same goal of finding a b-matching that maximizes a submodular function. When the extra constraint is a matroid, we obtain the approximation ratios of k + 1 + ε, k + 2 √ k + 1 + 2, and k + 2 √ k + 2 + 3 for linear, monotone and non-monotone submodular functions, respectively. When the extra constraint is a k ′ -matchoid, we attain the approximation ratio 8 3 k + 64 9 k ′ + O(1) for general submodular functions.

Introduction

Let G = (V, E) be a multi-graph (without self-loops) where each vertex v ∈ V is associated with a capacity b v ∈ Z + . A b-matching is a subset of edges M ⊆ E where each vertex v has at most b v incident edges contained in M .

In the maximum weight b-matching problem, edges are given weights w : E → R + and we need to compute a b-matching M so that w(M) = e∈M w(e) is maximized. A generalization of the problem is that of maximizing a non-negative submodular function f : 2 E → R + under the b-matching constraint, namely, we look for a b-matching M so that f (M) is maximized. Here we recall the definition of a submodular function:

∀X ⊆ Y ⊊ E, ∀e ∈ E\Y, f (X ∪ {e}) -f (X) ≥ f (Y ∪ {e}) -f (Y). Additionally f is called monotone if ∀X ⊆ Y ⊆ E, f (X) ≤ f (Y), otherwise it is non- monotone.
Observe that the maximum weight matching is the special case where f is a linear sum of the weights associated with the edges. Note that throughout this paper, we implicitly assume that the submodular function f is always non-negative.

In the traditional offline setting, both problems are extensively studied. The maximum weight b-matching can be solved in polynomial time [START_REF] Schrijver | Combinatorial optimization: polyhedra and efficiency[END_REF]; maximizing a non-negative monotone submodular function under b-matching constraint is NP-hard and the best approximation ratios so far are 2 + ε and 4 + ε, for the monotone and non-monotone case, respectively [START_REF] Feldman | Improved approximations for k-exchange systems[END_REF].

In this work, we consider the problem in the semi-streaming model [START_REF] Muthukrishnan | Data streams: Algorithms and applications[END_REF]. Here the edges in E arrive over time but we have only limited space (ideally proportional to the output size) and cannot afford to store all edges in E-this rules out the possibility of applying known offline algorithms.

We also consider a generalized problem, where a matroid or a matchoid is imposed on the edges of an hypergraph. Specifically, here G = (V, E) is a k-uniform hypergraph, where each edge e ∈ E contains k vertices in V . In addition to the capacities b v , a matroid or a matchoid M (see the next section for the definitions) is imposed on the edges of E. A b-matching M is feasible only if M is independent in M. The objective here is to find a feasible b-matching M that maximizes f (M) for f a submodular function.

Our Contribution

We start with the maximum weight (b-)matching. For this problem, a long series of papers [START_REF] Crouch | Improved streaming algorithms for weighted matching, via unweighted matching[END_REF][START_REF] Epstein | Improved approximation guarantees for weighted matching in the semi-streaming model[END_REF][START_REF] Feigenbaum | On graph problems in a semi-streaming model[END_REF][START_REF] Ghaffari | Simplified and Space-Optimal Semi-Streaming (2+ε)-Approximate Matching[END_REF][START_REF] Levin | Streaming submodular matching meets the primal-dual method[END_REF][START_REF] Mcgregor | Finding graph matchings in data streams[END_REF][START_REF] Paz | A (2 + ε)-approximation for maximum weight matching in the semi-streaming model[END_REF][START_REF] Zelke | Weighted matching in the semi-streaming model[END_REF] have proposed many semi-streaming algorithms, with progressively improved approximation ratios, culminating in the work of Paz and Schwartzman [START_REF] Paz | A (2 + ε)-approximation for maximum weight matching in the semi-streaming model[END_REF], where 2 + ε approximation is attained, for the simple matching. For the general b-matching, very recently, Levin and Wajc [START_REF] Levin | Streaming submodular matching meets the primal-dual method[END_REF] gave a 3 + ε approximation algorithm. We close the gap between the simple matching and the general b-matching.

▶ Theorem 1. For the maximum weight b-matching problem, we obtain a 2 + ε approximation algorithm using O log 1+ε (W/ε) • |M max | variables in memory, and another using O log 1+ε (1/ε) • |M max | + v∈V b v variables, where M max denotes the maximum cardinality b-matching and W denotes the maximum ratio between two non-zero weights.

The details of this theorem can be found in Section 2. Next we consider the general case of submodular functions, for whom approximation algorithms have been proposed in [START_REF] Chakrabarti | Submodular maximization meets streaming: matchings, matroids, and more[END_REF][START_REF] Chekuri | Streaming algorithms for submodular function maximization[END_REF][START_REF] Levin | Streaming submodular matching meets the primal-dual method[END_REF][START_REF] Feldman | Do less, get more: Streaming submodular maximization with subsampling[END_REF]. The current best ratios obtained by Levin and Wajc [START_REF] Levin | Streaming submodular matching meets the primal-dual method[END_REF] are 3 + 2 √ 2 ≈ 5.828 and 4 + 2 √ 3 ≈ 7.464, for the monotone and non-monotone functions, respectively. We propose an alternative algorithm to achieve the same bounds.

▶ Theorem 2. To maximize a non-negative submodular function under the b-matching constraint, we obtain algorithms providing a 3 + 2 √ 2 ≈ 5.828 approximation for monotone functions and a 4 + 2 √ 3 ≈ 7.464 approximation for non-monotone functions, using O(log W • |M max |) variables, where M max denotes the maximum cardinality b-matching and W denotes the maximum quotient f (e | Y)

f (e ′ | X) , for X ⊆ Y ⊆ E, e, e ′ ∈ E, f (e ′ | X) > 0.

The details of this theorem can be found in Section 3.

It should be pointed out that in [START_REF] Levin | Streaming submodular matching meets the primal-dual method[END_REF], for the case of non-monotone functions, their algorithm only works for the simple matching, and it is unclear how to generalize it to the general b-matching, while our algorithm lifts this restriction. Another interesting thing to observe is that even though the achieved ratios are the same and our analysis borrows ideas from [START_REF] Levin | Streaming submodular matching meets the primal-dual method[END_REF], our algorithm is not really just the same algorithm disguised under a different form. See Appendix B for a concrete example where the two algorithms behave differently.

Extension: k-uniform hypergraph with a matroid or a matchoid constraint

Before we explain our results, let us recall some definitions.

A pair M = (E, I) is a matroid if the following three conditions hold: (1) ∅ ∈ I, (2) if X ⊆ Y ∈ I, then X ∈ I, and (3) if X, Y ∈ I, |Y | > |X|, there exists an element e ∈ Y \X so that X ∪ {e} ∈ I. The sets in I are the independent sets and the rank r M of the matroid M is defined as max X∈I |X|. A minimum (inclusion-wise) non-independent subset is called a circuit. For any subset S ⊆ E, its rank r M (S) is defined as the maximum size of an independent set in S. We will also use the notion of span, which is defined for a subset S of E as span(S) = {e ∈ E : r M (S) = r M (S ∪ {e}). These definitions are close to the ones for independent families in vector spaces, and their nomenclature is similar.

In the following, we will sometimes refer to particular types of matroids: uniform and partition matroids. A uniform matroid M = (E, I) of rank r M is a matroid such that the independent sets are the sets of cardinality at most r M . A partition matroid M = (E, I) is defined by a partition E 1 , . . . , E l of E and bounds k 1 , . . . , k l : a set

M ⊆ E is independent in M if for all 1 ≤ i ≤ l, |M ∩ E i | ≤ k i . A matchoid M = (M i = (E i , I i)) s i=1 is a collection of matroids M i = (E i , I i). Spe- cifically, a k ′ -matchoid is a matchoid with the additional condition that each element e ∈ E = ∪ s i=1 E i appears in at most k ′ of E i s. A set S ⊆ ∪ s i=1 E i is independent in the matchoid M only if S ∩ E i is independent for all 1 ≤ i ≤ s.
For instance, a partition matroid can be seen as 1-matchoid made of uniform matroids.

In our generalization, a k-uniform hypergraph is given with an additional matroid or a k ′ -matchoid M imposed. The goal is to find a b-matching M , which is also independent in M, so as to maximize f (M).

We notice that the problem of maximizing a submodular function under a p-matchoid constraint (without our additional b-matching constraint in the hypergraph) has already been studied by Chekuri et al. [START_REF] Chekuri | Streaming algorithms for submodular function maximization[END_REF] and Feldman et al. [START_REF] Feldman | Do less, get more: Streaming submodular maximization with subsampling[END_REF], where the best approximation ratios for the maximizing a monotone and a non-monotone function are respectively 4p and 2p + 2 p(p + 1) + 1. It is easy to see that, if the constraint M is a matroid, our problem is a special case of the (k + 1)-matchoid submodular function maximization, and if the constraint M is a k ′ -matchoid, our problem is a spacial case of the (k + k ′)-matchoid submodular function maximization 1 .

