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ABSTRACT

Aims. Periodic orbits (POs) have been exhaustively studied. On the contrary, to our knowledge, no complete and systematic study of
higher-multiplicity (M ) POs, that is, orbits that close after more than one revolution in phase space, exists. Here, we fill this gap and
also extend the standard tools used for studies of the x1 POs to studies of higher multiplicity POs.
Methods. We adopted a multi-aspect approach, using surfaces of section, stability diagrams, characteristic diagrams, studies of the
shapes of individual orbits, and other properties of the POs. We modified and extended the standard tools used for M = 1, to M > 1
cases, allowing them to use the snapshot information more fully. Our potential is more realistic than those of most previous studies,
as it is obtained directly from a snapshot of a fully self-consistent, high-resolution numerical simulation.
Results. We find five main pairs of PO families with M = 2. Two of these bifurcate from the x1 family and are direct rotators, and
one bifurcates from the x4 family and rotates retrograde. We suggest that the remaining families do not bifurcate, but form parts of
bubbles. The POs of the x1 family have four-fold symmetry, while all the M = 2 POs have only two-fold symmetry, with respect to
either the x or the y axis. Furthermore, two orbits of the same Jacobi constant and from families of the same PO pair are mirror images
of each other. Thus, by considering them together, it is possible to achieve four-fold symmetry. All results obtained here will be used
in a following paper to study the effect of including M orbits in the disc. We also show that a given family can include orbits of more
than one multiplicity.
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1. Introduction

Periodic orbits (POs) are orbits that close in phase space.
The first PO orbits to be studied in barred galaxy potentials
were those in the equatorial plane of the bar. The main fam-
ily of such orbits is generally known as the x1 family (e.g.
Contopoulos & Papayannopoulos 1980; Contopoulos & Grosbol
1989; Athanassoula 1992a; Contopoulos 2002; Skokos et al.
2002a,b), although in some studies it is referred to as family
B (from Bar), (e.g. Athanassoula et al. 1983; Pfenniger 1984;
McGough et al. 2020).

Its orbits are elongated along the bar major axis. The main
retrograde family in Contopoulos’ notation is called x4 (e.g.
Contopoulos 1983a). There is also the pair of x2 and x3 orbits,
which are both elongated perpendicular to the bar major axis
and are confined to a central region much less extended than
that of the x1 family. Finally, there are families at the 3:1 radial
resonance, which have a triangular shape since they have three
radial oscillations for one rotation, and are at the centre of the
galaxy. Studies of orbital structures in three-dimensional1 poten-
tials have revealed a large number of 3d orbits that bifurcate from
the x1 family and have considerable vertical extensions. These

1 We abbreviate ‘two dimensional’ to 2d, instead of the more com-
monly used 2D, because the latter in our notation is a family of POs of
multiplicity two. Similarly, ‘three dimensional’ is abbreviated to 3d.

are often referred to as the x1 tree and are used to explain the for-
mation, features, and properties of boxy and peanut bulges (e.g.
Skokos et al. 2002a,b; Patsis et al. 2002; Athanassoula 2016).

Periodic orbits constitute the backbone of all orbital struc-
tures (Athanassoula et al. 1983). If stable, they are surrounded
by regular quasi-periodic orbits, while, if unstable, they trig-
ger chaos in their immediate surroundings in phase space. Thus,
the morphology of a bar is strongly dependent on its POs, and
the next question to be addressed is which of the PO fam-
ilies is the main contributor to the bar and can be consid-
ered as its backbone. The first study to tackle this problem
was by Athanassoula et al. (1983), who found that it had to be
the x1 family, or, in their notation, family B. This was gen-
erally accepted for more than three decades, until about six
years ago when three studies came more or less at the same
time (Gajda et al. 2016; Valluri et al. 2016; Wang et al. 2016;
Abbott et al. 2017), with a rather surprising result. By Fourier
analysing the temporal evolution of the x and y Cartesian coor-
dinates of a large number of simulation orbits, they showed that
there were relatively few, if any, of the x1, x2, x3, x4, or 3:1
orbits that we presented at the beginning of this section. On the
contrary, they found a very large number of orbits of a quite dif-
ferent and much more complex morphology. These orbits have
a 3:2 ratio for their main frequencies. Thus, according to these
studies, it should be these orbits, and not the x1 orbits that should
be the backbone of the bar.
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Higher multiplicity orbits have been witnessed in a
number of previous studies (e.g. Katsanikas et al. 2011;
Patsis & Katsanikas 2014a; Aumer & Schönrich 2015;
Tsigaridi & Patsis 2015), but were not the focus of the study and
in some cases were even totally ignored. Patsis & Athanassoula
(2019, hereafter PA19) were the first exception, as they gave
an extensive ‘dictionary’ of a number of families of higher
multiplicity orbits, giving a fiducial orbit, its multiplicity, and
some references. However, so far there have been no studies of
characteristic diagrams (CDs), and only a very limited number
of surfaces of section (hereafter SoSs, or SoS for singular)
have been examined for their M > 1 contributions (see e.g.
Patsis et al. 1997; Patsis & Athanassoula 2019); in other words,
there are no systematic studies of SoSs for higher multiplicities.
Furthermore, none of the previous studies coupled an extensive
orbital structure work with frequency analysis, or with quan-
titative morphology of the individual orbits. Thus, there are
important gaps in our knowledge on PO families with M > 1 in
bar potentials, and our understanding is quite incomplete.

In this paper, we aim to fill this gap by making an in-depth
study of POs with M = 2 in a potential obtained directly from a
simulation snapshot. Since we derived the potential is obtained
directly from a simulation snapshot, our model is self-consistent,
and we also have a distribution function from the simulation par-
ticles. Our first aim here is to see how tools such as the CDs
and the SoSs can be extended and modified to enable us to use
them for higher multiplicity orbits in general. This will also be
of use for studies of higher multiplicity orbits in other problems
and topics. We also introduce a more realistic potential, which
is fully self-consistent because it is obtained from an N-body
simulation.

To summarise, our main aim is twofold. The first is to extend
the methods used so far, so that they can be applied to M > 1
POs. The second is to apply these methods so as to provide
sufficient information on M > 1 orbits, and thus allow com-
parisons between different multiplicity orbits as backbones of
various disc-galaxy components, for example, bars. We use these
tools on a complete sample of orbits from a more realistic barred
galaxy potential. These results, together with results from fur-
ther analyses, will be used in a future paper to decide whether it
is the x1 family and tree, or the M > 1 families that dominate
in the bar region. Indeed, it is not possible to decide between the
x1 and the M > 1 orbits as bar building blocks if we have not
studied the latter to a similar degree as the former.

The structure of this paper is as follows. In Sect. 2, we intro-
duce the barred galaxy simulation that we use, and describe
how the potential and accelerations are calculated. In Sect. 3 we
present how SoSs can be used for N-body snapshots and we cal-
culate them for a number of energy values. These values are cho-
sen so as to cover the range useful for the bar region. In Sect. 4
we calculate and present the CDs for the POs with multiplicity
2. We summarise and discuss our results in Sect. 5. All results
found here will be used in a following paper to find the back-
bone(s) of bars.

2. Model

2.1. Choosing a model

The first studies of orbital structures in barred galaxies used
simple analytical potentials of the form A2(R) cos(2θ), or, if
a more complex modelling was necessary, A2(R) cos(2θ) +
A4(R) cos(4θ), where R is the cylindrical radius and θ the
azimuthal angle. These had the big advantage of enabling ana-

lytical work if simple expressions, such as polynomials, were
adopted for the A(R). Their use also made it possible to reach a
number of interesting conclusions and to obtain useful insights
into bar dynamics (e.g. Contopoulos & Papayannopoulos 1980;
Contopoulos 1980; Athanassoula 1990). However, they also had
the disadvantage of leading, in some cases, to negative surface
densities.

