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NON-ARCHIMEDEAN INTEGRALS AS LIMITS OF
COMPLEX INTEGRALS

by

Antoine Ducros, Ehud Hrushovski & Francois Loeser

Abstract. — We explain how non-archimedean integrals considered by
Chambert—Loir and Ducros naturally arise in asymptotics of families of
complex integrals. To perform this analysis we work over a non-standard
model of the field of complex numbers, which is endowed at the same time
with an archimedean and a non-archimedean norm. Our main result states
the existence of a natural morphism between bicomplexes of archimedean and
non-archimedean forms which is compatible with integration.
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1. Introduction

1.1. — A. Chambert-Loir and A. Ducros recently developed a full-fledged
theory of real valued (p,q)-forms and currents on Berkovich spaces which is
an analogue of the theory of differential forms on complex spaces [CLDJ.


http://arxiv.org/abs/1912.09162v4

2 ANTOINE DUCROS, EHUD HRUSHOVSKI & FRANCOIS LOESER

Their forms are constructed as pullbacks under tropicalisation maps of the
“superforms” introduced by Lagerberg [Lagl2]. They are able to integrate
compactly supported (n,n)-forms for n the dimension of the ambient space
(the output being a real number) and they obtain versions of the Poincaré-
Lelong Theorem and the Stokes Theorem in this setting. Their work is guided
throughout by an analogy with complex analytic geometry. The aim of the
present work is to convert the analogy into a direct connection, showing how
the non-archimedean theory appears as an asymptotic limit of one-parameter
families of complex (archimedean) forms and integrals.

One way to view a family of complex varieties as degenerating to a non-
archimedean space is to consider the hybrid spaces first introduced by V.
Berkovich [Ber09] to provide a non-archimedean interpretation of the weight
zero part of the mixed Hodge structure on the cohomology of a proper com-
plex variety. For some other recent applications of hybrid spaces, see [BJ17]
[Fav20] [DKY20].

The approach we follow in this paper is somewhat different. We work over
an algebraically closed field C containing C, which is a degree 2 extension of
a real closed field R containing R and is endowed at the same time with an
archimedean non-standard norm |-| : C' — R, and with a non-archimedean
norm |-, : C'— R that essentially encapsulates the “order of magnitude” of
|-| with respect to a given infinitesimal element which should be thought of as a
“complex parameter tending to zero”. This presents the advantage of working
on spaces that have at the same time archimedean and non-archimedean fea-
tures and allows to be able to compare directly archimedean constructions and
their non-archimedean counterparts. The fields R and C are constructed using
ultrapowers. The field R was introduced by A. Robinson in [Rob73|, with the
explicit hope that it will be useful for asymptotic analysis; see also [LR75].
It was brought to good use in [KT04] following the fundamental work of van
den Dries and Wilkie [vdDW84], who have reformulated Gromov’s theory of
asymptotic cones of metric spaces [Gro81] using ultrapowers.

A long-term motivation for our work is the famous conjecture by Kont-
sevich and Soibelman [KS01] [KSO06| relating large scale complex geometry
and non-archimedean geometry. Roughly speaking the conjecture describes
the Gromov-Hausdorff limit of a family of complex Calabi-Yau varieties with
maximal degeneration in terms of non-archimedean geometry. We refer to
[GWO00][GTZ13||GTZ16][0da19][O018|[Sus| for some recent results in
that direction. Note that our results involve a renormalization in powers of
log |t| which corresponds to what appears naturally when considering volume
forms on Calabi-Yau varieties with maximal degeneration. From a model the-
oretic perspective, this is related to considering measures on certain definable
sets over the value group, in contrast to [BO04], where measures are reduced
to the residue field.
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1.2. — Before going further, it may be useful to provide the flavor of our
main results on a very elementary example. Let ¢ : R — R be a smooth
function with compact support. Consider the complex (1, 1)-form
1 loglz(z —t darg z
wp = — ol — glz( ) dlog|z| A catez
log|t| log|t] 27
on Py, depending on the complex parameter t. Fix a real number K > 1. One
may write

J wp =11 +1+ I3
P1(C)

with

Il = J Wt, 12 = J Wt, and 13 = J Wt.
|2|< [t/ K |t]/K <|z|<Klt| 2= K]t

Using direct explicit computations, one may check that

}/1_1{1(1)]1 = L<1 o(z — 1)de, }1_{% I, =0, and %B)T(l) Is = J o(2z)dzx,

r=>—1
from which one deduces the equality

lim wy = J o(x —1)dx + J o(2z)dz.
t—0 P1(C) r<—1 rz=—1

Quite remarkably, the right hand side of that equality admits a non-
archimedean interpretation. Indeed, consider the field of Laurent series C((t)),
fix 7 € (0,1), and endow C((t)) with the t-adic norm ||, normalized by ||, = 7.
On the Berkovich analytification P3" of Py over C((t)) one can consider the
(1,1)-form

1 log|z(z - t)|b / "
= _ =" 774 d”1

in the sense of Chambert-Loir and Ducros [CLD]. Furthermore, the integral
in the sense of Chambert-Loir and Ducros of the form w, on P{" is given by

J w, = J o(x —1)dx + j o(2z)dz,
Py r<—1 x=—1

since the support of w, is contained in the standard skeleton (0,00) of G2
and the function z is of degree 1 at each point of this skeleton. Therefore we
finally deduce the equality

lim w = f W,
t—0 P1(C) Pelzn

a very special case of our Corollary B4l We can already see here an instance
of a general feature which will be exploited in our proof of the general case:
asymptotically the complex integrals we consider concentrate on the support
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of the correponding non-archimedean forms. This support is piecewise polyhe-
dral and only the faces of maximal dimension provide a non-zero contribution
to the limit. In general, Chambert-Loir and Ducros integrals involve also de-
grees over these faces, see for an explanation how these relate to the
number of sheets of a complex étale morphism.

1.3. — Let us now sketch the construction of the non-standard “asymptotic”
field C. We fix a non-principal ultrafilter & on C containing all the neigh-
bourhoods of the origin (otherwise said, U converges to 0) and consider the
ultrapowers *C = [ [,ccx C/U and *R = [ [,ccx R/U. We say an element (a;)
in *C, resp. *R, is t-bounded if for some positive integer N, |a¢| < [t|~" along
U (that is, the set of indices ¢ for which this inequality holds belongs to U).
Similarly, it is said to be t-negligible if for every positive integer N, |a;| < [¢|V
along U. The set of t-bounded elements in *C, resp. *R, is a local ring
which we denote by A, resp. A, with maximal ideal the subset of t-negligible
elements which we denote by 9, resp. ;. We now set C := A/M and
R := A;/9M,. The field R is a real closed field and C' ~ R(7) is algebraically
closed. The norm |- |: *C — *R3g induces an R-valued norm |-|: C — Rx.

1.4. — Any usual smooth function ¢: U — R defined on some semi-algebraic
open subset U of R" induces formally a map U(*R) — *R which is still
denoted by ¢. Allowing ourselves to compose these functions (which arise
from standard smooth functions) with polynomial maps (which might have
non-standard coefficients), we define for every smooth, separated *R-scheme
X of finite type a sheaf of so-called smooth functions for the (Grothendieck)
semi-algebraic topology on X (*R), which we denote by €%. The natural
inclusion map from X (*R) into the (underlying set of) the scheme X underlies
a morphism of locally ringed sites ¢: (X(*R),€¢¥) — (X, Ox), and we can

define the sheaf of smooth p-forms on X (*R) by &7y := ¢*Qf SR One has

for every p a natural differential d: &% — M)I;H. We now assume X is of
pure dimension n, and that X (*R) is oriented (the notion of an orientation of
a variety makes sense over an arbitrary real closed field, see B3]). Let w be a
smooth n-form on some semi-algebraic open subset U of X (*R), and let E be a
semi-algebraic subset of U whose closure in U is definably compact. Choosing
a description of (X,U,w, E) through a “limited family” (X, Uy, wy, Et)y, it is
possible to define the integral {, w as the class of the sequence (SEt wy) in *R.

1.5. — We now move from *R to R, seeking to show that smooth functions,
smooth forms and their integrals remains well-defined on R.

Let ¢: U — R be a usual smooth function defined on some semi-algebraic
open subset U of R™. Under some boundedness assumptions on ¢ (which
are for instance automatically fulfilled if ¢ is compactly supported, or more
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generally if all its derivatives are polynomially bounded), the induced function
¢: U(*R) — *R in turn induces a map U(R) — R, which we again denote by
®.

For instance, the map log|-| from C* ~ R?\{(0,0)} is smooth and sat-
isfies the boundedness conditions alluded to above; it thus induces a map
log|-|: C* — R, which enables us to endow the field C' with a real-valued
non-archimedean norm | - |, : C' — Ry as follows. For any z belonging to

C*, one checks that the norm of 11?)2 |‘§|| is bounded by some positive real num-

ber in R. One can thus consider its standard part a = std<112§ ‘é“) € R.

Fixing 7 € (0,1) © R, one sets |z|, := 7%, so that |z], = [t[;. With this
non-archimedean norm the field C' is complete (even spherically complete, cf.
[Lux76]).

We repeat the procedure used in[[L4t allowing ourselves to compose the func-
tions defined at the beginning of (which arise from standard smooth func-
tions) with polynomial maps (which might have non-standard coefficients),
we define for every smooth, separated R-scheme X of finite type a sheaf of
so-called smooth functions for the (Grothendieck) semi-algebraic topology on
X (R), which we denote by ¢’y. There is a natural morphism of locally ringed
sites ¥: (X(R),€¥) — (X, Ox). One then sets &% := ¢*Q§(/R and one has

for every p a natural differential d: &/} — fszf)’frl.

Assume now X is of pure dimension n and oriented. A substantial part of
Section [ is devoted to the construction of an R-valued integration theory on
X(R).

1.6. Proposition. — Integration theory on X (A;) descends to X(R).

Namely, to a semi-algebraic subset K of X(R), with definably compact
definable closure, and a smooth n-form w on a semi-algebraic neighborhood
of K in X(R), we assign an integral SKw which is an element of R. This is
achieved in[5.10 by reducing to the case when X is liftable. Independence from
the lifting follows from the fact, proved in Proposition [5.3] that the integrals
obtained from two different liftings coincide up to a t-negligible element. A
preliminary key statement in that direction is provided by Proposition
which states that if D is a semi-algebraic subset of (*R)" contained in A, the
volume of D is t-negligible if and only if the image of D in R™ through the
reduction map is of dimension < n — 1.

Assume that X is a smooth C-scheme of finite type and of pure dimension
n. One defines similarly the integral {, w of a complex-valued (n,n)-form w
defined in a semi-algebraic neighborhood of a semi-algebraic subset K of X (C),
assuming that there exists a semi-algebraic subset K’ of K with definably
compact closure such that w vanishes on K\K’.
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1.7. Remark. — Note that for an arbitrary real closed field S one cannot
hope for a reasonable integration theory with values in S. Indeed, let for
instance S be the algebraic closure of Q in R. Then there is no such reasonable
integration theory on S, otherwise m = sz +y dx A dy would belong to S.

2<1
1.8. — Fix a smooth C-scheme X of finite type and pure dimension n, and
set X := —log|t|. In this text we define two Dolbeault-like complexes AP? and

BP4. Informally AP*? and BP-? should be thought of as living on X (C') and X"
respectively. But since we want to be able to compare them in some sense,
we need that they be defined on the same site; this is the reason why we have
chosen to define them as complexes of sheaves on the Zariski site of X.

1.8.1. The non-standard archimedean complex. — Let us start with AP4. We
will explain what would be the most natural definition, why it is not convenient
for our purpose, and what the actual definition is.

1.8.1.1. — Basically, we would like a section of AP? on a given Zariski-open
subset U of X to be a differential form on U(C') which is locally for the semi-
algebraic topology on X (C) of the form

12 <log\f1| log| fm|
©r,J

w

:ﬁ AR b\ >d10g|f1|/\dArng

1,J

where I, resp. J, runs through the set of subsets of {1,...,m} of cardinality
p, resp. ¢, where the f; are regular invertible functions, dlog|f| stands for
the wedge product dlog|fi,| A ... A dlog|f;,| if i1 < i2 < ... < i, are the

elements of I, and dArg f; stands for the wedge product d;:rg fin Ao A d;;g fiq
if j1 < j2 < ... < jq are the elements of J.

1.8.1.2. — But it would be difficult to use the definition suggested in [L8T.T]
because the general forms described therein do not have non-archimedean
counterparts, since there is no natural way to turn the implicit semi-algebraic
covering of U(C') in their definition into an open covering of U?"; hence we
will take a slightly more restrictive definition, albeit flexible enough for our
purpose.

We thus define a section of AP'¢ on a Zariski-open subset U of X is a
differential form on U(C') that is locally for the Zariski-topology of U of the

form
1 log| f1 log| fm
W = ﬁ%@],J( )‘\ |,--~, |)\ | dlog|fr| A dArg f;
where (f1,..., fm) are regular functions (but they are not assumed to be in-

vertible), where I, resp. J, is running through the set of subsets of {1,...,n}
of cardinality p, resp. ¢, and where each function ¢y ; is defined on a suitable
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subset of (R U {—00})™ and satisfies some technical conditions which we ex-
plain now. Let = (z1,...,%,,) be a point of (R u{—o0})™ and let K denote
the set of indices ¢ such that x; = —o0. Then:

o around z the function ¢r ; only depends on the z; for ¢ ¢ K, and is
smooth as a function of the latter;

¢ the function @7 ; even vanishes around x as soon as K intersects I u J.

It is clear that sections of AP? admit a local description as in [[L81.Jl Note
that if K = & the only requirement is for ¢; ; to be smooth around z, and
that our second condition ensures that dlog|f;| or % can actually appear
only around points at which f; is invertible (which is necessary for integrating
such a form when p = ¢ = n).

There exist natural differentials d : AP4 — APH14 and df : AP — APaH!

mapping respectively a form

1 <10g|f1| log]fu|

> dlog|fr| A dArg f

V14 G iR
to
1 dp (log|f1l log| fim|
AP+l 1<ZZ<:ma_$i ( Ty dlog| f;| A dlog|fr| A dArg f;
and to

A dlog|fr| A dArg f.

1 v Jp (log|fi] log|fm|) darg f;
AP oz \ A A o

1<ism

Here the map d is the usual differential, and d is designed to switch modulus
and argument, see [£.2.2} it turns out to be analogous to the operator d° of
complex analytic geometry.

1.8.2. The non-archimedean compler. — We are now going to describe BP9,
Set A, := —log [t],.

1.8.2.1. — Basically, we would like a section of BP¢ on a given Zariski-open
subset U of X to be a differential form on U?" in the sense of [CLD] which is
locally on U®" of the form

1 loglfil,  log|fmly) y
<7 — .., —— | d] d"1
3P ;}ww ( N TN oglfrly A d"log|fsl,

where I, resp. J, runs through the set of subsets of {1,...,m} of cardinality
p, resp. ¢, where the f; are regular invertible functions and where d’log|f;|,
standing for the wedge product d’log|fi,|, A... Ad'log|f;, | if i1 <ia < ... <ip
are the elements of I, and similarly for d”log.
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1.8.2.2. — But by analogy with AP, we shall rather define a section of BP»¢
on a Zariski-open subset U of X as a differential form on U?" that is locally
for the Zariski-topology of U of the form

1 lo log| fm
5o Sons (tog B0 2B gl togi ],
bI,J b b

where (f1,..., fm) are regular functions, where I, resp. J, is running through
the set of subsets of {1,...,n} of cardinality p, resp. ¢ (with d’log| f7], standing
for the wedge product d'log|fi, [, A ... A d'log|fi, |, if i1 < iz < ... < i, are
the elements of I, and similarly for d”log|f|,), and where each ¢; ; satisfies
the same conditions as those in the definition of AP-4.

It is clear that sections of BP? are locally of the form described in [L82.T]
and that B®** is stable under the two differential operators d’ and d”.

1.9. — Our main result, Theorem BI] states that the two sheaves of bi-
graded differential R-algebras A®* and B**® on the site Xz,., consisting re-
spectively of non-standard archimedean and non-archimedean forms, are com-
patible in the following sense:

1.10. Theorem. — There exists a unique morphism of sheaves of bi-graded
differential R-algebras A®* — B**, sending a non-standard archimedean form
w to the non-archimedean form wy, such that if w is of the form

1 <10g|f1\ loglfm|> dlog| f7| A dArg f,

W

- W )\ PRI A
with f1,..., fm regular functions on a Zariski-open subset U of X, I and J
subsets of {1,...,m}, and ¢ a quasi-smooth function, then
1 log|f log|f
wbzm<p< A“'ﬂ...,% d'log|f1l, A d"log| f1];-
)\b b b

Furthermore, we also prove in Theorem BI] that the mapping w — wy
is compatible with integration. A special case of that compatibility can be
stated as follows:

1.11. Proposition. — Assume that w is an (n,n)-form defined on some
Zariski open subset U of X and that its support is contained in a definably
compact semi-algebraic subset of U(C'), then the form w, on X®" is compactly
supported, SU(C)|w| is bounded by some positive real number in R and

std f w —f Wy,
< U(C) an

with std standing for the standard part.
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Compatibility with integration is used in an essential way in proving that
the mapping w — w, is well defined. Indeed it allows us to use a result of
Chambert-Loir and Ducros ([CLD], Cor. 4.3.7) stating that, in the bound-
aryless case, non-zero forms define non-zero currents. A key point in the proof
of compatibility with integration is to show that the non-archimedean degree
involved in the construction of non-archimedean integrals in [CLD] actually
shows up in the asymptotics of the corresponding archimedean integrals, which
is done in

This main result has very concrete consequences: see our Theorem [84] in
which we express limits in the usual sense of complex integrals depending on
a parameter in terms of non-archimedean integrals.

Acknowledgements. — We would like to thank Alex Wilkie for proposing
the current version of the proof of Lemma[37] which is much simpler than the
original proof. We are also grateful to the referees for their thorough reading
of the manuscript and their many suggestions that helped us in significantly
improving the exposition.

Both A.D. and F.L. were partially supported by ANR-15-CE40-0008
(Défigéo) and by the Institut Universitaire de France.

2. The general framework

2.1. — We shall use in this paper basic facts and terminology from Model
Theory, which can be found for instance in the books [Mar02] and [TZ12].
We shall in particular make use of the theory DOAG of non-trivial divisible
ordered abelian groups, the theory RCF of real closed fields, and the theory
ACVF of algebraically closed non-trivially valued fields. Both DOAG and RCF
are examples of o-minimal theories.