Essentially in our next two theorems, we show that if the majority of matroids contained in the matchoid are simple uniform matroids, we can attain better approximation ratios than in [START_REF] Chekuri | Streaming algorithms for submodular function maximization[END_REF][START_REF] Feldman | Do less, get more: Streaming submodular maximization with subsampling[END_REF].

First consider the case where M is a simple matroid.

▶ Theorem 3. To maximize linear functions under the b-matching constraint with an additional matroid constraint, we obtain a k + 1 + ε approximation algorithm, having a memory consumption of O log 1+ε (W/ε) • min{|M max |, r M } variables, where M max denotes the maximum cardinality b-matching and W denotes the maximum ratio between two non-zero weights. To maximize non-negative submodular functions, we have an algorithm providing an approximation ratio of k + 2 √ k + 1 + 1 for monotone functions and k + 2

√ k + 2 + 3 for non-monotone functions, using O log 1+ε (W/ε) • min{|M max |, r M } variables in memory, where W denotes the maximum quotient f (e | Y) f (e ′ | X) , for X ⊆ Y ⊆ E, e, e ′ ∈ E, such that f (e ′ | X) > 0.
The details of this theorem can be found in Section 4. Observe that when f is a monotone, or a non-monotone submodular function, our ratios are better than 4(k + 1) and 2(k + 1) + 2 (k + 1)(k + 2) + 1 achieved in [START_REF] Chekuri | Streaming algorithms for submodular function maximization[END_REF] and in [START_REF] Feldman | Do less, get more: Streaming submodular maximization with subsampling[END_REF].

Our result is of particular interest when f is a linear function. In fact, notice that if the given hypergraph is k-partite, our problem is the same as finding the maximum weight intersection of k partition matroids and an arbitrary matroid-this is a special case of finding a maximum weight intersection of k + 1 arbitrary matroids, a problem recently studied by Garg et al. [START_REF] Garg | Semi-streaming algorithms for submodular matroid intersection[END_REF]. It can be seen that the set of stored elements in our algorithm is identical to that in the algorithm of [START_REF] Garg | Semi-streaming algorithms for submodular matroid intersection[END_REF]. Garg et al. have conjectured that there always exists a k + 1 approximation in their stored elements (and have proved this to be true when k + 1 = 2). Theorem 3 thus confirms their conjecture for the special case when all but one matroids are partition matroids.

We next consider the case where M is a k ′ -matchoid.

▶ Theorem 4. To maximize a non-negative submodular function under the b-matching constraint with an additional k ′ -matchoid constraint, we have an algorithm providing an approximation ratio better than

f (e | Y) f (e ′ | X) , for X ⊆ Y ⊆ E, e, e ′ ∈ E, such that f (e ′ | X) > 0.
The details of this theorem can be found in Section 5. The exact expressions for the approximation ratios are formally stated in Theorems 45 and 47. For a comparison, recall that using the techniques of [START_REF] Chekuri | Streaming algorithms for submodular function maximization[END_REF][START_REF] Feldman | Do less, get more: Streaming submodular maximization with subsampling[END_REF], the obtained ratio is 4(k + k ′) and 2(k + k ′) + 2 (k + k ′ + 1)(k + k ′ + 2) + 1 when f is monotone and nonmonotone, respectively. Our result shows that if k is at least roughly three times of k ′ , better approximation ratios can be achieved.

Comparison with the conference version of this work.

Compared with our previous results of [START_REF] Huang | Semi-Streaming Algorithms for Submodular Function Maximization Under b-Matching Constraint[END_REF], Theorems 3 and 4 are significant improvements. In fact, Theorem 3 allows us to get approximation ratios of k

+ 1 + ε, k + 2 √ k + 1 + 1 and k + 2
√ k + 2 + 3 for linear, monotone, and non-monotone submodular functions, respectively, meanwhile in [START_REF] Huang | Semi-Streaming Algorithms for Submodular Function Maximization Under b-Matching Constraint[END_REF] the approximation ratios are k + 2 √ k + 1, 8 3 k + O(1), and 8 3 k + O(1). Moreover, Theorem 4 is a generalization of the technique used for the matroids in [START_REF] Huang | Semi-Streaming Algorithms for Submodular Function Maximization Under b-Matching Constraint[END_REF] to matchoids.

Our Technique

We use a local-ratio technique to decide to retain or to discard a newly arrived edge during the streaming phase. After this phase, a greedy algorithm, according to the reverse edge arrival order, is then applied to add edges one by one into the solution while guaranteeing feasibility. This is in fact the same framework used in [START_REF] Levin | Streaming submodular matching meets the primal-dual method[END_REF][START_REF] Paz | A (2 + ε)-approximation for maximum weight matching in the semi-streaming model[END_REF]. Our main technical innovation is to introduce a data structure, which takes the form of a set of queues. Such a set of queues is associated with each vertex (and with the imposed matroid). Every edge, if retained, will appear as an element2 in one of these queues for each of its endpoints (and for the imposed matroid). These queues will guide the greedy algorithm to make better choices and are critical in our improvement over previous results. Here we give some intuition behind these queues. Consider the maximum weight b-matching problem. Similar to [START_REF] Garg | Semi-streaming algorithms for submodular matroid intersection[END_REF], we compute, for every edge, a gain. The sum of the gains of the retained edges can be shown to be at least half of the real weight of the unknown optimal matching. The question then boils down to how to "extract" a matching whose real weight is large compared to these gains of the retained edges. In our queues, the elements are stacked in such a way that the weight of an element e is the sum of the gains of all the elements preceding e in any queue containing e. This suggests that if e is taken by the greedy algorithm, we can as well ignore all elements that are underneath e in the queues, as their gains are already "paid for" by e.

2

Maximum Weight b-Matching

Description of the Algorithm

For ease of description, we explain how to achieve 2 approximation, ignoring the issue of space complexity for the moment. We will explain how a slight modification can ensure the desired space complexity, at the expense of an extra ε term in the approximation ratio (see Appendix A).

The formal algorithm for the streaming phase is shown in Algorithm 1. We give an informal description here. Let S, initially empty, be the set of edges that have been stored so far. For each vertex v ∈ V , a set

Q v = {Q v,1 , • • • , Q v,
bv } of queues are maintained. These queues contain the edges incident to v that are stored in S and respect the arrival order of edges (newer edges are higher up in the queues). Each time a new edge e arrives, we compute its gain g(e) (see Lines 5 and 8). Edge e is added into S only if its gain is strictly positive. If this is the case, for each endpoint u of e, we put e in one of u's queues (see Lines 6 and 13) and define a reduced weight w u (e) (Line 11). It should be noted that w u (e) will be exactly the sum of the gains of the edges preceding (and including) e in the queue. We refer to the last element inserted in a queue Q as the top element of that queue, denoted Q.top(). To insert an element e on top of a queue Q, we use the instruction Q.push(e). By convention, for an empty queue Q we have Q.top() = ⊥. We also set w u (⊥) = 0. Notice that each element e also has, for each endpoint v ∈ e, a pointer r v (e) to indicate its immediate predecessor in the queue of v, where it appears.

Algorithm 1 Streaming phase for weighted matching

1: S ← ∅ 2: ∀v ∈ V : Q v ← (Q v,1 = ∅, • • • , Q v,bv = ∅)
▷ b v queues for a vertex v 3: for e = e t , 1 ≤ t ≤ |E| an edge from the stream do 4:

for u ∈ e do 5:

w * u (e) ← min{w u (Q u,q .top()) : 1 ≤ q ≤ b u } 6:
q u (e) ← q such that w u (Q u,q .top()) = w * u (e) Q u,qu(e) .push(e) ▷ add e on the top of the smallest queue After the streaming phase, our greedy algorithm, formally described in Algorithm 2, constructs a b-matching based on the stored set S.

The greedy proceeds based on the reverse edge arrival order-but with an important modification. Once an edge e is taken as part of the b-matching, all edges preceding e that are stored in the same queue as e will be subsequently ignored by the greedy algorithm. The variables z e are used to mark this fact. if z e = 0 then continue ▷ skip edge e if it is marked

5: M ← M ∪ {e} 6:
for u ∈ e do

Analysis for Maximum Weight b-Matching

For analysis, for each discarded element e ∈ E\S, we set g(e) = 0 and w u (e) = w * u (e) for each u ∈ e. The weight of a queue, w u (Q u,i), is defined as the reduced weight of its top element, namely,

w u (Q u,i .top()). Let w u (Q u) = bu i=1 w u (Q u,i
). We write S (t) as the value of S at the end of the iteration t of the streaming phase, and by convention S (0) = ∅. This notation (t) will also be used for other sets such as Q u and Q u,i . Through this paper, M opt will always refer to the best solution for the considered problem.

The following proposition follows easily by induction.