The next step was to use Ferrer’s ellipsoids for the bar and
simple analytic models for the disc and the spheroid, such as
the Miyamoto-Nagai disc (Miyamoto & Nagai 1975) and the
Plummer sphere (Plummer 1911), respectively. Although these
are a big improvement with respect to previous works, they still
have a number of serious drawbacks and cannot claim to be
realistic. For example, the disc and spheroid stay axisymmetric
even when the bar is very strong, the bar isodensities are ellip-
soidal, and there is no boxy, peanut, or X-shaped bulge. For fur-
ther such drawbacks, we direct the reader to Athanassoula et al.
(1990), the discussion in Sect. 7.6 of Athanassoula et al. (2015),
or Athanassoula (2016) and references therein.

Potentials can also be calculated from appropriate images
in the infrared or near-infrared, and have thus been used
for orbital structure work or other dynamical calcula-
tions (e.g. Quillen et al. 1994; Patsis et al. 1997, 2009;
Kalapotharakos et al. 2010; Fragkoudi et al. 2015, 2016, 2017;
Querejeta et al. 2015). This approach gives, by definition, realis-
tic potentials, but has the important drawback that observations
give only 2d projections and, although going from 2d to 3d does
not present any major problems for non-barred galaxies, it does
for bars, whose third dimension has an interesting but quite com-
plex structure (Athanassoula 2005, 2016), introducing a number
of free parameters.

Last but not least, it is possible to obtain a barred galaxy
potential from a high-resolution N-body simulation. The most
straightforward way of doing this is by directly using the parti-
cle orbits, as calculated from the simulation codes. This, how-
ever, introduces some difficulties since orbital structure work is
much more demanding in terms of accuracy than the running
of the simulation itself. For example, in the case of grid codes,
there may be discontinuities of higher-order derivatives as a par-
ticle moves from one cell to another. This may not influence the
simulation, but could well influence the amount of chaotic orbits.

We found that a better approach is to freeze the simulation at a
given time and obtain the potential and accelerations directly from
the positions of the particles at that time. The potential and accel-
erations can be calculated using basis-function expansion tech-
niques (e.g. Rojas-Niño et al. 2016), as described in Wang et al.
(2020). The description of the simulation can be seen in our
Appendix, as well as in the works of Athanassoula & Misiriotis
(2002) and Athanassoula (2003, 2007).

2.2. Potential and accelerations

Several methods can be used to calculate the potential and
accelerations for a frozen simulation snapshot. In Wang et al.
(2020), we compared two such expansion methods for galac-
tic potentials obtained from a density distribution given by
N particles of equal mass. The first method, named HO, uses
spherical coordinates and spherical harmonics, and was initially
proposed by Hernquist & Ostriker (1992)2. The second one,
named CylSP, uses cylindrical coordinates, Bessel functions, and

2 It should be noted that this was found to be quite adequate for model-
ling dark matter haloes in Milky-Way-like galaxies (Sanders et al. 2020).
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a spline approximation for the centre-most region. We found that
CylSP fares much better than HO in relevant cases. In this paper
we extend this comparison to SoSs, CDs, and to calculations of
individual orbits.

An analytic bar in two dimensions has a four-fold symmetric
structure, which our N-body bar does not have. To obtain it, we
therefore add new particles that are just reflections of the existing
particles with respect to the main axes of symmetry.

More specifically, to calculate the potential and the accelera-
tions, we used the publicly available CylSP code from AGAMA
(Vasiliev 2019). AGAMA is a publicly available software library
that can be widely used in stellar dynamics. In the cylindrical
coordinates (R, z, φ), the gravitational potential and accelerations
are first computed in some fixed grids (NR × Nz) within a fixed
region R ∈ [Rmin,Rmax], z ∈ [zmin, zmax]. Then, the potential and
accelerations in any position are obtained by the spline interpola-
tion. The accuracy of the accelerations depends on the truncated
number of azimuthal Fourier harmonic terms mmax (Vasiliev
2019; Wang et al. 2020).

In all calculations shown here and unless otherwise noted,
we used the following values for the constants: NR = 50,Nz =
50,Rmin = 0.1, zmin = 0.1,Rmax = 392.3, zmax = 387.3 and
mmax = 12. These values can give high accuracy of the force.

Wherever useful, we made comparisons of the CylSP results
to those obtained with the HO method (Hernquist & Ostriker
1992)3. We adopted as maximum values for the radial expan-
sion terms nmax = 16 and for the angular terms lmax = 12, which
give a good compromise between high speed and high accuracy.
More detailed discussions of the two methods and of their com-
parison can be found in Wang et al. (2020).

2.3. Rotating frame of reference

All calculations in this and the remaining papers of this sequence
are made in a frame of reference that rotates with the bar pat-
tern speed (i.e. where the bar is at rest). Since we are using a
single snapshot from this simulation, both the potential and the
bar pattern speed are constant with time, so that the system is
autonomous. In this frame of reference, the Jacobi energy (or
Jacobi constant) is a conserved quantity. We often refer to it
as ‘the energy in the rotating system’ or even shorten it to ‘the
energy’. In Cartesian coordinates, it is given by

H ≡
1
2

(ẋ2 + ẏ2) + Φ(x, y) −
1
2

Ω2
p(x2 + y2) = EJ . (1)

Here x and y are the coordinates in the Cartesian frame of ref-
erence corotating with the bar with angular velocity Ωp, ẋ and
ẏ are their time derivatives, Φ(x, y) is the potential at the posi-
tion (x, y), and EJ is the Jacobi constant. The related equations
of motion are derived from the Hamiltonian given above and
can be found, for example, in Binney & Tremaine (2008), or
Skokos et al. (2002a). For the orbit integration, we used a 7/8
Runge-Kutta algorithm and we focused on orbits in the equato-
rial plane of the model. For the z extension, we direct the reader
to the studies of Pfenniger (1984), Portail et al. (2015), PA19,
and references therein.

3. Surfaces of section

3.1. General

An orbit in a 2d configuration space can be considered as a time
sequence of the four phase-space coordinates (x, y, vx, vy). As

3 More specifically, we used the Lars Hernquist SCF.F.

discussed in Sect. 2.3, in our model the potential in the frame
of reference rotating with the bar pattern speed is independent
of time. Thus, the energy in this frame is constant and we can
eliminate one of the four phase-space coordinates, say vy, and
the orbit can be considered as a sequence of the coordinates (x,
y, vx). By considering only the intersections of the orbit with the
plane y = 0, and more specifically those with vy > 0, we obtain
a sequence of points on the 2d (x,vx) plane, which is called an
SoS. Any pair of quantities from phase space can be used for
an SoS. Here, we consider the intersections of the orbit with the
plane y = 0 and having vy > 0, that is, leading to a (x, vx) SoS.

Given that an M = 1 PO will close after one single turn
around the centre of the galaxy, it will contribute only one point
to the SoS, its invariant point. For example, in Fig. 1, the x1 orbit
contributes the blue filled circle on each SoS. Similarly, POs of
multiplicity M = 2 close after two turns around the galactic
centre, and will thus cross y = 0 twice and contribute two invari-
ant points on the SoS. Orbits with M = 3 will contribute three
invariant points, and so on.

Orbits encircling a stable PO (often called quasi-periodic, or
regular orbits) are represented on an SoS by a sequence of black
points lying on a curve, called the invariant curve. On the con-
trary, truly chaotic orbits4 will eventually fill, more or less homo-
geneously, the space on the SoS that is available to them. Thus,
SoSs can, at a glance, give information on whether a given orbit
is periodic, regular, or truly chaotic.