2.2. — We fix a non-principal ultrafilter % on the set C of complex numbers;
we assume that it converges to 0, which means that every neighborhood of the
origin belongs to % (for our purpose, it would be sufficient to consider such
an ultrafilter %7 on a sequence approaching 0). Note that since % is not
principal, {0} ¢ % ; as a consequence, every punctured neighborhood of 0 also
belongs to % . In particular, there exists a family X;, i € N, of elements of %
such that (),cn Xi = &, that is, the ultrafilter % is countably incomplete.

“

2.3. Convention. — Unless otherwise stated, when we introduce a “se-
quence” (ay); the parameter ¢ is always understood as running through some
set belonging to % (e.g., a small punctured disc centered at the origin), which
we shall usually not make explicit. We shall allow ourselves to shrink this set
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of parameters when necessary (without mentioning it), for instance if we work
with finitely many sequences and need a common set of parameters.

If we work with some sequence (M;); of sets and then consider a sequence
(at)¢ with a; € My for every t, it will be understood that a; is defined for ¢
lying in some set belonging to % and on which ¢t — M; does make sense; so
we do not require that a; be defined for every t such that My is.

We say that some specified property P is satisfied by a; along % if the set of
indices ¢ such that a; satisfies P belongs to % ; e.g., |a¢| < |t| along % means
that the set of indices ¢ such that |a;| < |¢| belongs to % .

2.4. Ultraproducts. — Let (M,;); be a sequence of sets. The ultraproduct
of the sets My along % is the quotient of the set of all sequences (a;); with
a; € My for all t by the equivalence relation for which (a;) ~ (b;) if and only
if a; = by along % (we remind the reader that according to Convention 2.3
a¢ needs not to be defined for all ¢ for which M; exists, but only for a subset
of such complex numbers t that belongs to %/). If all the sets M, are groups
(resp. rings, resp. ...) the ultraproduct of the sets M; along % inherits a
natural structure of group (resp. ring, resp. ... ), which enjoys all first-order
properties that hold for M; along % ; e.g., if the group M, is abelian along %,
the ultraproduct of the groups M; along % is abelian.

2.5. Remark. — One can describe in a perhaps unusual way the ultraprod-
uct of the sets M; as colimp M7 where T’ runs through the set of elements of
7% included in the domain of ¢t — M, where My := [[,.; My, and where the
transition maps are the obvious ones.

2.6. The field *C. — We apply the above by taking M, equal to the field
C (resp. R) for all ¢, and we denote by *C (resp. *R) the corresponding
ultraproduct. The field *R is a real closed extension of R; the field *C is
equal to *R/(7) and is an algebraically closed extension of C. We still denote
by |-| the “absolute value” on *C; this is the map from *C to *R. that maps
a + bi to va? + b%. By (harmless) abuse, the image in *C of the sequence (t);
will also be denoted by ¢ ; it should be thought of as a non-standard complex
number with infinitely small (but non-zero!) absolute value.
A sequence (a¢); of complex numbers is called:

o bounded if there is some N € Zxq such that |a;| < N along %;
o t-bounded if there is some N € Zxq such that |a;| < [t7V| along % ;
o negligible if |as| < % along 7% for all N € Z~;

o t-negligible if |a;| < [tV| along % for all N € Zxg.
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An element a of *C is called bounded, resp. t-bounded, resp. negligible,
resp. t-negligible if it is the image of some bounded, resp. t-bounded, resp. neg-
ligible, resp. t-negligible sequence. This amounts to requiring that |a| < N for
some integer N > 0, resp. |a| < [t7V| for some integer N > 0, resp. |a| < %
for all integer N > 0, resp. |a| < [t|"V for all integer N > 0. (Be aware that
the above inequalities are understood in the huge real closed field *R.)

2.7. The field C. — The set A of t-bounded elements of *C is a subring of
*C which contains t. This is a local ring, whose maximal ideal m is the set of
t-negligible elements; the intersection A, := A n *R is also a local ring, whose
maximal ideal is m; := m n *R. We denote by C (resp. R) the residue field
of A (resp. A;), and we still denote by t the image of the element ¢ of A in
C. Note that m # 0: for instance, the sequence (exp(—1/|t|)); is t-negligible
and not equal to zero along %, so it defines a non-zero element of m. One
can describe directly C' as the ring of t-bounded sequences modulo that of
t-negligible sequences. The field R is a real-closed extension of R, we have
C = R(i), and C is an algebraically closed extension of C. We still denote by
|-| the “absolute value” on C this is the map from C to R, that maps a + bi
to va? + b%2. An element z of C is called bounded, resp. negligible if it is the
image of a bounded, resp. negligible, element of A. This amounts to requiring
that z is the image of a bounded, resp. negligible, sequence or that |z| < N
for some N € Zxg, resp. |z| < % for all N € Z.

If z = a+bi is any bounded element of C', the subset of R consisting of those
real numbers that are < a is non-empty and bounded above, hence has a least
upper bound « € R; we define 5 analogously. By construction, z — (« + i) is
negligible, and « + Si is the only complex number having this property; it is
called the standard part of z and it will be denoted by std(z). If z € R then
std(z) € R.

Any t-bounded complex-valued function f on an element of % (e.g., a
punctured small disc centered at the origin) gives rise to an element of C,
which we shall denote by f if no confusion arises, as we do for t. Let us give
some examples:

o For every a € R the sequence (|t|%); is t-bounded and is not t-negligible,
so it gives rise to an element |¢|* of C* (which actually belongs to RY).
Note that if a # 0 then (|t|* — 1); is not t-negligible; hence o — |¢|* is
an injective order-reversing group homomorphism from R into R7.

¢ The field .# of meromorphic functions around the origin has a natural
embedding into C.

o If a is any non-zero element of C arising from a t-bounded and non-t-
negligible sequence (a;); then the sequence (log|ay|); is t-bounded, so it
gives rise to an element of C'. The latter depends only on a, and not on
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the specific sequence (a;). To see it, we have to check that if (;); is a
t-negligible sequence then (logla; + €¢| — log|a;|) is t-negligible as well.
For that purpose, we first notice that if z is a standard complex number
with |z| small enough then log|1 + z| < 2|z|. Now our assumptions imply
that the sequence (eya; '); is t-negligible and a fortiori negligible, so that

logla; + &¢| — logla;| = log|(1 + 5t|at|71)| < 2|5ta[1|

holds along % ; using once again the fact that (e,a, 1)t is t-negligible we
get the required result.
The element of C' defined by the sequence (log|a;|); depending only on

: loglat| ) log|a| .
a, we denote it by log|a|. The sequence < Tog] tt| )t is bounded, so Toal 1S
bounded.
Set A = {re RX | [t|/N <r < |t|7VN for all N € Z=¢}; this is a convex
subgroup of R, and R} /A thus inherits an ordering such that the quotient
map is order-preserving. The composition

LRy —RYA

CX
is a valuation |-|,, and |C*|, = R} /A. The valuation ring C° of ||, is the set
of the elements z € C such that |z| < ||~V for all integer N > 0, and the
maximal ideal of C° is the set C°° of elements z of C such that |z| < [¢t|/N
for some integer N > 0 (note that C° contains the ring of bounded elements
of C).

Let z € C* and set a = std( 112?‘;'). It follows immediately from the defi-
nitions that |z| = [t|* modulo A, and that |¢|* itself belongs to A if and only
if @ = 0. Hence a — [t|* mod A induces an order-reversing isomorphism
between the ordered groups R and |C*|,, which maps 1 to |¢|, = |¢| mod A.

We fix once and for all an order-preserving isomorphism between |C* |, and
R, which amounts to choosing the image 7 of |¢], in (0,1). We will from now
on use this isomorphism to see |-|, as a real valuation (with value group the
whole of RY). If z is any element of C* we have

log|z|
td( g ) <log\z\)
loglil ) _ St (TogriT )

The residue field C' := C°/C°° is an algebraically closed extension of C.
Let us give an example of an element of C that is transcendent over C. For
every complex number A and every integer N > 0 the (complex) inequalities
1 < [log|t| — A| < [t|7Y" hold along %; as a consequence, 1 < |log|t| — A| <
1t~ in R for all integer N > 0, so [log|t| — A|, = 1. Hence [log|t||, = 1 and
if we denote by 16§|_t/| the image of log|t| in C' then 1@| —A#0forall Ae C;
as a consequence, lgg\m is transcendent over C.

S
|2y = [t



NON-ARCHIMEDEAN INTEGRALS AS LIMITS OF COMPLEX INTEGRALS 13

The non-archimedean field C' is complete, and even spherically complete (cf.
[Lux76]). Indeed, let (By,)nez., be a decreasing sequence of closed balls with
positive radius in C; for every n, denote by r, the radius of B,, and choose
b, in By,; we want to prove that [ B,, is non-empty. For every n > 1, choose
a pre-image b,, of b, in A, and a real number s,, with r,,_1 > s, > r,, and
denote by B, the set of those z € *C such that |z — by,| < |t[°85+/1°67  For
each n > 1, the ball B,, contains the pre-image of B, in A, and is contained
in the pre-image of B,,_1. The fact that every B,, contains the pre-image of
B,, in A implies that the intersection of finitely many of the sets B,, is non-
empty; since, as noted in 2.2] the ultrafilter % is countably incomplete, the
ultraproduct *C is Ry-saturated by [Kei64], Cor. 2.2, thus the intersection of
all the sets B,, is non-empty; but this intersection is contained in the pre-image
of the intersection of all the sets B,,, so the latter is non-empty.

3. Smooth functions, smooth forms and their integrals
over *R and *C

3.1. Semi-algebraic topology. — Let S be an arbitrary real-closed field
(we will use what follows for S = *R and S = R). Let X be an algebraic
variety over the field S; i.e., X is a separated S-scheme of finite type. The set
X (S) is in a natural way a definable space of RCF. By quantifier elimination
in RCF, the definable subsets of X (S) are precisely its semi-algebraic subsets;
i.e., those subsets that can be defined locally for the Zariski-topology of X by
a boolean combinations of inequalities (strict or non-strict) between regular
functions.

3.1.1. — The order topology on the field S induces a topology of X (S), which
is most of the time poorly behaved: except if S = R it is neither locally
compact nor locally connected.

Let U be a semi-algebraic subset of X(S). We shall say that U is open,
resp. closed, if it is open, resp. closed for this topology. This amounts to
require that U can be defined, locally for the Zariski-topology of X, by a
positive boolean combination of strict (resp. non-strict) inequalities between
regular functions ([BCRS85], Th. 2.7.1). The topological closure of a semi-
algebraic subset U of X (.5) is semi-algebraic (and so is its topological interior,
by considering complements). Indeed, this can be checked on an affine chart,
hence we reduce to the case where X = A'Y; now since the topology on S"
has a basis consisting of products of open intervals, U is definable, so it is
semi-algebraic.

3.1.2. — Since the interval [0, 1] of S is not compact except if S = R, naive
topological compactness is not a relevant notion in our setting. We use defin-
able compactness instead, which itself relies on the notion of a definable type;
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see for instance Section 2.3 and Chapter 4 of [HL16| for more information on
these topics. Let us just recall here that a subset E of X(S) is called defin-
ably compact if every definable type lying on E converges to a unique point
of E. Since X is separated, any definably compact semi-algebraic subset of
X(S) is closed. If E is a definably compact semi-algebraic subset of X(.5),a
semi-algebraic subset F' of E is closed if and only if it is definably compact.

3.1.3. — Assume that X is affine, and let (f1,..., f,) be a family of regular
functions on X that generate the S-algebra ¢(X). If E is a semi-algebraic
subset of X (S), then E is definably compact if and only if it is closed and
bounded; i.e., there exists r > 0 in S and such that |f;(z)| < r for all i and all
rzeE.

3.2. Lemma. — Let X be a separated S-scheme of finite type and let E
be a definably compact semi-algebraic subset of X(S). Let (U;)ier be a finite
family of definable open subsets of X(S) such that E < | JU;. There exists a
family (E;) with each E; a definably compact semi-algebraic subset of U; and
E =, Ei.

Proof. — Up to refining the covering (U;) we can assume that Uj; is for every
i contained in X;(S) for some open affine subscheme X; of X. We argue by
induction on |I|. The statement is clear if [I| = 0. Assume |I| > 0 and
the statement is true in cardinality < |I|. Choose an element ¢ in I and set
F = X(S)\Ujes jzi Uj- By definition, F' is a closed semi-algebraic subset of
X (S) contained in U;; thus E n F'is a definably compact semi-algebraic subset
of UZ

Choose a semi-algebraic open subset V' of U; that contains £ n F' and whose
closure V is definably compact and still contained in U; (one can use a finite
set of generators of the S-algebra Ox(X;) to build semi-algebraic continuous
distance functions to En F', to the boundary of U; in X;(S) and to (X\X;)(S5),
and then define V' by a suitable positive boolean combination of non-strict
inequalities involving these functions).

Set G = X (S)\V. By definition, G is a closed semi-algebraic subset of X (5)
and G n F is thus definably compact.

We then have E = (EnV)u (G N E). Since G n E avoids F, it is contained
in (J i2: Uj- The conclusion follows by applying the induction hypothesis to
the set G n E. O

3.3. — Because of the bad properties of the order topology X (S), we shall
not use it except while speaking of closed or open semi-algebraic subsets. Nev-
ertheless, we shall use a closely related set-theoretic Grothendieck topology,
namely the semi-algebraic topology. The underlying category is that of open
semi-algebraic subsets of X (S) with inclusion maps; a family (U;);e; is a cover
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of U if there is a finite subset J of I such that U = J,.; U;; this amounts
to requiring that (U; — U) induces a usual (open) cover at the level of type
spaces.

If X is smooth, X (S) comes equipped with a sheaf of orientations (for the
semi-algebraic topology), defined mutatis mutandis as in the standard case. It
is locally isomorphic to the constant sheaf associated with a two-element set;
a global section of this sheaf is called an orientation on X(S).

3.4. Smooth forms and integrals over the field *R. — If U is an open
semi-algebraic subset of R™ for some n, then every smooth function (i.e., €%
function) ¢: U — R gives rise to a function U(*R) — *R, which sends the
class of a sequence (a;); with a; € U along % to the class of (p(ar))s; it will
still be denoted by ¢ if no confusion arises.

3.4.1. Smooth functions and smooth forms on a variety. — Let X be a
smooth separated *R-scheme of finite type. Let % be the assignment that
sends a semi-algebraic open subset U of X(*R) to the set of functions from
U to *R of the form ¢ o g, where:

¢ g is a regular map from a Zariski-open subset of X containing U to AL
for some m;

¢ ¢ is a smooth function from V to R where V is a semi-algebraic open
subset of R™ such that ¢(U) < V(*R).

Then .7 is a presheaf; its associated sheaf (for the semi-algebraic topology) is
denoted by €% or €% and called the sheaf of smooth functions on X (*R). It
makes X (*R) a locally ringed site.

The natural embedding of X (*R) into (the underlying set of) the scheme
X underlies a morphism of locally ringed sites ¢: (X(*R),6¥) — (X, Ox);
hence w*Qg( SR is for every p a well-defined €y-module on X (*R), which we
denote by /P or «/§. The sheaf Y is equal to €¥, and the €¥-module
.@7)1( is locally free (of rank n if X is of pure dimension n); for every p, we
have &% = APo/}. The sheaf &% is called the sheaf of smooth p-forms on
X(*R). One has for every p a natural differential d: &% — @2*!. The sheaf
*C ®sr % is called the sheaf of complez-valued p-forms on X(*R). Every
complex-valued p-form w defined on a semi-algebraic open subset U of X (*R)
can be evaluated at any point u of U, giving rise to an element w(u) of the
*C-vector space *C ®gy , V-

3.4.2. Integral of an n-form. — We still denote by X a smooth separated
*R-scheme of finite type; we assume that it is of pure dimension n for some
n, and that X (*R) has been given an orientation. Let w be a complex-valued
smooth n-form on some semi-algebraic open subset U of X (*R), and let E be
a semi-algebraic subset of U whose closure in U is definably compact.
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We now choose a description of (X,U,w, E) through a “limited family”
(X, Up,we, Ey)y where X, is for every ¢ a smooth separated R-scheme of pure
dimension n endowed with an orientation of X;(R), U; is an open subset of
X¢(R), w is a complex valued smooth form on U, and E; is a relatively
compact semi-algebraic subset of U;. The expression “limited family” means
that the sequence (Xy, Uy, wy, Et) can be defined using finitely many smooth
functions (defined on real intervals), a given set T' € %, and finitely many
polynomials with coefficients in R”.

For every t the smooth manifold X¢(R) is oriented, hence the integral § B, Wt
is well-defined. The sequence (§ , Wt)t defines an element of *C that depends
only on (X,U,w, F), and the chosen orientation on X (*R). We denote it by
SEw; if w is real-valued, then SE w is an element of *R.

3.4.3. The case of a non-standard complex variety. — Let X be now a
smooth quasi-projective scheme over *C, and let Y be the Weil restriction
Rixg/xcX; this is a quasi-projective scheme over *R, equipped by definition
with a canonical bijection Y (*R) ~ X (*C). This allows us to transfer to
the set X*(C) all notions introduced above. Moreover, for every p, the sheaf
AP ®sr *C of complex-valued smooth p-forms on X*(C) is equipped with a
natural decomposition #? ®g *C = @, j=p ¥ “J, where &/" is the sheaf
of (i, )-forms; i.e., of complex-valued p-forms generated over € by forms of
the type

dfi ~n...oadfindgr A ... Adg;

for some regular functions f1,..., fi,g1,...,9;.

Assume that X is of pure dimension n for some n, let U be a semi-algebraic
open subset of X (*C), and let w be a smooth (n,n)-form on U. Let E be
a semi-algebraic subset of X (*C) whose closure is definably compact. The
(n,n)-form w can then be integrated on E, using the canonical orientation of
X (*C). Indeed, choose a description of (X, U, w, F) through a “limited family”
(X, Uy, wy, Et)y where Xy is for every t a smooth separated C-scheme of pure
dimension n, U; is an open semi-algebraic subset of X;(C), w; is a complex
valued smooth (n,n)-form on Uy, and Fj is a relatively compact semi-algebraic
subset of U;; the integral SE w is then given by the sequence § B, Wt-

3.4.4. — We have considered so far only differential forms with smooth coef-
ficients. But by replacing the class of usual smooth functions (on open subsets
of R™) by a broader class ¢, we can define in the same way differential forms
over *R with coefficients in %, and integrate those of maximal rank on rel-
atively compact definable subsets (provided % consists of locally integrable
functions).
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For instance, if we consider w and E as in B.4.2] or B.43] we can define |w|,
which is a form with continuous piecewise smooth coefficients, and also define
the integral §,|w|, which is a non-negative element of *R.