▶ Proposition 5. (i) For all v ∈ V we have g(δ(v)) = g(δ(v) ∩ S) = w v (Q v). (ii) The set {Q v,q .top() : 1 ≤ q ≤ b v } contains the b v heaviest elements of S ∩ δ(v) in terms of reduced weights.
▶ Lemma 6. At the end of Algorithm 1, for all b-matching M ′ and for all v ∈ V , we have

w v (Q v) ≥ w v (M ′ ∩ δ(v)).
Proof. By Proposition 5(ii), w v (Q v) is exactly the sum of the reduced weights of the b v heaviest elements in S ∩ δ(v) (which are on top of the queues of

Q v). If we can show that for each element e = e t ∈ M ′ \S, w u (e t) ≤ min{w v (Q |E| v,q) : 1 ≤ q ≤ b v }, the proof will follow. Indeed, as e t is discarded, we know that w v (e t) = min{w v (Q (t-1) v,q) : 1 ≤ q ≤ b v } ≤ min{w v (Q |E| v,q) : 1 ≤ q ≤ b v },
where the inequality holds because the weight of a queue is monotonically increasing.

◀ ▶ Lemma 7. 2g(S) ≥ w(M opt).
Proof. It is clear that for e = {u, v} we have w u (e) + w v (e) ≥ w(e). Therefore

w(M opt) ≤ e={u,v}∈M opt w u (e) + w v (e) = u∈V w u (M opt ∩ δ(u)) ≤ u∈V w u (Q u) = u∈V g(S ∩ δ(u)) = 2g(S),
where the second inequality follows from Lemma 6 and the subsequent equality from Proposition 5(i). The last equality comes from the fact that an edge is incident to 2 vertices. ◀

Recall that q v (e) refers to the index of the particular queue in Q v where a new edge e will be inserted (Line 6 of Algorithm 1).

▶ Lemma 8. Algorithm 2 outputs a feasible b-matching M with weight w(M) ≥ g(S).

Proof. By an easy induction, we know that for a given e = e t ∈ S and v ∈ e, we have:

w v (e) = w * v (e) + g(e) = e ′ ∈Q (t) v,qv (e)
g(e ′) and w(e) = g(e)

+ u∈e e ′ ∈Q (t-1) u,qu (e)
g(e ′).

Moreover, observe that S ∩ δ(v) can be written as a disjoint union of the

Q v,q for 1 ≤ q ≤ b v : S ∩ δ(v) = 1≤q≤bv Q v,q .
One can also observe that Algorithm 2 takes at most one element in each queue Q v,i . In fact, an element can be added only if no element above it in any of the queues where it appears has already been added into M ; and no element below it in the queues can be already part of M because S is read in the reverse arrival order. Consequently M respects the capacity constraint and is thus a feasible b-matching. We now make a critical claim from which the correctness of the lemma follows easily. ▷ Claim 9. Given an edge e ∈ S, either e ∈ M , or there exists another edge e ′ arriving later than e, such that e ′ ∈ M and there exists a queue belonging to a common endpoint of e and e ′ , which contains both of them.

Observe that if the claim holds, by (1), the gain g(e) of any edge e ∈ S will be "paid" for by some edge e ′ ∈ M and the proof will follow.

To prove the claim, let e = {u, v} and assume that e ̸ ∈ M . Consider the two queues Q u,qu(e) and Q v,qv(e) . The edges stored above e in these two queues must have arrived later than e in S and have thus already been considered by Algorithm 2. The only reason that e ̸ ∈ M must be that z e = 0 when e is processed, implying that one of these edges was already part of M . Hence the claim follows. ◀ Lemmas 7 and 8 give the following theorem:

▶ Theorem 10. Algorithms 1 and 2 provide a 2 approximation for the maximum weight b-matching problem.

We refer the readers to Appendix A for the details on how to handle the memory consumption of the algorithm. ▶ Remark 11. It is straightforward to extend our algorithm to a k-uniform hypergraph, where we can get an approximation ratio of k. Notice that if the k-uniform hypergraph is also k-partite, then the problem becomes that of finding a maximum weight intersection of k partition matroids. It can be shown that our stored edge set is exactly identical to the one stored by the algorithm of Garg et al. [START_REF] Garg | Semi-streaming algorithms for submodular matroid intersection[END_REF]. They have conjectured that for k arbitrary general matroids, their stored edge set always contains a k approximation. Our result thus proves their conjecture to be true when all matroids are partition matroids.

3

Submodular Function Maximization

Description of the Algorithm

For submodular function maximization, the streaming algorithm, formally described in Algorithm 3, is quite similar to the one for the weighted b-matching in the preceding section.

Here notice that the element weight w(e) is replaced by the marginal value f (e | S) (see Lines 7 and 10). We use a similar randomization method to that of Levin and Wajc [START_REF] Levin | Streaming submodular matching meets the primal-dual method[END_REF] for non-monotone functions (adding an element to S only with probability p, see Lines 8-9), and Algorithm 3 Streaming phase for submodular function maximization

1: S ← ∅ 2: ∀v ∈ V : Q v ← (Q v,1 = ∅, • • • , Q v,bv = ∅) 3:
for e = e t , 1 ≤ t ≤ |E| an edge from the stream do 4:

for u ∈ e do 5:

w * u (e) ← min{w u (Q u,q .top()) : 1 ≤ q ≤ b u } 6:
q u (e) ← q such that w u (Q u,q .top()) = w * u (e)

f (e | Y) f (e ′ | X) , for X ⊆ Y ⊆ E, e, e ′ ∈ E, f (e ′ | X) > 0 (in Appendix A
we explain how to guarantee such space complexity when f is linear-the general case of a submodular function follows similar ideas).

Analysis for Monotone Submodular Function Maximization

Let α = 1 + ε. In this section, p = 1 (so we have actually a deterministic algorithm for the monotone case). The following two lemmas relate the total gain g(S) with the marginal values f (S | ∅) and f (M opt | S).

▶ Lemma 12. It holds that g(S) ≥ ε 1+ε f (S | ∅).
Proof. For an element e = e t ∈ S we have f e | S (t-1) ≥ (1 + ε) u∈e w * u (e) so

g(e) = f e | S (t-1) - u∈e w * u (e) ≥ f e | S (t-1) 1 - 1 1 + ε , implying that g(S) = e∈S g(e) ≥ e=et∈S f e | S (t-1) 1 - 1 1 + ε = ε 1 + ε f (S | ∅).

◀

As in the previous section, if an edge e is discarded, we assume that w * v (e) = w v (e) for each v ∈ e.

▶ Lemma 13. It holds that 2(1 + ε)g(S) ≥ f (M opt | S).
Proof. The only elements e = e t missing in S are the ones satisfying the inequality f (e | S (t-1)) ≤ (1 + ε) u∈e w * u (e). So by submodularity,

f (M opt | S) ≤ e∈M opt \S f (e | S) ≤ e=et∈M opt \S f (e | S (t-1)) ≤ e∈M opt \S (1 + ε) u∈e w * u (e) = (1 + ε) e∈M opt \S u∈e w u (e) = (1 + ε) u∈V w u ((M opt \S) ∩ δ(u)) ≤ (1 + ε) u∈V w u (Q u) ≤ 2(1 + ε)g(S),
similar to the proof of Lemma 7. ◀ ▶ Lemma 14. Algorithm 2 outputs a feasible b-matching with f (M) ≥ g(S) + f (∅).

Proof. As argued in the proof of Lemma 8, M respects the capacities and so is feasible. Now, suppose that

M = {e t1 , • • • , e t |M | } , t 1 < • • • < t |M | . Then f (M) = f (∅) + |M | i=1 f (e ti | {e t1 , • • • , e ti-1 }) ≥ f (∅) + |M | i=1 f (e ti | S (ti-1)) ≥ f (∅) + g(S),
as the values f (e ti | S (ti-1)) play the same role as the weights in Lemma 8. ◀ ▶ Theorem 15. Algorithms 3 and 2 provide a 3 + 2

√ 2 approximation if we set ε = 1 √ 2 .
Proof. By Lemmas 12 and 13, we derive 2

+ 2ε + 1+ε ε g(S) ≥ f (M opt | S) + f (S | ∅) = f (M opt ∪ S | ∅) ≥ f (M opt | ∅),
where the last inequality is due to the monotonicity of f . By Lemma 14, the output b-matching M guarantees that f (M) ≥ g(S) + f (∅). As a result,

3 + 2ε + 1 ε f (M) ≥ f (M opt | ∅) + f (∅) = f (M opt). Setting ε = 1 √ 2 gives the result. ◀ ▶ Remark 16. When b v = 1 for all v ∈ V (i.
e. simple matching), our algorithm behaves exactly the same as the algorithm of Levin and Wajc [START_REF] Levin | Streaming submodular matching meets the primal-dual method[END_REF]. Therefore their tight example also applies to our algorithm. In other words, our analysis of approximation ratio is tight.

Analysis for Non-Monotone Submodular Function Maximization

In this section, we suppose that 1 3+2ε ≤ p ≤ 1 2 .