Surfaces of section were first introduced by Poincare (1899)
and are often used in orbital structure studies because they are a
powerful tool that can provide crucial information on the orbital
structure in phase space (e.g. Hénon & Heiles 1964). They are
mainly used for 2d problems, but have been often extended to 3d
cases by considering projections from 3d to 2d sub-spaces, or by
using techniques that visualise the distribution of the points in
the 4d space (Patsis & Zachilas 1994).

It is important to note that there is a crucial difference
between the SoSs as they have been used so far, and how we
propose to use them here. In previous studies, the initial con-
ditions for the orbits were obtained by setting a grid, usually
Cartesian, on the SoS and starting the orbits from all the nodes
of the grid that are allowed (i.e. are within the curve of zero
velocity). Depending on the resolution one needs, it is possible
to take a more tight or a less tight grid, or to favour a given phase-
space region by using sub-grids and non-equidistant nodes. We
hereafter refer to this method as the standard method.

However, in our study it is possible to improve this method
because, from an N-body simulation, we can directly obtain, for
any given time t, not only the potential but also the positions
and velocities of each individual particle in the region of inter-
est (here the bar and the region surrounding it, i.e. the inner part
of the disc). It is all these, and only these orbits that we use for
the initial conditions of the SoS orbits, instead of the nodes of
the grid. This is particularly advantageous for the analysis we
have set out to perform. Namely, it allows us to see the phase-
space structure as it actually is, not as it would have been had
all the orbits compatible with this potential been present. Unfor-
tunately, it is possible to have such an SoS only if the poten-
tial is issued from a simulation (e.g. Sparke & Sellwood 1987;
Harsoula & Kalapotharakos 2009) or from a Schwarzschild-type
method (e.g. Schwarzschild 1979; Rix et al. 1997; Thomas et al.
2004; Wang et al. 2012, 2013; Magorrian 2019). We refer to this
method as the N-body method.

4 We use the term ‘truly chaotic’ to distinguish it from the ‘sticky’ or
‘confined chaos’, which are discussed in Appendix C.
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Fig. 1. Surfaces of section in the potential calculated with CylSP and for different Jacobi energies, whose values are given in the upper right corner
of each panel. The blue filled circle in each panel denotes the position of the x1 invariant point. The SoS in each panel was obtained by selecting
the initial conditions of each orbit on a grid covering the available part of the SoS, i.e. using the standard method. The number of orbits included
in a given SoS is shown in the bottom right corner of each panel. The red and blue boxes in each panel indicate the corresponding phase regions
in Figs. 2 and 3, respectively.

Strictly speaking, an SoS, corresponds to a single EJ value.
If we applied this to our case, however, there would be only one
orbit per SoS, or none (i.e. too little information). To avoid this,
we grouped orbits into very narrow bins in EJ . Thus, every SoS
corresponds to all orbits with EJ − dEJ < EJ,orb < EJ + dEJ ,
where EJ,orb is the Jacobi energy of the orbit and EJ that of the
SoS. The value of dEJ has to be sufficiently large so that the SoS
is reasonably populated, and sufficiently small so that we do not
include in a given energy bin the orbits with widely different EJ
values. Thus, dEJ depends on the total number of orbits avail-
able from the simulation and on the complexity of the phase
space of the problem under consideration. We found the value
dEJ = 10−5 to be a good compromise for our case and we adopt
it throughout this work.

To the orbits obtained from the initial conditions, we added
a posteriori on each SoS a filled circle (in blue in all SoS fig-
ures given here), centred on the corresponding location of the x1

orbit invariant point on the SoS. We did this in order to be able
to visualise, on each SoS, the position of the higher multiplicity
orbits with respect to the x1 orbit. The reader, however, should
bear in mind that the x1 orbit, and indeed any PO, is only a math-
ematical object, as it takes infinite precision to obtain it, and thus
has zero probability of being on any SoS. So what we actually
mean above is that the blue point gives us the location of the x1
orbit to within the accuracy of our calculations. This, however,
is several orders of magnitude better than that of the plotting, so,
after having made these remarks, we can now freely talk about
positions of POs on the SoS.

3.2. Salient results from the surfaces of section

We start by examining the orbital structures from a series of 15
SoSs, which span the Jacobi energy range from −2.95 to −1.5. In
Fig. 1 we use the standard initial conditions and in Fig. 2 the initial
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Fig. 2. Same as for Fig. 1, but now using as initial conditions only the simulation orbits having a Jacobi energy between EJ − dE and EJ + dE,
where dE = 10−5. See the text for more information. The orbit number to obtain the SoS with similar EJ is labelled in the bottom right corner in
each panel.

conditions directly from the simulation snapshot (which we refer
to as improved initial conditions), so as to make comparisons.

As expected, we find on any given SoS both islands of sta-
bility and/or chaotic sea(s). Each of these occupies a fraction of
the SoS surface, depending on the value of EJ . We now examine
the structures of the SoS and of the corresponding orbits.

3.2.1. Retrograde orbits

The first thing to note is that with the standard method (Fig. 1),
we find that a considerable fraction of the allowable SoS sur-
face is occupied by retrograde orbits. This fraction is small at
the innermost parts of the galaxy, that is, deep in the potential
well and at low energies, but increases very fast with increas-
ing energy, till roughly EJ = −2.0, where the retrograde orbits
cover a very considerable part of the SoS (see from left to right
and from top to bottom in Fig. 1). Furthermore, as the retrograde
orbits are mainly regular, the ratio of the area occupied by regu-

lar retrograde orbits to that of the area covered by regular direct
orbits is large. Furthermore, the regular retrograde area has a
considerable structure, as it involves not only the well-known x4
orbit, but also higher multiplicity retrograde orbits, such as the
M = 3 orbit in the EJ = [−1.9,−1.6] region and an M = 5
orbit for EJ = −1.5.

This relatively large area covered by retrograde orbits in
the SoS was also found for potentials with a Ferrer’s bar (e.g.
Athanassoula et al. 1983), but it does not imply that bars are
predominantly made of stars on retrograde orbits. Indeed, if
we compare the SoSs obtained with the standard initial con-
ditions (Fig. 1) to the SoSs at the same EJ values, but now
using the improved initial conditions, we get a very different pic-
ture (Fig. 2). In the latter there are very few, if any, retrograde
orbits on the low-energy side and then the number of retrograde
orbits remains of the order of 10% of the total number in the EJ
region [−2.85, −2.4]. At yet higher energies, there are no signs
of x4 orbits, or of orbits trapped around it, and also no sign of
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Fig. 3. Same as for Fig. 2, but in the potential calculated with the HO method. It should be noted that there are similarities, but also considerable
differences between these two figures. One of the strongest differences is that, for small EJ values, the CylSP method shows mainly regular orbits,
while the HO method shows a lot of chaos and dissolving invariant curves. See the text for further discussion.

retrograde higher multiplicity orbits. As our N-body model is
fully self-consistent, we can assert that, despite the size of their
invariant curves, there are only a few corresponding retrograde
orbits, that is, little retrograde trapping in realistic bar models,
and thus, presumably, in the bar region of real barred galaxies.

All the invariant curves in the retrograde part of the SoS in
Fig. 2 seem to be linked to x4 POs, which are M = 1 and retro-
grade. However, as we show in the next sections, there are also
M = 2 or higher-M retrograde POs, but Fig. 2 argues that they
are not encircled by any considerable number of regular orbits.

3.2.2. x1 POs and other orbital types

An approximate visual estimate of the position of the x1 invari-
ant point can be found in most of our plots, and one would have
been able to localise it even if the blue filled circles were not
included in the plots.

In the SoSs with standard initial conditions (Fig. 1) and
within the EJ range [−2.75, −2.5], the x1 invariant point is sur-
rounded by a large number of invariant curves, which, if the den-
sity is not far from constant, argues for considerable trapping
around the x1 orbit. It is, however, not easy to argue for such
constancy.

