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We explain how non-archimedean integrals considered by Chambert-Loir and Ducros naturally arise in asymptotics of families of complex integrals. To perform this analysis we work over a non-standard model of the field of complex numbers, which is endowed at the same time with an archimedean and a non-archimedean norm. Our main result states the existence of a natural morphism between bicomplexes of archimedean and non-archimedean forms which is compatible with integration.

Introduction

1.1. -A. Chambert-Loir and A. Ducros recently developed a full-fledged theory of real valued pp, qq-forms and currents on Berkovich spaces which is an analogue of the theory of differential forms on complex spaces [CLD].

Their forms are constructed as pullbacks under tropicalisation maps of the "superforms" introduced by Lagerberg [START_REF] Lagerberg | Super currents and tropical geometry[END_REF]. They are able to integrate compactly supported pn, nq-forms for n the dimension of the ambient space (the output being a real number) and they obtain versions of the Poincaré-Lelong Theorem and the Stokes Theorem in this setting. Their work is guided throughout by an analogy with complex analytic geometry. The aim of the present work is to convert the analogy into a direct connection, showing how the non-archimedean theory appears as an asymptotic limit of one-parameter families of complex (archimedean) forms and integrals.

One way to view a family of complex varieties as degenerating to a nonarchimedean space is to consider the hybrid spaces first introduced by V. Berkovich [START_REF] Berkovich | A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures[END_REF] to provide a non-archimedean interpretation of the weight zero part of the mixed Hodge structure on the cohomology of a proper complex variety. For some other recent applications of hybrid spaces, see [START_REF] Boucksom | Tropical and non-Archimedean limits of degenerating families of volume forms[END_REF] [Fav20] [START_REF] Demarco | Uniform Manin-Mumford for a family of genus 2 curves[END_REF].

The approach we follow in this paper is somewhat different. We work over an algebraically closed field C containing C, which is a degree 2 extension of a real closed field R containing R and is endowed at the same time with an archimedean non-standard norm |¨| : C Ñ R `and with a non-archimedean norm |¨| 5 : C Ñ R `that essentially encapsulates the "order of magnitude" of |¨| with respect to a given infinitesimal element which should be thought of as a "complex parameter tending to zero". This presents the advantage of working on spaces that have at the same time archimedean and non-archimedean features and allows to be able to compare directly archimedean constructions and their non-archimedean counterparts. The fields R and C are constructed using ultrapowers. The field R was introduced by A. Robinson in [START_REF] Robinson | Function theory on some nonarchimedean fields[END_REF], with the explicit hope that it will be useful for asymptotic analysis; see also [START_REF] Lightstone | Robinson -Nonarchimedean fields and asymptotic expansions[END_REF]. It was brought to good use in [START_REF] Kramer | Asymptotic cones and ultrapowers of Lie groups[END_REF] following the fundamental work of van den Dries and Wilkie [START_REF] Van Den Dries | Gromov's theorem on groups of polynomial growth and elementary logic[END_REF], who have reformulated Gromov's theory of asymptotic cones of metric spaces [START_REF] Gromov | Groups of polynomial growth and expanding maps[END_REF] using ultrapowers.

A long-term motivation for our work is the famous conjecture by Kontsevich and Soibelman [START_REF] Kontsevich | Homological mirror symmetry and torus fibrations[END_REF] [KS06] relating large scale complex geometry and non-archimedean geometry. Roughly speaking the conjecture describes the Gromov-Hausdorff limit of a family of complex Calabi-Yau varieties with maximal degeneration in terms of non-archimedean geometry. We refer to [START_REF] Gross | Large complex structure limits of K3 surfaces[END_REF] [Sus] for some recent results in that direction. Note that our results involve a renormalization in powers of log |t| which corresponds to what appears naturally when considering volume forms on Calabi-Yau varieties with maximal degeneration. From a model theoretic perspective, this is related to considering measures on certain definable sets over the value group, in contrast to [START_REF] Berarducci | An additive measure in o-minimal expansions of fields[END_REF], where measures are reduced to the residue field.

[GTZ13][GTZ16][Oda19][OO18]
1.2. -Before going further, it may be useful to provide the flavor of our main results on a very elementary example. Let ϕ : R Ñ R be a smooth function with compact support. Consider the complex p1, 1q-form Quite remarkably, the right hand side of that equality admits a nonarchimedean interpretation. Indeed, consider the field of Laurent series Cpptqq, fix τ P p0, 1q, and endow Cpptqq with the t-adic norm | | 5 normalized by |t| 5 " τ . On the Berkovich analytification P an 1 of P 1 over Cpptqq one can consider the p1, 1q-form ω 5 " ´1 log|t| 5 ϕ ˆ´log|zpz ´tq| 5 log|t| 5 ˙d1 log|z| 5 ^d2 log|z| 5 in the sense of Chambert-Loir and Ducros [CLD]. Furthermore, the integral in the sense of Chambert-Loir and Ducros of the form ω 5 on P an 1 is given by ż

ω
P an 1 ω 5 " ż xď´1 ϕpx ´1qdx `żxě´1 ϕp2xqdx,
since the support of ω 5 is contained in the standard skeleton p0, 8q of G an m , and the function z is of degree 1 at each point of this skeleton. Therefore we finally deduce the equality lim tÑ0 ż P 1 pCq ω t " ż P an 1 ω 5 , a very special case of our Corollary 8.4. We can already see here an instance of a general feature which will be exploited in our proof of the general case: asymptotically the complex integrals we consider concentrate on the support of the correponding non-archimedean forms. This support is piecewise polyhedral and only the faces of maximal dimension provide a non-zero contribution to the limit. In general, Chambert-Loir and Ducros integrals involve also degrees over these faces, see 9.1.11 for an explanation how these relate to the number of sheets of a complex étale morphism.

1.3. -Let us now sketch the construction of the non-standard "asymptotic" field C. We fix a non-principal ultrafilter U on C containing all the neighbourhoods of the origin (otherwise said, U converges to 0) and consider the ultrapowers ˚C " ś tPC ˆC{U and ˚R " ś tPC ˆR{U . We say an element pa t q in ˚C, resp. ˚R, is t-bounded if for some positive integer N , |a t | ď |t| ´N along U (that is, the set of indices t for which this inequality holds belongs to U). Similarly, it is said to be t-negligible if for every positive integer N , |a t | ď |t| N along U. The set of t-bounded elements in ˚C, resp. ˚R, is a local ring which we denote by A, resp. A r , with maximal ideal the subset of t-negligible elements which we denote by M, resp. M r . We now set C :" A{M and R :" A r {M r . The field R is a real closed field and C » Rpiq is algebraically closed. The norm | ¨| : ˚C Ñ ˚Rě0 induces an R-valued norm | ¨| : C Ñ R ě0 .

1.4. -Any usual smooth function ϕ : U Ñ R defined on some semi-algebraic open subset U of R n induces formally a map U p ˚Rq Ñ ˚R which is still denoted by ϕ. Allowing ourselves to compose these functions (which arise from standard smooth functions) with polynomial maps (which might have non-standard coefficients), we define for every smooth, separated ˚R-scheme X of finite type a sheaf of so-called smooth functions for the (Grothendieck) semi-algebraic topology on Xp ˚Rq, which we denote by C 8 X . The natural inclusion map from Xp ˚Rq into the (underlying set of) the scheme X underlies a morphism of locally ringed sites ψ : pXp ˚Rq, C 8 X q Ñ pX, O X q, and we can define the sheaf of smooth p-forms on Xp ˚Rq by A p X :" ψ ˚Ωp X{ ˚R . One has for every p a natural differential d : A p X Ñ A p`1 X . We now assume X is of pure dimension n, and that Xp ˚Rq is oriented (the notion of an orientation of a variety makes sense over an arbitrary real closed field, see 3.3). Let ω be a smooth n-form on some semi-algebraic open subset U of Xp ˚Rq, and let E be a semi-algebraic subset of U whose closure in U is definably compact. Choosing a description of pX, U, ω, Eq through a "limited family" pX t , U t , ω t , E t q t , it is possible to define the integral ş E ω as the class of the sequence p ş Et ω t q t in ˚R.

1.5. -We now move from ˚R to R, seeking to show that smooth functions, smooth forms and their integrals remains well-defined on R.

Let ϕ : U Ñ R be a usual smooth function defined on some semi-algebraic open subset U of R n . Under some boundedness assumptions on ϕ (which are for instance automatically fulfilled if ϕ is compactly supported, or more generally if all its derivatives are polynomially bounded), the induced function ϕ : U p ˚Rq Ñ ˚R in turn induces a map U pRq Ñ R, which we again denote by ϕ.

For instance, the map log|¨| from C ˆ» R 2 ztp0, 0qu is smooth and satisfies the boundedness conditions alluded to above; it thus induces a map log|¨| : C ˆÑ R, which enables us to endow the field C with a real-valued non-archimedean norm | ¨|5 : C Ñ R ě0 as follows. For any z belonging to C ˆ, one checks that the norm of log |z| log |t| is bounded by some positive real number in R. One can thus consider its standard part α " std ´log |z| log |t| ¯P R. Fixing τ P p0, 1q Ă R, one sets |z| 5 :" τ α , so that |z| 5 " |t| α 5 . With this non-archimedean norm the field C is complete (even spherically complete, cf. [START_REF] Luxemburg | On a class of valuation fields introduced by A. Robinson[END_REF]).

We repeat the procedure used in 1.4: allowing ourselves to compose the functions defined at the beginning of 1.5 (which arise from standard smooth functions) with polynomial maps (which might have non-standard coefficients), we define for every smooth, separated R-scheme X of finite type a sheaf of so-called smooth functions for the (Grothendieck) semi-algebraic topology on XpRq, which we denote by C 8 X . There is a natural morphism of locally ringed sites ψ : pXpRq, C 8 X q Ñ pX, O X q. One then sets A p X :" ψ ˚Ωp X{R and one has for every p a natural differential d : A p X Ñ A p`1 X . Assume now X is of pure dimension n and oriented. A substantial part of Section 3 is devoted to the construction of an R-valued integration theory on XpRq.

1.6. Proposition. -Integration theory on XpA r q descends to XpRq.

Namely, to a semi-algebraic subset K of XpRq, with definably compact definable closure, and a smooth n-form ω on a semi-algebraic neighborhood of K in XpRq, we assign an integral ş K ω which is an element of R. This is achieved in 5.10 by reducing to the case when X is liftable. Independence from the lifting follows from the fact, proved in Proposition 5.3, that the integrals obtained from two different liftings coincide up to a t-negligible element. A preliminary key statement in that direction is provided by Proposition 3.9 which states that if D is a semi-algebraic subset of p ˚Rq n contained in A n r , the volume of D is t-negligible if and only if the image of D in R n through the reduction map is of dimension ď n ´1.

Assume that X is a smooth C-scheme of finite type and of pure dimension n. One defines similarly the integral ş K ω of a complex-valued pn, nq-form ω defined in a semi-algebraic neighborhood of a semi-algebraic subset K of XpCq, assuming that there exists a semi-algebraic subset K 1 of K with definably compact closure such that ω vanishes on KzK 1 . 1.7. Remark. -Note that for an arbitrary real closed field S one cannot hope for a reasonable integration theory with values in S. Indeed, let for instance S be the algebraic closure of Q in R. Then there is no such reasonable integration theory on S, otherwise π " ş x 2 `y2 ď1 dx ^dy would belong to S.

1.8. -Fix a smooth C-scheme X of finite type and pure dimension n, and set λ :" ´log |t|. In this text we define two Dolbeault-like complexes A p,q and B p,q . Informally A p,q and B p,q should be thought of as living on XpCq and X an respectively. But since we want to be able to compare them in some sense, we need that they be defined on the same site; this is the reason why we have chosen to define them as complexes of sheaves on the Zariski site of X.

1.8.1. The non-standard archimedean complex. -Let us start with A p,q . We will explain what would be the most natural definition, why it is not convenient for our purpose, and what the actual definition is.