▶ Lemma 17. It holds that

2(1 + ε) + 1 + ε ε E[g(S)] ≥ E[f (S ∪ M opt | ∅)].
Proof. From Lemma 12 we have that for any execution of the algorithm (a realization of randomness), the inequality 1+ε ε g(S) ≥ f (S | ∅) holds, so it is also true in expectation. We will try to prove in the following that 2

(1 + ε)E[g(S)] ≥ E[f (M opt | S)], which is the counterpart of Lemma 13.
First, we show that for any e ∈ M opt :

(1 + ε)E u∈e w u (e) ≥ E[f (e | S)] (2)
We will use a conditioning similar to the one used in [START_REF] Levin | Streaming submodular matching meets the primal-dual method[END_REF]. Let e = e t ∈ M opt . We consider the event

A e = [f (e | S (t-1)) ≤ (1 + ε) u∈e w * u (e)].
Notice that if A e holds, e is not part of S and w * v (e) = w v (e) for each v ∈ e. Now by submodularity,

E[f (e | S) | A e] ≤ E[f (e | S (t-1)) | A e] ≤ E (1 + ε)
E u∈e w u (e) | A e = p • E 2f (e | S (t-1)) - u∈e w * u (e) | A e + (1 -p) • E u∈e w * u (e) | A e = 2p • E f (e | S (t-1)) | A e + (1 -2p) • E u∈e w * u (e) | A e ≥ 2p • E f (e | S (t-1)) | A e .
As a result, for p ≥ 1 3+2ε ,

(1 + ε)E u∈e w u (e) | A e ≥ 2p(1 + ε) • E f (e | S (t-1)) | A e ≥ (1 -p) • E f (e | S (t-1)) | A e ≥ E f (e | S) | A e ,
where the last inequality holds because with probability p we have f (e | S) = 0 (as e ∈ S) and with probability 1 -p, f (e | S) ≤ f (e | S (t-1)) (by submodularity). So we have proven inequality (2) and it follows that

E f (M opt | S) ≤ e∈M opt E [f (e | S)] ≤ (1 + ε) e∈M opt E u∈e w u (e) = (1 + ε) u∈V e∈M opt ∩δ(u) E [w u (e)] ≤ (1 + ε) u∈V E [w u (Q u)] = 2(1 + ε)E[g(S)],
where in the last inequality we use the fact that Lemma 6 holds for every realization of randomness. Now the bounds on E [f (M opt | S)] and the bound on E [f (S | ∅)] argued in the beginning give the proof of the lemma. ◀ Then we will use the following lemma, due to due to Buchbinder et al. [START_REF] Buchbinder | Submodular maximization with cardinality constraints[END_REF]:

▶ Lemma 18 (Lemma 2.2 in [START_REF] Buchbinder | Submodular maximization with cardinality constraints[END_REF]). Let h : 2 N → R + be a non-negative submodular function, and let B be a random subset of N containing every element of N with probability at most p (not necessarily independently), then

E[h(B)] ≥ (1 -p)h(∅).
▶ Theorem 19. Algorithm 3 run with p = 1 3+2ε provides a set S, upon which Algorithm 2 outputs a b-matching M satisfying:

4ε 2 + 8ε + 3 2ε E[f (M)] ≥ f (M opt).
This ratio is optimized when

ε = √ 3
2 , which gives a 4 + 2 √ 3 approximation.

Proof. Combining Lemma 14 and Lemma 17,

2(1 + ε) + 1 + ε ε E[f (M)] ≥ E[f (S ∪ M opt)].
Now we can apply Lemma 18 by defining h : 2 E → R + as, for any X ⊆ E, h(X) = f (X ∪ M opt) (trivially h is non-negative and submodular). As any element of E has the probability of at most p to appear in S, we derive

E[f (S ∪ M opt)] = E[h(S)] ≥ (1 -p)h(∅) = (1 -p)f (M opt). Therefore, 3 + 2ε + 1 ε E[f (M)] ≥ E[f (S ∪ M opt)] ≥ (1 -p)f (M opt).
As p = 1 3+2ϵ , we have

4ε 2 + 8ε + 3 2ε • E[f (M)] ≥ f (M opt).
This ratio is optimized when ε = In this section we consider the more general case of a b-matching on a k-uniform hypergraph and we impose a matroid constraint M = (E, I). A matching M ⊆ E is feasible only if it respects the capacities of the vertices and is an independent set in the matroid M.

Description of the Algorithm

For the streaming phase, our algorithm, formally described in Algorithm 4, is a generalization of Algorithm 3 in the last section. We let α = 1 + ε ≥ 1. For the matroid M, we maintain a set of queues

Q M = {Q M,1 , • • • , Q M,r M }
, where r M is the rank of M, to store the elements of S (so if an edge e is part of S, it appears in a total of k + 1 queues, k of them corresponding to the vertices in e, and the remaining one corresponding to the matroid). To facilitate the presentation, we write T op(Q M) to denote the set of the elements on top of the queues of Q M . Lines 8-13 will guarantee that T op(Q M) is an independent set at any time (in fact a maximum weight independent set among all elements arrived so far, according to the reduced weights-see Lemma 21). Notice that in the end of the algorithm, T op(Q M) is not always fully-ranked (i.e. a base of M = (E, I), but it is always fully-ranked in the restricted matroid M|S = (S, I S), where I S = {I ⊆ S : I ∈ I}).

Differently from the previous two sections where we have applied the greedy algorithm based on the reverse edge arrival order (Algorithm 2), here we introduce a new idea to build a feasible b-matching. Observe that after the streaming phase, T op(Q M) is an independent set (more precisely, a base of M|S). Let M = T op(Q M). If M is a b-matching in the hypergraph, we are done. If not, some vertex v must have more than b v incident edges in M . We discard one such edge e in M (the choice of e will depend on the edge arrival order, see below) and replace it with another edge e ′ that arrived earlier than e (sometimes e is not replaced at all, as we will explain below). We guarantee M ∪ {e ′ }\{e} remains independent in M. The same procedure is repeated iteratively, where we replace newer elements of the independent set M by the older elements, until M becomes a feasible b-matching in the hypergraph. A formal description of this procedure is provided in Algorithm 5.

We now give a more detailed description. In Algorithm 5, an element e is dominated in the hypergraph by an element e d ∈ M if there exists v ∈ V and 1 ≤ i ≤ b v such that e and e d are both in Q v,i and e d arrived later than e in S. The algorithm starts with the maximum weight independent set M = T op(Q M) in M|S, such that w M (M) = g(S). Then, at each step, if the independent family M is not a b-matching, then some edge in M must be dominated by some other edge in M . We take among these dominated elements the latest one that arrived in S, and we replace it by an element e ′ of C e \{e} that is not spanned by M \{e} (where C e is defined as the circuit that is created by e in T op(Q M) when it is inserted, see Line 11 in Algorithm 4; if C e = ∅ then we remove e without replacing it). Such an element e ′ always exists, otherwise e would have been spanned by M \{e} (see Lemma 24). Moreover this element satisfies w M (e ′) ≥ w * M (e) (because w * M (e) is the minimum reduced weight among the reduced weights of the elements in C e \{e}) and we know that g(e) is already "paid for" by the element e d which dominates e (if C e = ∅ then w * M (e) = 0 and there is no need to add any element e ′ to compensate the loss). The element e ′ that replaces e arrived earlier than e in S because it is part of the circuit that was created when e arrived, so this newly arrived element e ′ cannot dominate e d . As e was the latest dominated element, all future added elements will be elements that arrived earlier than e in S, so e d will never be dominated in the next steps and g(e) will be "paid for" by e d until the end of the algorithm.

Regarding the memory consumption of the algorithm, it is easy to see that the number of variables used will be O(log 1+ε (W/ε) • min{|M max |, r M }), where |M max | denotes the maximum cardinality matching and W denotes the maximum quotient f (e | Y)

f (e ′ | X) , for X ⊆ Y ⊆ E, e, e ′ ∈ E, f (e ′ | X) > 0 (the idea is similar to the one in Appendix A). In fact, we do not need to actually store the circuits C e , as we can get these circuits back during the construction phase by going back in time in the structure of the queues Q M .

Analysis for Linear Function Maximization

In this section, p = 1. For each discarded elements e ∈ E\S, similarly as before, we set w M (e) = w * M (e). Moreover, for e = e t we set w(e) = f (e | ∅) = f (e | S (t)) the weight of an element.

We introduce some basic facts in matroid theory, e.g., see [START_REF] Schrijver | Combinatorial optimization: polyhedra and efficiency[END_REF].