3.5. — We are thus able to integrate smooth forms on the field *R, but what
we are actually seeking for is a similar integration theory over R. Our basic
strategy is very simple: it consists in lifting a differential form on the field *R,,
integrating it, and reducing the result modulo t-negligible elements. But of
course, one has to check that it does not depend on our lifting. This requires a
good understanting of the way our integrals interact with t-negligibility; this
is the purpose of what follows.

3.6. Notation. — Let S be a real closed field and let ® be a non-empty,
bounded above convex subset of S with no least upper bound in S. Then such
a least upper bound nevertheless exists, but as a type on .S; we denote it by d.
We shall allow ourselves to say that a given definable subset I of S contains
d, resp. that a given definable formula & is satisfied by d, if I, resp. the set
of x € S satisfying @, contains (A, +20) N D for some A € D.

3.7. Lemma. — Let I be a definable interval of S=q that contains d and let
f be a definable function from I to S. Assume that there exists a € I with
a < d such that f(x) > d for all x with a < x < d; then there exists x > d in
I with f(z) > d.

Proof. — Let J be the set of those x € I such that f(z) > x. This is a
definable subset of S which contains all elements y € S with a < y < d. By
o-minimality, J is a finite union of intervals with bounds in S U {—00, +00},
thus it contains some interval of the form (a,b) for some element b € S with
b > d. Then for all z € S such that d < z < b we have f(x) >z > d. O

3.8. — Let D be a definable subset of (*R)" with definably compact closure.
The integral SD dz1 A ... A dx, is called the volume of D and is denoted by
Vol(D).

If D is a cube, i.e., D is of the form [], ., [as,b;], then Vol(D) = [ ];(b; —
ai).

We remind that A, is the set of t-bounded elements of *R, and that a — @
denote the reduction modulo the maximal ideal m, of A;, cf. 27

3.9. Proposition. — Let D be a definable subset of (*R)™ contained in A} .
The following are equivalent:
(i) the volume of D is t-negligible;

(ii) for every n-form w = pdxy A ... A dx, with ¢ a smooth function defined
in a neighborhood of the closure of D and taking only t-bounded values
on the latter, the integral SDw 1s t-negligible;
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(iii) every cube contained in D has t-negligible volume;

(iv) the image D of D in R™ through the reduction map is of dimension
<n-—1.

3.10. Remark. — Tt is known that D is a closed definable subset of R"
(no matter whether D is closed or not), see for instance [Bro91]. Thus its
dimension is well-defined. But the reader could also rephrase (iv) by simply
saying “D contains no n-cube with non-empty interior”; and this is indeed
this rephrasing of (iv) that we shall actually use in the proof.

Proof. — We are going to prove (i)=>(ii)=>(iii)=(i), and then (iv)=>(iii) and
(i)=(iv).

Assume that (i) is true and let w as in (ii). By definable compactness of the
closure of D there exists a t-bounded positive element M such that |¢| < M
on D. Then ‘SDw‘ < MVol(D); the volume of D being t-negligible, {,w is
t-negligible as well.

Now if (ii) is true then in particular Vol(D) is t-negligible (take ¢ = 1); this
implies that the volume of every definable subset of D, including any cube
contained in D, is t-negligible.

Assume now that (iii) is true, and let us prove (i). We argue by induction
on n. If n = 0 there is nothing to prove. So assume that n > 0 and the result
holds in dimension n — 1. Let p: (*R)" — (*R)""! be the projection on the
first n — 1 coordinates, and set A = p(D). If (D;) is any finite covering of D
by definable subsets it is sufficient to prove that (i) holds for every D; (note
that D; obviously satisfies (iii)).

Hence using cellular decomposition we can assume that we are in one of the
following two cases:

¢ there exists a continuous definable function f on A such that D is the
graph of f;

¢ there exists two continuous definable functions f and g on A with f < g
such that D = {(z,y), f(x) <y < g(x)}.

In the first case D is at most (n — 1)-dimensional and its volume is zero.
Let us assume from now on that we are in the second case. Since D < A7,
there is a positive t-bounded element M such that g — f < M.

Let ¢ be the function that sends an element a of [0, M] to the least upper
bound of the (n —1)-volumes of all cubes contained in A over which g— f > a.

3.10.1. — Let us prove by contradiction that there exists some t-negligible
element a such that ¢(a) is t-negligible. We call “t-significant” an element
which is not t-negligible, and we assume that ¢(a) is t-significant for all ¢-
negligible a; we are going to exhibit a cube inside D with t-significant volume,
which will contradict our assumptions.
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By Lemma 3.7 (which we apply by taking for d the least upper bound of the
set D of t-negligible elements) there exists some t-significant a with ¢(a) also
t-significant. Therefore there exists some cube K inside A with ¢-significant
(n — 1)-volume over which g — f > a. For each family € = (e1,...,e2,-2) of
elements of {—1,1} let K. be the subset of K on which 0;g € ¢;(*Rx¢) and
O0if € en—14i(*Rsp) or all 1 < ¢ < n—1. Then K is the union of the sets
K., so one of the sets K, has a t-significant volume, hence contains a cube K’
with t-significant volume (by the induction hypothesis). Replacing A by K’,
we assume from now on that A is a cube with t-significant volume on which
each partial derivative of f and g has constant sign and on which g — f > «a.

Write A = [[[ay, Bi]. Set M = supp |f| and K = 4M(B; — a7)~!. Since
M is t-bounded and since 81 — o is t-significant (because A has t-significant
volume), K is t-bounded. Let A = {x € A, |01 f(z)] = K}. We claim that
Vol(Ag) < Y&,

Indeed, fix z = (22,---,2n-1) in [[;z0[cs, Bi], and set Agx. = {y €
[a1,B1], (y,2) € Ag}. By o-minimality, Ag , is a finite union of closed
intervals; let A be the one-dimensional volume (or, otherwise said, the
total length) of Ag .. If v and § are two elements of [ai,[1] such
that v < ¢ and [y,d] < Ak, then by the mean value theorem one has
|f(6,2)) — f(,2)] = K(0 — ). By monotonicity of f(-,z) this implies that
|f(B1,2)—f(a1,2)] = K. Since |f(B1, 2) — f(au, 2)| < 2M by the definition of
M, we see that A < 2M /K = (1 —a1)/2. Thus, by Fubini, Vol(Ag) < %@A),
as announced.

It follows that the complement of Ay in A has t-significant volume. By the
induction hypothesis, it contains a cube with t¢-significant volume. Iterating
this argument (which works for g as well as for f, and for the i-th component
as well as for the first one), we can furthermore assume that A is a cube with
t-significant volume on which each partial derivative of f and g has an absolute
value bounded above by some positive t-bounded constant N.

Let z be the point (a’;’g’)l of A. Set y = M; the point (z,y) be-
longs to D. Set r = (g(x) — f(x))/4 ; since g(x) — f(z) = a, the number
r is t-significant. Let N’ be a t-bounded number such that N’ > 4/n — 1IN
and /N’ < min;(8; — a;)/4 — such N’ exists since §; — «; is t-significant
for every i. Let I'" be the cube in (*R)"™ with center (z,y) and polyradius
(r/N',...;r/N',r). If (&, n) belongs to I', then £ € A. By the mean value

theorem |f(§) — f(z)| < ‘"27]\,1,’1]\7 < & and similarly |g(§) — g(x)| < 5. Thus

f(&) < n < g(¢) and therefore D contains the cube I" which has ¢-significant
volume.

3.10.2. — By the above, there exists some t-negligible element a such that
©(a) is t-negligible. Let A’ be the subset of A consisting of points over which
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g— f > a. By assumption, every cube contained in A’ has t-negligible volume;
by our induction hypothesis, the volume of A’ is t-negligible. Since g — f
is uniformly t-bounded, it follows from Fubini’s theorem that the volume of
p~Y(A) is t-negligible. Let A” be the complement of A’ in A. The (n — 1)-
volume of A” is t-bounded, and g — f < a on A”. Applying again Fubini’s
theorem, we see that p~!(A”) has t-negligible volume. Hence D = p~!(A’) U
p~Y(A") has t-negligible volume. This ends the proof of (i) <= (ii) <= (iii).

3.10.3. Proof of (iv)=>(iii) and (i)=(iv). — Tt is clear that (iv)=>(iii), since
the reduction of every cube in A with ¢-significant volume is a cube with non-
empty interior. We are going to prove (i)=(iv) by contraposition. So assume
that D is n-dimensional. Under this assumption, it contains a cube with non-
empty interior; let us write it [ [[@;, b;] where a; and the b; are t-bounded and
b; — a; is t-significant for all i. Let B be the definable set [ [,[a;, b;]\D.

We claim that every cube contained in the definable subset B has t-negligible
volume. Indeed, let A = [][a;,Si] be such a cube. If x is a point of A?
with Z € [] (a7, ;) then x € A (and hence = ¢ D) so [] (a3, 8;) does not
intersect D. On the other hand, since [] (a3, 3;) is contained in [] [a7, b;]
(because A < [],[a;, b:]), and D contains [],[az, b;], the open cube [] (a3, 3;)
is contained in D. Thus [] (@3, 3;) is empty, and there is at least one index i
such that 8; — @; = 0, which means that ; — o is t-negligible; a fortiori, the
volume of A is t-negligible.

Now by what we have already proved, this implies that SH[ as,bi\D dria...A

dz,, is t-negligible. As a consequence
dxlA...Adxn—f dz1 A ... Adxy,
[1lai.b:]
modulo a t-negligible element; but SH[ai bl dzy A ... Andzy, = [](b; —a;), which

%

fn[ai,bi]mD

is t-significant. Thus SH[‘M’ b]nD dxy A ... A dxy, is t-significant as well, and so
is §,dey AL A day. O

3.11. — A definable subset D of (*R)™ is called t-bounded if it is contained
in A7; it is called t-negligible if it is t-bounded and satisfies the equivalent
properties of Prop. We shall say that two t-bounded definable subsets D
and D’ of (*R)™ almost coincide (resp. are almost disjoint) if their symmetric
difference (resp. their intersection) is t-negligible. If D is a t-bounded definable
subset of (*R)", a finite family (D;) of t-bounded definable subsets of (*R.)"
will be called an almost partition of D if | J D; is almost equal to D and the
subsets D; are pairwise almost disjoint.

A definable subset D of R" is called negligible if it is of dimension < n —
1. We shall say that two definable subsets D and D’ of R"™ almost coincide
(resp. are almost disjoint) if their symmetric difference (resp. their intersection )
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is negligible. If D is a definable subset of R", a finite family (D;) of definable
subsets of R™ will be called an almost partition of D if | J D; is almost equal
to D and the subsets D; are pairwise almost disjoint.

3.12. Lemma. — Let D and A be two t-bounded definable subsets of *R)™.
Then D and A are almost disjoint if and only if D and A are almost disjoint.

Proof. — If D and A are almost disjoint then D n A € D n A is negligible,
so D n A is t-negligible by Prop. B9 Conversely, assume that D n A is t-
negligible and let us prove that D and A are almost disjoint. We argue by
contradiction, so we assume that there exist elements a,...,an,b1,...,b, in
A, with b; — a; > 0 and t-significant for all 7 such that [][a@;,b;] = D n A.
Set P = [][ai,bi] < A}. The volume of the cube P is t-significant and
the volume of P n D n A is t-negligible, so the volume of P\(D n A) =
(P\D) u (P\A) is t-significant. So at least one of the two definable sets P\D
and P\A has t-significant volume. Assume without loss of generality that
P\D has t-significant volume. By Prop. there exists c1,...,cn,d1,...,d,
in A, with d; — ¢; > 0 and ¢-significant for all ¢ such that [ [[¢;,d;] = P\D.

Set z = (#, el %) Then z is a point of P whose distance to D is t-
significant. As a consequence, 7 ¢ D. But since z € P, its reduction T belongs
to [[[az,bi] € D n A, contradiction. O

3.13. Proposition. — Let D and A be two t-bounded definable subsets of
(*R)".
(1) The set D is almost equal to A if and only if D is almost equal to A.
(2) The set D n A is almost equal to D n A.
Proof. — Set P = D\A and Q = A\D. By LemmaBI2 above, Q and D n A

are almost disjoint, and so are P and D n A as well as P and Q. Moreover,
we have

D=PuDnA and A=QuDnA.
Hence D is almost equal to A if and only if P and @ are negligible, which
amounts to requiring that P and @ be t-negligible (Prop. [3_:9]), that is to say,
that D and A almost coincide, whence (1). Moreover, DnA =D n Au (P n
Q), and in view of the negligibility of P n @ this implies (2). O

3.14. Corollary. — Let K be a definable definably compact subset of R™.
There exists a definable, definably compact and t-bounded subset E of (*R)"
such that E almost coincides with K.

Proof. — Choose aq,...,a, and by,...,b, in A, such that b; > a; for all

i and K < [][a@i, b;]. By using the description of definably closed subsets
of R™ provided by Théoreme 2.7.1 of [BCRS85|, we can assume that there



22 ANTOINE DUCROS, EHUD HRUSHOVSKI & FRANCOIS LOESER

exist finitely many polynomials f1,..., fm, in R[Th,...,T,] such that K is the
intersection of [[[@;, b;] with the set of points x such that f;(z) > 0 for all
j. By Prop. BI3l above me may assume that m = 1, and write f instead of
f1. If f is constant the set K is either empty or the whole of [][a;,b;] and
the statement is obvious. If f is non-constant, let g be a polynomial with
t-bounded coefficients that lifts f. Let E be the intersection of [ [[a;, b;] and
the non-negative locus of g; it suffices to prove that E is almost equal to K.
By definition, £ < K. Now let = be a point on K at which f is positive, and
let £ be any pre-image of z on [ [[a;,b;]. Since f(z) > 0 we have g(&) > 0,
hence ¢ € FE and x € E. Thus the difference K\E is contained in the zero-locus
of f, which is at most (n — 1)-dimensional since f is non-constant. O

4. Smooth functions and smooth forms over R and C

4.1. Smooth functions and smooth forms over the field R. — Recall
that A denotes the ring of t-bounded elements of *C, m denotes its maximal
ideal (i.e., the set of t-negligible elements) and A, and m, denote the inter-
sections of A and m with *R. The reduction modulo m will be denoted by
a — a.

4.1.1. — Let U be a semi-algebraic open subset of R™, for some m.

4.1.1.1. — If z is a point of R™ lying on U(R) and if ¢ is any point of A"
lifting x, then ¢ lies on U(*R): this comes from the fact that U can be defined
by a positive boolean combination of strict inequalities (which follows from
Théoreme 2.7.1 of [BCR&85]). For short, we shall call such a ¢ a lifting of x
in U(*R).
4.1.1.2. — Let ¢ be a smooth function from U to R. Let z € U(R). We
shall say that ¢ is tame at x if it satisfies the following condition: for every
lifting ¢ of 2 in U(*R) and every multi-index I, the element ¢/ (€) of *R is
t-bounded.

If this is the case, then for every ¢ and every I as above, the element 07 (€)
of R does not depend on ¢ (since ¢/ is Lipshitz with t-bounded constant
around §).

4.1.1.3. — If ¢ is tame at z, so are all of its partial derivatives; the sum and
the product of two smooth functions on U that are tame at x are themselves
tame at x.

4.1.1.4. — If ¢ is tame at z, we shall denote by ¢(z) the element p(§) for &
any lifting of z in U(*R) (it is well defined in view of LT.T.2]).

4.1.2. Ezamples. — In each of the following examples, the function ¢ is tame
at every point of U(R):
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o U = C* (viewed as a semi-algebraic subset of C ~ R?) and ¢ = || ;
o U=R* and ¢ = z — 2" for some n € Z;

o U =Rxg and ¢ = log;

o U = R and g is any trigonometric polynomial.

The function x — exp(1l/z) (defined on R*) is not tame at the element ¢
of *R*: indeed, exp(1/t) of *R is not t-bounded.

4.1.3. Composition of tame functions. — Let U be a semi-algebraic open
subset of R™, and let V be a semi-algebraic open subset of R". Let ¢ =
(¢1,--.,pn) be smooth functions from U to R™ and assume that ¢(U) < V.
Let ¢ be a smooth function on V.

Let x be a point of U such that every ; is tame at z, and such that 1 is
tame at o(z). It follows straightforwardly from the definition that 1 o ¢ is
tame at x.

Using this together with LT.2] we see that

C* - R,z — log|z|
is tame at every point of C'*, and that
C*\ {z,]z| =1} > R,z — 1/log|z|
is tame at every point of C*\ {z € C*,|z| = 1}.

4.1.4. Smooth functions and smooth forms on a wvariety. — Let X be a
smooth separated R-scheme of finite type.

Let U be a semi-algebraic open subset of X (R) and let g be a regular map
from a Zariski-open subset of X containing U to A'g for some m. A (U, g)-
tame smooth function is a smooth function ¢ defined on some semi-algebraic
open subset V' of R™ with g(U) < V(R), such that ¢ is tame at g(x) for every
zeU.

Let .# be the assignment that sends a semi-algebraic open subset U of X (R)
to the set of functions from U to R of the form o g, where g is a regular map
from a Zariski-open subset of X containing U to A%} for some m, and where
¢ is a (U, g)-tame smooth function.

Then .7 is a presheaf; its associated sheaf for the semi-algebraic topology
is denoted by €* or €% and called the sheaf of smooth functions on X(R).
It makes X (R) a locally ringed site.

The natural embedding of X (R) into the scheme X underlies a morphism
of locally ringed sites ¢: (X(R),€¥) — (X, Ox); hence ¢*Q§(/R is for every
p a well-defined ¢¥-module on X (R), which we denote by &P or «/§. The
sheaf szf)% is equal to €%, and the €-module szf)% is locally free (of rank n
if X is of pure dimension n); for every p, we have &/} = Ap.xz{%. The sheaf
/% is called the sheaf of smooth p-forms on X(R). One has for every p a
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natural differential d: szf)‘? — M)’;ﬂ. The sheaf C ®g szf)‘? is called the sheaf of
complex-valued p-forms on X (R).

4.2. The case of a variety over C. — By considering Weil restriction we
can apply the above to smooth schemes of finite type over the field C. For
such a scheme X and every m we get a sheaf &/§" of R-vector spaces on X (C)
(equipped with the semi-algebraic topology). This sheaf comes with a natural
decomposition
C ®R d;{n = @ 'Q{p’qu
p+g=m

where o7P7 is the sheaf of (i, j)-forms; i.e., of C—valued p-forms generated over
%€* by forms of the type

dfi A...ondfpadgi A... Adgg

for some regular functions fi,..., fp,g1,..., 94 (this is analogous to B.4.3]).