1.8.1.1. -Basically, we would like a section of A p,q on a given Zariski-open subset U of X to be a differential form on U pCq which is locally for the semialgebraic topology on XpCq of the form

ω " 1 λ p ÿ I,J ϕ I,J ˆlog|f 1 | λ , . . . , log|f m | λ ˙dlog|f I | ^dArg f J
where I, resp. J, runs through the set of subsets of t1, . . . , mu of cardinality p, resp. q, where the f i are regular invertible functions, dlog|f I | stands for the wedge product dlog|f i 1 | ^. . . ^dlog|f ip | if i 1 ă i 2 ă . . . ă i p are the elements of I, and dArg f J stands for the wedge product darg 2π f j 1 ^. . . ^darg 2π f jq if j 1 ă j 2 ă . . . ă j q are the elements of J.

1.8.1.2. -But it would be difficult to use the definition suggested in 1.8.1.1, because the general forms described therein do not have non-archimedean counterparts, since there is no natural way to turn the implicit semi-algebraic covering of U pCq in their definition into an open covering of U an ; hence we will take a slightly more restrictive definition, albeit flexible enough for our purpose.

We thus define a section of A p,q on a Zariski-open subset U of X is a differential form on U pCq that is locally for the Zariski-topology of U of the form

ω " 1 λ p ÿ I,J ϕ I,J ˆlog|f 1 | λ , . . . , log|f m | λ ˙dlog|f I | ^dArg f J
where pf 1 , . . . , f m q are regular functions (but they are not assumed to be invertible), where I, resp. J, is running through the set of subsets of t1, . . . , nu of cardinality p, resp. q, and where each function ϕ I,J is defined on a suitable subset of pR Y t´8uq m and satisfies some technical conditions which we explain now. Let x " px 1 , . . . , x m q be a point of pR Y t´8uq m and let K denote the set of indices i such that x i " ´8. Then: ˛around x the function ϕ I,J only depends on the x i for i R K, and is smooth as a function of the latter;

˛the function ϕ I,J even vanishes around x as soon as K intersects I Y J.

It is clear that sections of A p,q admit a local description as in 1.8.1.1. Note that if K " H the only requirement is for ϕ I,J to be smooth around x, and that our second condition ensures that dlog|f i | or darg f i 2π can actually appear only around points at which f i is invertible (which is necessary for integrating such a form when p " q " n).

There exist natural differentials d : A p,q Ñ A p`1,q and d 7 : A p,q Ñ A p,q`1 mapping respectively a form

1 λ p ϕ ˆlog|f 1 | λ , . . . , log|f m | λ ˙dlog|f I | ^dArg f J to 1 λ p`1 ÿ 1ďiďm Bϕ Bx i ˆlog|f 1 | λ , . . . , log|f m | λ ˙dlog|f i | ^dlog|f I | ^dArg f J and to 1 λ p ÿ 1ďiďm Bϕ Bx i ˆlog|f 1 | λ , . . . , log|f m | λ ˙darg f i 2π ^dlog|f I | ^dArg f J .
Here the map d is the usual differential, and d 7 is designed to switch modulus and argument, see 4.2.2; it turns out to be analogous to the operator d c of complex analytic geometry.

1.8.2. The non-archimedean complex. -We are now going to describe B p,q . Set λ 5 :" ´log |t| 5 .

1.8.2.1.

-Basically, we would like a section of B p,q on a given Zariski-open subset U of X to be a differential form on U an in the sense of [CLD] which is locally on U an of the form

1 λ p 5 ÿ I,J ϕ I,J ˆlog|f 1 | 5 λ 5 , . . . , log|f m | 5 λ 5 ˙d1 log|f I | 5 ^d2 log|f J | 5
where I, resp. J, runs through the set of subsets of t1, . . . , mu of cardinality p, resp. q, where the f i are regular invertible functions and where d 1 log|f I | 5 standing for the wedge product d

1 log|f i 1 | 5 ^. . .^d 1 log|f ip | if i 1 ă i 2 ă . . . ă i p
are the elements of I, and similarly for d 2 log.

1.8.2.2. -But by analogy with A p,q , we shall rather define a section of B p,q on a Zariski-open subset U of X as a differential form on U an that is locally for the Zariski-topology of U of the form

1 λ p 5 ÿ I,J ϕ I,J ˆlog log|f 1 | 5 λ 5 , . . . , log|f m | 5 λ 5 ˙d1 log|f I | 5 ^d2 log|f J | 5
where pf 1 , . . . , f m q are regular functions, where I, resp. J, is running through the set of subsets of t1, . . . , nu of cardinality p, resp. q (with d 1 log|f I | 5 standing for the wedge product d

1 log|f i 1 | 5 ^. . . ^d1 log|f ip | 5 if i 1 ă i 2 ă . . . ă i p are
the elements of I, and similarly for d 2 log|f J | 5 ), and where each ϕ I,J satisfies the same conditions as those in the definition of A p,q . It is clear that sections of B p,q are locally of the form described in 1.8.2.1, and that B ',' is stable under the two differential operators d 1 and d 2 .

1.9. -Our main result, Theorem 8.1, states that the two sheaves of bigraded differential R-algebras A ',' and B ',' on the site X Zar , consisting respectively of non-standard archimedean and non-archimedean forms, are compatible in the following sense: 1.10. Theorem. -There exists a unique morphism of sheaves of bi-graded differential R-algebras A ',' Ñ B ',' , sending a non-standard archimedean form ω to the non-archimedean form ω 5 , such that if ω is of the form

ω " 1 λ |I| ϕ ˆlog|f 1 | λ , . . . , log|f m | λ ˙dlog|f I | ^dArg f J ,
with f 1 , . . . , f m regular functions on a Zariski-open subset U of X, I and J subsets of t1, . . . , mu, and ϕ a quasi-smooth function, then

ω 5 " 1 λ |I| 5 ϕ ˆlog|f 1 | 5 λ 5 , . . . , log|f m | 5 λ 5 ˙d1 log|f I | 5 ^d2 log|f J | 5 .
Furthermore, we also prove in Theorem 8.1 that the mapping ω Þ Ñ ω 5 is compatible with integration. A special case of that compatibility can be stated as follows:

1.11. Proposition. -Assume that ω is an pn, nq-form defined on some Zariski open subset U of X and that its support is contained in a definably compact semi-algebraic subset of U pCq, then the form ω 5 on X an is compactly supported, ş U pCq |ω| is bounded by some positive real number in R and

std ˜żUpCq ω ¸" ż U an ω 5 ,
with std standing for the standard part.

Compatibility with integration is used in an essential way in proving that the mapping ω Þ Ñ ω 5 is well defined. Indeed it allows us to use a result of Chambert-Loir and Ducros ( [CLD], Cor. 4.3.7) stating that, in the boundaryless case, non-zero forms define non-zero currents. A key point in the proof of compatibility with integration is to show that the non-archimedean degree involved in the construction of non-archimedean integrals in [CLD] actually shows up in the asymptotics of the corresponding archimedean integrals, which is done in 9.1.11.

This main result has very concrete consequences: see our Theorem 8.4, in which we express limits in the usual sense of complex integrals depending on a parameter in terms of non-archimedean integrals.
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The general framework

2.1. -We shall use in this paper basic facts and terminology from Model Theory, which can be found for instance in the books [START_REF]Marker -Model theory. An introduction[END_REF] and [START_REF] Tent | A course in model theory[END_REF]. We shall in particular make use of the theory doag of non-trivial divisible ordered abelian groups, the theory rcf of real closed fields, and the theory acvf of algebraically closed non-trivially valued fields. Both doag and rcf are examples of o-minimal theories.

-

We fix a non-principal ultrafilter U on the set C of complex numbers; we assume that it converges to 0, which means that every neighborhood of the origin belongs to U (for our purpose, it would be sufficient to consider such an ultrafilter U on a sequence approaching 0). Note that since U is not principal, t0u R U ; as a consequence, every punctured neighborhood of 0 also belongs to U . In particular, there exists a family X i , i P N, of elements of U such that Ş iPN X i " H, that is, the ultrafilter U is countably incomplete.

Convention.

-Unless otherwise stated, when we introduce a "sequence" pa t q t the parameter t is always understood as running through some set belonging to U (e.g., a small punctured disc centered at the origin), which we shall usually not make explicit. We shall allow ourselves to shrink this set of parameters when necessary (without mentioning it), for instance if we work with finitely many sequences and need a common set of parameters.

If we work with some sequence pM t q t of sets and then consider a sequence pa t q t with a t P M t for every t, it will be understood that a t is defined for t lying in some set belonging to U and on which t Þ Ñ M t does make sense; so we do not require that a t be defined for every t such that M t is.

We say that some specified property P is satisfied by a t along U if the set of indices t such that a t satisfies P belongs to U ; e.g., |a t | ă |t| along U means that the set of indices t such that |a t | ă |t| belongs to U .

2.4.

Ultraproducts. -Let pM t q t be a sequence of sets. The ultraproduct of the sets M t along U is the quotient of the set of all sequences pa t q t with a t P M t for all t by the equivalence relation for which pa t q " pb t q if and only if a t " b t along U (we remind the reader that according to Convention 2.3, a t needs not to be defined for all t for which M t exists, but only for a subset of such complex numbers t that belongs to U ). If all the sets M t are groups (resp. rings, resp. . . . ) the ultraproduct of the sets M t along U inherits a natural structure of group (resp. ring, resp. . . . ), which enjoys all first-order properties that hold for M t along U ; e.g., if the group M t is abelian along U , the ultraproduct of the groups M t along U is abelian.

Remark.

-One can describe in a perhaps unusual way the ultraproduct of the sets M t as colim T M T where T runs through the set of elements of U included in the domain of t Þ Ñ M t , where M T :" ś tPT M t , and where the transition maps are the obvious ones.

2.6. The field ˚C. -We apply the above by taking M t equal to the field C (resp. R) for all t, and we denote by ˚C (resp. ˚R) the corresponding ultraproduct. The field ˚R is a real closed extension of R; the field ˚C is equal to ˚Rpiq and is an algebraically closed extension of C. We still denote by |¨| the "absolute value" on ˚C; this is the map from ˚C to ˚R`t hat maps a `bi to ? a 2 `b2 . By (harmless) abuse, the image in ˚C of the sequence ptq t will also be denoted by t ; it should be thought of as a non-standard complex number with infinitely small (but non-zero!) absolute value.

A sequence pa t q t of complex numbers is called:

˛bounded if there is some N P Z ě0 such that |a t | ď N along U ; ˛t-bounded if there is some N P Z ě0 such that |a t | ď |t ´N | along U ; ˛negligible if |a t | ď 1 N along U for all N P Z ą0 ; ˛t-negligible if |a t | ď |t N | along U for all N P Z ě0 .
An element a of ˚C is called bounded, resp. t-bounded, resp. negligible, resp. t-negligible if it is the image of some bounded, resp. t-bounded, resp. negligible, resp. t-negligible sequence. This amounts to requiring that |a| ď N for some integer N ě 0, resp. |a| ď |t ´N | for some integer N ě 0, resp. |a| ď 1 N for all integer N ą 0, resp. |a| ď |t| N for all integer N ě 0. (Be aware that the above inequalities are understood in the huge real closed field ˚R.)

The field C. -

The set A of t-bounded elements of ˚C is a subring of ˚C which contains t. This is a local ring, whose maximal ideal m is the set of t-negligible elements; the intersection A r :" A X ˚R is also a local ring, whose maximal ideal is m r :" m X ˚R. We denote by C (resp. R) the residue field of A (resp. A r ), and we still denote by t the image of the element t of A in C. Note that m ‰ 0: for instance, the sequence pexpp´1{|t|qq t is t-negligible and not equal to zero along U , so it defines a non-zero element of m. One can describe directly C as the ring of t-bounded sequences modulo that of t-negligible sequences. The field R is a real-closed extension of R, we have C " Rpiq, and C is an algebraically closed extension of C. We still denote by |¨| the "absolute value" on C; this is the map from C to R `that maps a `bi to ? a 2 `b2 . An element z of C is called bounded, resp. negligible if it is the image of a bounded, resp. negligible, element of A. This amounts to requiring that z is the image of a bounded, resp. negligible, sequence or that |z| ď N for some N P Z ě0 , resp. |z| ă 1 N for all N P Z ą0 . If z " a`bi is any bounded element of C, the subset of R consisting of those real numbers that are ď a is non-empty and bounded above, hence has a least upper bound α P R; we define β analogously. By construction, z ´pα `βiq is negligible, and α `βi is the only complex number having this property; it is called the standard part of z and it will be denoted by stdpzq. If z P R then stdpzq P R.