▶
1: S ← ∅ 2: Q M ← (Q M,1 = ∅, • • • , Q M,r M = ∅) 3: ∀v ∈ V : Q v ← (Q v,1 = ∅, • • • , Q v,bv = ∅
w * u (e) ← min{w u (Q u,q .top()) : 1 ≤ q ≤ b u } 7:
q u (e) ← q such that w u (Q u,q .top()) = w * u (e)

8: if T op(Q M) ∪ {e} ∈ I, i.e. C e = ∅ then 9:
w * M (e) ← 0 10:

q M (e) ← q such that Q M,q is empty

11: if T op(Q M) ∪ {e} contains a circuit C e then 12:
w * M (e) ← min e ′ ∈C\{e} w M (e ′)

13:

q M (e) ← q such that w M (Q M,q .top()) is equal to min e ′ ∈C\{e} w M (e ′) and Q M,q .top() ∈ C Q u,qu(e) .push(e)

23:

w M (e) ← w * M (e) + g(e)

24:

r M (e) ← Q M,q M (e) .top()

25:

Q M,q M (e) .push(e) Proof. Using the fact that w(e) ≤ (1 + ε) u∈e w u (e) + w M (e) (observe that it is true when e is stored in S as well as when it is not) we get:

w(M opt) ≤ (1 + ε) e∈M opt u∈e w u (e) + w M (e) = (1 + ε) v∈V w v (M opt ∩ δ(v)) + (1 + ε)w M (M opt) ≤ (1 + ε) v∈V g(S ∩ δ(v)) + (1 + ε)w M (Q M) = (1 + ε)(kg(S) + g(S)).
For the last inequality we use Corollary 22 and Proposition 5. ◀

Now we turn our attention to Algorithm 5. First, we check that this algorithm performs legitimate operations and terminates.

▶ Lemma 24. (i)

The element e ′ defined at Line 7 in Algorithm 5 is well-defined.

(ii) Through the execution of the algorithm, M remains an independent set in M.

Proof.

To prove (i), suppose e ′ does not exist. If such an element does not exist, then it means that we have the inclusion C e \{e} ⊆ span(M \{e}). In addition, C e is a circuit so e ∈ span(C e \{e}). As a result, we should have e ∈ span(M \{e}) (see Proposition 20(iii)), in contradiction with the fact that M is independent in M.

For the point (ii), observe that, at the beginning, M is an independent set because of Lemma 21. Then, if M is an independent set, then so is M \{e}. Moreover, if e is replaced by an element e ′ ∈ C e \(span(M \{e}) ∪ {e}), the set (M \{e}) ∪ {e ′ } is still an independent set, as e ′ is not in the span of M \{e}. ◀ ▶ Lemma 25. Algorithm 5 terminates and outputs a feasible b-matching.

Proof. The algorithm terminates because an element is either not not replaced or replaced by an element that arrived earlier in S. By Lemma 24(ii), through the execution of the algorithm, M remains an independent set in the matroid. In addition, when there is no domination relation between elements in M , then M must be a b-matching (as there is at most one element per queue) in the hypergraph. ◀ Let us define the set D of elements that were removed so far from M during the execution of Algorithm 5 (because they were dominated in the hypergraph).

▶ Lemma 26. At any time during the execution of Algorithm 5, the elements in D are dominated by some elements in M .

Proof. When an element e is added to D, it means that at that point it is the latest dominated element in M , and that it is dominated by some other element e d that arrived later. As elements are always replaced by other elements that arrived earlier, and because all the subsequent dominated elements considered by the algorithm will be edges that arrived earlier than e, this edge e d will not be removed from M until the end of the execution the algorithm. ◀ ▶ Lemma 27. At any time during the execution of Algorithm 5, it holds that w(M) ≥ w M (M) + g(D).

Proof. We have Proof. We prove by induction on the number of times the while loop is executed. At the beginning, ▶ Remark 31. When the hypergraph is k-partite, our algorithm builds the set S exactly as the algorithm by Garg et al. [START_REF] Garg | Semi-streaming algorithms for submodular matroid intersection[END_REF] does. As a result, it proves the conjecture they formulated in the case where we have k partition matroids and one general matroid: we can extract from S a k + 1 approximation in polynomial time, if ε is set to 0.

w(M) = w M (M) +
M = T op(Q M) so w(M) ≥ w M (Q M) = g(

Analysis for Monotone Submodular Function Maximization

In this section, p = 1 and ε > 0. The next two lemmas relate the total gain g(S) with f (S | ∅) and f (M opt | S).

▶ Lemma 32. It holds that g(S) ≥ ε 1+ε f (S | ∅).
Proof. Same proof as for Lemma 12. ◀ ▶ Lemma 33. It holds that

(1 + ε)(k + 1)g(S) ≥ f (M opt | S).
Proof. By the same argument as in the proof of Lemma 13, we have

e∈M opt \S (1 + ε) u∈e w * u (e) ≤ (1 + ε)k • g(S).
Moreover, Corollary 22 shows that g(S) = w M (Q M) ≥ w M (M opt) and we know that

w M (M opt) ≥ e∈M opt \S w M (e) = e∈M opt \S w * M (e).
As a result, we obtain

f (M opt | S) ≤ e∈M opt \S f (e | S) ≤ e=et∈M opt \S f (e | S (t-1)) ≤ (1 + ε)   e∈M opt \S u∈e w * u (e) + w * M (e)   ≤ (1 + ε)(k + 1)g(S). ◀ ▶ Lemma 34. It holds that (1 + ε)(k + 1) + 1 + 1 ε g(S) ≥ f (M opt | ∅).
Proof. By Lemmas 32 and 33, we get

(1 + ε)(k + 1) + 1 + 1 ε g(S) ≥ f (M opt | S)+f (S | ∅) = f (M opt ∪ S | ∅) ≥ f (M opt | ∅) because f is monotone. ◀ ▶ Lemma 35. With S as input, Algorithm 5 returns a feasible b-matching M satisfying f (M) ≥ g(S) + f (∅).
Proof. Proof similar to the one for Lemma 14 (using Lemma 29 instead of Lemma 8). ◀

As a result, we get the following theorem (the same way we obtained Theorem 15):

▶ Theorem 36. For non-negative monotone submodular functions, Algorithm 4 with p = 1 combined with Algorithm 5 provides a feasible b-matching such that

(1 + ε)(k + 1) + 1 + 1 ε f (M) ≥ f (M opt).
By setting ε = 1 √ k+1 , we attain the approximation ratio of k + 2

√ k + 1 + 2 for all k.

Analysis for Non-Monotone Submodular Function Maximization

In this section, we assume

1 1+(k+1)(1+ε) ≤ p ≤ 1 k+1 .
The following lemma is the counterpart of Lemma 17, whose proof again uses the technique of conditioning (in a more general form).

▶ Lemma 37. It holds that (1 + ε)(k + 1) + 1+ε ε E[g(S)] ≥ E[f (S ∪ M opt | ∅)].
Proof. By Lemma 32, for any realization on randomness, we have 1+ε ε g(S) ≥ f (S | ∅), so the inequality also holds in expectation.

We next show that, for any e ∈ M opt we have

E[f (e | S)] ≤ (1 + ε)E u∈e w u (e) + w M (e) . (3
)
Let e ∈ M opt . Conditioning on A e = [f (e | S (t-1)) ≤ (1 + ε)(u∈e w * u (e) + w * M (e))] (i.e. e cannot be part of S), we have

E[f (e | S) | A e] ≤ E[f (e | S (t-1)) | A e] ≤ E (1 + ε)(u∈e w * u (e) + w * M (e)) | A e = (1 + ε)E u∈e w u (e) + w M (e) | A e .
For the condition A e , recall that it means that with probability p, the edge is added into S and with probability 1 -p, it is not. Thereby we obtain

E u∈e w u (e) + w M (e) | A e = p • E (k + 1)f (e | S (t-1)) -k u∈e w * u (e) + w * M (e) | A e + (1 -p) • E u∈e w * u (e) + w * M (e) | A e = (k + 1) • p • E f (e | S (t-1)) | A e + (1 -(k + 1) • p) • E u∈e w * u (e) + w * M (e) | A e ≥ (k + 1) • p • E f (e | S (t-1)) | A e ,
where in the last inequality we use the fact that p ≤ 1 k+1 . Now as p ≥ 1 1+(k+1)(1+ε) , we have

(1 + ε)E u∈e w u (e) + w M (e) | A e ≥ (1 + ε)(k + 1) • p • E f (e | S (t-1)) | A e ≥ (1 -p) • E f (e | S (t-1)) | A e ≥ E f (e | S) | A e ,
and we have established [START_REF] Chekuri | Streaming algorithms for submodular function maximization[END_REF].

Similar to the proof of Lemma 17 we derive

E f (M opt | S) ≤ e∈M opt E [f (e | S)] ≤ (1 + ε) e∈M opt E u∈e w u (e) + (1 + ε)E[w M (M opt)] ≤ k(1 + ε)E[g(S)] + (1 + ε)E[w M (M opt)].
By Lemma 22 we know that, for any realization of randomness, we have w

M (M opt) ≤ w M (S f) = g(S). Thus we get E [f (M opt | S)] ≤ (k + 1)(1 + ε)E[g(S)]. Now the bound on E [f (M opt | S)
] and the bound on E [f (S | ∅)] (argued in the beginning of the proof) give us the lemma. ◀ Finally, using Lemma 18, we obtain the following theorem.

▶ Theorem 38. For non-negative submodular functions, Algorithm 4 executed with p = 1 1+(k+1)(1+ε) combined with Algorithm 2 provides a b-matching M independent in M such that:

1 + (k + 1)(1 + ε) (k + 1)(1 + ε) (1 + ε)(k + 1) + 1 + 1 ε E[f (M)] ≥ f (M opt).
This ratio is optimized when ε = √ k+2 k+1 , providing a k + 2 √ k + 2 + 3 approximation.