For the same energy region, but with SoSs constructed with
N-body initial conditions (Fig. 2), it is not clear that this state-
ment could be made, and if it could, it would be definitely less
clear cut. Furthermore, in many of the SoSs shown in Fig. 2, x1
is surrounded by an empty space. Good examples of cases with
such gaps can be seen for EJ < −2.75. But it should be noted
that such SoSs contain relatively few orbits in total; for example,
for EJ = −2.85 there are only eight quasi-periodic orbits in total,
that is, the lowest value among those shown in Fig. 2. Such gaps
cannot be seen in cases where we have better statistics, such as
EJ = −1.6, with 38 orbits in total. On the contrary, in these cases
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there are a number of invariant curves near and around x1 orbits,
that is, a number of orbits tightly encircling the x1 orbits.

As we increase, on the SoS, the distances from x1 orbits, we
find that the quasi-periodic orbits encircling the x1 orbits cease
where the higher multiplicity islands become sizeable and that
this, for our case, occurs roughly at EJ = −2.4. At larger dis-
tances from the x1, we witness the two islands characteristic of
the M = 2 orbital families. They have been found in several pre-
vious works with models including a Ferrer’s bar, and their cor-
responding families are referred to as rm21 and rm22 in PA19,
and are referred to as 2A and 2As, respectively, in this paper
(Sect. 4.2).

At larger distances from the x1, we encounter a number of
yet higher multiplicity orbits, such as M = 5, M = 8, or even
M = 13 orbits. The former are located in the energy range
−2.4 ≤ EJ ≤ −2.2, similar to that of the M = 2 orbits discussed
above. There are also similarities with respect to the location of
these islands. Namely, the higher multiplicities are, similar to
the M = 2 orbits, confined on the SoS in a narrow asymmet-
ric ring around the x1 orbits. At the highest couple of energies –
EJ = −1.5 for Fig. 1, and EJ = −1.6 and −1.5 for Fig. 2 – we
see some dissolution of the invariant curves.

3.3. Comparing CylSP and HO surfaces of section

Comparing Figs. 2 and 3, it is clearly seen that the most impor-
tant difference between the two potentials is the amount of chaos.
In the potential calculated in the HO way, there is considerable
chaos both at the smallest energy (EJ = −2.95) and the second
largest (EJ = −1.6) energy, which is absent when we use CylSP.
Moreover, with HO a considerable fraction of the invariant curves
are in the dissolution phase, while this is much less pronounced
for the CylSP potential. This can be understood by the difference
between the CylSP and the HO in the centre-most region, where
the latter is poorly described and leads to much larger forces and,
at some level, discontinuities, while CylSP gives a much better
representation. Such problems for HO can introduce chaos for
orbits crossing this centre-most region (centrophylic orbits). This
explains why we find more chaos and more invariant curve dis-
solution for the HO potential. We thus confirm what was noted in
Wang et al. (2020), where this difference between the two poten-
tials has been discussed exhaustively. Looking more closely, we
can see a number of further differences between Figs. 2 and 3.
They are, however, much less conspicuous and quantitative than
the differences discussed above concerning chaos. For example,
the retrograde orbits are, in the lower energies, more pronounced
for the CylSP than for the HO potential.

3.4. Periodic orbits with different multiplicities

3.4.1. Periodic orbits with a multiplicity of one

The main M = 1 family of POs in barred galaxy potentials is
the well known x1 family, from which bifurcate a large num-
ber of other POs. Figure 4 shows a sequence of such orbits
for a number of EJ values. These are the same values that we
used for the SoSs in Sect. 3, increasing from left to right and
top to bottom. Near the galactic centre, the size of the orbits is
very small and increases with an increasing Jacobi constant. At
the apocentres, namely at the locations where the |y| is maxi-
mum, most of the orbits have cusps, a sign that the bar is quite
strong (Athanassoula 1992a). At the larger energy values, the
cusps disappear while the orbits become considerably less elon-

Fig. 4. Shape of the x1 POs in our model potential, as a function of
the Jacobi constant. The Jacobi constant increases from left to right and
from top to bottom. It is given in the upper right corner of each panel.
It should be noted that the major axis of the bar is along the y axis.

gated. These features are in good agreement with those of the
orbital shapes of strong bars in Athanassoula (1992a). Since in
Athanassoula (1992a) the bar potential was modelled by a simple
Ferrer’s ellipsoid, we can argue that these features are generic of
the 2d orbital structure in a bar.

3.4.2. Individual periodic orbits from the main M = 2 families

We find ten different families that come in pairs; in other words,
for each of the families, we find there is a second one whose
orbits are symmetric to those of the first with respect to the x or
the y axis. This is due to the imposed symmetry of the potential.
We named these five pairs 2A/2As, 2B/2Bs, 2C/2Cs, 2D/2Ds,
and 2E/2Es, where, for example, family 2As has orbits that are
symmetric to those of 2A with respect to the x axis, and 2Bs has
orbits that are symmetric to those of 2B with respect to the y
axis, and so on.

In Fig. 5, the two first rows from the top give characteristic
examples of the orbits of the five families of POs and of their
symmetric counterparts. From left to right, we give the pairs of
families 2A/2As, 2B/2Bs, 2C/2Cs (for EJ = −2.4), 2D/2Ds (for
EJ = −1.7), and 2E/2Es (for EJ = −2.2). The small filled circles
show the positions where the orbit intersects the x axis and the
arrows show the directions of the corresponding velocity vectors.
Thus, they give the positions at which the orbit will cross the
(x,vx) SoS and are marked in the appropriate colour in the third
row of panels.

As already mentioned, each member of the 2A or 2As fami-
lies is symmetric with respect to the x axis and each member of
2As is symmetric to the member of the 2A family with the same
EJ value, now with respect to the y axis. This is now clearly seen
by comparing the orbits of the first and second rows. From the
velocity arrows in these same panels, we see that 2A orbit will
contribute two invariant points to the SoS, both with vx = 0. One
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Fig. 5. Information on M = 2 POs. Uppermost row (in red) shows the (x, y) view of families 2A, 2B, 2C, 2D, and 2E, as given in the upper right
corner of the corresponding panel. The red filled circles show the location where the orbit intersects the x axis and the two red arrows show the
directions of the corresponding velocity vectors. Middle row shows the same information but now for their symmetric orbits, i.e. from families
2As, 2Bs, 2Cs, 2Ds, and 2Es, respectively (in green). Bottom row: we show the corresponding SoSs and the invariant points of the orbits from the
first two rows. In all cases we use red for the first family and green for its symmetric counter part. See the text for more information. The blue
filled circles indicate the position of the x1 orbit invariant point.

has a very small |x| value, while the other is located at a consid-
erably larger x value. The x values of the two positions at which
the 2As orbit crosses the x axis coincide, while their vx com-
ponents have equal amplitudes and opposite signs. Thus, four
points in total are contributed to the SoS (the lowest panel), two
from the 2A orbit and two from the 2As orbit. However, since the
two crossings of the As orbit will occur at the same x value, this
family will contribute only one line to the CD, as is indeed wit-
nessed in the upper left panel of Fig. 6, and in total there would
be three characteristic curves for the 2A/2As pair.

The individual orbits of the 2D/2Ds families have topologi-
cal characteristics similar to those of the 2A/2As families. Each
individual orbit of these families is symmetric with respect to
the x axis. Thus, as expected, these families also contribute four
points to the SoS, two from the 2D family and the other two
from the 2Ds family. And, again since the two x values of the
2Ds family are the same, they will contribute only one line to the
CD, as indeed found in the middle left panel of Fig. 6. It should
also be noted that the intersections of the 2D/2Ds families on the
SoS are considerably further from the x1 orbit than the corre-
sponding intersections of the 2A/2As families, and that the size
of the individual orbits are considerably larger.