Any t-bounded complex-valued function f on an element of U (e.g., a punctured small disc centered at the origin) gives rise to an element of C, which we shall denote by f if no confusion arises, as we do for t. Let us give some examples: ˛For every α P R the sequence p|t| α q t is t-bounded and is not t-negligible, so it gives rise to an element |t| α of C ˆ(which actually belongs to R ˆ).

Note that if α ‰ 0 then p|t| α ´1q t is not t-negligible; hence α Þ Ñ |t| α is an injective order-reversing group homomorphism from R into R ˆ.

˛The field M of meromorphic functions around the origin has a natural embedding into C.

˛If a is any non-zero element of C arising from a t-bounded and non-tnegligible sequence pa t q t then the sequence plog|a t |q t is t-bounded, so it gives rise to an element of C. The latter depends only on a, and not on the specific sequence pa t q. To see it, we have to check that if pε t q t is a t-negligible sequence then plog|a t `εt | ´log|a t |q is t-negligible as well.

For that purpose, we first notice that if z is a standard complex number with |z| small enough then log|1 `z| ď 2|z|. Now our assumptions imply that the sequence pε t a ´1 t q t is t-negligible and a fortiori negligible, so that

log|a t `εt | ´log|a t | " log|p1 `εt |a t | ´1q| ď 2|ε t a ´1 t |
holds along U ; using once again the fact that pε t a ´1 t q t is t-negligible we get the required result.

The element of C defined by the sequence plog|a t |q t depending only on a, we denote it by log|a|. The sequence ´log|at| log|t| ¯t is bounded, so log|a| log|t| is bounded. Set Λ " tr P R ˆ| |t| 1{N ď r ď |t| ´1{N for all N P Z ą0 u; this is a convex subgroup of R ˆ, and R ˆ{Λ thus inherits an ordering such that the quotient map is order-preserving. The composition Let z P C ˆand set α " stdp log|z| log|t| q. It follows immediately from the definitions that |z| " |t| α modulo Λ, and that |t| α itself belongs to Λ if and only if α " 0. Hence α Þ Ñ |t| α mod Λ induces an order-reversing isomorphism between the ordered groups R and |C ˆ|5 , which maps 1 to |t| 5 " |t| mod Λ.

C ˆ|¨| / / R ˆ/ / R ˆ{Λ
We fix once and for all an order-preserving isomorphism between |C ˆ|5 and R ˆ, which amounts to choosing the image τ of |t| 5 in p0, 1q. We will from now on use this isomorphism to see |¨| 5 as a real valuation (with value group the whole of R ˆ). If z is any element of C ˆwe have The residue field r C :" C ˝{C ˝˝is an algebraically closed extension of C. Let us give an example of an element of r C that is transcendent over C. For every complex number λ and every integer N ą 0 the (complex) inequalities 1 ď |log|t| ´λ| ď |t| ´1{N hold along U ; as a consequence, 1 ď |log|t| ´λ| ď |t| ´1{N in R for all integer N ą 0, so |log|t| ´λ| 5 " 1. Hence |log|t|| 5 " 1 and if we denote by Ć log|t| the image of log|t| in r C then Ć log|t| ´λ ‰ 0 for all λ P C; as a consequence, Ć log|t| is transcendent over C.

The non-archimedean field C is complete, and even spherically complete (cf. [START_REF] Luxemburg | On a class of valuation fields introduced by A. Robinson[END_REF]). Indeed, let pB n q nPZ ě0 be a decreasing sequence of closed balls with positive radius in C; for every n, denote by r n the radius of B n and choose b n in B n ; we want to prove that Ş B n is non-empty. For every n ě 1, choose a pre-image b n of b n in A, and a real number s n with r n´1 ą s n ą r n , and denote by B n the set of those x P ˚C such that |x ´bn | ď |t| log sn{ log τ . For each n ě 1, the ball B n contains the pre-image of B n in A, and is contained in the pre-image of B n´1 . The fact that every B n contains the pre-image of B n in A implies that the intersection of finitely many of the sets B n is nonempty; since, as noted in 2.2, the ultrafilter U is countably incomplete, the ultraproduct ˚C is ℵ 1 -saturated by [START_REF] Keisler | Ultraproducts and saturated models[END_REF], Cor. 2.2, thus the intersection of all the sets B n is non-empty; but this intersection is contained in the pre-image of the intersection of all the sets B n , so the latter is non-empty.

Smooth functions, smooth forms and their integrals

over ˚R and ˚C 3.1. Semi-algebraic topology. -Let S be an arbitrary real-closed field (we will use what follows for S " ˚R and S " R). Let X be an algebraic variety over the field S; i.e., X is a separated S-scheme of finite type. The set XpSq is in a natural way a definable space of rcf. By quantifier elimination in rcf, the definable subsets of XpSq are precisely its semi-algebraic subsets; i.e., those subsets that can be defined locally for the Zariski-topology of X by a boolean combinations of inequalities (strict or non-strict) between regular functions.

3.1.1.

-The order topology on the field S induces a topology of XpSq, which is most of the time poorly behaved: except if S " R it is neither locally compact nor locally connected.

Let U be a semi-algebraic subset of XpSq. We shall say that U is open, resp. closed, if it is open, resp. closed for this topology. This amounts to require that U can be defined, locally for the Zariski-topology of X, by a positive boolean combination of strict (resp. non-strict) inequalities between regular functions ([BCR85], Th. 2.7.1). The topological closure of a semialgebraic subset U of XpSq is semi-algebraic (and so is its topological interior, by considering complements). Indeed, this can be checked on an affine chart, hence we reduce to the case where X " A n S ; now since the topology on S n has a basis consisting of products of open intervals, U is definable, so it is semi-algebraic.

3.1.2.

-Since the interval r0, 1s of S is not compact except if S " R, naive topological compactness is not a relevant notion in our setting. We use definable compactness instead, which itself relies on the notion of a definable type; see for instance Section 2.3 and Chapter 4 of [START_REF] Hrushovski | Non-archimedean tame topology and stably dominated types[END_REF] for more information on these topics. Let us just recall here that a subset E of XpSq is called definably compact if every definable type lying on E converges to a unique point of E. Since X is separated, any definably compact semi-algebraic subset of XpSq is closed. If E is a definably compact semi-algebraic subset of XpSq,a semi-algebraic subset F of E is closed if and only if it is definably compact.

3.1.3.

-Assume that X is affine, and let pf 1 , . . . , f n q be a family of regular functions on X that generate the S-algebra OpXq. If E is a semi-algebraic subset of XpSq, then E is definably compact if and only if it is closed and bounded; i.e., there exists r ą 0 in S and such that |f i pxq| ď r for all i and all x P E.

Lemma.

-Let X be a separated S-scheme of finite type and let E be a definably compact semi-algebraic subset of XpSq. Let pU i q iPI be a finite family of definable open subsets of XpSq such that E Ă Ť U i . There exists a family pE i q with each E i a definably compact semi-algebraic subset of U i and

E " Ť i E i .
Proof. -Up to refining the covering pU i q we can assume that U i is for every i contained in X i pSq for some open affine subscheme X i of X. We argue by induction on |I|. The statement is clear if |I| " 0. Assume |I| ą 0 and the statement is true in cardinality ă |I|. Choose an element i in I and set F " XpSqz Ť jPI,j‰i U j . By definition, F is a closed semi-algebraic subset of XpSq contained in U i ; thus E X F is a definably compact semi-algebraic subset of U i .

Choose a semi-algebraic open subset V of U i that contains E X F and whose closure V is definably compact and still contained in U i (one can use a finite set of generators of the S-algebra O X pX i q to build semi-algebraic continuous distance functions to E XF , to the boundary of U i in X i pSq and to pXzX i qpSq, and then define V by a suitable positive boolean combination of non-strict inequalities involving these functions).

Set G " XpSqzV . By definition, G is a closed semi-algebraic subset of XpSq and G X E is thus definably compact.

We then have E " pE X V q Y pG X Eq. Since G X E avoids F , it is contained in Ť j‰i U j . The conclusion follows by applying the induction hypothesis to the set G X E.

3.

3. -Because of the bad properties of the order topology XpSq, we shall not use it except while speaking of closed or open semi-algebraic subsets. Nevertheless, we shall use a closely related set-theoretic Grothendieck topology, namely the semi-algebraic topology. The underlying category is that of open semi-algebraic subsets of XpSq with inclusion maps; a family pU i q iPI is a cover of U if there is a finite subset J of I such that U " Ť iPJ U i ; this amounts to requiring that pU i Ñ U q induces a usual (open) cover at the level of type spaces.

If X is smooth, XpSq comes equipped with a sheaf of orientations (for the semi-algebraic topology), defined mutatis mutandis as in the standard case. It is locally isomorphic to the constant sheaf associated with a two-element set; a global section of this sheaf is called an orientation on XpSq. ˚R. -If U is an open semi-algebraic subset of R n for some n, then every smooth function (i.e., C 8 function) ϕ : U Ñ R gives rise to a function U p ˚Rq Ñ ˚R, which sends the class of a sequence pa t q t with a t P U along U to the class of pϕpa t qq t ; it will still be denoted by ϕ if no confusion arises.

Smooth forms and integrals over the field

3.4.1.

Smooth functions and smooth forms on a variety. -Let X be a smooth separated ˚R-scheme of finite type. Let F be the assignment that sends a semi-algebraic open subset U of Xp ˚Rq to the set of functions from U to ˚R of the form ϕ ˝g, where:

˛g is a regular map from a Zariski-open subset of X containing U to A m ˚R for some m; ˛ϕ is a smooth function from V to R where V is a semi-algebraic open subset of R m such that gpU q Ă V p ˚Rq.
Then F is a presheaf; its associated sheaf (for the semi-algebraic topology) is denoted by C 8 or C 8 X and called the sheaf of smooth functions on Xp ˚Rq. It makes Xp ˚Rq a locally ringed site.

The natural embedding of Xp ˚Rq into (the underlying set of) the scheme

We now choose a description of pX, U, ω, Eq through a "limited family" pX t , U t , ω t , E t q t where X t is for every t a smooth separated R-scheme of pure dimension n endowed with an orientation of X t pRq, U t is an open subset of X t pRq, ω t is a complex valued smooth form on U t , and E t is a relatively compact semi-algebraic subset of U t . The expression "limited family" means that the sequence pX t , U t , ω t , E t q can be defined using finitely many smooth functions (defined on real intervals), a given set T P U , and finitely many polynomials with coefficients in R T .

For every t the smooth manifold X t pRq is oriented, hence the integral ş Et ω t is well-defined. The sequence p ş Et ω t q t defines an element of ˚C that depends only on pX, U, ω, Eq, and the chosen orientation on Xp ˚Rq. We denote it by ş E ω; if ω is real-valued, then ş E ω is an element of ˚R. 3.4.3. The case of a non-standard complex variety. -Let X be now a smooth quasi-projective scheme over ˚C, and let Y be the Weil restriction R˚R { ˚CX ; this is a quasi-projective scheme over ˚R, equipped by definition with a canonical bijection Y p ˚Rq » Xp ˚Cq. This allows us to transfer to the set X ˚pCq all notions introduced above. Moreover, for every p, the sheaf A p b˚R ˚C of complex-valued smooth p-forms on X ˚pCq is equipped with a natural decomposition A p b˚R ˚C " À i`j"p A i,j , where A i,j is the sheaf of pi, jq-forms; i.e., of complex-valued p-forms generated over C 8 by forms of the type df 1 ^. . . ^df i ^dg 1 ^. . . ^dg j for some regular functions f 1 , . . . , f i , g 1 , . . . , g j .