Matchoid-constrained Maximum Submodular b-Matching

In this section we consider an even more general case of a b-matching on a k-uniform hypergraph on which we impose a k ′ -matchoid constraint M = (M i = (E i , I i)) s i=1 . A matching M ⊆ E is feasible only if it respects the capacities of the vertices and E i ∩ M is an independent set in M i for all i.

Description of the Algorithm

For the streaming phase, our algorithm, formally described in Algorithm 6, is an adaptation of Algorithm 3. We let α = 1 + ε and γ > 1. Here S as before denotes the set of elements stored so far. Additionally, we maintain a set S f ⊆ S, an independent set in M. The set S f is, in a sense, equivalent to the set of top elements T op(Q M) in the previous section when M was a simple matroid. Note that here we do not use any special data structures associated with the matchoid M. For a newly-arrived element e, its reduced weight in the matchoid M is determined by the set of circuits contained in S f ∪ {e} (see . If the new element e is to be stored (see 17 and 23), it replaces the lightest elements of the circuits in S f ∪ {e}. 3 In the end, the set S f (instead of all stored elements S) is given to the simple greedy Algorithm 2 as in Sections 2 and 3 to produce a feasible b-matching.

Here we give some intuition. We retain only the elements in S f (as input to the greedy algorithm) because they are independent in every matroid M i (hence any subset of them chosen by the greedy algorithm), releasing us from the worry that the output is not independent in M. We use γ > 1 to decide the relative importance of the matchoid M (see Line 13). A larger γ guarantees that the gains of new edges grows quickly when S f is updated. By doing this, S f , by itself, contributes to a significant fraction of all gains in g(S) (see Lemma 42). However, an overly large γ causes us to throw away too many edges, thus hurting the final approximation ratio. To optimize, we need to choose γ carefully.

Regarding the memory consumption of the algorithm, it is easy to see that the number of variables used would be a O(log 1+ε (W/ε) • |M max |), where M max denotes the maximum cardinality b-matching in the graph and W denotes the maximum quotient

f (e | Y) f (e ′ | X) , for X ⊆ Y ⊆ E, e, e ′ ∈ E, f (e ′ | X) > 0.

Analysis for Monotone Submodular Function Maximization

In this section, p = 1. For each discarded element e ∈ E\S, similarly as before, we set w M (e) = w * M (e). Moreover, we define an auxiliary reduced weight w ′ M such that w ′ M (e) = w M (e) if e ∈ S and w ′ M (e) = γ • (1 + ε) • w M (e) otherwise.

Algorithm 6 Streaming phase for Matchoid-constrained Maximum Submodular b-Matching

1: S ← ∅ 2: S f ← ∅ 3: ∀v ∈ V : Q v ← (Q v,1 = ∅, • • • , Q v,bv = ∅) 4:
for e = e t , 1 ≤ t ≤ |E| an edge from the stream do 5:

for u ∈ e do 6:

w * u (e) ← min{w u (Q u,q .top()) : 1 ≤ q ≤ b u } 7:
q u (e) ← q such that w u (Q u,q .top()) = w * u (e) w M (e) ← w * M (e) + g(e)

23:

S f ← (S f ∪ {e})\C e 24: update the values of r v for v ∈ V as necessary so that only the elements in S f are considered

The way S f is built can be seen as an execution of the algorithm of Chekuri et al. [START_REF] Chekuri | Streaming algorithms for submodular function maximization[END_REF] where elements of E are given weights w ′ M . Using their results we know that:

▶ Proposition 39. Let M ′ ⊆ E satisfying M ′ ∩ E i ∈ I i for all i.
Then we have

(γ • (1 + ε)) 2 γ • (1 + ε) -1 k ′ • w M (S f) = (γ • (1 + ε)) 2 γ • (1 + ε) -1 k ′ • w ′ M (S f) ≥ w ′ M (M ′)
and (this inequality is from Lemma 11 of the arXiv version of [START_REF] Chekuri | Streaming algorithms for submodular function maximization[END_REF])

(γ • (1 + ε)) 2 γ • (1 + ε) -1 k ′ - γ • (1 + ε) γ • (1 + ε) -1 • w M (S f) ≥ γ • (1 + ε) • w M (M ′ \S).
The next two lemmas relate the total gain g(S) with f (S | ∅) and f (M opt | S).

▶ Lemma 40. It holds that g(S) ≥ ε 1+ε f (S | ∅).

Proof. Same proof as for Lemma 12. ◀ ▶ Lemma 41. It holds that

(1 + ε)k + (γ • (1 + ε)) 2 γ • (1 + ε) -1 k ′ - γ • (1 + ε) γ • (1 + ε) -1 g(S) ≥ f (M opt | S).
Proof. By the same argument as in the proof of Lemma 13, we have

e∈M opt \S (1 + ε) u∈e w * u (e) ≤ (1 + ε)k • g(S)
.

Moreover, we know that g(S) = w M (S f) and by Proposition 39:

(γ • (1 + ε)) 2 γ • (1 + ε) -1 k ′ - γ • (1 + ε) γ • (1 + ε) -1 w M (S f) ≥ γ • (1 + ε) • w * M (M opt \S).
As a result, we obtain

f (M opt | S) ≤ e∈M opt \S f (e | S) ≤ e=et∈M opt \S f (e | S (t-1)) ≤ (1 + ε)   e∈M opt \S u∈e w * u (e) + γ • w * M (e)   ≤ (1 + ε)k + (γ • (1 + ε)) 2 γ • (1 + ε) -1 k ′ - γ • (1 + ε) γ • (1 + ε) -1 g(S)
.

◀

The following lemma states that S f retains a reasonably large fraction of the gains compared to S. For this lemma, we use the notion of erasing tree. The erasing tree T e of an element e ∈ S is defined recursively: it is made of the elements e ′ of C e that were evicted from S f when e was inserted and of the elements of the erasing trees T e ′ associated with these evicted elements.

▶ Lemma 42. It holds that 1 + 1 γ•(1+ε)-1 g(S f) ≥ g(S).
Proof. We have, for all element e ∈ S f , g(e) ≥ (γ

• (1 + ε) -1)w * M (e) = (γ • (1 + ε) -1) e ′ ∈Te
g(e ′).

where T e denotes the elements that are in the erasing tree of e, then

g(S) = e∈S f g(e) + e ′ ∈Te g(e ′) ≤ e∈S f 1 + 1 γ • (1 + ε) -1 g(e),
and the proof follows. ◀ ▶ Lemma 43. It holds that

1 + 1 γ • (1 + ε) -1 • (1 + ε)k + (γ • (1 + ε)) 2 γ • (1 + ε) -1 k ′ - γ • (1 + ε) γ • (1 + ε) -1 + 1 + ε ε g(S f) ≥ f (M opt | ∅).
Proof. By Lemmas 40 and 41, we have that

1 + 1 γ • (1 + ε) -1 • (1 + ε)k + (γ • (1 + ε)) 2 γ • (1 + ε) -1 k ′ - γ • (1 + ε) γ • (1 + ε) -1 + 1 + 1 ε g(S f) ≥ f (M opt | S) + f (S | ∅) = f (M opt ∪ S | ∅) ≥ f (M opt | ∅)
because f is monotone. Then we use Lemma 42. ◀ ▶ Lemma 44. With S f as input, Algorithm 2 returns a feasible b-matching M with f (M) ≥ g(S f) + f (∅).

Proof. As argued in Lemma 8, M respects the capacities. Furthermore, as S f is by construction an independent set in M and M ⊆ S f ∈ I i for al i, we have M ∈ I i for all i. So M is a feasible b-matching. Finally, using an analysis similar to the one in the proof of Lemma 14, we have f (M) ≥ g(S f) + f (∅) (the only difference being that now the "weight" f (e t | S (t-1)) of an element can be higher than the sum of the gains of the elements below it in the queues, which is not an issue for the analysis). ◀

As a result, we get the following theorem (the same way we obtained Theorem 15):

▶ Theorem 45. For non-negative monotone submodular functions, Algorithm 6 with p = 1 combined with Algorithm 2 provides a feasible b-matching such that

1 + 1 γ • (1 + ε) -1 • (1 + ε)k + (γ • (1 + ε)) 2 γ • (1 + ε) -1 k ′ - γ • (1 + ε) γ • (1 + ε) -1 + 1 + 1 ε f (M) ≥ f (M opt).
By setting ε = 1 and γ = 2, we attain the approximation ratio of 8 3 k + 64 9 k ′ + 8 9 for all k and k ′ .

It is possible to obtain better ratios for fixed k and k ′ by a more careful choice of the parameters ε and γ.

Analysis for Non-Monotone Submodular Function Maximization

In this section, we assume 1 2+k(1+ε) ≤ p ≤ 1 k+1 . The following lemma is the counterpart of Lemma 17, whose proof again uses the technique of conditioning (in a more general form).