4.2.1. Polar coordinates. — The usual real functions cos and sin are tame at
every point of R, hence 6 — cosf + isinf is a well-defined smooth C-valued
function on R, which we denote by 6 — €. The map 6 — e is a surjective
homomorphism from R to {z € C*,|z| = 1}. The map 6 — €% is not injective;
its kernel consists of elements of the form 27n where n is a (possibly) non-
standard integer; i.e., it can be written as the (class of) the limit of a t-bounded
sequence of integers. For every a € R, the restriction of § — ¢ to [a,a + 27)
and (a,a + 27| is injective.

Every element z of C* can be written re? with r € R~ and § € R. The
element r is unique (it is equal to |z|), but € is not — we say that 6 is an
argument of z.

Making z vary, we get two “functions” r and 6 on C* = G, (C). More
precisely, r is an actual function which is tame at every point and takes its
values in R~q, and dr and dlogr = % are well-defined differential forms on
C*. But 6 is only a multivalued function; nevertheless, the differential form
df is also well-defined. Let us quickly explain how. Let zg € C* and let a be
any element of R such that zp has an argument 6y in (a — 7, a+ ) (this always
holds for a = 0 or a = 7). Then on a suitable semi-algebraic neighborhood U
of zg in C'* we have a single-valued smooth argument function 6 with values
in (a —m,a+m) (and 0(zp) = Oy). The smooth form df is well-defined on U.
From the equality z = re?? we get

dz = edr + rie??ds,

and then

- d
do = —Ee_“gdz — i—r.
r r
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This last formula does not involve the choice of zy, a and 8y anymore, and we
use it to define df on the whole of C*.

If we see z as an invertible function on C'* we shall write dlog|z| instead of
% and darg z instead of d#.

From the equality 2z = r? we get
1 2d 1/d dz
dlog|z| = 2 (—Z TZ> .
T 2 z
From the equality Z = e?? we get

1 1 de*) 1 (dz dz
d =—20=— —+>=—|———
MeET g 2i e 2\ z

4.2.2. The definition of d*. — Let X be a smooth scheme of finite type over
C. Our purpose is to define an operator d? on complex-valued smooth forms
on X (C) (which is a non-standard avatar of d° up to a constant).

Let us denote for short by €¢ - (resp. M)’gp) the sheaf CQr €Y (resp. C®r

/%). The sheaf QQ/)%’C of complex-valued smooth 1-forms on X(C) admits
a canonical decomposition ,Q{}(’C = " @ 7%, The formula (w,w’)
(—iw,iw’) defines an order 4 automorphism J of the %j‘gc—module JZ{%’C;
we still denote by J the induced automorphism of M};C We remark that
,Q{)%”C ~ /™0 ®</oo /%" so that the operator J on .@7)2( ¢ C is nothing but
(—i)™i"1d = Id.

We then define the derivation df: C¥ o — X o as being equal to (Jod)/27m

(this is an avatar of the classical operator d); it extends to a compatible
system of exterior derivations

d*: =—JodoJ Yoo Al

Let us see how it acts on polar coordinates. We have

d*(logr) = %J(dlog T)
7r

HG(2)
)
4G9
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and
1
d*(9) = 5-7(d0)

(L

S or (22'(2 z))
1 /1 dz dz

-2(3(-2)

1 /1 dz dz

-+(:(%-9)
dlog r

T or

Note that since (d%)2 = 0 this implies that d*(dlogr) = 0 and d*(df) = 0.

More generally if f is an invertible regular function defined on some Zariski-
open subset U of X we can define dlog|f| and darg f. Those are smooth forms
on U(C) and we have the following equalities

1/df  df
w349
=)
(log ) = 8
oy 1) = ~ L8],
4.3. — Now we introduce a particular class of smooth functions and forms

on smooth schemes over C' that will play a crucial role in our work. Roughly
speaking, these are the functions and forms that have a natural counterpart
in the Berkovich setting - we will make this rather vague formulation more
precise later.

4.4. Definition. — Let V be an open subset of (R U {—0})™ which can
be defined by a boolean combination of Q-linear inequalities and let ¢ be a
function from V to C. We shall say that ¢ is a reasonably smooth function if
there exists:

o a finite open cover (V;); of V| where each V; is also defined by Q-linear
inequalities;

o for every i, a subset J; of {1,...,m} with Q; := p;,(V;) € R’i, where p;,
is the projection onto the coordinates belonging to J;);

o for every i, a smooth function ¢; on €; such that ¢|y, = ¢; opy|v..
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The data (V;, J;, 24, i); will be called a nice description of .
If J is some subset of {1,...,m} we shall say that ¢ is J-vanishing if there
exists an open subset V' of V satisfying the following:

¢ V' can be defined by Q-linear inequalities;

o plyr =0;
o for every = (1,...,%,) € V\V’ and every i € J, the coordinate x; is
not equal to (—o0).

Note that ¢ is automatically J-vanishing; indeed, if J = ¢ then the above
conditions are fulfilled by V' = (.

For instance, a reasonably smooth function ¢ on R u {—o0} is nothing but
a smooth function ¢ on R such that there exists A € R with ¢(x) = A for
x « 0 (and the value of ¢ at —oo is then set equal to \); it is 1-vanishing if
and only if A = 0.

4.5. — Let V be an open subset of (R U {—0})™ which can be defined by
a boolean combination of Q-linear inequalities. The following facts follow
straightforwardly from the definition.

4.5.1. — If p: V — R is a reasonably smooth function, then it is continuous,
and ¢|y~rm is smooth.

4.5.2. — For V < R™, a function from V to R is reasonably smooth if and
only if it is smooth.

4.5.3. — The set of reasonably smooth functions on V' is a subalgebra of the
algebra of R-valued functions on V. It is endowed with partial derivation
operators defined in the obvious way.

Let ¢ be a reasonably smooth function on V' that is J-vanishing for some
subset J of {1,...,m}. Let j € J. Let us show that d;¢ is (J U {j})-vanishing.

Let (V;, J;,Q4, ¢i); be a nice description of ¢ and let V/ be an open subset
of V that witnesses the fact that ¢ is J-vanishing. Let V” be the union of V’
and of all the open sets V; such that j ¢ J;. We claim that V" witnesses the
fact that 0;¢ is (J U {j})-vanishing. Indeed, d;¢ is zero on V' since so is ;
and if ¢ is such that j ¢ J; then ¢|y; dose not depend on the j-th coordinate,
so 0;p is zero on Vj; thus 0j¢ is zero on V.

Let z € V\V”; choose i such that x = (x1,...,2,,) € V;. By definition of
V", the set J; contains j. Hence z; # (—00), whence our claim.

4.6. Smooth functions and smooth forms on a ('-scheme: a funda-
mental example. — Let V' be an open subset of (R u {—0o0})™ which can
be defined by a boolean combination of Q-linear inequalities, and let ¢ be a
reasonably smooth function from V to C.
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Let W be the semi-algebraic open subset of C™*! consisting of points
(a1,...,am,b) such that 0 < |b|] < 1 and (—logla;|/log|b|); € V. By con-
struction,

D: (ay,...,am,b) — p(—loglay|/log|b|, ..., —log|am|/log|b|)

is a well-defined € map from W to C.

Let X be a smooth C-scheme of finite type and let U be a semi-algebraic
open subset of X(C). Let g = (g1,...,9m) be a regular map from a Zariski-
open subset of X containing U to A, and assume that (g1,...,gm,t)(U)
W (C) (here the element t of C is viewed as a constant regular function).

4.6.1. The smooth function ® on W is (U, (g1,.-.,gm,t))-tame. — To see
it, fix a nice description (V;, J;, Q;, ¢;); of ¢. For every i, denote by W; the
pre-image of V; in W under the map (a1, ..., am,b) — (—log|a;|/log|b|), and
let U; denote the pre-image of W; in U under the map (g1, ..., gm,t).

We fix i, and we are going to show that ® is (U, (g1, - - . , gm, t))-tame, which
will imply our claim. In view of L.I1.1.3l and .1.3] it suffices to prove that for
every x € U;, the map ¢; is tame at the point y := (—log|g;(z)|/log|t|) e,
of ;(R). But the coordinates of y are bounded (as is logr/log|t| for every
r € R~g), so the coordinates of ) are bounded for every lifting n of y, which
implies that all partial derivatives of y; are bounded, and a fortiori t-bounded,
at n; thus p; is tame at y.

4.6.2. — We can thus compose ® and (g1, ..., gm,t) to get a smooth map on
U, which we can safely write

z — ¢(—log|gi|/loglt], ..., —log|gm|/ log]t]);

its restriction to every U; can be written

x> pi(—log|g;|/log|t|) jes;-
4.6.3. — Let I and J be two subsets of {1,...,m} of respective cardinalities
p and ¢ such that ¢ is (I U J)-vanishing.
Let U’ be the pre-image of V' in U under (—log|g1|/log|t|, ..., —log|gm|/log|t|),
and let U” be the subset of U consisting of points at which all the functions
g; with ¢ € I U J are invertible. Let w be the (p, ¢)-form on U” equal to

—1 \P
(i) 108 o gl ..~ gl oglcoglan] A dar g
(where dlog|g;r| = dlog|gi,| A ... Andlog|g;,|if iy < iz < ... < i, are the elements
of I, and similarly for darg|gs|). Since ¢ is (I U J)-vanishing, the restriction
of wto U' nU” is zero, so that w and the zero form on U’ glue to a (p, ¢)-form
on U which (obviously) does not depend on V’; we shall allow ourselves to
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denote it by

—1 \?
(1) (- olanl/ 1ol ...~ Toglg | ol dloglan]  dargs.

5. Integrals of smooth forms over R and C

5.1. — The purpose of this section is to integrate forms on a smooth scheme
defined over the field R. The rough idea is quite natural (and unsurprising):
lift the situation over A, compute the integral over *R. like in section [3] and
then take its class modulo the ideal m, of ¢t-negligible elements.

First of all, we shall assume that we are given two different liftings of a
very specific form, and show that the integrals over *R to which they give rise
coincide modulo m, (Prop. 53] below); the proof rests in a crucial way on our
former study of cubes with t-negligible volume and uses the notion of “almost
equality” over *R as well as over R (see Prop. B9, BIIl and Prop. BI3),
together with Hensel’s lemma.

Then we shall handle the general case, the point being that a form on a
smooth R-scheme always admits locally for the Zariski topology a lifting of
the kind dealt with by Prop. 5.3} so this part is somehow tedious but rather
formal once Prop. [£.3]is taken for granted.

5.2. — If 2 is an affine A,-scheme of finite type, a definable subset E of
Z (*R) will be called t-bounded if it is contained in 2 (A,). We remark that
FE is t-bounded if and only if its topological closure is t-bounded, and if this
is the case then the latter is even definably compact. Indeed, by embedding
Z in an affine space and arguing componentwise we reduce to the case where
Z = A}4r, for which our statement follows from o-minimality.

5.3. Proposition. — Let Z be a smooth R-scheme of finite type and pure
dimension n, and let h = (hi,...,hy) be an étale map Z — A’ factorizing
through an immersion (h,hp1): Z < ARt Let 27 and % be two smooth
A-schemes of finite type and of pure relative dimension n, equipped with iden-
tifications Zp ~ Z and g ~ Z. Let f = (f1,...,fa): & — A%} and
9= (91,---,9n): ¥ — A’} be two étale maps, factorizing respectively through
a closed immersion (f, fni1): Z — Azrl and (g, gn+1): & — A’ZJI; assume
that for all i one has fi|z = gi|z = h;.

Let E, resp. F, be a t-bounded semi-algebraic subset of Z (*R), resp.
% (*R); assume that the subsets E and F of Z(R) almost coincide.

Let ¢ be a smooth function defined on a neighborhood of E in 2 (A;), of the
form g o X with g a € function and \ a tuple of reqular functions on Z ;
let ¢ be a smooth function defined on a neighborhood of F in % (A;), of the
form g o p with vy a € function and p a tuple of reqular functions on % .
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Assume that there exists a semi-algebraic open subset O of Z(R) containing
E and F such that g is (O, N z)-tame, 1o is (O, p|z) tame, and the smooth
functions pg o (A|o) and g o (u|lo) coincide on some semi-algebraic subset of
O almost equal to E and F.

Then SE pdfi A...Adfy and SF Pdgr A ... Adg, are t-bounded and coincide
up to a t-negligible element.

Proof. — We begin with noting that our tameness assumptions on g,
resp. ¥, imply that ¢, resp. v, takes only ¢t-bounded values on E, resp. F;
this in turn implies that it is wniformly t-bounded on FE, resp. F. The
t-boundedness of the integrals involved in our statement follows immediately.

Throughout the proof, we will use the map f,, 11, resp. gni1, resp. hpi1 to
see any fiber of f, resp. g, resp. h, as a subset of the affine line over its ground
field, and we will repeatedly use the following fact, which is a consequence of
the Henselian property of the local ring A, : if w is a point of A" with image w
in R™, then for every z € Z(R) lying above W there exists a unique pre-image
¢ of win 2 (Ay) (resp. #(A;)) with ¢ = 2.

The subsets E and F of Z(R) are definable, closed and bounded (because
E and F are bounded); so they are definably compact. The sets h(E) and
h(F) are definably compact, and they almost coincide since E and F almost
coincide. so they have the same n-dimensional locus ©; and the set h(EAF) is
negligible. It follows that there exists an almost partition (0;) of © (and thus
of h(E) as well as of h(F')) by definably compact definable subsets satisfying
the following: for every i there exists an integer n; such that the subset O of
©; consisting of points having exactly n; pre-images in £~ F and no pre-image
in £ A F is almost equal to ©;.

Now for every i there exists a t-bounded definable subset €; of (*R)" such
that €); is almost equal to ©; (Corollary B.14). By Prop. B.I3] the family (£;)
is an almost partition of f(F) as well as of g(F). For every i, let Q) be the
subset of ); consisting of points having exactly n; pre-images in E under f
and exactly n; pre-images in F' under g.

5.3.1. — Let us fix i, and prove that €} is almost equal to €2;. It is sufficient
(since f and g play exactly the same role) to prove that the set H of points
of ©; having exactly n; pre-images in F under f is almost equal to §2;.

We argue by contradiction, so we assume that the set H consisting of points
x € Q; such that f~!(z) n E has cardinality different from n; has t-significant
volume. Then its image H is a non-negligible subset of ©;, which implies that
H n O has dimension n. Let us choose a cube (with non-zero volume) C in
H n ©) having the following property: there exist an integer N, a subset I of
{1,..., N} of cardinality n; and a t-bounded element A > 1 in *R such that
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each fiber of h over C consists of exactly N points z; < z5 < ... < zy all
contained in [1 — A, A — 1] and such that z; € E if and only if j € I.

Let us choose a cube D < A" lifting C. Since C = H, the intersection D~ H
is not t-negligible (Lemma [3:12]), hence contains a cube D’ with t-significant
volume. Every point of D’ has exactly N t-bounded pre-images, all contained
in [-A, A]; let 01 < ... < on denote the corresponding continous sections of
the étale map f above D'. If x € D" and if j € {1,..., N}\I then oj(x) ¢ E,
because oj(x) ¢ E by the very definition of I. For each j € I, set D; = O';l(E).
Let £ € D’ and let j € I. The point ¢ belongs to C, so its j-th pre-image ¢ under
h belongs to E, so there exists a point z € E such that Z = ¢, which implies

that f(z) = &; thus z = 0;(f(2)) and f(2) belongs to D}; as a consequence,

5;- = D'. In view of Prop. B.13} it follows that )
In particular [

jer D;- is almost equal to D'.

D;- is non-empty; but for every z € ) D;» the intersection

jel
f~1(z) n E has exactly n; elements, contradiction.

5.3.2. — Now we remark that if N is a t-negligible t-bounded definable subset
of (*R)", then

jel

edfi A ... Adf, and f wdgr A ... Adgy

ijfl(/\/) Fng=t(N)

are t-negligible. Indeed, let N be an integer such that the fibers of f|g and of
g|r all have cardinality < N, and let M be a ¢t-bounded positive element such
that || and |¢| are bounded by M on E and F respectively.

Then

odfi A oo A dfy

f <NMf dTy A ... AdT,
Enf=1(N) N

and

f wdglA.../\dgnéNMf dTi A ... A dT,
Frg=1(WN) N

whence our claim.

5.3.3. Conclusion. — In view of [(.3.1] and 532 it is sufficient to prove that
for all 7 the integrals

f odfi A ... Adf, and f vdgr A ... Adgy

Enf=1() Frg=1(Q))

agree up to a t-negligible element. So let us fix i. We denote by 01 < g9 <
. < oy, the continuous sections of f|g over Q) and by 71 < 72 < ... < Ty,

the continuous sections of g|r over . For all z € ] and all j between 1 and

n; the elements o;(x) and 7;(z) coincide: both are the j-th pre-image of T in
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E n F. We have by construction
f gpdflA.../\dfn—Zf (poo;)dTy A ...dT,
Enf=1() FRRAYS
and
f zﬁdgl/\.../\dgn:ZJ (Y or)dTy A ...dT,.
Fog=1() 5 Y

The difference

f gpdfl/\...Adfn—f wdgr A ... Adgy
E'mf*l(Qg) Fmg*l(Qg)

is thus equal to
ZJ (pooj—vor)dTy A ... AdT,.
j U

By our assumptions on ¢ and v the difference |¢ o o; — 1 o 7;| is t-negligible
for every j at every point of €2,. Therefore there exists a positive t-negligible
element ¢ such that |poo; — 1 o7;)| < e for all j at every point of ). As a
consequence

j gpdflf\.../\dfn—f wdgr A ... Adgy
Enf=1() Fog=1 ()
<ni5f dTi A ... A dT,
2
which ends the proof. O

5.4. Corollary. — Let 2" be a smooth A.-scheme of finite type of pure rela-
tive dimension n Let f = (f1,..., fa): 2 — A’} be an étale map factorizing
through an immersion (f, fn+1): Z — Azrl. Let E be a t-bounded semi-
algebraic subset of 2 (*R); we remind the reader that E denotes the image

of E under the reduction map (and not its topological closure). The following
are equivalent:

(i) The image f(E) is t-negligible.

(ii) The image f(E) is of dimension < n.
)
)

(iii) The reduction E is of dimension < n.

(iv) For every smooth function ¢ of the form wgoX with py a €* function and
X a tuple of reqular functions on Z such that g is (O, A 27,)-tame on
some semi-alegbraic open subset O of 2 (R) containing E, the integral
Spedfi A ... Adfy is t-negligible.