Assume that X is of pure dimension n for some n, let U be a semi-algebraic open subset of Xp ˚Cq, and let ω be a smooth pn, nq-form on U . Let E be a semi-algebraic subset of Xp ˚Cq whose closure is definably compact. The pn, nq-form ω can then be integrated on E, using the canonical orientation of Xp ˚Cq. Indeed, choose a description of pX, U, ω, Eq through a "limited family" pX t , U t , ω t , E t q t where X t is for every t a smooth separated C-scheme of pure dimension n, U t is an open semi-algebraic subset of X t pCq, ω t is a complex valued smooth pn, nq-form on U t , and E t is a relatively compact semi-algebraic subset of U t ; the integral ş E ω is then given by the sequence ş Et ω t . 3.4.4. -We have considered so far only differential forms with smooth coefficients. But by replacing the class of usual smooth functions (on open subsets of R m ) by a broader class C , we can define in the same way differential forms over ˚R with coefficients in C , and integrate those of maximal rank on relatively compact definable subsets (provided C consists of locally integrable functions).

For instance, if we consider ω and E as in 3.4.2 or 3.4.3 we can define |ω|, which is a form with continuous piecewise smooth coefficients, and also define the integral ş E |ω|, which is a non-negative element of ˚R. 3.5. -We are thus able to integrate smooth forms on the field ˚R, but what we are actually seeking for is a similar integration theory over R. Our basic strategy is very simple: it consists in lifting a differential form on the field ˚R, integrating it, and reducing the result modulo t-negligible elements. But of course, one has to check that it does not depend on our lifting. This requires a good understanting of the way our integrals interact with t-negligibility; this is the purpose of what follows.

Notation.

-Let S be a real closed field and let D be a non-empty, bounded above convex subset of S with no least upper bound in S. Then such a least upper bound nevertheless exists, but as a type on S; we denote it by d. We shall allow ourselves to say that a given definable subset I of S contains d, resp. that a given definable formula Φ is satisfied by d, if I, resp. the set of x P S satisfying Φ, contains pλ, `8q X D for some λ P D.

Lemma. -Let I be a definable interval of S ě0 that contains d and let

f be a definable function from I to S. Assume that there exists a P I with a ă d such that f pxq ą d for all x with a ă x ă d; then there exists x ą d in I with f pxq ą d.

Proof. -Let J be the set of those x P I such that f pxq ą x. This is a definable subset of S which contains all elements y P S with a ă y ă d. By o-minimality, J is a finite union of intervals with bounds in S Y t´8, `8u, thus it contains some interval of the form pa, bq for some element b P S with b ą d. Then for all x P S such that d ă x ă b we have f pxq ą x ą d. 

-Let

ś i pb i ái q.
We remind that A r is the set of t-bounded elements of ˚R, and that a Þ Ñ a denote the reduction modulo the maximal ideal m r of A r , cf. 2.7.

Proposition. -Let D be a definable subset of p ˚Rq n contained in A n

r . The following are equivalent:

(i) the volume of D is t-negligible;
(ii) for every n-form ω " ϕdx 1 ^. . . ^dx n with ϕ a smooth function defined in a neighborhood of the closure of D and taking only t-bounded values on the latter, the integral ş D ω is t-negligible;

(iii) every cube contained in D has t-negligible volume;

(iv) the image D of D in R n through the reduction map is of dimension ď n ´1.

3.10.

Remark. -It is known that D is a closed definable subset of R n (no matter whether D is closed or not), see for instance [START_REF] Broecker | On the reduction of semialgebraic sets by real valuations[END_REF]. Thus its dimension is well-defined. But the reader could also rephrase (iv) by simply saying "D contains no n-cube with non-empty interior"; and this is indeed this rephrasing of (iv) that we shall actually use in the proof.

Proof. -We are going to prove (i)ñ(ii)ñ(iii)ñ(i), and then (iv)ñ(iii) and (i)ñ(iv). Assume that (i) is true and let ω as in (ii). By definable compactness of the closure of D there exists a t-bounded positive element M such that |ϕ| ď M on D. Then ˇˇş D ω ˇˇď M VolpDq; the volume of D being t-negligible,

ş D ω is t-negligible as well.
Now if (ii) is true then in particular VolpDq is t-negligible (take ϕ " 1); this implies that the volume of every definable subset of D, including any cube contained in D, is t-negligible.

Assume now that (iii) is true, and let us prove (i). We argue by induction on n. If n " 0 there is nothing to prove. So assume that n ą 0 and the result holds in dimension n ´1. Let p : p ˚Rq n Ñ p ˚Rq n´1 be the projection on the first n ´1 coordinates, and set ∆ " ppDq. If pD i q is any finite covering of D by definable subsets it is sufficient to prove that (i) holds for every D i (note that D i obviously satisfies (iii)).

Hence using cellular decomposition we can assume that we are in one of the following two cases: ˛there exists a continuous definable function f on ∆ such that D is the graph of f ;

˛there exists two continuous definable functions f and g on ∆ with f ă g such that D " tpx, yq, f pxq ă y ă gpxqu.

In the first case D is at most pn ´1q-dimensional and its volume is zero. Let us assume from now on that we are in the second case. Since D Ă A n r , there is a positive t-bounded element M such that g ´f ă M .

Let ϕ be the function that sends an element a of r0, M s to the least upper bound of the pn ´1q-volumes of all cubes contained in ∆ over which g ´f ą a.

3.10.1.

-Let us prove by contradiction that there exists some t-negligible element a such that ϕpaq is t-negligible. We call "t-significant" an element which is not t-negligible, and we assume that ϕpaq is t-significant for all tnegligible a; we are going to exhibit a cube inside D with t-significant volume, which will contradict our assumptions. By Lemma 3.7 (which we apply by taking for d the least upper bound of the set D of t-negligible elements) there exists some t-significant a with ϕpaq also t-significant. Therefore there exists some cube K inside ∆ with t-significant pn ´1q-volume over which g ´f ą a. For each family ε " pε 1 , . . . , ε 2n´2 q of elements of t´1, 1u let K ε be the subset of K on which B i g P ε i p ˚Rě0 q and B i f P ε n´1`i p ˚Rě0 q or all 1 ď i ď n ´1. Then K is the union of the sets K ε , so one of the sets K ε has a t-significant volume, hence contains a cube K 1 with t-significant volume (by the induction hypothesis). Replacing ∆ by K 1 , we assume from now on that ∆ is a cube with t-significant volume on which each partial derivative of f and g has constant sign and on which g ´f ą a.

Write ∆ "

ś rα i , β i s. Set M " sup ∆ |f | and K " 4M pβ 1 ´α1 q ´1. Since M is t-bounded and since β 1 ´α1 is t-significant (because ∆ has t-significant volume), K is t-bounded. Let ∆ K " tx P ∆, |B 1 f pxq| ě Ku. We claim that Volp∆ K q ď Volp∆q 2 . Indeed, fix z " pz 2 , ¨¨¨, z n´1 q in ś iě2 rα i , β i s,
and set ∆ K,z " ty P rα 1 , β 1 s, py, zq P ∆ K u. By o-minimality, ∆ K,z is a finite union of closed intervals; let λ be the one-dimensional volume (or, otherwise said, the total length) of ∆ K,z . If γ and δ are two elements of rα 1 , β 1 s such that γ ď δ and rγ, δs Ă ∆ K,z then by the mean value theorem one has |f pδ, zqq ´f pγ, zq| ě Kpδ ´γq. By monotonicity of f p¨, zq this implies that |f pβ 1 , zq´f pα 1 , zq| ě Kλ. Since |f pβ 1 , zq´f pα 1 , zq| ď 2M by the definition of M , we see that λ ď 2M {K " pβ 1 ´α1 q{2. Thus, by Fubini, Volp∆ K q ď Volp∆q 2 , as announced.

It follows that the complement of ∆ K in ∆ has t-significant volume. By the induction hypothesis, it contains a cube with t-significant volume. Iterating this argument (which works for g as well as for f , and for the i-th component as well as for the first one), we can furthermore assume that ∆ is a cube with t-significant volume on which each partial derivative of f and g has an absolute value bounded above by some positive t-bounded constant N .

Let x be the point p α i `βi 2 q i of ∆. Set y " gpxq`f pxq 2 ; the point px, yq belongs to D. Set r " pgpxq ´f pxqq{4 ; since gpxq ´f pxq ě a, the number r is t-significant. Let N 1 be a t-bounded number such that N 1 ą ? n ´1N and r{N 1 ă min i pβ i ´αi q{4 -such N 1 exists since β i ´αi is t-significant for every i. Let Γ be the cube in p ˚Rq n with center px, yq and polyradius pr{N 1 , . . . , r{N 1 , rq. If pξ, ηq belongs to Γ, then ξ P ∆. By the mean value theorem |f pξq ´f pxq| ď

? n´1rN 2N 1
ă r 2 and similarly |gpξq ´gpxq| ă r 2 . Thus f pξq ă η ă gpξq and therefore D contains the cube Γ which has t-significant volume.

3.10.2.

-By the above, there exists some t-negligible element a such that ϕpaq is t-negligible. Let ∆ 1 be the subset of ∆ consisting of points over which g ´f ą a. By assumption, every cube contained in ∆ 1 has t-negligible volume; by our induction hypothesis, the volume of ∆ 1 is t-negligible. Since g ´f is uniformly t-bounded, it follows from Fubini's theorem that the volume of p ´1p∆ 1 q is t-negligible. Let ∆ 2 be the complement of ∆ 1 in ∆. The pn ´1qvolume of ∆ 2 is t-bounded, and g ´f ď a on ∆ 2 . Applying again Fubini's theorem, we see that p ´1p∆ 2 q has t-negligible volume. Hence D " p ´1p∆ 1 q Y p ´1p∆ 2 q has t-negligible volume. This ends the proof of (i) ðñ (ii) ðñ (iii).

Proof of (iv)ñ(iii) and (i)ñ(iv).

-It is clear that (iv)ñ(iii), since the reduction of every cube in A n r with t-significant volume is a cube with nonempty interior. We are going to prove (i)ñ(iv) by contraposition. So assume that D is n-dimensional. Under this assumption, it contains a cube with nonempty interior; let us write it ś ra i , b i s where a i and the b i are t-bounded and b i ´ai is t-significant for all i. Let B be the definable set ś i ra i , b i szD. We claim that every cube contained in the definable subset B has t-negligible volume. Indeed, let ∆ " ś rα i , β i s be such a cube. If x is a point of A n r with x P ś pα i , β i q then x P ∆ (and hence x R D) so ś pα i , β i q does not intersect D. On the other hand, since

ś pα i , β i q is contained in ś ra i , b i s (because ∆ Ă ś i ra i , b i s), and D contains ś i ra i , b i s, the open cube ś pα i , β i q is contained in D.
Thus ś pα i , β i q is empty, and there is at least one index i such that β i ´αi " 0, which means that

β i ´αi is t-negligible; a fortiori, the volume of ∆ is t-negligible.
Now by what we have already proved, this implies that

ş ś ra i ,b i szD dx 1 ^. . .d x n is t-negligible. As a consequence ż ś ra i ,b i sXD dx 1 ^. . . ^dx n " ż ś ra i ,b i s dx 1 ^. . . ^dx n modulo a t-negligible element; but ş ś ra i ,b i s dx 1 ^. . . ^dx n " ś pb i ´ai q, which is t-significant. Thus ş ś ra i ,b i sXD dx 1 ^. . . ^dx n is t-significant as well, and so is ş D dx 1 ^. . . ^dx n . 3.11. -A definable subset D of p ˚Rq n is called t-bounded if it is contained in A n r ; it is called t-negligible if it is t-
bounded and satisfies the equivalent properties of Prop. 3.9. We shall say that two t-bounded definable subsets D and D 1 of p ˚Rq n almost coincide (resp. are almost disjoint) if their symmetric difference (resp. their intersection) is t-negligible. If D is a t-bounded definable subset of p ˚Rq n , a finite family pD i q of t-bounded definable subsets of p ˚Rq n will be called an almost partition of D if

Ť D i is almost equal to D and the subsets D i are pairwise almost disjoint. A definable subset D of R n is called negligible if it is of dimension ď n 1.
We shall say that two definable subsets D and D 1 of R n almost coincide (resp. are almost disjoint) if their symmetric difference (resp. their intersection) is negligible. If D is a definable subset of R n , a finite family pD i q of definable subsets of R n will be called an almost partition of D if Ť D i is almost equal to D and the subsets D i are pairwise almost disjoint.