Orbital family 2B, however, follows the above only partly.
Contrary to the 2A/2As and the 2D/2Ds cases, each 2B orbit is
symmetric with respect to the y axis and although each member
of Bs is symmetric to the member of 2B that has the same EJ ,
the symmetry now is with respect to the x axis. Thus, although

these orbits have a different symmetry from that of the 2A/2As
pair, by superposing two corresponding 2B and 2Bs orbits, we
again obtain a shape symmetric with respect to both the major
and the minor axes of the bar. A further difference is that of the
matching of the x values of the invariant points of these orbits to
the SoS. Contrary to the two previously described families, now
the x value of one of the two invariant points of the 2B family is
equal to one of the two invariant points of the 2Bs family, and the
remaining 2B invariant point will match with the remaining 2Bs
one. Thus, the four contributions of the 2B and 2Bs together will
define only two distinct x values, which means that there should
be only two 2B lines on the CD, as can indeed be witnessed in the
upper row of the middle panel of Fig. 6. Family pairs 2C/2Cs and
2E/2Es have the same symmetries and behaviour as the 2B/2Bs
pair, and, as was the case for the 2A/2As and the 2D/2Ds fam-
ily pairs, their contributions are much further from the x1 orbit
than those of the 2B/2Bs pair. In fact the sequence of increasing
distances is 2B/2Bs, 2C/2Cs and 2E/2Es. On the contrary, the
size of the individual orbits of the three families is very similar,
but that could well be due to the fact that the corresponding EJ
values are not the same in the three cases.

The SOS points for each EJ shown here are produced by
the initial conditions of a simulation particle. From the positions
of these five families in the SOS, we can see that the 2As and
2D families are relatively popular in the bar potential, while the
2B/2Bs, 2C/2Cc, and 2E/2Es families are not popular in these
selected EJ .
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3.4.3. Orbits with higher multiplicities

We viewed a number of POs in our model with multiplicities
ranging from one to five, and a few POs with even higher multi-
plicities, and noted that, in general, higher multiplicity POs have
more loops and a more complex morphology than the lower mul-
tiplicity ones. The difference gets particularly strong when we
compare them to M = 1 POs. Typical examples are shown in
Fig. 7. For each PO we show its (x, y) view (upper sub-panels)
and the SoS (lower sub-panels) at the EJ of the orbit(s). The
value of the latter is given in the upper right corner of each orbit
panel and the multiplicity is given in the upper left. To distin-
guish between POs of the same EJ and multiplicity, we added
after the multiplicity a lower case letter, for example ‘a’, or ‘b’.
In each case, the location where the orbit intersects the x axis
with vy > 0 is given with a red filled circle and the direction of
the velocity is shown by an arrow of the same colour. The loca-
tion of the intersection of the orbit with the SoS is given in the
lower sub-panel, also with a red filled circle.

The upper left panel gives five x1 orbits (i.e. M = 1), for
EJ = −2.2, −1.8, −1.7, −1.6, and −1.5. As there is more than
one EJ value involved, we cannot plot an SoS. Instead, we plot
in the lower sub-panel the location of the x1 orbit on the (x, vx)
plane for each of the EJ values considered. We note that these
orbits are well elongated and have, at least for our model, cusps.
This can set a constraint on the bar strength as the strongest of
bars have loops, the intermediate ones have cusps, and the weak
bars have neither of these features (Athanassoula 1992a,b).

Still in the upper row, but now in the second and third
columns from the left, we give two M = 2 examples from the
2A and 2B families. In this and all subsequent cases, the con-
tribution of the orbit shown in the upper sub-panel to the (x, vx)
SoS in the lower sub-panel is shown with red filled circles. In the
upper row and fourth column, we show an M = 3 PO.

Similarly, the third (fifth) row shows four (three) examples
of M = 4 (M = 5) orbits. As in previous cases, red filled
circles on the corresponding SoS in the lower sub-panels give
the contribution of the orbit.

Even a fast perusal of Fig. 7 shows us that with increasing
multiplicity, the orbits acquire more loops and their morphology
becomes more complex. We note that this is quite clear also in
the retrograde orbits.

4. Characteristic diagrams of the periodic orbits
with a multiplicity of two

4.1. General

Characteristic diagrams provide crucial information on POs and
are very often used in studies of orbital structures in bars. To start
simple, we assume we work with 2d orbits that are symmetric
with respect to the x axis and have M = 1. Then, at the inter-
section of the orbit with the x axis, we have y = vx == 0 and
every PO can be represented by a single point, with its energy
and two coordinates (EJ , x, vy). Thus, for a given EJ value, we
can have for every PO its x = f (EJ). A continuous sequence of
POs forms a family and is represented by a line, usually called a
characteristic curve on the (EJ , x) plane, in turn usually called a
characteristic diagram. This is of course the most simplified case,
and we could have cases in which vx is non-zero. In that case, the
number of dimensions of the CD increases accordingly, and the
visualisation of the characteristic curves becomes increasingly
difficult to plot and to comprehend. In such cases, it is usual to
project the characteristic curves on planes and in our case we

have chosen the (EJ , x) projection, which we loosely call the
characteristic diagram.

Following previous studies and for the same reasons, in this
section, we also restrict our CD studies to 2d potentials. We
cannot, however, restrict them to POs with vx = 0, because of
the nature of the higher multiplicity orbits. Indeed, the M = 1
orbits, have only one intersection with the x axis, and are thus
either symmetric or asymmetric, that is, they either have vx = 0
or vx , 0. This, however, is not true for higher multiplicity orbits,
which will have a number of intersections with the x axis equal
to their multiplicity. So a M = 2 orbit can intersect the x axis
once with vx = 0 and once with vx , 0. To define such a 2d
non-symmetric PO uniquely, we need three values, for example,
EJ , x, and vx. Thus, CDs including such POs are constituted not
by lines on a plane, but by lines in a 3d volume. In most cases,
however, only the projection on the (EJ , x) plane is shown. Here
we show (EJ , x) projections in Fig. 6.

The information obtained from the SoSs and the information
from CDs is complementary. Indeed, an SoS gives information on
a single EJ , but on all orbits, periodic or not, regular or chaotic, and
for all multiplicities and families. On the contrary, a CD includes
the whole relevant EJ range, but includes only POs, and often
focuses on a single multiplicity and/or on given families.

All POs of a given family have some common morphological
characteristics that must be found and analysed before one can
assert whether and how a given family can contribute to a given
component or morphological feature. Such analyses were per-
formed, for example, by Athanassoula (1992a) and Patsis et al.
(2003), for the face-on projection of bars, and by Skokos et al.
(2002a) and Patsis et al. (2002) for their boxy and peanut central
parts. We thus need to perform such analyses for orbit families
with multiplicities of two or higher, before being able to assess
their role in the formation and evolution of bars. To achieve this
we must first extend the CDs to higher multiplicity orbits, as
there are no previous studies on this subject. We thus have to
start by introducing how CDs should be defined in such cases
and what information can be obtained.

As already mentioned, M = 1 POs will intersect the y = 0
axis with vy > 0 only once, while M = 2 orbits will intersect
it twice before closing, M = 3 orbits thrice, and so on. Thus,
a family of M = 1 POs will contribute a single line to the CD,
while an M = 2 PO family will contribute two such lines, and
an M = 3 PO family three. It is important to note that these
M > 1 lines do not correspond to several, different families,
but to one single family only. Thus, for a given EJ there are two
or more values of x, all of which correspond to a single orbit.
Showing only one line on the CD plot is not a reasonable option,
since there is no primary line and no specific reason to choose
one rather than another. Furthermore, it could lead to important
misunderstandings if two independent studies chose to plot dif-
ferent lines for the same family. For this reason, and as there are
no previous CD studies for M > 1 orbits, we decided it would
be best to keep all M values and lines, and make it clear that
they refer to one single family only.