▶ Lemma 46. We have

(1 + ε)k + (γ•(1+ε)) 2 γ•(1+ε)-1 k ′ + 1+ε ε E[g(S)] ≥ E[f (S ∪ M opt | ∅)].
Proof. By Lemma 40, for any realization on randomness, we have 1+ε ε g(S) ≥ f (S | ∅), so the inequality also holds in expectation.

We next show that, for any e ∈ M opt we have

E[f (e | S)] ≤ (1 + ε)E u∈e w u (e) + w ′ M (e) 1 + ε . (4
)
Let e ∈ M opt . Conditioning on the event

A e = [f (e | S (t-1)) ≤ (1 + ε)(u∈e w * u (e) + γ • w * M (e))] (i.
e. e cannot be part of S), we have

E[f (e | S) | A e] ≤ E[f (e | S (t-1)) | A e] ≤ E (1 + ε)(u∈e w * u (e) + γ • w * M (e)) | A e = (1 + ε)E u∈e w u (e) + 1 1 + ε • w ′ M (e) | A e .
For the condition A e , recall that it means that with probability p, the edge is added into S and with probability 1 -p, it is not. So

E u∈e w u (e) + 1 1 + ε • w ′ M (e) | A e = p • E k + 1 1 + ε f (e | S (t-1)) -k + 1 1 + ε -1 u∈e w * u (e) + kw * M (e) | A e + (1 -p) • E u∈e w * u (e) + γ • w * M (e) | A e ≥ p • E k + 1 1 + ε f (e | S (t-1)) -k u∈e w * u (e) -k • γ • w * M (e) | A e + (1 -p) • E u∈e w * u (e) + γ • w * M (e) | A e = k + 1 1 + ε • p • E f (e | S (t-1)) | A e + (1 -(k + 1) • p) • E u∈e w * u (e) + γ • w * M (e) | A e ≥ k + 1 1 + ε • p • E f (e | S (t-1)) | A e ,
where in the second step we use the fact that γ > 1 and in the last inequality that p ≤ 1 k+1 . Now as p ≥ 1 2+k(1+ε) , we have

(1 + ε)E u∈e w u (e) + w ′ M (e) 1 + ε | A e ≥ (1 + ε) k + 1 1 + ε • p • E f (e | S (t-1)) | A e ≥ (1 -p) • E f (e | S (t-1)) | A e ≥ E f (e | S) | A e ,
and we have established [START_REF] Crouch | Improved streaming algorithms for weighted matching, via unweighted matching[END_REF].

Similar to the proof of Lemma 17 we get

E f (M opt | S) ≤ e∈M opt E [f (e | S)] ≤ (1 + ε) e∈M opt E u∈e w u (e) + E[w ′ M (M opt)] ≤ k(1 + ε)E[g(S)] + E[w ′ M (M opt)].
By Proposition 39 we know that for any realization of randomness, combined with Algorithm 2 provides a b-matching M independent in M such that:

w ′ M (M opt) ≤ (γ • (1 + ε)) 2 γ • (1 + ε) -1 k ′ w ′ M (S f) = (γ • (1 + ε)) 2 γ • (1 + ε) -1 k ′ • g(S). Thus we get E [f (M opt | S)] ≤ (1 + ε)k + (γ•(1+ε)) 2 γ•(1+ε)-1 k ′ E[g (
2 + k(1 + ε) 1 + k(1 + ε) • 1 + 1 γ • (1 + ε) -1 • (1 + ε)k + (γ • (1 + ε)) 2 γ • (1 + ε) -1 k ′ + 1 + 1 ε E[f (M)] ≥ f (M opt).
Setting ε = 1 and γ = 2 we obtain the ratio of 2k+2 2k+1 • 8 3 k + 64 9 k ′ + 8 3 for all k and k ′ .

As in the last section, it is possible to obtain better ratios for fixed k and k ′ by a more careful choice of the parameters ε and γ.

A Making Algorithm 1 Memory-Efficient

We explain how to guarantee the space requirement promised in Theorem 1. In this section, w min denotes the minimum non-zero value of the weight of an edge, and w max the maximum weight of an edge. Moreover, we set W = w max /w min . We also define M max as a given maximum cardinality b-matching.

Let α = (1 + ε) > 1. In Algorithm 7 we add an edge e to S only if w(e) > α u∈e w * u (e) (Line 7). For the moment we set d = 0 in our analysis, ignoring Lines 14-16 of the algorithm. w * u (e) ← min{w u (Q u,q .top()) : 1 ≤ q ≤ b u } 6:

q u (e) ← q such that w u (Q u,q .top()) = w * u (e) Q u,qu(e) .push(e)

14:

if d = 1 and Q u,qu(e) .length() > β then ▷ remove some small element 15:

let e ′ be the β + 1-th element from the top of Q u,qu(e) [START_REF] Schrijver | Combinatorial optimization: polyhedra and efficiency[END_REF]:

mark e ′ as erasable, so that when it will no longer be on the top of any queue, it will be removed from S and from all the queues it appears in ▶ Lemma 48. The set S obtained at the end of algorithm 7 when d = 0 guarantees that 2αg(S) ≥ w(M opt).

Proof. We proceed as in [START_REF] Garg | Semi-streaming algorithms for submodular matroid intersection[END_REF]. Let w α : E → R such that w α (e) = w(e) for e ∈ S and w α (e) = w (e) α for e ∈ E\S. We can observe that with the weights w α , Algorithm 1 gives the same set S as Algorithm 7 with the weights w. We deduce that w α (M opt) ≤ 2g(S) and then, as w ≤ αw α , we get 2αg(S) ≥ w(M opt). ◀

Hence, using same arguments as in [START_REF] Ghaffari | Simplified and Space-Optimal Semi-Streaming (2+ε)-Approximate Matching[END_REF][START_REF] Levin | Streaming submodular matching meets the primal-dual method[END_REF] we obtain the following: Proof. In a given queue, the minimum non-zero value that can be attained is ε 1+ε w min and the maximum value that can be attained is w max . As the value of the top element of the queue increases at least by a factor 1 + ε for each inserted element, a given queue contains at most log 1+ε (W/ε) + 1 edges. Hence, a vertex v ∈ V contains at most min{|δ Modifying an idea from Ghaffari and Wajc [START_REF] Ghaffari | Simplified and Space-Optimal Semi-Streaming (2+ε)-Approximate Matching[END_REF] we can further improve the memory consumption of the algorithm, especially if W is not bounded. For that, set β = 1+ 2 log(1/ε) log(1+ε) = 1 + log 1+ε (1/ε 2) in Algorithm 7 as the maximum size of a queue, and set d = 1 (so that we now consider the whole code).

▶
Consider an endpoint u of the newly-inserted edge e. If the queue Q u,qu(e) becomes too long (more than β elements), it means the gain g(e ′) of the β + 1-th element from the top of the queue (we will call that element e ′) is very small compared to g(e), so we then can "potentially" remove e ′ from S and from the queues without hurting too much g(S). In the code, we will mark this edge e ′ as erasable, so that when e ′ will no longer be on top of any queue, it will be removed from S and all the queues it appears in. To be able to do these eviction operations, the queues have to be implemented with doubly linked lists.

If an edge e = {u, v} is marked as erasable by Algorithm 7 (d = 1) because an edge e ′ = {u, v ′ } is added to S, then we say that e ′ evicted e (and that e was evicted by e ′). Proof. For an element e that was not evicted from S in Algorithm 7, denote by E e the elements that were evicted by e directly or indirectly (in a chain of evictions). This set E e

Algorithm 2

 2 Greedy construction phase 1: M ← ∅ 2: ∀e ∈ S : z e ← 1 3: for e ∈ S in reverse order do 4:

while c ̸ = ⊥ do 9 :

 9 z c ← 0 ▷ mark elements below e in each queue 10: c ← r u (c) 11: return M

 u∈e w * u (e) | A e = (1 + ε)E u∈e w u (e) | A e Next we consider the condition A e (where the edge e should be added into S with probability p). As p ≤ 1 2 , and for e = e t = {u, v} we have the inequality w u (e) + w v (e) = 2f (e | S (t-1))w * u (e) -w * v (e) when e is added to S, we get

Proposition 20 .Algorithm 4

 204 Given a matroid M = (E, I) with weight w : E → R + , then (i) An independent set I ∈ I is a maximum weight base if and only if, for every element e ∈ E\I, I ∪ {e} contains a circuit and w(e) ≤ min e ′ ∈C\{e} w(e ′). (ii) If I ∈ I, I ∪ {e} contains a circuit C 1 and I ∪ {e ′ } contains a circuit C 2 and C 1 and C 2 contain a common element e ′′ ∈ I, then there exists another circuit C 3 ⊆ (C 1 ∪C 2)\{e ′′ }. (iii) If X, Y ⊆ E, z ∈ E are such that X ⊆ span(Y) and z ∈ span(X), then z ∈ span(Y). ▶ Lemma 21. Let {e 1 , • • • , e t } be the set of edges arrived so far. Then the top elements T op(Q M) = T op(Q (t) M) forms a maximum weight base in {e 1 , • • • , e t } with regard to the reduced weight w M . Streaming phase for Matroid-constrained Maximum Submodular b-Matching