3.12. Lemma. -Let D and ∆ be two t-bounded definable subsets of p ˚Rq n . Then D and ∆ are almost disjoint if and only if D and ∆ are almost disjoint.

Proof. -If D and ∆ are almost disjoint then D X ∆ Ă D X ∆ is negligible, so D X ∆ is t-negligible by Prop. 3.9. Conversely, assume that D X ∆ is tnegligible and let us prove that D and ∆ are almost disjoint. We argue by contradiction, so we assume that there exist elements a 1 , . . . , a n , b 1 , . . . , b n in A r with b i ´ai ą 0 and t-significant for all i such that

ś ra i , b i s Ă D X ∆. Set P " ś ra i , b i s Ă A n r .
The volume of the cube P is t-significant and the volume of P X D X ∆ is t-negligible, so the volume of P zpD X ∆q " pP zDq Y pP z∆q is t-significant. So at least one of the two definable sets P zD and P z∆ has t-significant volume. Assume without loss of generality that P zD has t-significant volume. By Prop. 3.9 there exists c 1 , . . . , c n , d 1 , . . . , d n in A r with d i ´ci ą 0 and t-significant for all i such that ś rc i , d i s Ă P zD.

Set x " p c 1 `d1 2 , . . . , cn`dn 2 q. Then x is a point of P whose distance to D is tsignificant. As a consequence, x R D. But since x P P , its reduction x belongs to ś ra i , b i s Ă D X ∆, contradiction.

Proposition.

-Let D and ∆ be two t-bounded definable subsets of p ˚Rq n .

(1) The set D is almost equal to ∆ if and only if D is almost equal to ∆.

(2) The set D X ∆ is almost equal to D X ∆.

Proof. -Set P " Dz∆ and Q " ∆zD. By Lemma 3.12 above, Q and D X ∆ are almost disjoint, and so are P and D X ∆ as well as P and Q. Moreover, we have D " P Y D X ∆ and ∆ " Q Y D X ∆. Hence D is almost equal to ∆ if and only if P and Q are negligible, which amounts to requiring that P and Q be t-negligible (Prop. 3.9), that is to say, that D and ∆ almost coincide, whence (1). Moreover, D X ∆ " D X ∆ Y pP X Qq, and in view of the negligibility of P X Q this implies (2).

Corollary. -Let K be a definable definably compact subset of R n .

There exists a definable, definably compact and t-bounded subset E of p ˚Rq n such that E almost coincides with K.

Proof. -Choose a 1 , . . . , a n and b 1 , . . . , b n in A r such that b i ą a i for all i and K Ă ś ra i , b i s. By using the description of definably closed subsets of R n provided by Théorème 2.7.1 of [START_REF] Bochnak | Roy -Géométrie algébrique réelle[END_REF], we can assume that there exist finitely many polynomials f 1 , . . . , f m in RrT 1 , . . . , T n s such that K is the intersection of ś ra i , b i s with the set of points x such that f j pxq ě 0 for all j. By Prop. 3.13 above me may assume that m " 1, and write f instead of f 1 . If f is constant the set K is either empty or the whole of ś ra i , b i s and the statement is obvious. If f is non-constant, let g be a polynomial with t-bounded coefficients that lifts f . Let E be the intersection of If this is the case, then for every ξ and every I as above, the element B I ϕpξq of R does not depend on ξ (since B I ϕ is Lipshitz with t-bounded constant around ξ).

ś

4.1.1.3.

-If ϕ is tame at x, so are all of its partial derivatives; the sum and the product of two smooth functions on U that are tame at x are themselves tame at x. ˛U " C ˆ(viewed as a semi-algebraic subset of C » R 2 ) and ϕ " |¨| ; ˛U " R ˆand ϕ " z Þ Ñ z n for some n P Z;

˛U " R ą0 and ϕ " log;

˛U " R and ϕ is any trigonometric polynomial.

The function x Þ Ñ expp1{xq (defined on R ˆ) is not tame at the element t of ˚Rˆ: indeed, expp1{tq of ˚R is not t-bounded.

Composition of tame functions.

-Let U be a semi-algebraic open subset of R m , and let V be a semi-algebraic open subset of R n . Let ϕ " pϕ 1 , . . . , ϕ n q be smooth functions from U to R n and assume that ϕpU q Ă V . Let ψ be a smooth function on V .

Let x be a point of U such that every ϕ i is tame at x, and such that ψ is tame at ϕpxq. It follows straightforwardly from the definition that ψ ˝ϕ is tame at x.

Using this together with 4.1.2, we see that

C ˆÑ R, z Þ Ñ log|z|
is tame at every point of C ˆ, and that

C ˆz tz, |z| " 1u Ñ R, z Þ Ñ 1{ log|z| is tame at every point of C ˆz tz P C ˆ, |z| " 1u.

4.1.4.

Smooth functions and smooth forms on a variety. -Let X be a smooth separated R-scheme of finite type.

Let U be a semi-algebraic open subset of XpRq and let g be a regular map from a Zariski-open subset of X containing U to A m R for some m. A pU, gqtame smooth function is a smooth function ϕ defined on some semi-algebraic open subset V of R m with gpU q Ă V pRq, such that ϕ is tame at gpxq for every x P U .

Let F be the assignment that sends a semi-algebraic open subset U of XpRq to the set of functions from U to R of the form ϕ ˝g, where g is a regular map from a Zariski-open subset of X containing U to A m R for some m, and where ϕ is a pU, gq-tame smooth function.

Then F is a presheaf; its associated sheaf for the semi-algebraic topology is denoted by C 8 or C 8 X and called the sheaf of smooth functions on XpRq. It makes XpRq a locally ringed site.

The natural embedding of XpRq into the scheme X underlies a morphism of locally ringed sites ψ : pXpRq, C 8 X q Ñ pX, O X q; hence ψ ˚Ωp X{R is for every p a well-defined C 8 X -module on XpRq, which we denote by A p or A p X . The sheaf A 0 X is equal to C 8 X , and the

C 8 X -module A 1 X is locally free (of rank n if X is of pure dimension n); for every p, we have A p X " Λ p A 1 X . The sheaf A p
X is called the sheaf of smooth p-forms on XpRq. One has for every p a natural differential d :

A p X Ñ A p`1 X . The sheaf C b R A p X is called the sheaf of complex-valued p-forms on XpRq.
4.2. The case of a variety over C. -By considering Weil restriction we can apply the above to smooth schemes of finite type over the field C. For such a scheme X and every m we get a sheaf A m X of R-vector spaces on XpCq (equipped with the semi-algebraic topology). This sheaf comes with a natural decomposition

C b R A m X " à p`q"m A p,q X ,
where A p,q is the sheaf of pi, jq-forms; i.e., of C-valued p-forms generated over C 8 by forms of the type df 1 ^. . . ^df p ^dg 1 ^. . . ^dg q for some regular functions f 1 , . . . , f p , g 1 , . . . , g q (this is analogous to 3.4.3).

Polar coordinates.

-The usual real functions cos and sin are tame at every point of R, hence θ Þ Ñ cos θ `i sin θ is a well-defined smooth C-valued function on R, which we denote by θ Þ Ñ e iθ . The map θ Þ Ñ e iθ is a surjective homomorphism from R to tz P C ˆ, |z| " 1u. The map θ Þ Ñ e iθ is not injective; its kernel consists of elements of the form 2πn where n is a (possibly) nonstandard integer; i.e., it can be written as the (class of) the limit of a t-bounded sequence of integers. For every a P R, the restriction of θ Þ Ñ e iθ to ra, a `2πq and pa, a `2πs is injective. Every element z of C ˆcan be written re iθ with r P R ą0 and θ P R. The element r is unique (it is equal to |z|), but θ is not -we say that θ is an argument of z.

Making z vary, we get two "functions" r and θ on C ˆ" G m pCq. More precisely, r is an actual function which is tame at every point and takes its values in R ą0 , and dr and d log r " dr r are well-defined differential forms on C ˆ. But θ is only a multivalued function; nevertheless, the differential form dθ is also well-defined. Let us quickly explain how. Let z 0 P C ˆand let a be any element of R such that z 0 has an argument θ 0 in pa ´π, a `πq (this always holds for a " 0 or a " π). Then on a suitable semi-algebraic neighborhood U of z 0 in C ˆwe have a single-valued smooth argument function θ with values in pa ´π, a `πq (and θpz 0 q " θ 0 ). The smooth form dθ is well-defined on U . From the equality z " re iθ we get dz " e iθ dr `rie iθ dθ, and then dθ "

´i r e ´iθ dz ´i dr r .

This last formula does not involve the choice of z 0 , a and θ 0 anymore, and we use it to define dθ on the whole of C

ˆ.

If we see z as an invertible function on C ˆwe shall write dlog |z| instead of dr r and darg z instead of dθ.

From the equality zz " r 2 we get dlog|z| "

1 2 ¨2dr r " 1 2 ˆdz z `dz z ˙.
From the equality z z " e 2iθ we get

darg z " 1 2 ¨2dθ " 1 2i ¨dpe 2iθ q e 2iθ " 1 2i ˆdz z ´dz z ˙.

4.2.2.

The definition of d 7 . -Let X be a smooth scheme of finite type over C. Our purpose is to define an operator d 7 on complex-valued smooth forms on XpCq (which is a non-standard avatar of d c up to a constant).

Let us denote for short by

C 8 X,C (resp. A p X,C ) the sheaf C b R C 8 X (resp. C b R A p X ). The sheaf A 1 X,C of complex-valued smooth 1-forms on XpCq admits a canonical decomposition A 1 X,C " A 1,0 ' A 0,1 . The formula pω, ω 1 q Þ Ñ p´iω, iω 1 q defines an order 4 automorphism J of the C 8 X,C -module A 1 X,C ; we still denote by J the induced automorphism of A p X,C . We remark that A 2n X,C » A n,0 b C 8 X,C A 0,n , so that the operator J on A 2n X,C C is nothing but p´iq n i n Id " Id.
We then define the derivation d 7 : C 8 X,C Ñ A 1 X,C as being equal to pJ ˝dq{2π (this is an avatar of the classical operator d c ); it extends to a compatible system of exterior derivations

d 7 :" 1 2π J ˝d ˝J´1 : A p X,C Ñ A p`1 X,C .
Let us see how it acts on polar coordinates. We have

d 7 plog rq " 1 2π Jpdlog rq " 1 2π J ˆ1 2 ˆdz z `dz z ˙" 1 2π ˆ1 2 ˆ´i dz z `i dz z ˙" 1 2π ˆ1 2i ˆdz z ´dz z ˙" dθ 2π
and

d 7 pθq " 1 2π Jpdθq " 1 2π J ˆ1 2i ˆdz z ´dz z ˙" 1 2π ˆ1 2i ˆ´i dz z ´i dz z ˙" 1 2π ˆ1 2 ˆ´dz z ´dz z ˙" ´dlog r 2π .
Note that since pd 7 q 2 " 0 this implies that d 7 pdlog rq " 0 and d 7 pdθq " 0. More generally if f is an invertible regular function defined on some Zariskiopen subset U of X we can define dlog|f | and darg f . Those are smooth forms on U pCq and we have the following equalities

dlog|f | " 1 2 ˆdf f `df f ḋarg f " 1 2i ˆdf f ´df f ḋ7 plog|f |q " darg f 2π d 7 parg f q " ´dlog|f | 2π .
4.3. -Now we introduce a particular class of smooth functions and forms on smooth schemes over C that will play a crucial role in our work. Roughly speaking, these are the functions and forms that have a natural counterpart in the Berkovich setting -we will make this rather vague formulation more precise later.