4.2. Salient results from our M = 2 characteristic diagrams

In Fig. 6, we show the CD for these five pairs of M = 2 PO
families. Contrary to what is customary for the CDs of M = 1
families, we plot every pair in a separate panel because the CDs
of higher multiplicity POs are considerably more complex than
those of M = 1 and including them all in the same panel
makes it very difficult to discern any structure. The names of the
families in each panel are given at the top of the corresponding
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Fig. 6. Characteristic diagram calculated using the CylSP potential. Each panel gives information on a pair of symmetric families, identified at the
top of the panel. Information on the form of the orbits is given in small inserts, as described in Sect. 4.2. We note the name of the various families
in the left of the panel. We also distinguish between stable (S on the plot) and unstable orbits (U on the plot), using a full line for the former and a
dashed line for the latter. We also plot the zero-velocity curve (thick dashed black line), and the characteristics of the x1 and x4 orbits (thin solid
and dotted lines, respectively). The cyan line in the bottom right panel is for the 1E family. More detailed discussions for family 1E can be found
in Appendix B.1.
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Fig. 7. Comparison of orbits of various multiplicities. See text.

panel. We also include in each panel small inserts showing indi-
vidual orbits. Each insert is linked by a thin, vertical dashed line
to the corresponding characteristic, so that it is clear to which
EJ each orbit corresponds. All these sub-panels have the same
extent and scale, so as to allow comparisons between orbits of
different families, as well as the evolution of the orbital size of a

given family with EJ at a glance. Their scales for the x and for y
axes are also the same, to allow an immediate visual estimate of
the elongation of each orbit.

Still in Fig. 6, we distinguish between segments of the
characteristic curves where the POs are 2d stable, which are
plotted with a full line, and segments where the orbits are
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unstable, where we use a dashed line. We also plot the zero-
velocity curve (thick black dashed line), and the characteristics
of the x1 and x4 POs (thin black lines, which are solid or dotted,
respectively), in order to visualise whether the family described
in each panel emanates from one of these two families, or not.

As described in Sect. 2, we purposely symmetrised the den-
sity distribution with respect to the symmetry axes of the bar,
so as to be able to rely on previously introduced techniques and
to compare with previous results, whose potentials were, in the
vast majority of cases, symmetric. We have, however, found no
M = 2 families whose orbits are symmetric with respect to both
the x = 0 and the y = 0 axes. All M = 2 POs are symmetric
either with respect to the x = 0 planes, or with respect to the
y = 0 one. This constitutes a major difference between M = 1
POs, which are mainly elliptical-like, and M = 2 POs, whose
orbits have much more complex shapes. Furthermore, it should
be noted that for every PO that is symmetric with respect to the
x = 0 plane, there is another PO that is symmetric to the first one
with respect to the y = 0 plane, so that adding the two together
results in a full four-fold symmetry. Therefore, the shape obtained
from the superposition of the two will be symmetric with respect
to both axes, as is required to build a symmetric bar. More specif-
ically, the orbits whose characteristic curves are shown in the left
panels of Fig. 6 (i.e. orbits 2A/2As and 2D/2Ds) are symmetric
with respect to the y=0 line. Then the two symmetric families of
each pair are symmetric with respect to the x = 0 plane. On the
contrary, the orbits whose characteristics are plotted in the right
panels (i.e. orbits 2B/2Bs, 2C/2Cs, and 2E/2Es) are symmetric
with respect to the x = 0 plane, while the two orbits on the two
symmetric families are symmetric with respect to y = 0. Thus, all
M = 2 families come in pairs, as already hinted in Sect. 3.

The characteristic curves in Fig. 6 argue that families 2A/2As
and 2B/2Bs bifurcate from the x1 family, in good agreement with
what was already found by PA19. On the contrary, family 2E/2Es
bifurcates from family x4, that is, the retrograde M = 1 family
(see lower right panel of Fig. 6), in good agreement with the fact
that this is a retrograde family. We have found no family from
which the 2C/2Cs and 2D/2Ds families could bifurcate from.

In Fig. 6, we see that the 2A family bifurcates from the x1
family, being unstable, but shortly after that it becomes stable.
On the contrary, the 2B family bifurcates as stable and shortly
after that it becomes unstable. Thus, the 2A family is mainly
stable and the 2B family is mainly unstable. The 2D family is
generally unstable, while the 2C family is partly stable and partly
unstable. The 2E family is stable, and the 1E family is unstable
if EJ is larger than −1.841. For a more detailed discussion on
stability, we refer the interested readers to Appendix C.

5. Summary and discussion

In this paper, the first in a sequence of papers, we give informa-
tion on POs with M ≥ 2, a subject on which little information
has been so far published. Indeed, it would have been unfair to
compare the x1 family, on which a number of papers has been
written, to families with M ≥ 2, to which only a few sentences
have been devoted, but not a single full paper.

We studied the orbital structure in a barred galaxy potential,
as did a number of previous works. Ours, however, is not ‘yet
another’ such study, as it has three considerable differences from
and improvements over previous such studies.

Firstly, we explored orbits not with M = 1, as previous
works, but with M = 2 or higher, and their structures and their
properties. Our study includes CDs, stability diagrams, SoSs,
and studies of individual orbits and their properties. This is,

to our knowledge, the first attempt at a thorough and complete
study of higher multiplicity orbits and their properties. Such all-
round studies have so far aimed only at M = 1 orbits, which
leads to a partial coverage of the orbits, and may thus miss essen-
tial information.

Secondly, we did not model the bar using the by now stan-
dard Ferrer’s ellipsoid. We obtained the potential directly from
an N-body snapshot, which is fully self-consistent and much
more realistic than the Ferrer’s ellipsoid.

Thirdly, using an N-body simulation has the further advan-
tage that it provides us also with a distribution function, that
is, full information on how the particles are distributed in phase
space. This was useful for the SoS (compare Figs. 1 and 2), but
will also be useful when we Fourier analyse the orbits to obtain
their main frequencies.

We combined the SoSs and CDs with the stability dia-
grams to study the shapes of individual orbits and other prop-
erties of the POs with multiplicity larger than one. We also
extended the results of Wang et al. (2020), who compared the
accuracy of potential and force calculations of two expansion
methods, to find which one is preferable for orbit integration
in barred galaxy simulations. The first such method is that of
Hernquist & Ostriker (1992, HO for short), which uses a spheri-
cal coordinate system and was built specifically for the Hernquist
model (Hernquist 1990). The second one is described by Vasiliev
(2019), is known as CylSP, and uses a cylindrical coordinate sys-
tem and a central spline. We find that the CylSP provides a better
orbit integration method. The main results of this paper can be
summarised as follows:

(1) From the SOS generated by the initial conditions of the real
simulated particles only, it is found that the x1 orbit is encircled
by lots of quasi-periodic orbits, which indicates that x1 is still an
important family in the bar structure. If we increase the distance
from the x1 orbit, we find that higher multiplicity islands become
sizeable if EJ > −2.4. At larger distances from the x1 orbit, there
are a number of yet higher multiplicity orbits, such as M = 5 or
M = 8, or even M = 13 at some Jacobi energies.

(2) We find five main pairs of PO families with M = 2,
which we named 2A/2As, 2B/2Bs, 2C/2Cs, 2D/2Ds, and 2E/2Es.
The 2A/2As and 2D/2Ds families are symmetric to the x axis,
while the 2B/2Bs, 2C/2Cs, and 2E/2Es families are symmetric to
the y axis.