) 4 : 5 :

 45 for e = e t , 1 ≤ t ≤ |E| an edge from the stream do for u ∈ e do 6:

14 :

 14 if f (e | S) > α(u∈e w * u (e) + w * M (e)) then 15: π ← a random variable equal to 1 with probability p and 0 otherwise 16: if π = 0 then continue ▷ skip edge e with probability 1 -p 17: g(e) ← f (e | S) -u∈e w * u (e) -w * M (e) e) ← w * u (e) + g(e) 21: r u (e) ← Q u,qu(e) .top() 22:

Algorithm 5 3 : 4 :if C e = ∅ then 5 :M ← M \{e} 6 : else 7 : 8 :▶▶

 5345678 Construction phase for Matroid-constrained Maximum Submodular b-Matching 1: M ← T op(Q M) 2: while some element in M is dominated in the hypergraph by another element in M do let e be the latest dominated element in M let e ′ be an element in C e \(span(M \{e}) ∪ {e}) M ← (M ∪ {e ′ })\{e} return MProof. This can be easily proved by induction on the number of edges arrived so far and Proposition 20(i) and (ii).◀ Corollary 22. At the end of the algorithm, w M (Q M) ≥ w M (M opt). Lemma 23. It holds that (1 + ε)(k + 1)g(S) ≥ w(M opt).

▶

 ′ dominated by e in Q v,qv(e) }) ≥ w M (M) + g(D), because, by the previous lemma, D is a subset of the elements that are actually dominated in the hypergraph (and an element can be dominated multiple times in the real computation of w(M)).◀ Lemma 28. At any time during the execution of Algorithm 5, w M (M) + g(D) ≥ g(S).

 S), and D = ∅. For the induction step, suppose that we have to remove e ∈ M from M because it is dominated by e d ∈ M . If C e = ∅ it means that w M (e) = g(e), then w M ((M \{e})) + g(D ∪ {e}) = w M (M) + g(D) ≥ g(S). If C e ̸ = ∅, then the replacing element e ′ guarantees that (M \{e}) ∪ {e ′ } ∈ I and w M (e ′) ≥ w * M (e) so the new value w M ((M \{e}) ∪ {e ′ }) + g(D ∪ {e}) = w M (M) -g(e)w * M (e) + w M (e ′) + g(D) + g(e) ≥ w M (M) + g(D) ≥ g(S) also respects the inequality. ◀ ▶ Lemma 29. Algorithm 5 returns a feasible b-matching M such that w(M) ≥ g(S). Proof. This follows easily from the previous lemmas. ◀ Therefore combining the previous results we get a (1 + ε)(k + 1) approximation streaming algorithm for the matroid-constrained maximum weight b-matching problem: ▶ Theorem 30. Algorithm 4 combined with Algorithm 5 provides a (1+ε)(k+1) approximation for the maximum weight b-matching problem under a matroid constraint.

▶

 S)]. Now the bound on E [f (M opt | S)] and the bound on E [f (S | ∅)] (argued in the beginning of the proof) give us the lemma. ◀ Finally, using Lemma 18 we obtain: Theorem 47. For non-negative submodular functions, Algorithm 6 with p = 1 2+k(1+ε)

Algorithm 7

 7 Streaming phase for weighted matching, memory-efficient1: S ← ∅ 2: ∀v ∈ V : Q v ← (Q v,1 = ∅, • • • , Q v,bv = ∅) 3: for e = e t , 1 ≤ t ≤ |E| an edge from the stream do 4: for u ∈ e do 5:

7 : 9 :S ← S ∪ {e} 10 :u ∈ e do 11 :

 791011 if w(e) > α u∈e w * u (e) then ▷ stricter condition here 8: g(e) ← w(e) -u∈e w * u (e) for w u (e) ← w * u (e) + g(e) 12: r u (e) ← Q u,qu(e) .top() 13:

Theorem 49 .

 49 Algorithm 7 (with d = 0) combined with Algorithm 2 gives a 2 + ε approximation algorithm by using O log 1+ε (W/ε) • |M max | variables.

 (v)|, b v • (log 1+ε (W/ε) + 1)} elements of S at the end of the algorithm.Then let U ⊆ V be the set of saturated vertices of V by M max , i.e. the set of verticesv ∈ V such that |δ(v) ∩ M max | = min{|δ(v)|, b v }. By construction, U covers all the edges in E\M and v∈U min{|δ(v)|, b v } ≤ 2|M max |.As all edges of S are either in M max or have at least one endpoint in U , we get:|S| ≤ |M max | + v∈U |δ(v) ∩ S| ≤ |M max | + v∈U min{|δ(v)|, b v • (log 1+ε (W/ε) + 1)} ≤ |M max | + v∈U min{|δ(v)|, b v } • (log 1+ε (W/ε) + 1) ≤ (2 log 1+ε (W/ε) + 3) • |M max |,so the memory consumption of the algorithm is O(log 1+ε (W/ε) • |M max |) ◀

▶▶

 Lemma 50. If e = {u, v} is evicted by e ′ = {u, v ′ }, then g(e ′) ≥ g(e)/ε.Proof. We have g(e ′) ≥ ε(w * u (e ′) + w * v ′ (e ′)) ≥ εw * u (e ′) ≥ ε(1 + ε) β-1 g(e)≥ g(e)/ε because after e = e t is added to Q u,qu(e) we have w u (Q (t) u,qu(e)) ≥ g(e) and each time an element is added to Q u,qu(e) the value w u (Q u,qu(e)) is multiplied at least by (1 + ε). ◀ Theorem 51. For ε ≤ 1 4 , Algorithm 7 with d = 1 combined with Algorithm 2 gives a 2 + ε approximation algorithm by using O log 1+ε (1/ε) • |M max | + v∈V b v variables.

 8 3 k + 64 9 k ′ + O(1) for both monotone and non-monotone functions, using O(log W • |M max |) variables in memory, where M max denotes the maximum cardinality b-matching and W denotes the maximum quotient

 C e ← C e ∪ {arg min e ′ ∈X\{e} w M (e ′)}

	8:	C e ← ∅	
	9:	for i such that e ∈ E i do	
	10:	if (S f ∩ E i) ∪ {e} contains a circuit X in M i then
	11:		
	12:	w * M (e) ← w M (C e)	
	13:	if f (e | S) > α(u∈e w * u (e) + γ • w * M (e)) then	
	14:	π ← a random variable equal to 1 with probability p and 0 otherwise
	15:	if π = 0 then continue	▷ skip edge e with probability 1 -p
	16:	g(e) ← f (e | S) -u∈e w * u (e) -w * M (e)	
	17:	S ← S ∪ {e}	
	18:	for u ∈ e do	
	19:	w u (e) ← w * u (e) + g(e)	
	20:	r u (e) ← Q u,qu(e) .top()	
	21:	Q u,qu(e) .push(e)	
	22:		

Indeed, one can observe that the capacity constraint associated with a vertex can be seen as a uniform matroid: each edge involves k such uniform matroids.

In this article, we will often use "edge" and "element" interchangeably.

We note that how the elements in S f are updated here are based on the same idea as in[START_REF] Chakrabarti | Submodular maximization meets streaming: matchings, matroids, and more[END_REF][START_REF] Chekuri | Streaming algorithms for submodular function maximization[END_REF] when constraint is only a p-matchoid without the hypergraph.

contains at most 2 elements that were directly evicted when e was inserted in S, and their associated gain is at most εg(e) for each, and at most 4 elements indirectly evicted by e when these 2 evicted elements were inserted in S, and their associated gain is at most equal to ε 2 g(e) for each, and so on. Then, as ε ≤ 1 4 ,

Therefore, if S 0 denotes the set S obtained by Algorithm 7 when d = 0 and S 1 denotes the set S obtained by Algorithm 7 when d = 1, we get:

because the elements inserted in S are exactly the same for the two algorithms, the only difference being that some elements are missing in S 1 (but these elements were removed when they no longer had any influence on the values of w * and thereby no influence on the choice of the elements inserted in S afterwards). We have then:

and Algorithm 2 will provide a 2(1 + 6ε) approximation of the optimal b-matching. In fact, the analysis of Algorithm 2 with S 1 as input is almost the same as in the proof of Lemma 8, the only difference being that now the weight of an element is no longer necessarily equal to the sum of the gains of elements below it but can be higher (which is not an issue).

Regarding the memory consumption of the algorithm, one can notice that, using the same notation U for the set of the elements saturated by M max as previously, and because there are only up to v∈V b v elements on top of the queues that cannot be deleted (and thus these edges are the ones making some queues in U exceed the limit β), we obtain:

B Example of Different Behavior Compared to [12]

Here is an example to show the difference of behavior between our algorithm and the one proposed in [START_REF] Levin | Streaming submodular matching meets the primal-dual method[END_REF]. Consider a set of four vertices