Definition. -Let

V be an open subset of pR Y t´8uq m which can be defined by a boolean combination of Q-linear inequalities and let ϕ be a function from V to C. We shall say that ϕ is a reasonably smooth function if there exists: ˛a finite open cover pV i q i of V , where each V i is also defined by Q-linear inequalities;

˛for every i, a subset J i of t1, . . . , mu with Ω i :" p J i pV i q Ă R J i , where p J i is the projection onto the coordinates belonging to J i );

˛for every i, a smooth function ϕ i on Ω i such that ϕ| V i " ϕ i ˝pJ i | V i .
The data pV i , J i , Ω i , ϕ i q i will be called a nice description of ϕ.

If J is some subset of t1, . . . , mu we shall say that ϕ is J-vanishing if there exists an open subset V 1 of V satisfying the following:

˛V 1 can be defined by Q-linear inequalities;

˛ϕ| V 1 " 0;
˛for every x " px 1 , . . . , x m q P V zV 1 and every i P J, the coordinate x i is not equal to p´8q.

Note that ϕ is automatically H-vanishing; indeed, if J " H then the above conditions are fulfilled by V 1 " H.

For instance, a reasonably smooth function ϕ on R Y t´8u is nothing but a smooth function ϕ on R such that there exists λ P R with ϕpxq " λ for x ! 0 (and the value of ϕ at ´8 is then set equal to λ); it is 1-vanishing if and only if λ " 0. Let ϕ be a reasonably smooth function on V that is J-vanishing for some subset J of t1, . . . , mu. Let j P J. Let us show that B j ϕ is pJ Y tjuq-vanishing.

Let pV i , J i , Ω i , ϕ i q i be a nice description of ϕ and let V 1 be an open subset of V that witnesses the fact that ϕ is J-vanishing. Let V 2 be the union of V 1 and of all the open sets V i such that j R J i . We claim that V 2 witnesses the fact that B j ϕ is pJ Y tjuq-vanishing. Indeed, B j ϕ is zero on V 1 since so is ϕ; and if i is such that j R J i then ϕ| V i dose not depend on the j-th coordinate, so B j ϕ is zero on

V i ; thus B j ϕ is zero on V 2 .
Let x P V zV 2 ; choose i such that x " px 1 , . . . , x m q P V i . By definition of V 2 , the set J i contains j. Hence x j ‰ p´8q, whence our claim. 4.6. Smooth functions and smooth forms on a C-scheme: a fundamental example. -Let V be an open subset of pR Y t´8uq m which can be defined by a boolean combination of Q-linear inequalities, and let ϕ be a reasonably smooth function from V to C.

Let W be the semi-algebraic open subset of C m`1 consisting of points pa 1 , . . . , a m , bq such that 0 ă |b| ă 1 and p´log|a i |{ log|b|q i P V . By construction,

Φ : pa 1 , . . . , a m , bq Þ Ñ ϕp´log|a 1 |{ log|b|, . . . , ´log|a m |{ log|b|q is a well-defined C 8 map from W to C.
Let X be a smooth C-scheme of finite type and let U be a semi-algebraic open subset of XpCq. Let g " pg 1 , . . . , g m q be a regular map from a Zariskiopen subset of X containing U to A m C , and assume that pg 1 , . . . , g m , tqpU q Ă W pCq (here the element t of C is viewed as a constant regular function).

4.6.1.

The smooth function Φ on W is pU, pg 1 , . . . , g m , tqq-tame. -To see it, fix a nice description pV i , J i , Ω i , ϕ i q i of ϕ. For every i, denote by W i the pre-image of V i in W under the map pa 1 , . . . , a m , bq Þ Ñ p´log|a j |{ log|b|q, and let U i denote the pre-image of W i in U under the map pg 1 , . . . , g m , tq.

We fix i, and we are going to show that Φ is pU i , pg 1 , . . . , g m , tqq-tame, which will imply our claim. In view of 4.1.1.3 and 4.1.3, it suffices to prove that for every x P U i , the map ϕ i is tame at the point y :" p´log|g j pxq|{ log|t|q jPJ i of Ω i pRq. But the coordinates of y are bounded (as is log r{ log|t| for every r P R ą0 ), so the coordinates of η are bounded for every lifting η of y, which implies that all partial derivatives of ϕ i are bounded, and a fortiori t-bounded, at η; thus ϕ i is tame at y. 4.6.2. -We can thus compose Φ and pg 1 , . . . , g m , tq to get a smooth map on U , which we can safely write x Þ Ñ ϕp´log |g 1 |{ log|t|, . . . , ´log|g m |{ log|t|q; its restriction to every U i can be written x Þ Ñ ϕ i p´log |g j |{ log|t|q jPJ i . 4.6.3. -Let I and J be two subsets of t1, . . . , mu of respective cardinalities p and q such that ϕ is pI Y Jq-vanishing.

Let U 1 be the pre-image of V 1 in U under p´log|g 1 |{ log|t|, . . . , ´log|g m |{ log|t|q, and let U 2 be the subset of U consisting of points at which all the functions g i with i P I Y J are invertible. Let ω be the pp, qq-form on U 2 equal to ˆ´1 

log|t|

Integrals of smooth forms over R and C

5.1. -The purpose of this section is to integrate forms on a smooth scheme defined over the field R. The rough idea is quite natural (and unsurprising): lift the situation over A r , compute the integral over ˚R like in section 3, and then take its class modulo the ideal m r of t-negligible elements.

First of all, we shall assume that we are given two different liftings of a very specific form, and show that the integrals over ˚R to which they give rise coincide modulo m r (Prop. 5.3 below); the proof rests in a crucial way on our former study of cubes with t-negligible volume and uses the notion of "almost equality" over ˚R as well as over R (see Prop. 3.9, 3.11, and Prop. 3.13), together with Hensel's lemma.

Then we shall handle the general case, the point being that a form on a smooth R-scheme always admits locally for the Zariski topology a lifting of the kind dealt with by Prop. 5.3; so this part is somehow tedious but rather formal once Prop. 5.3 is taken for granted.

-If

X is an affine A r -scheme of finite type, a definable subset E of X p ˚Rq will be called t-bounded if it is contained in X pA r q. We remark that E is t-bounded if and only if its topological closure is t-bounded, and if this is the case then the latter is even definably compact. Indeed, by embedding X in an affine space and arguing componentwise we reduce to the case where X " A 1 Ar , for which our statement follows from o-minimality. 5.3. Proposition. -Let Z be a smooth R-scheme of finite type and pure dimension n, and let h " ph 1 , . . . , h n q be an étale map Z Ñ A n R factorizing through an immersion ph, h n`1 q : Z ãÑ A n`1 R . Let X and Y be two smooth A r -schemes of finite type and of pure relative dimension n, equipped with identifications

X R » Z and Y R » Z. Let f " pf 1 , . . . , f n q : X Ñ A n
Ar and g " pg 1 , . . . , g n q : Y Ñ A n Ar be two étale maps, factorizing respectively through a closed immersion pf, f n`1 q : X ãÑ A n`1 Ar and pg, g n`1 q : Y ãÑ A n`1 Ar ; assume that for all i one has

f i | Z " g i | Z " h i .
Let E, resp. F , be a t-bounded semi-algebraic subset of X p ˚Rq, resp. Y p ˚Rq; assume that the subsets E and F of ZpRq almost coincide.

Let ϕ be a smooth function defined on a neighborhood of E in X pA r q, of the form ϕ 0 ˝λ with ϕ 0 a C 8 function and λ a tuple of regular functions on X ; let ψ be a smooth function defined on a neighborhood of F in Y pA r q, of the form ψ 0 ˝µ with ψ 0 a C 8 function and µ a tuple of regular functions on Y .

Assume that there exists a semi-algebraic open subset O of ZpRq containing E and F such that ϕ 0 is pO, λ| Z q-tame, ψ 0 is pO, µ| Z q tame, and the smooth functions ϕ 0 ˝pλ| O q and ψ 0 ˝pµ| O q coincide on some semi-algebraic subset of O almost equal to E and F .

Then ş E ϕdf 1 ^. . . ^df n and ş F ψdg 1 ^. . . ^dg n are t-bounded and coincide up to a t-negligible element.

Proof. -We begin with noting that our tameness assumptions on ϕ 0 , resp. ψ 0 , imply that ϕ, resp. ψ, takes only t-bounded values on E, resp. F ; this in turn implies that it is uniformly t-bounded on E, resp. F . The t-boundedness of the integrals involved in our statement follows immediately.

Throughout the proof, we will use the map f n`1 , resp. g n`1 , resp. h n`1 to see any fiber of f , resp. g, resp. h, as a subset of the affine line over its ground field, and we will repeatedly use the following fact, which is a consequence of the Henselian property of the local ring A r : if w is a point of A n r with image w in R n , then for every z P ZpRq lying above w there exists a unique pre-image ζ of w in X pA r q (resp. Y pA r q) with ζ " z.

The subsets E and F of ZpRq are definable, closed and bounded (because E and F are bounded); so they are definably compact. The sets hpEq and hpF q are definably compact, and they almost coincide since E and F almost coincide. so they have the same n-dimensional locus Θ; and the set hpE △F q is negligible. It follows that there exists an almost partition pΘ i q of Θ (and thus of hpEq as well as of hpF q) by definably compact definable subsets satisfying the following: for every i there exists an integer n i such that the subset Θ 1 i of Θ i consisting of points having exactly n i pre-images in E XF and no pre-image in E △ F is almost equal to Θ i . Now for every i there exists a t-bounded definable subset Ω i of p ˚Rq n such that Ω i is almost equal to Θ i (Corollary 3.14). By Prop. 3.13 the family pΩ i q is an almost partition of f pEq as well as of gpF q. For every i, let Ω 1 i be the subset of Ω i consisting of points having exactly n i pre-images in E under f and exactly n i pre-images in F under g.

-Let us fix i, and prove that Ω 1

i is almost equal to Ω i . It is sufficient (since f and g play exactly the same role) to prove that the set H of points of Ω i having exactly n i pre-images in E under f is almost equal to Ω i .

We argue by contradiction, so we assume that the set H consisting of points x P Ω i such that f ´1pxq X E has cardinality different from n i has t-significant volume. Then its image H is a non-negligible subset of Θ i , which implies that H X Θ 1 i has dimension n. Let us choose a cube (with non-zero volume) C in H X Θ 1 i having the following property: there exist an integer N , a subset I of t1, . . . , N u of cardinality n i and a t-bounded element A ą 1 in ˚R such that each fiber of h over C consists of exactly N points z 1 ă z 2 ă . . . ă z N all contained in r1 ´A, A ´1s and such that z j P E if and only if j P I.

Let us choose a cube D Ă A n r lifting C. Since C Ă H, the intersection D X H is not t-negligible (Lemma 3.12), hence contains a cube D 1 with t-significant volume. Every point of D 1 has exactly N t-bounded pre-images, all contained in r´A, As; let σ 1 ă . . . ă σ N denote the corresponding continous sections of the étale map f above D 1 . If x P D 1 and if j P t1, . . . , N uzI then σ j pxq R E, because σ j pxq R E by the very definition of I. For each j P I, set D 1 j " σ ´1 j pEq. Let ξ P D 1 and let j P I. The point ξ belongs to C, so its j-th pre-image ζ under h belongs to E, so there exists a point z P E such that z " ζ, which implies that f pzq " ξ; thus z " σ j pf pzqq and f pzq belongs to D 1 j ; as a consequence, i . For all x P Ω 1 i and all j between 1 and n i the elements σ j pxq and τ j pxq coincide: both are the j-th pre-image of x in E X F . We have by construction ż

D 1 j " D 1 .
EXf ´1pΩ 1 i q ϕdf 1 ^. . . ^df n " ÿ j ż Ω 1 i pϕ ˝σj qdT 1 ^. . . dT n and ż F Xg ´1pΩ 1 i q ψdg 1 ^. . . ^dg n " ÿ j ż Ω 1 i pψ ˝τj qdT 1 ^. . . dT n .