(v) The integral SE dfi A ... Adf, is t-negligible.
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Proof. — TImplication (i)=(ii) comes from the fact that f(E) = f(F). Im-
plication (ii)=>(iii) comes from étaleness of f. Implication (iii)=(iv) follows
from Proposition 53] (apply it with & = 27,9 = g, gn+1 = foy1 and F = ).
Implication (iv)=>(v) is obvious. Assume that (v) holds. For every i, let D;
denote the subset of f(FE) consisting of points having exaclty ¢ pre-images on
FE, and let N be such that D; = ¢ for ¢ > N. We then have

N
delA...AdfnZZJ ATy A ... A dT,.
E i=1YDi

As a consequence, SDZ- dTi A ... A dT, is t-negligible for every i, so { £(B) d71 A
. A dT,, is t-negligible, whence (i). O

5.5. — Let us keep the notation of Corollary 5. 4labove. We shall say that E is
t-negligible if it satisfies the equivalent conditions (i)—(v) (note that condition
(iii) does not involve the functions f;, so the notion of t-negligibility does not
depend on the choice of the functions f;). We shall say that two ¢t-bounded
definable subsets of Z°(*R) almost coincide if their symmetric difference is
t-negligible, and that two definable subsets of 2 (R) almost coincide if their
symmetric difference is of dimension < n.

5.6. Lemma. — Let 2 be a smooth A.-scheme of finite type of pure relative
dimension n. Assume that there exists an étale map f = (f1,...,fn): Z —

. factorizing through an immersion (f, foi1): £ — A’Z‘jl. Let E and F be
two t-bounded definable subsets of Z (*R). Then E and F are almost disjoint
if and only if E and F are almost disjoint.

Proof. — If dim(E n F) < n then dimE n F < n because EnF < E N F;
thus if £ and F are almost disjoint, so are ' and F. Assume now that £ and
F are almost disjoint. Set G = f(E u F). For every triple (7,7, k), denote
by @J,k the subset of points of G having i pre-images in E, j in F and k in
E U F. By Corollary [3.14] there exists for every (i,7, k) a t-bounded definably
compact definable subset T'; j  of (*R)™ such that I'; ; ; is almost equal to the
definable closure of éimk’ hence is also almost equal to @i,j7k. By the same
reasoning as in [5.3.1] the subset of points of I'; ; ;, having exactly ¢ pre-images
in E, resp. j pre-images in F', resp. k pre-images in F U F' is almost equal
to I'; ; 1; hence so is the intersection F; ik of these three subsets. The family
(T

Let (i,7,k) be a triple with k& < i + j. Since E n F has dimension < n,
the set T]k is negligible; as a consequence, I'; ; ; and F;J’k are t-negligible.
This implies that f(E n F) is t-negligible, whence the t-negligibility of £ n F
itself. O

) is an almost partition of G.
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5.7. Proposition. — Let 2" be as in Lemma [5.8 above and let E and F be
two t-bounded definable subsets of Z (*R).

(1) The set E is almost equal to F if and only if E is almost equal to F.
(2) The set E N F is almost equal to E N F.

Proof. — The proof is the same as that of Proposition [3.13], except that one
uses Lemma instead of Lemma [3.12] O

5.8. Corollary. — Let 2 be as in Lemma and let K be a definable
definably compact subset of 2 (R). There exists a definable, definably compact
and t-bounded subset E of 2 (*R) such that E almost coincides with K.

Proof. — By writing K as the union of its intersections with the Zariski-
connected components of 2, we can assume that it lies on such a component
X. By boundedness of K and the henselian property of A, (which ensures that
any R-point of 2" can be lifted to an A,-point), we can choose a t-bounded,
definably compact definable subset F' of 2 (*R) such that K < F < X(R).
By Theorem 2.7.1 of [BCRS85]|, we can assume that there exists finitely many
regular functions f1,..., f,, on 2% such that K is the intersection of F with
the set of points x such that f;(z) > 0 for all j. By Prop. 5.7 above me may
assume that m = 1, and write f instead of fi. If f is constant on X the set
K is either empty or the whole of F and the statement is obvious. If f is
non-constant on X, let g be a regular function on 2" that lifts f. Let E be
the intersection of F' and the non-negative locus of g; it suffices to prove that
E is almost equal to K. By definition, E ¢ K. Now let = be a point on K at
which f is positive, and let £ be any pre-image of x on F. Since f(z) > 0 we
have g(¢) > 0, hence ¢ € E and z € E. Thus the difference K\FE is contained
in the zero-locus of f in X (R) which is at most (n — 1)-dimensional since f|x
is non-constant. U

5.9. Definition. — Let X be a smooth R-scheme of finite type and of pure
dimension n. We shall say for short that X is liftable if there exists a smooth
affine A,-scheme 2, an isomorphism 2% ~ X, and n + 1 regular functions
fis--oy fne1 on £ such that (f1,..., fry1) defines an immersion 2~ — AZ:FI
and (f1,...,fn): & — A7 is étale.

5.10. Integral of a smooth n-form. — Let X be a smooth R-scheme of
finite type and of pure dimension n, let K be a definable subset of X (R) with
definably compact definable closure, and let w be a smooth n-form on a semi-
algebraic open neighborhood O of K in X(R). The purpose of what follows
is to define SK w.
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5.10.1. — We first assume that X is liftable and w is of the form
o(ug, ..., um)wy almost everywhere on K, with wu; regular functions, ¢
an (O, (uq,...,uy))-tame smooth function, and where wg is an algebraic
n-form. Choose £  and f1,..., fne1 as in Definition The sheaf Qx/r
is then free with basis (df;|x)i1<i<n; therefore up to multiplying ¢ with a
regular function we might assume that wo = (df; A ... A dfy)|x-

Choose a t-bounded definable subset E of 2 (*R) such that F is almost
equal to the definable closure of K (Corollary B.8]) and for every i, choose a
regular function v; on 2 lifting w;.

By Proposition (3] the integral §, ¢(v1,...,vp)df1 A ...df, does not de-
pend on our various choices up to a t-negligible element. We can thus set

L{w - Lﬂ(p(vl""’”m)dfl Adfy

this is an element of R. Note that if K’ is any definable subset almost equal to

K then (., w = §, w (since the same E can be used for both computations).
The assignment K — S ¢ w is finitely additive. Indeed, if K is a finite union

U s K of definable subsets, we can choose for every j an almost lifting £ of

Kj; now for every subset I of .J the sets [,y Fj and [);c; K; almost coincide
by Proposition B.7], and additivity follows from additivity of integrals over the
field *R.

5.10.2. — We still assume that X is liftable, but we no longer assume that
w is of the form @(uy,...,uny)wy on K. By the very definition of an n-form
there exist finitely many definably open subsets Uy, ..., U, of X (R) that cover
K and such that w|y, has the required form. By Lemma we can write
the definable closure of K as a finite union | J..; K; with each K definably

KW does
je

not depend on the choice of the sets U; and K, and we can use this formula
as a definition for SKw. The assignment K — SKw remains additive in this
more general setting, and SK w only depends on the class of K modulo almost

equality.

5.10.3. — We still assume that X is liftable. Let s be an algebraic function
on X, set X’ = D(s) (the invertibility locus of s) and assume that the defin-
able closure of K is contained in X’(R). We then have a priori two different
definitions for SKw, the one using X and the other one using the principal
open subset X', which is also (obviously) liftable. Let us show that both inte-
grals coincide. By replacing K by its closure (to which it is almost equal) we
can assume that it is definably compact.

By cutting K into finitely many sufficiently small pieces (Lemma [B.2)) and
using additivity, we can assume that w is of the form ¢ (uq, ..., Uy, )wy almost

jed
compact and contained in U;. By additivity 3,5,/ S(=1)l+1 Sﬂ
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everywhere on K, with u; regular functions on X, ¢ an (O, (uy, ..., uy))-tame
smooth function, and wy a section of Q% /R (this can be achieved since Qx/r
is free because X is liftable). Lift every u; to a regular function v; on 2", and
lift wg to a relative n-form w’ on 2.

Let us choose data (2, f1,..., fnt1) that witness the liftability of X. Lift
every u; to a regular function v; on 27, lift wy to a relative n-form w’ on
&, and lift s to a regular function o on Z. Set 2’ = D(o). Then
(27 f1,- -, fns fne1) witnesses the liftability of 2. Now choose a t-bounded
definable subset of 2”/(*R) that almost lifts K. Then it is definable, t-bounded
and an almost lifting of K as a subset of 2" (*R) as well. Therefore the X
and the X’ version of {,.w both are equal to the class of {, @(vi,...,vp)o’
modulo the t-negligible elements.

5.10.4. — The scheme X is no longer assumed to be liftable, but we assume
that there exist two liftable affine open subsets X’ and X” of X such that the
definable closure of K is contained in X’(R) n X”(R). We then have a priori
two different definitions for SK w, the one using X’ and the other one using
X". We want to prove that they coincide. By replacing K by its closure (to
which it is almost equal) we can assume that it is definably compact.

Let us first note the following. Let z be a point of X’ n X”. Choose an
affine neighborhhood Y of 2 in X’ n X” equal to D(s) as a subset of X', for
some regular function s on X’. Now choose an affine neighborhood Z of x in
Y equal to D(w) as a subset of X”, for some regular function w on X”. The
restriction of w to Y is equal to a/s’ for some ¢ > 0 and some regular function
a on X'; as a consequence Z = D(as) as a subset of X”.

Hence we can cover X’ n X” by finitely many open subschemes Y7,...,Y,,
each of which is principal in both X’ and X”. Now write K = | J K; with every
K; definable, definably compact and contained in Y; (Lemma [32]). For every
non-empty subset [ of {1,...,r} it follows from [(T10.3] that Smm K, W does not

depend whether one is working with X’ or or X” (because it can be computed
working with Y; where j is any element of I). By additivity it follows that
§;c w also does not depend whether one is working with X" or or X”.

5.10.5. — Now let us explain how to define SKw in general. Let K’ be the
closure of K, which is definably compact. We choose a finite cover (X;);er
of X by liftable open subschemes (which is possible since X is smooth). We
then write K’ as a finite union | J K; where every K; is a definably compact
semi-algebraic subset of X;(R) (Lemma [3.2).

We then set

w= Y (_1)|J+1f o,
Lf FEIcT Nies Ki
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which makes sense because, as it follows straightforwardly from the above, it
does not depend on (X;) nor on (Kj;).

5.11. — Let X be a smooth R-scheme of finite type of pure dimension n. It
follows from our construction that

o J

(where K is a semi-algebraic subset of X (R) with definably compact closure
and w is an n-form defined on a definable neighborhood of K) is R-linear in
w, additive in K, and that it depends on K only up to almost equality.

We can extend this definition to forms with coefficients in a reasonable class
of functions (like piecewise smooth) by requiring everywhere in the above that
¢ belongs to the involved class (instead of being smooth) and satisfies some
tameness condition. For instance, {, |w| makes sense (and is non-negative),
see BZAL Tt follows from the definition that §, w only depends on w|g; in
particular, it is zero if w vanishes almost everywhere on K. We can thus extend
the definition of § ¢ W when we only assume that there exists a definable subset
K’ of K with definably compact closure such that w vanishes on K\K’.

And of course, we can also define by linearity the integrals of complex-valued

forms (AIA]).

5.12. The complex case. — We now consider a smooth C-scheme of finite
type X of pure dimension n, and a complex-valued (n,n)-form w with coeffi-
cients belonging to a reasonable class of functions defined in a semi-algebraic
open neighborhood of a semi-algebraic subset K of X (C'). Assume that there
exists a semi-algebraic subset K’ of K with definably compact closure such
that w vanishes on K\K’.

Then §, w is well defined. Its computation requires (amongst other things)
to lift locally Ro/pX to a smooth A,-scheme and w to a (2n)-form on this
scheme, which can be achieved by lifting locally X to a smooth A-scheme and
w to an (n,n)-form on this scheme.

6. The archimedean and non-archimedean complexes of forms

6.1. — We denote by A the element — log|t| of R~¢, and by Log the normal-
ized logarithm function a — loga/A from R~ to R.
We recall that C' is equipped with a non-archimedean absolute value |-|,,

which sends a non-zero element z to TStd(ll?me) where 7 is an element of (0, 1)
which has been fixed once and for all, and where std(-) denotes the standard
part (see 27). We set A\, = —log T = —log|t], € R~¢. and we denote by Log,
the normalized logarithm function a — loga/A, from R~ to R.
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If a is any element of C'*, it follows from the definitions that
Log, |al, = std(Log]al).

6.2. Analytification of C-schemes. — The field C is a complete non-
archimedean field, so Berkovich geometry makes sense over it.

Let X be a C-scheme of finite type, and let X?" denote its Berkovich an-
alytification. Let x be a point of X?". In the proof of our main theorem, we
shall use the fact that x has a basis of open, resp. affinoid, neighborhoods V'
in X" satisfying the following: there exists an affine open subscheme 2 of X
such that V is an open subset, resp. a Weierstral domain, of 22" that admits
a description by a system of inequalites of the form

lo1ly < Ris..-s|enly < Rp,resp. |oil, < Ri,...|enl, < R

where the functions ¢; belong to 0(2), and with R; positive real numbers.

Let us prove it. We first chose an open affine subscheme U of X with
x € U a family (f1,..., fn) of regular functions on U that generate &(U)
over C, and let R be a positive real number such that |f;(x)], < R for all 4
let W be the Weierstral domain of U?" defined by the inequalities |f;|, < R.
Now it follows from the general theory of Berkovich spaces that x has a basis
of open, resp. affinoid, neighborhoods described by a system of inequalities of
the form

|f1‘|, < R,...,|fn|b < R, |g1|b < T1y..., |gm\|, < Tm, ‘hl‘b > 81,...,|hg‘|, > Sy,

resp. |fily < R, ..., |[fuly S R Jg1l <71, |gmly < 7o [haly = 51, [hely = 50

with ¢; and h; analytic functions on W, and s; and r; positive real numbers.
But €(U) is dense in 0(W), so we can assume by approximation that the
functions g; and h; belong to &(U). Then the domain described by the above
system of inequalities can also be described as the locus of validity of

|f1||7 < Rv"'7|fn||7 <R, |gl||7 < Tiyeee, |gm||7 < Tm, |h1_1||7 < 81_17"' ) |h£_1|b < S(_lv

resp. |fily < Rooo | fuls S Bylgily < 71ee s |gmly < 7[R < 8T R <

on D(hihsg... hg)an, whence our claim.

6.3. Two complexes of differential forms. — We fix a smooth C-scheme
of finite type X of pure dimension n.
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6.3.1. — Let us begin with some notation. Let U be an open subscheme of
X and let f = (f1,..., fm) be a family of regular functions on U. Let I and
J be two subsets of {1,...,m}. We shall denote by L) the set of pairs
(V, ) where:

(a) V is an open subset of (R U {—00})™, defined by Q-linear inequalities
such that Vg contains (Log|f1], ..., Log|fm|)(U(C));
(b) ¢ is a reasonably smooth function on V' which is (I U J)-vanishing.
We identify two pairs (V, ¢) and (V' ¢') if p and ¢ agree on V n V’; therefore
we shall most of the time omit to mention V and elements of .77/ (/i) will be
called (I U J))-vanishing reasonably smooth functions.

We denote by %I’J’(f V) the set of pairs (V, ) satisfying condition
(a,) V is an open subset of (R U {—0})™, defined by Q-linear inequalities
and containing (Logy|f1ly, - - -, Logy | fmly) (U?™)
and condition (b) above. Here also, we identify two pairs (V,¢) and (V’,¢’)

if o and ¢’ agree on V. n V' and elements of %I’J’(fi) will be called (I, J),-
vanishing smooth functions.

Note that ylv‘lv(fi) c %IvJy(fi).

6.3.2. The non-standard archimedean complex. — Let U be a Zariski open
subset of X(C). Let us denote by AP, (U) the set of those (p + g)-smooth

forms w on U(C) for which there exist:

e a finite family (fi,..., fi) of regular functions on U ;
e for every pair (I, J) with I and J two subsets of {1,..., m} of respective
cardinality p and ¢, an (I U J)-vanishing reasonably smooth function
o1, € ST,
such that
w= Z(‘DLJ (Log| f1l - - ., Log| fm|) dLog| fr| A dArg fs
1,J

where dLog| f|r stands for dLog| fi, | A ... AdLog|f;, | if i1 <iy < ... < i, are the
darg fjl N N darg qu
A

2 T

elements of I, and dArg f; stands for
are the elements of J.

We denote by AP? the sheaf on X% associated to the presheaf Af)’rish, and
by A®*® the direct sum P, , A7

We set for short A = A%0. By construction, A°(X) is the subsheaf (of
C-algebras) of the push-forward of C ®g €% to X Zar whose sections are the
smooth functions that are locally on X%* of the form ¢(Log|fi|,...,Log|fm|)
for some finite family (fy,..., fi) of regular functions and some reasonably
smooth function ¢ on a suitable open subset of (R U {—o0})™.

ifjl <j2<...<jq
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The sheaf A®* has a natural structure of bi-graded A-algebra; it follows
from @53 that the differentials d and d? induce two differentials on A**, which
are still denoted by d and d*. The differential d is of bidegree (1,0) and maps
a form

¢ (Log|fil,...,Log|fm|) dLog|fr| A dArg f;
to

0
N 22 (Loglfil..... Log|fu|) dLog| fil A dLog|fs| A dArg f.

1<i<m 0

The differential d* is of bidegree (0,1) and maps a form
¢ (Log|fi],...,Log| fm|) dLog|f1| A dArg f,;

to
0 darg
Z 890- (Log| f1l, - - - , Log| fmm]) 2—f, A dLog|fr| A dArg f;.
1<i<m OT i
The operator J also acts on A®*®; it maps a form
¢ (Log| f1l, - - ., Log| fm|) dLog| fr| A dArg f;
to

(=1)4(2m)P~9p (Log|fi, - .., Log| fim|) dArg fr A dLog| ;]|
and acts trivially on A™™.

6.3.3. The non-archimedean complex. — Let U be a Zariski-open subset of
X. Let us denote by Bg’rqesh(U ) the set of those (p, ¢)-smooth forms w on U?"

in the sense of [CLD] for which there exist:
e a finite family (fi,..., fm) of regular functions on U;

e for every pair (I,J) with I and J two subsets of {1,...,m} of respec-
tive cardinality p and ¢, an (I, J),-vanishing reasonably smooth function

I7J7 [3
1.5 €S, ),

such that

w =Y o1 (Logy| fily, - -, Logy| fmls) d Logy| f1l, A d"log| f4],
1,J
where d’ Log, | f7], stands for ' Log, | fi, [, A. .. Ad" Log, | fi, |, if i1 < iz < ... <1
are the elements of I, and similarly for d”log|f|,.