(3) The 2A/2As and 2B/2Bs families bifurcate from the x1
and their existence was already known from previous works.
The next three families have not been previously discussed.
The 2E/2Es family bifurcates from the retrograde x4 family,
and its orbits are retrograde. For the 2C/2Cs and 2D/2Ds fam-
ilies, we suggest that they do not bifurcate from any family, but
form a bubble, as the x2 and x3 families do (for the latter, see
Contopoulos 1983b,c).

(4) The orbits of the 2A family are generally stable, except
for a few relatively narrow ranges of EJ , the two widest being
[−2.5296, −2.4708] and [−1.9947,−1.8950]. On the contrary, we
found that the 2B and 2D families are generally unstable, while
the 2C family is partly stable and partly unstable.

(5) We find a number of POs in our model, with multiplici-
ties ranging from one to five, and a few POs of even higher mul-
tiplicities. Higher multiplicity POs have more loops and a more
complex morphology than the lower multiplicity POs.

(6) We find that the SOSs calculated by the HO and CylSP
methods have the strongest differences for small EJ values;
the CylSP method shows mainly regular orbits, while the HO
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method shows a lot of chaos and dissolving invariant curves. The
CDs calculated by these two methods have relatively small quan-
titative differences, except at the lowest and highest EJ values,
where the difference becomes sizable.

For the POs in the bar structure, two candidates have been
put forward: the x1 POs (Athanassoula et al. 1983) and the
M = 2 orbits (Gajda et al. 2016; Valluri et al. 2016; Wang et al.
2016; Abbott et al. 2017). A vast literature is available for the
x1 family, providing all the necessary information for our task.
However, little is known for the M = 2 orbits. Therefore, our
first step was to fill this gap and provide at least the basic infor-
mation necessary for our task. This information, as well as the
techniques we have developed and used here, should be useful
also for other galactic dynamics studies.

Although we have found five main pairs of PO families with
M = 2 and a few other PO families with M larger than two, it
is difficult give the precise fraction of each orbit family. The first
reason is that there are only a few real POs in the simulation
bar model and most orbits are quasi-periodic. How to describe
the difference and transition between periodic and quasi-periodic
orbits is a challenging topic. The second reason is that we need
a reliable orbit classification method that is valid for the general
orbits. This is precisely what we try to accomplish in this work.
In future papers of this series, building on the work here, we will
study the contributions of different orbit families more closely.
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Appendix A: Simulation

This simulation was run by one of us (EA) with initial condi-
tions including two components, a halo and a disc, and were
generated as described in Athanassoula (2007). Both compo-
nents were live, thus allowing the evolution of the bar via angu-
lar momentum redistribution within the galaxy (for a review see
Athanassoula 2016). The initial volume density distribution of
the disc is given by

ρd(R, z) =
Md

4πh2z0
exp(−R/h) sech2

( z
z0

)
, (A.1)

where R is the cylindrical radius, h is the disc radial scale length,
z0 is the disc vertical scale thickness, and Md is the disc mass.
For the halo, the initial volume density is

ρh(r) =
Mh

2π3/2

α

rc

exp(−r2/r2
c )

r2 + r2
h

, (A.2)

where r is the spherical radius, Mh is the halo mass, rh and rc are
the halo core and cut-off radii, respectively, and the constant α is
given by

α = {1 −
√
πq exp(q2) [1 − erf(q)]}−1, (A.3)

where q = rh/rc (Hernquist 1993). We used here the standard
units used in stellar dynamics (i.e. in simulations that do not
include gas). They have G = Md = h = 1, where Md is the disc
mass, h is the initial disc scale length, and G is the gravitational
constant. We also took Mh=5., rh=0.5, rc=10, z0=0.2 and for
the initial Toomre Q parameter (Toomre 1964) Q=1.2. To con-
vert these to astronomical units, one needs to adopt relevant val-
ues for Md and Rd; see for example Athanassoula & Misiriotis
2002. For standard, Milky-Way-like galaxies, the disc mass is
Md ≈ 5 × 1010, and the scale length is h ≈ 3.5 kpc. As a result,
the corresponding velocity unit is 248 km s−1 and the unit of
time is 1.4 × 107 yr. The simulation was run using gyrfalcON
(Dehnen 2000, 2002). A simulation with the same initial con-
dition radial profiles and with the same parameter values was
run by Athanassoula (2003) - see model Mγ3. There is, never-
theless, a difference since for orbital structure studies, a much
smoother potential is required. We thus increased very consider-
ably the number of particles for this run.

The mass resolution of the present bar simulation is quite
high, and the mass of each particle is 6.25 × 10−7. The total
number of particles in the simulation is 9,304,278, of which
1,600,000 particles are disc particles. The remaining particles
are for the dark matter halo.

As we are studying an autonomous system, we need only
one time and its corresponding snapshot. For that we used a time
t = 450 (see Athanassoula 2003). Fig. A.1 displays the face-on
view of the disc component at this time. The bar is rotated so
that the major axis of the bar coincides with the y axis. It is seen
that there is a clear bar structure in the disc centre at our chosen
time. The pattern speed of the bar is calculated by the evolution
of the position angle of the major axis of the bar Ωp = dθ/dt.

In order to obtain a measure of the bar strength, we follow
Athanassoula & Misiriotis (2002) to project the disc particles on
the (x, y), each Fourier component is given by

Am(R) =
1
π

∫ 2π

0
Σ(R, θ) cos(mθ)dθ, m = 0, 1, 2, ... (A.4)

and

Bm(R) =
1
π

∫ 2π

0
Σ(R, θ) sin(mθ)dθ, m = 0, 1, 2, ... (A.5)

Fig. A.1. Isodensities of the disc particles at snapshot at our chosen
time. Viewed face-on.

Fig. A.2. Basic information on our simulated model. Le f t: Projected
density profiles along the bar major (dashed line) and minor (solid line)
axes. Right: Ratio of the amplitude of

√
A2

m + B2
m/A0 for the even terms

of the mass of the disc particles.

We divide the surface into annuli of equal width ∆R = 0.1 and
calculate the Am and Bm for each annulus. The ratio of the ampli-
tude is defined as

√
A2

m + B2
m/A0.

The left panel of Fig. A.2 shows the projected density pro-
file along the bar major and minor axes. As expected, the pro-
jected density decreases more quickly along the bar minor axis
than that along the major axis. A comparison with observa-
tions (e.g. Elmegreen & Elmegreen 1985 ) or simulations (e.g.
Athanassoula & Misiriotis 2002) shows clearly that our model
is realistic. The right panel of Fig. A.2 shows the ratios of the
amplitude of Fourier components of the density for the even
terms. It is seen that the m = 2 component has the largest ratio of
the amplitude, which is consistent with the typical characteristic,
as shown in Athanassoula & Misiriotis (2002).

We project all particles in the x − y plane. When we calcu-
late the Jacobi energy, we ignore the vertical motion, the Jacobi
energy is calculated by EJ = 1

2 (ẋ2 + ẏ2) + Φ(x, y, 0) − 1
2 Ω2

p(x2 +

y2). The equipotentials of the effective potential are shown in
Fig. A.3.
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Fig. A.3. Equipotentials of the effective potential Φeff = Φ(x, y, 0) −
1
2 Ω2

p(x2 + y2) of the bar at snap t = 450. Five red stars denote the posi-
tions of five Lagrange points.

Appendix B: More information on the characteristic
diagrams

B.1. A change in multiplicity along a characteristic curve

The 2E family presents a very interesting feature: for values of
EJ less than −2.0591, its POs have M =2, as shown in the left
panels of Fig. B.1. On the contrary, for larger EJ values, the
POs have a multiplicity of M =1. This shift is abrupt and eas-
ily understood by comparing the two panels of the upper row.
Indeed, for the lower of the two energies (EJ=-2.2), the PO inter-
sects the y=0 line four times, two with a positive vy and two
with negative (see lower left panel). It will, thus, contribute two
points to the SoS and will be of a multiplicity of two (M =2). As
the energy increases, the orbit also gradually changes. There is
a gradual increase in size and, in particular, its quasi-horizontal
section will gradually shift to lower y values, so that it will inter-
sect the y=0 line only two times, one with a positive and the other
with a negative vy. Thus, this PO will have M =1 (see lower right
panel).