The difference ż

EXf

´1pΩ 1 i q ϕdf 1 ^. . . ^df n ´żF Xg ´1pΩ 1 i q ψdg 1 ^. . . ^dg n is thus equal to ÿ j ż Ω 1 i pϕ ˝σj ´ψ ˝τj qdT 1 ^. . . ^dT n .
By our assumptions on ψ and ψ the difference |ϕ ˝σj ´ψ ˝τj | is t-negligible for every j at every point of Ω 1 i . Therefore there exists a positive t-negligible element ε such that |ϕ ˝σj ´ψ ˝τj q| ď ε for all j at every point of Ω 1 i . As a consequence ˇˇˇˇż

EXf ´1pΩ 1 i q ϕdf 1 ^. . . ^df n ´żF Xg ´1pΩ 1 i q ψdg 1 ^. . . ^dg n ˇˇˇď n i ε ż Ω 1 i dT 1 ^. . . ^dT n ,
which ends the proof.

Corollary.

-Let X be a smooth A r -scheme of finite type of pure relative dimension n Let f " pf 1 , . . . , f n q : X Ñ A n Ar be an étale map factorizing through an immersion pf, f n`1 q : X ãÑ A n`1 Ar . Let E be a t-bounded semialgebraic subset of X p ˚Rq; we remind the reader that E denotes the image of E under the reduction map (and not its topological closure). The following are equivalent:

(i) The image f pEq is t-negligible. (ii) The image f pEq is of dimension ă n. (iii) The reduction E is of dimension ă n.
(iv) For every smooth function ϕ of the form ϕ 0 ˝λ with ϕ 0 a C 8 function and λ a tuple of regular functions on X such that ϕ 0 is pO, λ| X R q-tame on some semi-alegbraic open subset O of X pRq containing E, the integral

ş E ϕdf 1 ^. . . ^df n is t-negligible. (v) The integral ş E df 1 ^. . . ^df n is t-negligible.
Proof. -Implication (i)ñ(ii) comes from the fact that f pEq " f pEq. Implication (ii)ñ(iii) comes from étaleness of f . Implication (iii)ñ(iv) follows from Proposition 5.3 (apply it with Y " X , g " g, g n`1 " f n`1 and F " H). Implication (iv)ñ(v) is obvious. Assume that (v) holds. For every i, let D i denote the subset of f pEq consisting of points having exaclty i pre-images on E, and let N be such that D i " H for i ą N . We then have ż

E df 1 ^. . . ^df n " N ÿ i"1 ż D i dT 1 ^. . . ^dT n .
As a consequence, ş D i dT 1 ^. . . ^dT n is t-negligible for every i, so

ş f pEq dT 1 . . . ^dT n is t-negligible, whence (i).
5.5. -Let us keep the notation of Corollary 5.4 above. We shall say that E is t-negligible if it satisfies the equivalent conditions (i)-(v) (note that condition (iii) does not involve the functions f i , so the notion of t-negligibility does not depend on the choice of the functions f i ). We shall say that two t-bounded definable subsets of X p ˚Rq almost coincide if their symmetric difference is t-negligible, and that two definable subsets of X pRq almost coincide if their symmetric difference is of dimension ă n.

Lemma.

-Let X be a smooth A r -scheme of finite type of pure relative dimension n. Assume that there exists an étale map f " pf 1 , . . . , f n q : X Ñ A n Ar factorizing through an immersion pf, f n`1 q : X ãÑ A n`1 Ar . Let E and F be two t-bounded definable subsets of X p ˚Rq. Then E and F are almost disjoint if and only if E and F are almost disjoint.

Proof. -If dimpE X F q ă n then dim E X F ă n because E X F Ă E X F ; thus if E and F are almost disjoint, so are E and F . Assume now that E and F are almost disjoint. Set G " f pE Y F q. For every triple pi, j, kq, denote by G i,j,k the subset of points of G having i pre-images in E, j in F and k in E Y F . By Corollary 3.14 there exists for every pi, j, kq a t-bounded definably compact definable subset Γ i,j,k of p ˚Rq n such that Γ i,j,k is almost equal to the definable closure of G i,j,k , hence is also almost equal to G i,j,k . By the same reasoning as in 5.3.1, the subset of points of Γ i,j,k having exactly i pre-images in E, resp. j pre-images in F , resp. k pre-images in E Y F is almost equal to Γ i,j,k ; hence so is the intersection Γ 1 i,j,k of these three subsets. The family pΓ 1 i,j,k q is an almost partition of G. Let pi, j, kq be a triple with k ă i `j. Since E X F has dimension ă n, the set G i,j,k is negligible; as a consequence, Γ i,j,k and Γ 1 i,j,k are t-negligible. This implies that f pE X F q is t-negligible, whence the t-negligibility of E X F itself.

Proposition.

-Let X be as in Lemma 5.6 above and let E and F be two t-bounded definable subsets of X p ˚Rq.

(1) The set E is almost equal to F if and only if E is almost equal to F .

(2) The set E X F is almost equal to E X F .

Proof. -The proof is the same as that of Proposition 3.13, except that one uses Lemma 5.6 instead of Lemma 3.12.

Corollary.

-Let X be as in Lemma 5.6 and let K be a definable definably compact subset of X pRq. There exists a definable, definably compact and t-bounded subset E of X p ˚Rq such that E almost coincides with K.

Proof. -By writing K as the union of its intersections with the Zariskiconnected components of X R , we can assume that it lies on such a component X. By boundedness of K and the henselian property of A r (which ensures that any R-point of X can be lifted to an A r -point), we can choose a t-bounded, definably compact definable subset F of X p ˚Rq such that K Ă F Ă XpRq. By Theorem 2.7.1 of [START_REF] Bochnak | Roy -Géométrie algébrique réelle[END_REF], we can assume that there exists finitely many regular functions f 1 , . . . , f m on X R such that K is the intersection of F with the set of points x such that f j pxq ě 0 for all j. By Prop. 5.7 above me may assume that m " 1, and write f instead of f 1 . If f is constant on X the set K is either empty or the whole of F and the statement is obvious. If f is non-constant on X, let g be a regular function on X that lifts f . Let E be the intersection of F and the non-negative locus of g; it suffices to prove that E is almost equal to K. By definition, E Ă K. Now let x be a point on K at which f is positive, and let ξ be any pre-image of x on F . Since f pxq ą 0 we have gpξq ą 0, hence ξ P E and x P E. Thus the difference KzE is contained in the zero-locus of f in XpRq which is at most pn ´1q-dimensional since f | X is non-constant. 5.9. Definition. -Let X be a smooth R-scheme of finite type and of pure dimension n. We shall say for short that X is liftable if there exists a smooth affine A r -scheme X , an isomorphism X R » X, and n `1 regular functions f 1 , . . . , f n`1 on X such that pf 1 , . . . , f n`1 q defines an immersion X ãÑ A n`1 Ar and pf 1 , . . . , f n q : X Ñ A n Ar is étale.

Integral of a smooth n-form.

-Let X be a smooth R-scheme of finite type and of pure dimension n, let K be a definable subset of XpRq with definably compact definable closure, and let ω be a smooth n-form on a semialgebraic open neighborhood O of K in XpRq. The purpose of what follows is to define ş K ω.

5.10.1.

-We first assume that X is liftable and ω is of the form ϕpu 1 , . . . , u m qω 0 almost everywhere on K, with u i regular functions, ϕ an pO, pu 1 , . . . , u m qq-tame smooth function, and where ω 0 is an algebraic n-form. Choose X and f 1 , . . . , f n`1 as in Definition 5.9. The sheaf Ω X{R is then free with basis pdf i | X q 1ďiďn ; therefore up to multiplying ϕ with a regular function we might assume that ω 0 " pdf 1 ^. . . ^df n q| X . Choose a t-bounded definable subset E of X p ˚Rq such that E is almost equal to the definable closure of K (Corollary 5.8) and for every i, choose a regular function v i on X lifting u i .

By Proposition 5.3, the integral ş E ϕpv 1 , . . . , v m qdf 1 ^. . . df n does not depend on our various choices up to a t-negligible element. We can thus set

ż K ω " ż E ϕpv 1 , . . . , v m qdf 1 ^. . . df n ;
this is an element of R. Note that if K 1 is any definable subset almost equal to K then ş K 1 ω " ş K ω (since the same E can be used for both computations). The assignment K Þ Ñ ş K ω is finitely additive. Indeed, if K is a finite union Ť jPJ K j of definable subsets, we can choose for every j an almost lifting E j of K j ; now for every subset I of J the sets Ş jPI E j and Ş jPI K j almost coincide by Proposition 5.7, and additivity follows from additivity of integrals over the field ˚R.

5.10.2.

-We still assume that X is liftable, but we no longer assume that ω is of the form ϕpu 1 , . . . , u m qω 0 on K. By the very definition of an n-form there exist finitely many definably open subsets U 1 , . . . , U r of XpRq that cover K and such that ω| U i has the required form. By Lemma 3.2 we can write the definable closure of K as a finite union Ť jPJ K j with each K j definably compact and contained in U j . By additivity ř H‰IĂJ p´1q |I|`1 ş Ş jPI K j ω does not depend on the choice of the sets U j and K j , and we can use this formula as a definition for ş K ω. The assignment K Þ Ñ ş K ω remains additive in this more general setting, and ş K ω only depends on the class of K modulo almost equality.

5.10.3.

-We still assume that X is liftable. Let s be an algebraic function on X, set X 1 " Dpsq (the invertibility locus of s) and assume that the definable closure of K is contained in X 1 pRq. We then have a priori two different definitions for ş K ω, the one using X and the other one using the principal open subset X 1 , which is also (obviously) liftable. Let us show that both integrals coincide. By replacing K by its closure (to which it is almost equal) we can assume that it is definably compact.

By cutting K into finitely many sufficiently small pieces (Lemma 3.2) and using additivity, we can assume that ω is of the form ϕpu 1 , . . . , u m qω 0 almost everywhere on K, with u i regular functions on X, ϕ an pO, pu 1 , . . . , u m qq-tame smooth function, and ω 0 a section of Ω n X{R (this can be achieved since Ω X{R is free because X is liftable). Lift every u i to a regular function v i on X , and lift ω 0 to a relative n-form ω 1 on X .

Let us choose data pX , f 1 , . . . , f n`1 q that witness the liftability of X. Lift every u i to a regular function v i on X , lift ω 0 to a relative n-form ω 1 on X , and lift s to a regular function σ on X . Set X 1 " Dpσq. Then pX 1 , f 1 , . . . , f n , f n`1 q witnesses the liftability of X 1 . Now choose a t-bounded definable subset of X 1 p ˚Rq that almost lifts K. Then it is definable, t-bounded and an almost lifting of K as a subset of X p ˚Rq as well. Therefore the X and the X 1 version of ş K ω both are equal to the class of ş E ϕpv 1 , . . . , v m qω 1 modulo the t-negligible elements.

5.10.4.

-The scheme X is no longer assumed to be liftable, but we assume that there exist two liftable affine open subsets X 1 and X 2 of X such that the definable closure of K is contained in X 1 pRq X X 2 pRq. We then have a priori two different definitions for ş K ω, the one using X 1 and the other one using X 2 . We want to prove that they coincide. By replacing K by its closure (to which it is almost equal) we can assume that it is definably compact.

Let us first note the following. Let x be a point of X 1 X X 2 . Choose an affine neighborhhood Y of x in X 1 X X 2 equal to Dpsq as a subset of X 1 , for some regular function s on X 1 . Now choose an affine neighborhood Z of x in Y equal to Dpwq as a subset of X 2 , for some regular function w on X 2 . The restriction of w to Y is equal to a{s ℓ for some ℓ ě 0 and some regular function a on X 1 ; as a consequence Z " Dpasq as a subset of X 2 .