We denote by BP? the sheaf on X% associated to the presheaf Bf)’rish.

We denote by B** the direct sum @p’q BP4. We set for short BY = B%C,
By construction, B is the subsheaf (of C-algebras) of the push-forward of
C®pA%.n to X% whose sections are the smooth functions that are locally on
X% of the form p(Log, | fily, - - -, Log, | fm|,) for some finite family (f1,..., fm)
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of regular functions and some reasonably smooth function ¢ on a suitable open
subset of (R U {—00})™.
The sheaf B** is a bi-graded B°-algebra which is stable under d’ and d”.

6.4. Remark. — Every (p,q)-form in the sense of [CLD] can be written
locally for the Berkovich topology as a sum

D wr(0glgily, - - ,1oglgmly)d loglgr], A d”log|g.sl,

where the 17 ; are smooth and with g; invertible analytic functions.
By the very definition of an (I U J)-vanishing reasonably smooth function,
a section

w =Y ¢r7 (Logy| fily, - -, Logy| finls) d' Logy| f1l, A d"log|£,1;
T

of B’;’rqesh fulfills this condition, because locally for the Berkovich topology, every
non-zero term of the sum can be rewritten by involving only the functions f;
which are invertible. But the reader should be aware that w can not in general
be written locally for the Zariski topology as a sum

D wr(0glgil, - - ,1oglgmly)d loglgr], A d”log|g.sl,

with g; invertible algebraic functions.
(Consider for example a non-zero smooth function ¢ on R that vanishes on
(—o0, A) for some A, and the section (Log,|T|,)d’ Log,|T|, A d”log|T|, of B!
l,an
on AsM)

7. Pseudo-polyhedra

The purpose of this section is to describe the domains on which we shall in-
tegrate our forms, in both the archimedean and non-archimedean settings.
These domains will be the preimages under functions of the form Log|f]
(resp. Logy|f|,) of some specific subsets of (R u {—0})" (resp. (R U {—w0})")
that we call pseudo-polyhedra.

7.1. Definition. — Let S be a non-trivial divisible ordered abelian group
with additive notation (in practice we shall consider only cases where S under-
lies a real-closed field). A subset of (S {—00})™ is called a pseudo-polyhedron
if it is a finite union of sets of the form

{(m',m”) € H[—oo,b,-] X H[ai,bi] stoo1(2") <0,... 0. (2") < 0}
iel ieJ
where

o I and J are subsets of {1,...,m} that partition it;
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o for 1 < i < m, a; and b; are elements of S;
o for 1 < j < r, ¢; is an affine form whose linear part has coefficients in

A subset of S™ is a polyhedron if this is a pseudo-polyhedron of (Su{—o0})™.
This amounts to requiring that it be a finite union of sets of the form

T € H [ai,bi] st p1(x) <O,...,00(x) <O,
i€{l,...,n}

with a;, b; and ¢; as above.

7.1.1. — Let X be an analytic space over C' and let f1,..., f;, be analytic
functions on X. Let P be a pseudo-polyhedron of (R U {—o0})™. The set

(Logy,| fily - - - s Logy| fmls) ™' (P)
is a closed analytic domain of X.
7.1.2. — Let P be a pseudo-polyhedron of (R u {—o0})™. The subset
HF = {t] %,z e P}

(with the convention that |t|* = 0) is an RCF-definable subset of RZ; indeed,
it is defined by monomial inequalities. One sees easily that if P depends

DOAG-definably on some set of parameters ay,...,a, € R then |t|~F depends
RCF-definably on [t]%1, ... [¢]|%.
7.1.3. — In practice, we shall encounter pseudo-polyhedra over the real closed

fields R and R.

7.1.3.1. — Let P < (R U {—o})™ be a pseudo-polyhedron over R. It gives
rise by base-change to a pseudo-polyhedron over P < (R u {—o0})™ over the
field R which has the following properties: it can be written as a finite union
of subsets of (R U {—})"™ admitting a description like in definition [7.I] with
the additional requirement that all the elements a; and b; are bounded; we
shall say for short that such a pseudo-polyhedron is bounded.

7.1.3.2. — Let II be a bounded pseudo-polyhedron in (R u {—o0})™. For
every x in R U {—oo} which is either negative unbounded or equal to —o0 we
set std(x) = —o0; with this convention, the definition

std(IT) := {(std(x1), ... 7Std(xm))}(x1,...,:cm)el_[

makes sense, and std(II) is a pseudo-polyhedron of (R u {—o0})™.
To see this, we can assume that II is of the form

{(m',x”) € H[—oo,b,-] X H[ai,bi] sto1(2") <0, 00 (2") < 0}

iel ieJ
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where the notation is as in Definition [Z.J] and where the elements a; and b; are
all bounded. Set

O = {x € H[ai,bi] s.t. p1(x) <0,...,00(2) < 0} .

ieJ
This is a bounded polyhedron of R’ and one has

std(IT) = <H[—oo,std(bi)]> x std(0©).
i€l

So it suffices to prove that std(©) is a polyhedron. Otherwise said, we can

assume that I = ¢f and J = {1,...,m} and it suffices to show that std(II) is

a polyhedron.

In fact we shall prove more generally that std(II) is a polyhedron when II
is any bounded DOAG-definable subset of R". We use induction on m; there
is nothing to prove if m = 0. Assume now that m > 0 and that the result
holds for integers < m. By cell decomposition for an o-minimal theory, we can
assume that II is an open cell. So there exists an open DOAG-definable subset
A of R™1 and two DOAG-definable functions A and p from A to R such that
A < pon A and IT is equal to the set of those m-uples (x1,...,z,,) € R™ such
that

(X1, yxm—1) € Aand AN(x1, ..., Tm—1) < Ty < p(x1, ..., Tim—1)}-

Up to refining the original cell decomposition, we can even assume that A and
1 are affine with their linear parts having coefficients in Q.

Since the cell II is bounded, its projection A onto R™~! is bounded as well,
and the constant terms of both A and p are bounded too, thus the standard
parts std()\) and std(u) make sense as affine functions from R™~! — R, with
linear parts having coefficients in Q.

Now a direct computation shows that std(II) is equal to the set of those
m-uples (z1,...,2y,) € R™ such that

(1, .. @m—1) € std(A) and std(A)(z1, ..., Tm-1) < Ty < std(p)(z1,. .., 2m-1)}

Since std(A) is a polyhedron of R™~! by our induction hypothesis, we are
done.

7.2. — Let U be a Zariski-open subset of X, let ¢1, ..., g¢ be regular functions
on U and let P be a pseudo-polyhedron of (R U {—0})!. Let Q be the closed
analytic domain (Log,|gl,) ! (P) of U™ (with g = (g1,...,9¢)). A point x of
U(C) belongs to @ if and only if Log,|g(x)|, € P, which is equivalent to

ogla(2)|
—log (Tstd(l Toglt ))
e P,

log 7
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which we may rewrite as

st (B2 ) e p

log]t|
or equivalently as
Log|g(z)| € Pr +n™

where we denote by n the set of negligible elements of R.

7.3. Notation. — If 11 is a pseudo-polyhedron of (R U {—0})* for some ¢
and if a is a non-negative element of R we shall denote by II, the pseudo-
polyhedron II + [—a,a]’. If II and a are bounded then II, is bounded as
well.

7.4. Lemma. — Let X be a C-scheme of finite type, let g: X — Aé be a
morphism, and let I1 be a bounded pseudo-polyhedron of (R U {—0})¢ . The
following are equivalent:

(i) the analytic domain (Logy|g|,) ' (std(IT)) of X" is compact;

(ii) there exists a positive standard number ¢ such that the semi-algebraic
subset (Loglg|)~'(Il.) of X(C) is definably compact.

Proof. — Choose a finite affine open cover (X;) of X and for each 4, a finite
family (f;;) of regular functions on X; that generate Ox(X;) as a C-algebra.
For every i and every positive bounded element M of R (resp. every positive
real number M), denote by KM (resp. KJ!) the subset of X;(C) consisting of
points at which Log|f;;| < M for all j (resp. the subset of X" consisting of
points at which Log,|fi;|, < M for all j). For every positive real number M
and every positive real number € we have the inclusions

KM c KM (C) c KM*e

Assume that (i) holds. As (Logy|g|,) " (std(IT)) is compact, it is contained
in | J; K} for some positive real number M.

Let a be a positive infinitesimal element of R. The subset (Log|g|)~!(Il,) of
X (C) is contained in (Log,|g|,) *(std(Il,)) = (Logy|gl,) " (std(IT)); it is thus
contained in the definably compact semi-algebraic subset [ J; KZM +

Let I be the set of positive elements a of R such that (Log|g|)~!(Il,) =
U; KZM +1 This is a definable subset of R~ which contains by the above
every positive infinitesimal element; thus it contains some standard positive
element ¢. The semi-algebraic subset (Log|g|)™!(Il.) of X(C) is closed by
its very definition, and is contained in the definably compact semi-algebraic
subset KZM *1 by the choice of €, so it is definably compact; thus (ii) holds.

Conversely, assume that (ii) holds. Then there exists a positive real number
M such that (Log|g|) ™' (IL) = |, KM.
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The set of of C-points of (Log,|g|,) " (IT) is contained in (Logl|g|)~!(II.),
hence in | J; KM. The latter is itself contained in the set of C-points of | J; K};
thus (Log,|gl,)~ < |J; KM, which implies that (Log, |g|,) ~*(II) is compact.

O

7.5. Notation. — Let X and g be as in Lemma [[4] above. The set of
bounded pseudo-polyhedra IT of (R U {—o0})* such that the equivalent asser-
tions (i) and (ii) of Lemmal[l4lhold will be denoted by ©(g). For any II € ©(g),
we will denote by A(g,II) the set of positive real numbers ¢ as in (ii).

7.6. Remark. — Let X and g be as in Lemma [T.4] above, and let IT € O(g).
The set A(g,II) is non-empty by definition; choose ¢ therein. If 1 is any real
number in (0, ¢) then it is clear that II, € ©(g) and that (¢ —n) € A(g,II,).

8. The main theorem: statement and consequences

8.1. Theorem. — Let X be a smooth scheme over C' of pure dimension n.
There exists a unique morphism of sheaves of bi-graded differential R-algebras
on XZar

A.,. — B.7.

W > Wy

such that for every Zariski-open subset U of X, every finite family (f1,..., fm)
of regqular functions on U, every pair (I,J) of subsets of {1,...,m} and every
(I v J)-vanishing reasonably smooth function ¢ in LI | one has

[ (Log|fil; ., Log|fm|) dLog| fi| A dArg fs], =
© (Logy| filps - - - s Logy| fmly) d" Logy| f1]p A d”log] frl,-

Moreover, this morphism enjoys the following properties; let U be a Zariski-
open subset of X and let w e AP1(U).

(1) Assume that the support of w is contained in some definably compact

semi-algebraic subset of U(C). Then w, is compactly supported.
We assume from now on that p = q = n.

(2) Let g: U — A% be a morphism and let 11 be an element of ©(g). The
integral S(L0g|g| mlwl is bounded, which implies that SLog‘g‘ L @ i
bounded too.

(3) Let (V;) be a finite family of Zariski-open subsets of U; for every i, let
gi be a morphism from V; — Aéi and let I1; be an element of ©(g;). Then
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(a) std <f w) — f Wy
U, (Loglgs) ™" (TL; ) U, (Logy|gily) " (std(TT,))

and

(b) sm<f 1 |m>—ej o
U, (Loglgi|) ™" (IL;,¢) U, (Logy lgsly) ™ (std(I15))

when the positive standard number ¢ belongs to (), A(gi,II;) and tends
to 0.

Moreover there exists a positive negligible element o € R such that

(©) std (J Iw\> 0
Us (Loglgil) ™ (I, \ U (Loglgi ) ™ (TLs,a)
when the positive standard number ¢ belongs to (), A(gi,IL;) and tends

to 0.

(4) Assume that the support of w is contained in a definably compact semi-
algebraic subset of U(C), which implies by (1) that w, is compactly sup-
ported. Then SU(C)|w| is bounded and

all )L

and
© sm<j |w>=j b
U(c) Uan
8.2. Remark. — Statement (3c) has the following consequence. Assume

that we are given for every small enough positive standard € in (), A(g;,IL;) a
semi-algebraic subset D, of U(C) satisfying

J (Loglg:) ™" (ia) = D2 = | (Loglgi) ™ (IT;).

(2

Then

(f) std <J w> — J W
. U (Logy|gal») ™" (std (I1;))

and

® s ([ ul) — | e
e U; (Logy lgily) ™ (std(I1;))

when the positive standard number € tends to 0.
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8.3. A statement about ordinary limits of complex integrals. — Our
purpose is now to state a corollary of our main theorem in a more classical
language, namely, in terms of limits of usual complex integrals, without using
any ultrafilter nor any non-standard model of R or C.

Let us recall that .# denotes the field of meromorphic functions around
the origin of C. Let X be a smooth .#-scheme of finite type and of pure
dimension n, and let (U;) be a finite Zariski-open cover of X. For every i, let
(fij)1<j<n; be a finite family of regular functions on U;; for every subset I and
Jof {1,...,n;} of cardinality n, let ¢; 1 s be a reasonably smooth and (I u J)-
vanishing complex-valued function defined on some suitable open subset of
(R u {—oo})™.

Since .# is the field of meromorphic function around the origin, X gives
rise to a complex analytic space, relatively algebraic, over a small enough
punctured disc D*, which we still denote by X. Up to shrinking D* we can
assume that every U; is a relative Zariski-open subset of the analytic space X,
and that the functions f;; are relatively algebraic holomorphic functions on
U;.

Assume that there exists a relative (n,n)-form w on X whose support is
proper over D* and such that

-1 \" log| fi1 10g|fm~|>
wly; = i r,g | — yorey, = | dlog|fi 1| A dArg f; s
b= (i) 2 (e logle| ) 108141

for every i (otherwise said, the forms locally defined by the above formulas
coincide on overlaps, and the global form obtained by glueing them is relatively
compactly supported).

The t-adic completion of .# is the field C((t)) of Laurent series. Fix 7 € (0,1)
and endow C((t)) with the t-adic absolute value ||, that maps ¢ to 7; let us
denote by X" the Berkovich analytification of X x_, C((t)).

Then the existence of our morphism of sheaves of bi-graded differential R-
algebras implies the existence of a compactly supported (n,n)-form w, on X"
(in the sense of [CLD]) such that

wylum =
log| fi1 log| fin,
(1 ) D Pil ( | \bw.’_ﬂ d"log|fi1ly A d"log| fi sl
g1/ log 7 log T
for every i.

Now assertion (4) has the following consequence.

8.4. Theorem. — We have

lim w | X = W .
t—0 Xt an
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Proof. — Let (z,) be a zero-sequence of non-zero complex numbers such that
Sin w|x,, has a limit in R U {—00, 400} when n tends to infinity, and let %
be any ultrafilter on C containing all cofinite subsets of {z,},. Then applying
our general construction with this specific % (we recall that .# has a natural
embedding into our field C' of non-standard complex numbers) we see that

f wlx., — Wh
X Xan

Zn

when n tends to infinity. As this holds for an arbitrary sequence (z,) as above,
we are done. O

9. Proof of the main theorem

9.1. Compatibility with integration. — We shall in some sense establish
the good behavior with respect to integration before showing the existence of
the morphism w — wy. Let us make this more precise.

9.1.1. Our setting. — We assume that w can be written
> er.s (Loglfil,. .., Log|fml) dLog| f1] A dArg f;
I,J

where I and J run through the set of subsets of {1,...,m} of cardinality n,
where (f;)1<i<m 18 a family of regular invertible functions on U, and where
¢1.7 is an (I U J)-vanishing reasonably smooth function in .#%%f9) for each
(I,J). We denote by w, the form

Do (Logy| fils - - Logy| fmls) d’ Logy| f1l, A d"log| £,
1.7

(we insist that our morphism has not yet been defined, so w, is currently just
a notation for the form above).

We also assume that the open covering (V;) is the trivial covering consisting
of one open subset V; = U and we write g instead of g1, II instead of II; and
¢ instead of ¢4.

The whole subsection 0. will be devoted to the proof of (2) and (3) in this
setting.

9.1.2. Proof of (2). — We shall in fact prove that {,|w| is bounded for any
t-bounded definably compact semi-algebraic subset K of U(C); so, let us fix
such a subset K. Since K is definably compact and since Log|f;| only takes
bounded values on the invertible locus of f;, there exists a positive standard
real number A such that Log|f;| < A on K for all ¢; thus there exists a positive
standard real number N such that |¢or j(Log|fi],...,Log|fm|)| < N on K for
all (I,.J).
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Fix I and J. By the very definition of (I u J)-vanishing reasonably smooth
functions, there exist two open subsets V7 ; = V7 of (R U {—00})™, defined
by Q-linear inequalities, and such that the following holds:

o 1,y is defined on V7 ; and (Log|fil,...,Log|fm|)(U(C)) < Vi ;(R);
o (,DI’J|VI/ , = 0, and for every i € I U J, the i-th coordinate function does
not take the value —oo on V; j\V/ ;.

Let K7 s be the pre-image of V; j\V/ ; in K under (Log|fil, ..., Log[fm|). This
is a definably compact semi-algebraic subset of K on which | f;| does not vanish
as soon as i € I u J; by construction, ¢y j (Log|fi|,...,Log|fm|) vanishes on
K\K7.;.

By enlarging A, we may assume that for all /,J and all ¢ € I U J one has
the minoration log|f;| = —A on K7 ;.

For every subset L of {1,...,m}, denote by Dy, the subset of U(C') consisting
of points at which every f; with ¢ € L is invertible. Let ¢ € {1,...,m}; on
Dy;y we set f; = r;e2™ i for every i (where 7; = |fi| and q; is a multi-valued
function, which we will use only through the well-defined differential form dey;).
Let I and J be two subsets of {1,...,m} of cardinality n. Let i; < ... < i,
be the elements of I, and j; < ... < j, be those of J; on Dy s, we set

dry _ dri drln . 1 g
i ARE - and day = daj, A ... Aday,. Let Si denote the “unit

circle” {z € C, |z| = 1}. Let uz s be the map from Dy j to (R=o)™ x (Sk)™ that

maps a point x to <|fi1(x)|,...,|fin( ), éjlg w?ﬁ%)

We denote by p; the coordinate function on (Rs¢)" x (Sk)" correspond-
ing to the j-th factor R-o, and by w; the multi-valued argument function
corresponding to the j-th factor Sk. The form dw; is well-defined (we can de-
scribe it alternatively as the pull-back under the projection to the j-th factor
Sk~ {(x,y) € R*,2? + y? = 1} of the form zdy — ydz). Let Er ; denote the
étale locus of ur j; by definability and o-minimality, there exists an integer d
such that the fibers of ur_s| Er.;nk are all of cardinality < d for all [ and J.