Thus, as we move from lower to higher EJ values, the mul-
tiplicity of the orbits changes from M =2 to M =1. This shows
that the multiplicity is not a property linked to a given family,
but that of the individual POs that constitute it. Furthermore, it
is also linked to the adopted SOS.

B.2. Comparison of HO and CylSP characteristic diagrams

As already mentioned, Wang et al. (2020) compared the ade-
quacy of two expansion methods to calculate galactic potentials
obtained from a N-body snapshot including several components
such as a halo, a disc, and a bar. They found that the CylSP
method is more adequate for the potential and accelerations cal-
culations.

Here we extend this comparison to the CDs. In Fig. B.2 we
compare characteristic lines, as calculated by HO and by CylSP,

Fig. B.1. Change in multiplicity along the characteristic curve of the 2E
family. The top row of panels shows the (x,y) view of two POs whose
EJ values are given in the bottom right corner of the corresponding
panel. The thin red horizontal lines are just to guide the eye and to show
the location of y=0. The bottom row of panels shows the location of
the corresponding invariant points on the SoS. The blue filled circle in
each panel corresponds to the x1 invariant point, while the red ones
correspond to those of the 2E POs. It should be noted that the orbit to
the left has two invariant points, i.e. an M =2, while the one on the right
has a single invariant point, i.e. M =1. This multiplicity shift occurs at
EJ=-2.0591.

for our five pairs families. We note that the difference for most
cases is quite small. There are, however, cases where it is notice-
able, namely for both the 2A and 2B families, two regions, one
with the smallest and the other with the largest EJ values. Thus,
EJ extends to somewhat larger values when calculated with the
CylSP method compared to the HO method.

B.3. Comparison of mmax = 4 and mmax = 12 for CylSP
potentials

In Fig. B.3 we make a further comparison, now between the CD
as calculated using mmax = 4 and as calculated with mmax = 12,
both for CylSP potentials. We find that for the x1, 2C, 2D, and
2E families, the differences range between negligible and very
small. For the 2A and 2B families, however, we find a larger
span in differences. For most cases there is good agreement, but
for a few cases, the difference is quite large, particularly at the
highest EJ values. Thus, for the x1 family, the difference is very
small, or negligible. On the contrary, for the 2A family, the max-
imum EJ value is -1.7612 for mmax = 12, and shrinks to -1.8617
for mmax = 4. Similar differences are found for the 2B family.
The mmax = 4 presumably gives insufficient azimuthal resolu-
tion, which is particularly necessary in the higher multiplicity
orbits as their structure is quite complex.

It is easy to understand why the outermost regions need to
have higher values for mmax, as we find here. Indeed, as can be
seen from Fig. 7 of Athanassoula & Misiriotis (2002), or from
the left panel of Fig. 4 or 5 of Athanassoula et al. (2005), the
cylindrical radius at which the amplitude of the mth Fourier com-
ponent reaches a maximum increases with increasing m value.
We repeated the above, but now with the potential used here,
and find qualitatively the same result. Thus, the largest m values
are necessary for the highest distances from the centre.
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Fig. B.2. Comparison of the CDs obtained with the CylSP method with those obtained with the HO method of calculating the potential and forces.
See the text for further information.
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Fig. B.3. Effect of the value of mmax on the CDs obtained using CylSP. The thin lines give the results calculated with mmax = 12, while the thick
lines show those with mmax = 4. See the text for further information.
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Appendix C: Stability and stability curves

Fig. C.1. Stability diagram for x1 orbits. We plot b1 and b2 as a function
of EJ with a solid line and indicate the limits of the stability range by
two horizontal dashed lines . The vertical dashed line shows the EJ at
which the A and B families bifurcate from the x1 family.

The stability of a given PO plays a considerable role in the
dynamics of other orbits in its immediate surroundings in phase
space. Thus, stable POs are surrounded by regular orbits, which
reinforce to a certain degree their structure. On the contrary,
unstable orbits are linked to chaos.

The above description is a rather simplified description. It is
indeed possible for unstable POs to have other orbits in their
immediate neighbourhood, but only over limited times. They
could thus temporarily reinforce a structure despite their instabil-
ity, but ultimately generate chaos. Such chaos was initially found
in barred galaxy dynamics by, for example, Athanassoula et al.
(1983). It was later studied in depth in several works such as
Contopoulos & Harsoula (2008), Patsis & Katsanikas (2014a,b),
who named it sticky chaos, and Athanassoula et al. (2009,
2010), who named it confined chaos.

Hénon (1965) described a simple and straightforward
method by which one can distinguish stable from unstable
POs. It simply follows and compares orbits starting in the very
close neighbourhood of the POs in question. Here we fol-
low this idea, but using the formalism of Broucke (1969) and
Contopoulos & Magnenat (1985), in order to facilitate compari-
son with previous works on orbital structures in a barred galaxy.
The nature of a PO can then be directly obtained from two sta-
bility indices: b1 and b2, one of which is associated with radial
perturbations and the other with vertical perturbations. A PO is
stable if both of its indexes are within the range [−2, 2]. For a
more detailed description see Skokos et al. (2002a).

Fig. C.1 shows the stability indicators b1 and b2 as a func-
tion of the EJ for the x1 family. It shows that, over most of the
EJ range, this family is stable with, nevertheless, a number of
tangencies. In particular, there is a tangency with b=+2 at EJ=-
2.5296, whose location we have marked with a vertical dashed

Fig. C.2. Stability diagram for x4 orbits. We plot b1 and b2 as a function
of EJ with a solid line and indicate the limits of the stability range by
two horizontal dashed lines. The vertical dashed line shows the EJ at
which the 2E family bifurcates from the x4 family.

line. For our study this is the main tangency, since both the 2A
and 2B families bifurcate from the x1 family at this point. Fur-
ther information linked to stability is given in Fig. 6, with the
help of which it is possible to link the stability with location of
the orbit in space.

It is impotant to note that this is not the only tangency, just
the first one. It is followed by others, which get closer to one
another as the EJ increases. The second tangency of that curve
occurs at EJ=−1.7612 and should be the bifurcation point of one
or two new M =2 families.

Figure 6 gives information on the stability of the five main
pairs of families with M =2. In order to discern the locations
of the various stable and unstable sections, we plot them with
different line styles, namely a solid line for the stable sections
and a dashed one for the unstable ones. This allows us to see
where orbits are stable or unstable, both as a function of EJ
and as a function of position in the bar. We will use this infor-
mation in the next paper of this series (Athanassoula et al., in
prep.). We see that the 2A family bifurcates from the x1 fam-
ily, being unstable, but shortly after that it becomes stable. On
the contrary, the 2B family bifurcates as stable and shortly after
that it becomes unstable. Thus, the 2A family is mainly stable
and the 2B family is mainly unstable. The 2D family is gen-
erally unstable, while the 2C family is partly stable and partly
unstable.

Figure C.2 shows the stability indicators b1 and b2 as a func-
tion of the EJ for the x4 family. It shows that, over most of the EJ
range, this family is stable with, nevertheless, instability at high
energies and a tangency at EJ = −2.3798. This is the position
where the M =2 2E family bifurcates from the x4 family, and is
shown by a thin vertical black line. Further information linked
to this is given in Fig. 6, with the help of which it is possible to
link the stability with the value of the Jacobi constant and with
the location of the orbit in space.
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