We then have (we recall that A = — log|t|)

J lw| < ¥ ZJ @ A day
1,J
N dT]
(i) = f — ~nday
)\ ;} K[”]ﬂE]] TI

d d d d
SPL A BT

P1 pn 2w 2w

(k) Zf ﬂA...A%

f[‘ K[ JﬂE] ] pl pn
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2
n) A A=A o Pn
2
m\“ Nd n
(m) < <n> o (~2ATogl]

n

2
(n) - <m> Nd(2A)".
Hence {-|w| is bounded, as announced.

9.1.3. Proof of (3) @). — The proof of (a) and (b) will rest on several steps
allowing ourselves to reduce to a simpler case, in which it will be possible to
perform some explicit computations that are the core of our proof. But for
achieving this reduction we shall need (c), hence we start by proving it.

Let IT € ©(g). Choose a positive standard real number a in A(g, IT) (such an
a exists in view of Remark [7.6]). For every non-negative standard real number
e we set P. = std(IT) 4+ [—¢,¢]¢ = R (so Py = std(II)). Let us introduce some
notation:

o V. = (Logb|g||,)71 (P.) < U?", for € a standard element of [0, al;

o Ve = (Logy|gly) " (P\P,) c U*", for ¢ a standard element of [0, a] and
71 a standard element of (0,¢);

o K. = (Log|g|) ™ (IL.) = U(C), for € any element of R lying on [0, a];

o K.y = (Log|g|) (II\IL,) < U(C), for € any element of R lying on [0, a]
and 7 any element of R lying on (0,¢).

We fix two subsets I and J of {1, ..., m} of cardinality n. For every standard
real number A we shall need the following extra notation:

o VA (resp. VaAn) for the intersection of V. (resp. Vi) with the closed
analytic domain of U?" defined by the inequalities Log,|f;|, = A for all
iel;

o K2 (resp. Kg‘}n) for the intersection of K. (resp. K. ,) with the closed
semi-algebraic subset of U(C') defined by the inequalities Log|f;| = A for
all i e I;

The pre-image of V7, J\‘/I/ s (the notation is introduced in the second para-
graph of @.1.2)) in K, under (Log|f;|)1<i<m is definably compact, and none of
the functions f; with ¢ € I vanishes on it; thus there exists some standard real
number A such that every point of K, at which at least one of the Log|f;| is
smaller than A belongs to the pre-image of V7 ;, so ¢; j(Log|f|) vanishes at
such a point. Using mutatis mutandis the same argument and up to decreas-
ing A if necessary, we can ensure that o7 j(Log,|f|,) vanishes at every point
of V, at which at least one the Log,|f;|, is smaller than A.
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Otherwise said, there exists a standard real number A such that for every
element ¢ of R lying on [0,a], the function ¢; j(Log|f|) vanishes on K. \KA
and the function ¢; j(Logy|f|,) vanishes on V:\VA.

We are now going to show that Vol(Log,|f7],(VA\V{')) tends to zero when
e tends to zero, which is the core of the proof of (3) (@. Our method for
proving this claim consists in describing Logy|f7],(V:4) more or less as the
image under Logy|fr|, of a piecewise-linear subset of VA, which allows us to
get rid of non-archimedean geometry and only deal with usual real integration.

Recall that the skeleton of G:2* is the closed subspace of GL*" home-
omorphic to R! via the mapping sk : R/ — GLa" sending (log(r;))ier to
the seminorm assigning the real number max,,czr|am| [ [;c; 7/ to a Laurent
polynomial Y _,;a,T™. Let ¥ be the pre-image of the skeleton of GLa®
under frlya. This is a skeleton of VA in the sense of [Ducl2], 4.6 (see
loc. cit., Thm. 5.1; note that some mistake in this paper is corrected in
[Ducly]); in particular it inherits a canonical piecewise-linear structure and
(Logy|f1]y)|x is piecewise-linear. Moreover if W is any compact analytic do-
main of VaA, the intersection ¥ n W is a piecewise-linear subset of ¥ and
Log, | f1], (W)™ = Logy|f1l,((X n W)™), where the superscript ™ denotes
the pure n-dimensional part of a piecewise-linear set (this last equality is a
lemma which is shown in a forthcoming version of [CLD]; its proof is not dif-
ficult and rests on the description of a skeleton in terms of tropical dimension,
see [CLD], 2.3.3); in particular, the volume of Log,|fr|,(W) is equal to that
of Logy | fr],(W n %).

Choose ¢ € (0,a]. From the equality V\Vi! = Uo<n<e VA, we get

Vol(Log,| f1],(V:\V')) = sup Vol(Log,| fil, (Vi)

O<n<e

sup Vol(Log,| f1],(Z n V)

O<n<e

= Vol(Log, | frl, (£ n VN n V).

Now (X N VA)y<c<q is a non-increasing family of compact piecewise linear
subsets of & with intersection ¥V}, and Logy| f7], s is piecewise linear. Since
dim X < n, this implies that that Vol(Log, | f1],(X " VA\E A Vi) tends to zero
when ¢ tends to zero. By the above, this means that Vol(Logy| fr],(VA\Vg))
tends to zero, as announced.

In order to end the proof of (3) (@) we now have to understand the conse-
quences in the non-standard world of the limit statement above (which involves
only standard objects); this step rests in a crucial way on DOAG-definability.

For every standard € € (0,a] the set A. := Log,|f7],(V\Vi') is poac-
definable, and depends DOAG-definably on . Thus A, r makes sense for every
element € € R with 0 < ¢ < a.
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Let D be the set of positive elements x € R such that z < a/2 and
Log|fr| (KXNK') © Aoer
for all ¢ € (z,5). An element x of R belongs to D if and only if the implication
(lg(2)] € [t~ and [f1(2)] € [tIA+9)) = |f1(2)] € [t A2=m

holds for all z € U(C). It thus follows from that [t|” is definable; but
since it is one-dimensional, it is a finite union of intervals by o-minimality,
so D is also such a union, hence is definable as well. Moreover, it contains
by definition every bounded x whose standard part belongs to (0,§]. As a
consequence, D contains [«, 5] for some positive negligible element o.

For all elements € of R lying on (o, a/2) we have

Log| f1l(KNKZ) © Age .

The inclusion above holds in particular for every positive standard € < a/2;
for such an ¢ we thus have

if %/\...A%SVOI(A%)-
A" ik Ay 1 Pn

Since Vol(Ag:) —> 0 when ¢ — 0, it follows that

1 "
std —j %/\.../\di — 0
A ik A) P1 Pn

when ¢ — 0. In view of inequality (&) of paragraph [0.1.2] this implies that

std (J lor,7(Log|fil, ..., Log| fm|)dLog|f1| A dArng|> —0
KA\KA

g [e%

when € — 0. But by the choice of A the integral

Ja o loroomIAl . LoglfLosi 1] n aAes 55

g [e3

is equal to

jK o oro (LBl il Loglful)dLogl 1] 1 dAes ]

so that

std (L{ " |1, (Log|fil, ..., Log|fm|)dLog| fr] A dArng|> —0

when ¢ — 0.
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The infinitesimal element « above depends a priori on (I, J); but by taking
it large enough (and still infinitesimal) we can ensure that it does not. Then

std <j |w|> —0
K\Ka

when € — 0, which ends the proof of (3) (@) in our particular setting.

9.1.4. Proof of (3) @) and (3) (b)) in our setting. — Assertions (3) (@) and
(3) () involve the form to be integrated w, which is defined with an explicit
formula using the functions f;, and the domain of integration, whose definition
uses another family of functions ¢ and a pseudo-polyhedron II. We will first
simplify slightly this set of data, by showing that we may assume that f = g
and II is of the form P for some pseudo-polyhedron P = (Ru{—00})¢ (and so
std(IT) = P), with moreover Log,|f|,((Log,|f|,)~!(P)) = P. This reduction
essentially uses (3) (@) through its consequence Remark [B2] together with
some elementary definability arguments.

Set h = (f,g), P = std(Il), W = (Loglgl,) " (P) ¢ V*, and Q =
Logy|hly(W) < R™*. Then W = (Log,|hl,) " *(Q). We are now going to
explain why it is sufficient to prove assertion (3) for (Qg, h) instead of (II, g).
So we assume (3) (a) and (b) hold for (Qg, h).

If ¢ is a positive real number we clearly have (Logy|hl,) ' (Q.) <
(Logy|gl,) ! (P:). On the other hand for every & > 0 the set (Log,|hl,) ™ (Q-)
is a neighborhood of W, hence contains (Log,|g|,) " (P,) for some 7 which can
be taken in (0,¢] (here we use topological properness — recall that IT € ©(g)).
Let 6(¢) denote the least upper bound of

{ne(0,2), (Loglgh) ™" (P) < (Log, nly) ™" (@)}

note that by compactness we have (Logy|h|,) ™" (Ps(e)) < (Logy|h),) " (Q.).
Then ¢§ is a DOAG-definable function; in view of the fact that §(¢) < e by
definition, this implies that there exists a positive rational number r and a
positive real number M such that §(e) = Me" for € small enough.

This implies that

(Loglhl) ™" (Qr,z) = (Loglg)) ™" (IL) = (Loglhl) ™" (Qp 2..ur)

for € a small enough standard positive real number. Since we assume that (3)
(a) and (3) (b) hold for (Qr,h) (and since (3) (c) has already been proved) it
follows from Remark that

std <f w) — f wy
(Loglg) ™ (IL) (Logylgls) ™' (P)

and
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std (f 1 |w|) — [ b
(Loglgl)™ " (ILe) (Logplgly) ™" (P)

when the positive standard number e belongs to A(g,II) and tends to 0.

Therefore if the result holds for (Qg,h) it holds for (II, g); we thus can
replace IT by Qr and g by h, and then enlarge f (which is harmless) so that
g = f. We keep the notation P = std(II) and

W = (Logy|gl,) ™" (P) = (Logy|f],) " (P)
note that we have Il = Pr and (Log,|f|,) (W) = P.

9.1.5. Arguing piecewise on P. — To allow for more flexibility in the proof,
we shall need to argue piecewise on P. We explain here why it is possible; the
key point are once again (3) (@), and the additivity of integrals in both frames.

Assume that we are given a finite covering (P;);e; of P by pseudo-polyhedra,
and that for every non-empty subset J of I, statements (3) (a) and (3) (b)
hold for (Py, f) with Py :=("),.; Pi. Then these statements hold for (P, f).

Indeed, for every ¢ set II; = P; g, and every non-empty subset J of I, set
II; = Py g. For every positive standard € we have I, = | J; II; .. Now let J be
a non-empty subset of 1.

If P; = & then for ¢ small enough we have (,_; II; . = &. If Py # ¢ then
by definability and compactness there exists two positive real number A and
71 such that

PJ,E - ﬂPi,a = PJ,A&
ieJ
for all positive real number ¢ < 1 which implies (by model-completeness of
DOAG) that

HJ,& - ﬂHi,a - HJ,AE

1€
for every positive e < nin R
The difference
w— (=1)lI+1 f w
f(Loglfﬂ(HE) J;@ (Log|f) ™ (ILy,e)

can be rewritten

D (=i (J w —f w) :
J75 Mics (Logl )~ (IT;,c) (Loglf) ™! (ILc)

It now follows from (3) (c¢) (which has already be proven) and from the inclu-
sions 7. < (;cy ILic < I1; 4c (which hold for e small enough) that

std (J w— J w) —0
Nics Loglf1) ™ (I ) (Log|f) ™ (IT,¢)



NON-ARCHIMEDEAN INTEGRALS AS LIMITS OF COMPLEX INTEGRALS 55

when ¢ — 0 (and remains standard). Thus

std f w— (—1)|J+1f w) —0
< (Loglf) ™ (I:) J;@ (Log| )" (T se)

when e — 0 As statements (3) (a) and (3) (b) hold for every Py, this implies
that

std (j w) — Z(—l)"’“j wp = j Wy
(Loglf)™" (1) 7 (Logy | f1,) ™" (P) (Logy| f1,) ™ (P)

when ¢ — 0.
We prove in the same way that

std (f - |w\>—>f  wrh
(Loglf])™ " (ILe) (Logy|f15)™ " (P)

9.1.6. — Being allowed to argue piecewise on P, we now would like to cut
it into finitely many pieces as nice as possible. This will be achieved by
exhibiting a finite covering (P;) of P by pseudo-polyhedra such that for every
1 the following hold:

when ¢ — 0.

o for every pair (1, J) of subsets of {1,...,m} of cardinality n, either ¢ ;
is identically zero on P;, either for every (z1,...,z;,) € P; and every
j€luJ we have xj; # —o0;

o there exists a subset E of {1,...,m} such that:

o for every (z1,...,2y) € P; and every j € E we have xj # —o0;

e for every pair (I,J) of subsets of {1,...,m} of cardinal-
ity m, there exists a compactly supported smooth function
Yr,; on R” such that for every (z1,...,2,,) € P; one has
01,7(®1, s ) = Yr1,(25) jeB-

Let us explain how this can be done. Let & be a point of P and let I and

J be two subsets of {1,...,m} of cardinality n. By the very definition of (I u
J)-vanishing reasonably smooth functions, there exists a pseudo-polyhedral
neighborhhod @ of z in P such that

o either ¢y ; is identically zero on @Q, either for every (x1,...,2,,) € Q and
every j € I uJ we have x; # —o0;

o there exists a subset E of {1,...,m} such that:
e we have z; # —o0 for every (z1,...,2,) € Q and every j € E ;

e there exists a compactly supported smooth function ) on RF
such that for every (x1,...,2,,) € Q one has @7 j(1,...,Tm) =

V(z))jeE
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(note that a priori ¢ is a smooth function defined on an open neighborhood of
the projection of @ to R¥, but since the latter is compact we can assume that
1 is defined on the whole of R¥ and compactly supported). We now conclude
by compactness of P.

9.1.7. — In view of and of @.1.6] we can assume that there exists a
subset E of {1,...,m} satisfying the following:

o for all (z1,...,2y,) in P and all j € E, we have z; # —o0;

¢ one can in fact write
w =Y ¢rs (Log|fjl);ep dLog|f1] A dArg f;
1,J
and
wy = > 1.7 (Logy|filb);ep & Logy|frly A d”log|fl;
I,J
where I and J run through the set of subsets of F of cardinality n, and
where the ¢7 7 are smooth, compactly supported functions on RE.

We note that the functions f; with j € F are invertible on the analytic domain

W; we set Q = (Log,|fgl,)(W); this is a compact polyhedron of R¥ which

can also be described as the image of P under the projection to (R u {—o0})¥.
We denote by £ the Lagerberg form

1 n
Z ~ ) wri(xi/N)jer dzp A d"zp
1,J Ap

on \,Q; by construction, w, = f5€.

9.1.8. — We first consider the case where dim ) < n. In this case the (n,n)-
form & on A\, Q is zero, and it suffices to prove that

std <f |w\> —0
(Log|g|)™" (Ie)

when € — 0. This will follow quite easily from the rough estimates of
Fix I be any subset of E of cardinality n. For every positive standard real
number ¢, let Q! denote the image of Q. under the projection map R¥ — R/,
The inequality dim @ < n implies that Vol(Qf) — 0 when ¢ — 0.
Now for every standard positive € we have the inclusion

(Logl /1)) ((Logl )" (IL.)) = Q4 &
It follows that

1 n
_"J %/\.../\diéVol(Qge).
A" 11 (Logl )=t (L)) P Pn
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Since this holds for all I, this implies in view of inequality (&) of paragraph

that
std <j |w|> —0
(Loglg|) ™" (IT)

9.1.9. — We are now going to describe two general methods which we shall
use several times to make the situation simpler. The first one essentially com-
bines the fact that the statements we want to prove can be checked piecewise
on P ([@I5) and the fact that they hold as soon as dim @ < n (@L8); the
second one follows easily from Remark

when ¢ — 0.

9.1.9.1. Arguing cellwise on Q. — Let (Q;) be a finite covering of @) by com-
pact polyhedra whose pairwise intersections are of dimension < n ; for every i,
let P, be the pre-image of ); in P. Assume that statements (3) (a) and (3) (b)
hold for every P;; then they hold for P. Indeed, let I be any finite set of indices
of cardinality at least 2. Then the projection of (),c; Pi to (R U {—oo})F is
equal to [,c; Qi, so it is of dimension < n. Therefore the theorem holds for
Nie; P in view of @.L8} it now follows from that it holds for P.

9.1.9.2. Affine change of coordinates. — Let M = (m;;) be a matrix belong-
ing to Mg(Z) with non-zero determinant, and let v = (v;); € RE. For every
point z = (x1,...,2y) in P we set Mx = (y1,...,Ym) with y; = z; if i ¢ E,
and y; = Zje[ myjx; otherwise. For i ¢ E we set h; = f;; for i € E we set
hi = [t [Tjer f7-

Set P’ = MP + v; this is a pseudo-polyhedron. By expressing Log|h|,
dLog|h| and darg h in terms of Log|f|, dLog|f| and darg f, and the same with
Log, instead of Log and ||, instead of ||, we get equalities

w= ZwLJ (Log|h1], ..., Log|hy,|) dLog|hr| A dArgh;

1,J

and

wy = Y 17 (Logy| by, - ., Logy | unls) d' Log,|huly A d”log|hyl,-
T

Assume that statements (3)(a) and (3)(b) hold for (Pg,h). We are going to
prove that they hold for (II, f).

There exist two standard positive real numbers A and B with A < B such
that

(Loglh]) ™ (Ph,4c) < (Loglf)™" (IL:) < (Loglhl) ™" (Ph 5.)
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for € small enough. Then

std (J w) — f wy, = f wy
(Loglf) ™ (Ie) (Logy|Al,) ™" (P") (Logy|£15) ™1 (P)
and

std (f 1 |w|> — [ b=
(Log|f)~"(I1) (Logy [hly) ™" (P") (Logy| f15) ™ (P)

by Remark

9.1.10. — We assume now that (w,)|w = 0, which means that the form &
on \@Q is zero, and we are going to prove (3) (a) and (3) (b) under this
assumption. We will use the fact that these statements hold whenever dim Q) <
n (@18, that they can be checked cellwise on @ (@.I.9.0]), that they can be
proved after an affine change of coordinates (I.1.9.2]), and that J acts trivially
on A™"; and then we will ultimately rely on the estimates in

We want to prove that

std (j |w\> —0
(Log|f)~" (1)

when ¢ — 0. By considering a cell decomposition of @ and using @.T.9.T], we
reduce to the case where @ is a cell. If dim Q < n we already know that the the
required statement holds (O.1.8]); we can thus assume that dim @ = n. And in
view of we are allowed to perform an affine change of the coordinates
indexed by F with integral linear part; hence we can assume that there exists
a subset Ey of E of cardinality n such that @ is contained in the subspace
defined by the equations x; = 0 for ¢ running through F\Ey. The assumption
that £ = 0 now simply means that ¢g, 5o = 0.

We fix two subsets I and J of F, both of cardinality n. Let wr ; be the
form o7 j (Log|fi],...,Log|fm|) dLog|fr| A dArg f;. It suffices to prove that

std (J |OJ]’J|> —0
(Log| )~ * (1)
when ¢ — 0.

9.1.10.1. The case where I = J = Ey. — We then have ¢r|g = 0. Let P’
be the pre-image of 0Q on P. Since ¢ j|g = 0 we have

std <f |CU[7J|> = std <f |CU[7J|>
(Log|f])~* (L) (Loglf) ™ ((PR)e)

for all e, and since dim dQ) < n the result follows from
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9.1.10.2. The case where I # FEy. — Choose i € I\Ey. Then since x; vanishes
identically on P we have for every ¢

£ ((Loglf )™ () ) = (11, 7]

Therefore there exists some positive standard real number A such that
- _oe{i _ A\
11 ((Loglf )™ (L)) < [Jef2=, Je1=2] " x 1A, =4

for € small enough (see @.1.2). In view of inequality (k) of loc. cit., it follows

that
std (J |OJ[’J|> —0
(Log] f1)~* (I1e)

9.1.10.3. The case where J # Ey. — Since the operator J acts trivially on
A™™ we have

when ¢ — 0.

wr,y = J(wr,r)
= (=1)"¢1,7 (Log|f1l, ..., Log|f|m) dArg fr A dLog|f;]

2
= (=1)" .7 (Log| f1l, ..., Log|f|m) dLog|fs| A dArg f1
= 1,7 (Log| f1], ..., Log| f|m) dLog| f.s| A dArg f;.
Hence we reduce to the case considered in

9.1.11. Proof of (3) (a) and (3) (b) in the general case. — Now comes the
core of our proof; this is the only step in which one uses the actual definition of
the non-archimedean integrals (the former ones used only basic properties like
additivity or obvious norm estimates). Using once again the flexibility allowed
by the former steps (which enables us to argue cellwise, see[@.T.9.T} or to modify
the explicit writing of w, provided (w,)|w remains unchanged, see @.T.10]), we
will simplify slightly our assumptions, and then reduce to the case in which
the integral SW wy, can be computed by an explicit formula. The latter involves
a classical real integral and the degree d of an étale map between Berkovich
spaces over some skeleton Y, and the main point of our reasoning consists
in interpreting this degree d in the non-standard archimedean world; this is
achieved by showing that our étale map also has degree d above “sufficiently
many” C-points (over which the degree is now simply the naive one, namely the
cardinality of the fibers, which makes sense in our non-standard archimedean
world as well).

By considering a cell decomposition of ¢ and using [@.1.9.1] we reduce to
the case where @ is a cell. If dim@Q < n we already know that the required
statement holds (O.I.8)); we can thus assume that dim @ = n. And in view of
[0.1.9.2lwe are allowed to perform an affine change of the coordinates indexed by
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F with integral linear part, we can assume that there exists a subset Fy of E of
cardinality n such that @ is contained in the subspace defined by the equations
x; = 0 for i running through E\Ey. Otherwise said, Q = Qg x {0}\F for
some convex polyhedron @ of R¥0. Since dim@Q = n by our assumption,
dim Qo = n. Now |y ¢ can be written

1 ($j> / "
—p| = dzg, Ad"zg
AEL Ab jeEo ’ ’

(with ¢ smooth). Set

w' = ¢ (Log|fj]) ;e i, ALog| [, | A dArg [,
and
wy = ¢ (Logy| fjly) je i, 4 Logy | fEels A A" Logy | fE, -
Then (w, — w})|w = 0, and in view of this implies that

std (J |w—w'|> —0
(Log| )™ (1)

when e — 0. We can thus replace w with w’, hence reduce to the case where
w is of the form

w = ¢ (Log|fjl) g, dLog|fE,| A dATE fr,.

Let u: V. — GEo be the map induced by the functions f; for j € Ejy.
Since dim @)y = n the tropical dimension of fg, is n, which forces p to be
dominant, hence generically étale, because both schemes involved are integral
of the same dimension and the ground field is of characteristic zero. Let 2 be
a proper Zariski-closed subset of GE0 such that y is finite étale over the open
complement of Z.

Let D be the affinoid domain of GZ0-2" defined by the condition Log,|T|, €
Qo and let D" be the open subset of D defined by the condition Log,|T|, €
Qoo. Let also sk denote the canonical homeomorphism between R¥0 and the
skeleton of G0, The images under Logy|fg,|, of the boundary of D and
the image of 2" under Log,|T|, are of dimension < n. Since we can argue
cellwise on @ (-.9.]) we may thus assume the following:

o (Logy| fEyls) (OW) = 0Qo;

¢ the morphism W X _gy.an D' — D’ is finite étale.

G

These two conditions imply that u|y is finite étale above D’; since the latter
is connected (it admits a deformation retraction to sk(A,Qp)), the degree of
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plw over D' is constant; let us denote it by d. The map uly is in particular
finite and flat of degree d above every point of sk(\,Qp), whence the equalities

n(n— d L
[ o=cremes [ o(2)
w b JAQo b/ jeEo

= (=1)"=b2g JQ ¢(;)jer,dT
0

Joob =3 [ o (52)
blb = \n N
w )‘b Qo Ay Jj€Eo

- df o) jezo 2y
Qo

and

dz g,

9.1.11.1. — By construction, every point of D’(C) has d pre-images under p
in W(C'). We would like to exploit this fact in the non-standard archimedean
setting; the point is that D’(C) and W (C') are ACVF-definable, but not RCF-
definable; so we will first have to “approximate” them by RCF-definable subsets
for which this statement remains true.

Let n be the set of negligible elements of R. Let n be a positive standard
real number and set @, = 6020\(8@0)”. Let 2 € (Log|T]) ™" (@Qn,r)- The point

2 belongs to (Log,|T|,) 1 (Qo), hence the intersection

pH @) o (Loglf) ™ (I + 1) = p7(2) n (Logy| fl,) ™ (P) = p~ (@) n W

has exactly d elements. Let m(z) and M (z) be respectively the greatest lower
bound and the least upper bound of the set © of those u € [1, [t|7!] such that

pHa) A LFTHTT )

has exactly d elements. Since © is definable, if follows from the above that
std (Logm(x)) =0 and std (Log M(x)) > 0.

Now m and M are definable functions; as a consequence, the greatest lower
bound of M on (Log|T|)™! (Qu.r) is equal to [¢|®™ for some B(n) with neg-
ative standard part, and the least upper bound of m on (Log|T|) ™! (Qn,r) is
equal to [t|°() for some negative negligible b(n).

9.1.11.2. — Let § be a positive real number. Choose n such that the volume
of (0Qo)2y is smaller than §. Let € be a positive real number such that € <
min(B(n),n). Let II' be the subset of II. consisting of points whose projection
to the variables in Ey belongs to @, and let II” be the complement of IT" in
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II.. One has

w = w + f w.
J(Loglf)l(ﬂg) f(Logfl)l(H’) (Log| f)~*(11")

It follows from inequality (k|) of that there exists a positive standard
real number M (independent of §,7,¢e....) such that S(L0g|f‘)71(n,,)|w| <

MVOl((aQo)gn) < M.
Now since b(n) < e < B(n) the map p induces a d-fold covering

(Loglf[)™" (I') — (Log|T|) ™" (Qy.r),

SO
d
f L w= VJ B ¢ (Log|T'|) dLog|T| A dArg T
(Log| )~ (IT") (Log|T)™(Qn,R)
_(—1)"("‘1)/2df o(25)jer, Az,
Qn,R
= (_1)n(n1)/2df ‘P(xj)jEEodeO'
n
Therefore
| o= | | < supleldVol(Qn\Qu)
(Log|f])~" (1) w Po
< dVol((0Qo)2y) Sélp\sﬁ\
0
< ddsuplep|.
Qo
Hence

J o J e
(Logl )~ " (I.) w

One shows exactly in the same way that

| el el
(Logl|f])™ (IL) w

We thus have proved that

std (J w) — f wh
(Loglf) ™ (IL) (Log, | f15)) ™" (std(IT))

and

std (f 1 |w|> —>J sl
(Loglf) 1) (Log, 1)~ (4(1)

< 0(M + dsup|ep]).
Qo

< 0(M + dsup|p)).
Qo
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when the standard positive real number ¢ tends to zero.

9.2. Construction of the map w — w,. — It is clear that there is at most
one such morphism of sheaves. We are going to prove that there is actually
one by using our comparison theorem for integrals and the fact that forms are
naturally embedded into currents on Berkovich spaces. Let p and g be two
integers. Let U be a Zariski-open subset of X. Let w be a section of AP? on
U that can be written

w= >, rs(Loglfil,-..,Log|fn|) dLog| f1| A dArg f;
[1|=p,|J|=q

with f; regular functions on U and ¢,y an (I uJ)-vanishing reasonably smooth
function in .#1/(53) for each (I,.J) (we shall say for short that w is tropical on
U).

Let w, be the section

> 1,5 (Logy|fily, - - -, Logy| fmly) d’ Logy| f1l5 A d”log]| £l
T

of BP? on U. It suffices to show that w, only depends on w, and not on the
particular way we have written it. One immediately reduces to proving that
w, = 0 if w = 0; for that purpose we suppose that w, # 0, and we are going
to prove that w # 0. Since w, # 0 and since U?" is boundaryless, there
exists a smooth compactly supported (n — p,n — ¢q) form 7 on U*" such that
§ran wy A # 0 (JCLD], Cor. 4.3.7). Every point of U*" has a basis of affinoid
neighbourhoods V' having the following properties:

o the restriction 7|y can be written

> 1,5 (Logy|gily, - - -, Logy|gely) d'log|gr], A d”log|g.l,
[I|=n—p,|J|=n—q
with g; regular functions on V' and 7 ; compactly supported smooth
functions on RY.

¢ The domain V is a Weierstrafl domain of Q2" for some open subscheme
Qof U (see 6.2).

Then we can find such a V' with §, w, A7 # 0. Since V is a Weierstraf do-
main in Q*", and since 7|y does not change if we replace each g; by a function
having the same norm on V ([CLD], Lemme 3.1.10), we can assume by ap-
proximation that each of the functions g; comes from a function belonging to
0 (), which we still denote by g;. Then by replacing 2 by the intersection of
the sets D(g;), we can assume that g; € 0(Q)* for all 1.

Now set

= >, trs(Loglgil,. .., Loglgel) dLoglgr| A dArggy.
[I|=n—p,|J|=n—q
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This is a section of A" 7”77 on ). By the integral SV wy, A 71 can be
expressed as a limit of standard parts of integrals of w|g A nf on suitable
definably compact semi-algebraic subsets of 2(C'). Then these integrals cannot
be all equal to zero, which implies that w|q A n* # 0, and a fortiori that w # 0.
We thus are done with the proof in the particular setting of

9.3. Proof of (3). — We are now going to prove (3) in the general case. The
reasoning is tedious but rather formal; it uses as a crucial input the particular
case handled above in[@.1] together with the additivity of the integrals in both
settings.

For all i we set P; = std(II;) and W; = (Logy|gil,) " (P;) < Vi™; we also set
W =, W;.
9.3.1. Reduction to the case where II; = P; g for all i. — Assume that (3)
holds for (P; g);. Since std(Il;) = std(P; r), there exists a positive negligible
element a such that II; < P, r, and P, g < II;, for every i. Let € be a
standard positive real number. By the above

Pirep i © P Roe
for all . Then it follows from Remark that statements (3)(a) and (3)(b)

hold for (II;).
We then have for all standard € > 0 and all ¢

U Hi,e\ U Hi,aJra - U Pi,R,2€\ U Pi,R,on

so (3)(c) holds for (II;); with the negligible element a + a instead of a. We
henceforth assume from now on that II; = P; g for all i.

9.3.2. — Fix an index 7. Let x be a point of W;. There exists a Zariski-open
subset Q of V; on which w is tropical, and such that z € Q2*. The point x has
a Weierstrafl neighborhood Q' in Q2*; by construction, €’ n W; is of the form
(Log,|hly)~H(Q) for some family h = (hy,...,hy) of regular functions on €/
and some pseudo-polyhedron @ of (R u {—o})V.

By compactness, it follows that there exists a finite family (V;;) of Zariski-
open subsets of V; and, for each (i,j), a finite family h;; = (hyx)1<r<e,; of
regular functions on V;; and a pseudo-polyhedron P;; of (R u {—o0})%i such
that the following hold:

o for each (i, j), the form w is tropical on Vj;;

o Wi =J; Wi; with Wi; = (Logy|hy;l,) ™1 (Pj)-

We set I1;; = P;j g; for every non-empty set I of pairs (i,j) we set
o Uy =23 jyer bis

o Il = H(i,j)e[ Il < (R U {~o0});
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o Pr= H(i,j)e[ Pj < (R {~0});
o Vi =g jer Vij and Wr = jyer Wij-
We also denote by hy the concatenation of the functions h;; for (4, j) € I; this

is a family of ¢; invertible functions on V; and W; = (Logy|hs],) ™" (Pr) < V™.
For every I, the form w|y, is tropical. It follows therefore from that

(o) std <j w) — J Wy
(Loglhs]) =" (11 ¢) (Log, |hsly) ™" (Pr)

(v) std (j 1 |w|) — rl
(Loglhr|)™ (Il1,e) (Logy|hrly))(Pr)

when the positive standard number ¢ tends to 0, and that there exists a positive
negligible a € R such that

(@) st ( | \w|> —0
(Loglg) ™' (T17,:\IT1,a)

when the positive standard number ¢ tends to O.
The equality W = U( Vij can be rewritten

imj)el
—1 -1
U @oglah)™ (7)) =) (Loglhyly)™" (P)
‘ understood as gz)ntainod in V21 (i.9) Understood as g:)ntaincd in Vg“

If a is a small enough positive real number then for every i,j the sets
(Logy|gily) " (Pia) and (Logy|hijly) " (Pij.a) are compact in view of assertion
(1). Hence for a small enough, the infimum m(a) of all positive real numbers
b such that

L (Logslaily) ™ (Pua) < | (Log lhijly) ™" (i)
i (4,4)
is well-defined. This is a DOAG-definable function of a that tends to zero when

a tends to zero. It follows that there exists a positive rational number p such
that

| Wogslgily) ™ (Pia) = | (Logylhisly) ™ (P pa)

i (i,9)
for a small enough. We can perform the same kind of reasoning for the converse
inclusion, and by taking p big enough we can thus assume that we also have

| Togslgils) ™ (Pipa) = | (Logslhijly) ™" (Pij.a)
i (i,9)
for a small enough.
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We then have for all positive standard real number a the inclusions

| @oslgi) ™ (Mi.a) = | (Loglhis )™ (ITij20)
i (4,9)
and

J (Toglgi) ™ (i zpa) = | (Loglhii )" (Tija)-
i (4,5)
But then by a definability argument (using [[.T.2]), there exist a positive neg-
ligible element 8 € R and an element v € R with positive standard part such
that the above inclusions hold for all elements a € R with § < a < 7.

By the same kind of arguments, we can increase $ and p and decrease v so

that we have for all I and all a € [3,v] the inclusions

() (Loglhis)™" (M) = (Loglhu) ™ (IT1,pa)
(i.4)el
and
(| (Loglhi;))~" (ILij pa) > (Loglhs|) ™" (Tra).
(i.4)el
Together with (@), (p) and (q) above and with the additivity of both the
archimedean and the Berkovich integrals, this ends the proof of (2).

9.4. End of the proof. — It remains to show (1) and (4). The proofs
essentially consist in standard computations, once granted the existence of
our map of complexes and the comparison theorems (3) (a), (b) and (c) for
integrals.

We use the assumptions of (1). Choose a finite open affine cover (U;) of U.
For every i, let (fi;); be a finite generating family of the C-algebra Ox (U;).
By our assumption on the support of w and by Lemma B.2] there exists A € R
such that the w is zero outside the set

B :=|J{z e Uy(C), Log|fi(x)| < A for all j} .

We also set
Eyap = | J{z € U, Log,|fij ()], < A for all j}.

9.4.1. Proof of (1). — We are going to prove that w, is zero outside E 4,
which will show that it is compactly supported.

Let y be a point of U*\E,,. The point y belongs to U; for some 4. Let
us choose a neighborhood V' of y in U™\ E 4, of the form Logb|g||:1(P) where
g = (91,-..,9m) is a finite family of regular functions on U; and where P c
(Ru{—0o0})™ is a product of intervals, each of which is either of the form (\, )
or of the form (—oo, 1t). Up to shrinking P we can assume that for some ¢ > 0
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the pre-image Logb|g\b_l(P + [0,€)™) still avoids E4,. Let ¢ be a reasonably
smooth function on (R u {—o0})™ whose support is contained in P, which
does not vanish at ¢g(y), and which takes only non-negative values. We shall
prove that the form p(Log,|g|,)w, € &P 1(U") is zero; this will ensure that wj,
vanishes around y and thus imply our claim.

Since Log,|gl; ' (P + [0,e)™) is contained in U"\E,,, the pre-image
Loglg|~'(Pgr) avoids E. As the support of ¢ is contained in P and as w
vanishes outside F, the form ¢(Log|g|)w vanishes. But this form belongs to
AP4(U;) and its image in BP9(U;) is precisely ¢(Logy|gl,)w,. The latter is thus
zero, as announced.

9.4.2. Proof of (4). — Assume moreover that p = ¢ = n and let us prove (f)
and (g). It follows from (2), (3) (a) and (3) (b) that if the standard positive
¢ is small enough then SEA+5‘w| is bounded, and that

std J w —>j wy
Eaye Eap

std (f |w|>~ |l
Eaye Eap

when ¢ tends to zero (while remaining standard and positive).
But since w is zero outside E4 we have

j w = J w and lw| = j |wl
EA+5 U(C) EA+5 U(C)

for any e as above. And since wy is zero outside E4 ), by [L.4T], we have

f wb—f W andf ‘Wb‘b—f |wp .-
EA,b an EA,b Uan

Assertion (4) follows immediately. [

and
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