Hence we can cover X 1 X X 2 by finitely many open subschemes Y 1 , . . . , Y r , each of which is principal in both X 1 and X 2 . Now write K " Ť K i with every K i definable, definably compact and contained in Y i (Lemma 3.2). For every non-empty subset I of t1, . . . , ru it follows from 5.10.3 that ş Ş iPI K i ω does not depend whether one is working with X 1 or or X 2 (because it can be computed working with Y j where j is any element of I). By additivity it follows that ş K ω also does not depend whether one is working with X 1 or or X 2 . 5.10.5. -Now let us explain how to define ş K ω in general. Let K 1 be the closure of K, which is definably compact. We choose a finite cover pX i q iPI of X by liftable open subschemes (which is possible since X is smooth). We then write K 1 as a finite union Ť K i where every K i is a definably compact semi-algebraic subset of X i pRq (Lemma 3.2).

We then set

ż K ω " ÿ H‰JĂI p´1q |J|`1 ż Ş iPJ K i ω,
which makes sense because, as it follows straightforwardly from the above, it does not depend on pX i q nor on pK i q.

5.11. -Let X be a smooth R-scheme of finite type of pure dimension n. It follows from our construction that

pK, ωq Þ Ñ ż K ω
(where K is a semi-algebraic subset of XpRq with definably compact closure and ω is an n-form defined on a definable neighborhood of K) is R-linear in ω, additive in K, and that it depends on K only up to almost equality. We can extend this definition to forms with coefficients in a reasonable class of functions (like piecewise smooth) by requiring everywhere in the above that ϕ belongs to the involved class (instead of being smooth) and satisfies some tameness condition. For instance, ş K |ω| makes sense (and is non-negative), see 3.4.4. It follows from the definition that ş K ω only depends on ω| K ; in particular, it is zero if ω vanishes almost everywhere on K. We can thus extend the definition of ş K ω when we only assume that there exists a definable subset K 1 of K with definably compact closure such that ω vanishes on KzK 1 .

And of course, we can also define by linearity the integrals of complex-valued forms (4.1.4). 5.12. The complex case. -We now consider a smooth C-scheme of finite type X of pure dimension n, and a complex-valued pn, nq-form ω with coefficients belonging to a reasonable class of functions defined in a semi-algebraic open neighborhood of a semi-algebraic subset K of XpCq. Assume that there exists a semi-algebraic subset K 1 of K with definably compact closure such that ω vanishes on KzK 1 . Then ş K ω is well defined. Its computation requires (amongst other things) to lift locally R C{R X to a smooth A r -scheme and ω to a p2nq-form on this scheme, which can be achieved by lifting locally X to a smooth A-scheme and ω to an pn, nq-form on this scheme.

The archimedean and non-archimedean complexes of forms

6.1. -We denote by λ the element ´log|t| of R ą0 , and by Log the normalized logarithm function a Þ Ñ log a{λ from R ą0 to R.

We recall that C is equipped with a non-archimedean absolute value |¨| 5 , which sends a non-zero element z to τ stdp log|z| log|t| q where τ is an element of p0, 1q which has been fixed once and for all, and where stdp¨q denotes the standard part (see 2.7). We set λ 5 " ´log τ " ´log|t| 5 P R ą0 . and we denote by Log 5 the normalized logarithm function a Þ Ñ log a{λ 5 from R ą0 to R.

If a is any element of C ˆ, it follows from the definitions that Log 5 |a| 5 " stdpLog|a|q.

Analytification of C-schemes.

-The field C is a complete nonarchimedean field, so Berkovich geometry makes sense over it.

Let X be a C-scheme of finite type, and let X an denote its Berkovich analytification. Let x be a point of X an . In the proof of our main theorem, we shall use the fact that x has a basis of open, resp. affinoid, neighborhoods V in X an satisfying the following: there exists an affine open subscheme Ω of X such that V is an open subset, resp. a Weierstraß domain, of Ω an that admits a description by a system of inequalites of the form

|ϕ 1 | 5 ă R 1 , . . . , |ϕ n | 5 ă R n , resp. |ϕ 1 | 5 ď R 1 , . . . , |ϕ n | 5 ď R n
where the functions ϕ i belong to OpΩq, and with R i positive real numbers.

Let us prove it. We first chose an open affine subscheme U of X with x P U an , a family pf 1 , . . . , f n q of regular functions on U that generate OpU q over C, and let R be a positive real number such that |f i pxq| 5 ă R for all i; let W be the Weierstraß domain of U an defined by the inequalities |f i | 5 ď R. Now it follows from the general theory of Berkovich spaces that x has a basis of open, resp. affinoid, neighborhoods described by a system of inequalities of the form

|f 1 | 5 ă R, . . . , |f n | 5 ă R, |g 1 | 5 ă r 1 , . . . , |g m | 5 ă r m , |h 1 | 5 ą s 1 , . . . , |h ℓ | 5 ą s ℓ , resp. |f 1 | 5 ď R, . . . , |f n | 5 ď R, |g 1 | 5 ď r 1 , . . . , |g m | 5 ď r m , |h 1 | 5 ě s 1 , . . . , |h ℓ | 5 ě s ℓ
with g i and h i analytic functions on W , and s i and r i positive real numbers. But OpU q is dense in OpW q, so we can assume by approximation that the functions g i and h i belong to OpU q. Then the domain described by the above system of inequalities can also be described as the locus of validity of

|f 1 | 5 ă R, . . . , |f n | 5 ă R, |g 1 | 5 ă r 1 , . . . , |g m | 5 ă r m , |h ´1 1 | 5 ă s ´1 1 , . . . , |h ´1 ℓ | 5 ă s ´1 ℓ , resp. |f 1 | 5 ď R, . . . , |f n | 5 ď R, |g 1 | 5 ď r 1 , . . . , |g m | 5 ď r m , |h ´1 1 | 5 ď s ´1 1 , . . . , |h ´1 ℓ | 5 ď s ´1 ℓ
on Dph 1 h 2 . . . h ℓ q an , whence our claim.

Two complexes of differential forms. -

We fix a smooth C-scheme of finite type X of pure dimension n.

6.3.1.

-Let us begin with some notation. Let U be an open subscheme of X and let f " pf 1 , . . . , f m q be a family of regular functions on U . Let I and J be two subsets of t1, . . . , mu. We shall denote by S I,J,pf i q the set of pairs pV, ϕq where: We identify two pairs pV, ϕq and pV 1 , ϕ 1 q if ϕ and ϕ 1 agree on V X V 1 ; therefore we shall most of the time omit to mention V and elements of S I,J,pf i q will be called pI Y Jqq-vanishing reasonably smooth functions.

We denote by S I,J,pf i q 5

the set of pairs pV, ϕq satisfying condition pa 5 q V is an open subset of pR Y t´8uq m , defined by Q-linear inequalities and containing pLog 5 |f 1 | 5 , . . . , Log 5 |f m | 5 qpU an q and condition (b) above. Here also, we identify two pairs pV, ϕq and pV 1 , ϕ 1 q if ϕ and ϕ 1 agree on V X V 1 and elements of S I,J,pf i q 5

will be called pI, Jq 5vanishing smooth functions.

Note that S I,J,pf i q Ă S I,J,pf i q 5

. 6.3.2. The non-standard archimedean complex. -Let U be a Zariski open subset of XpCq. Let us denote by A p,q presh pU q the set of those pp `qq-smooth forms ω on U pCq for which there exist: ' a finite family pf 1 , . . . , f m q of regular functions on U ; ' for every pair pI, Jq with I and J two subsets of t1, . . . , mu of respective cardinality p and q, an pI Y Jq-vanishing reasonably smooth function ϕ I,J P S I,J,pf i q , such that if j 1 ă j 2 ă . . . ă j q are the elements of J.

ω " ÿ I,J ϕ I,J pLog|f 1 |, . . . ,
We denote by A p,q the sheaf on X Zar associated to the presheaf A p,q presh , and by A ',' the direct sum À p,q A p,q . We set for short A 0 " A 0,0 . By construction, A 0 pXq is the subsheaf (of C-algebras) of the push-forward of C b R C 8 X to X Zar , whose sections are the smooth functions that are locally on X Zar of the form ϕpLog|f 1 |, . . . , Log|f m |q for some finite family pf 1 , . . . , f m q of regular functions and some reasonably smooth function ϕ on a suitable open subset of pR Y t´8uq m . The sheaf A ',' has a natural structure of bi-graded A 0 -algebra; it follows from 4.5.3 that the differentials d and d 7 induce two differentials on A ',' , which are still denoted by d and d 7 . The differential d is of bidegree p1, 0q and maps a form

ϕ pLog|f 1 |, . . . , Log|f m |q dLog|f I | ^dArg f J to ÿ 1ďiďm Bϕ Bx i pLog|f 1 |, . . . , Log|f m |q dLog|f i | ^dLog|f I | ^dArg f J .
The differential d 7 is of bidegree p0, 1q and maps a form

ϕ pLog|f 1 |, . . . , Log|f m |q dLog|f I | ^dArg f J to ÿ 1ďiďm Bϕ Bx i pLog|f 1 |, . . . , Log|f m |q darg 2π f i ^dLog|f I | ^dArg f J .
The operator J also acts on A ',' ; it maps a form

ϕ pLog|f 1 |, . . . , Log|f m |q dLog|f I | ^dArg f J to p´1q q p2πq p´q ϕ pLog|f 1 |, . . . , Log|f m |q dArg f I ^dLog|f J |
and acts trivially on A n,n .

The non-archimedean complex.

-Let U be a Zariski-open subset of X. Let us denote by B p,q presh pU q the set of those pp, qq-smooth forms ω on U an in the sense of [CLD] for which there exist: ' a finite family pf 1 , . . . , f m q of regular functions on U ; ' for every pair pI, Jq with I and J two subsets of t1, . . . , mu of respective cardinality p and q, an pI, Jq 5 -vanishing reasonably smooth function ϕ I,J P S I,J,pf i q 5

, such that

ω " ÿ I,J ϕ I,J pLog 5 |f 1 | 5 , . . . , Log 5 |f m | 5 q d 1 Log 5 |f I | 5 ^d2 log|f J | 5 where d 1 Log 5 |f I | 5 stands for d 1 Log 5 |f i 1 | 5 ^. . .^d 1 Log 5 |f ip | 5 if i 1 ă i 2 ă . . . ă i p
are the elements of I, and similarly for d 2 log|f J | 5 . We denote by B p,q the sheaf on X Zar associated to the presheaf B p,q presh . We denote by B ',' the direct sum À p,q B p,q . We set for short B 0 " B 0,0 . By construction, B 0 is the subsheaf (of C-algebras) of the push-forward of C b R A 0 X an to X Zar , whose sections are the smooth functions that are locally on X Zar of the form ϕpLog 5 |f 1 | 5 , . . . , Log 5 |f m | 5 q for some finite family pf 1 , . . . , f m q of regular functions and some reasonably smooth function ϕ on a suitable open subset of pR Y t´8uq m .

The sheaf B ',' is a bi-graded B 0 -algebra which is stable under d 1 and d 2 .

6.4. Remark. -Every pp, qq-form in the sense of [CLD] can be written locally for the Berkovich topology as a sum

ÿ ψ I,J plog|g i | 5 , . . . , log|g m | 5 qd 1 log|g I | 5 ^d2 log|g J | 5
where the ψ I,J are smooth and with g i invertible analytic functions. By the very definition of an pI Y Jq-vanishing reasonably smooth function, a section ω " ÿ

I,J ϕ I,J pLog 5 |f 1 | 5 , . . . , Log 5 |f m | 5 q d 1 Log 5 |f I | 5 ^d2 log|f J | 5
of B p,q presh fulfills this condition, because locally for the Berkovich topology, every non-zero term of the sum can be rewritten by involving only the functions f i which are invertible. But the reader should be aware that ω can not in general be written locally for the Zariski topology as a sum

ÿ ψ I,J plog|g i | 5 , . . . , log|g m | 5 qd 1 log|g I | 5 ^d2 log|g J | 5
with g i invertible algebraic functions.

(Consider for example a non-zero smooth function ϕ on R that vanishes on p´8, Aq for some A, and the section ϕpLog 5 |T | 5 qd 1 Log 5 |T | 5 ^d2 log|T | 5 of B 1,1 on A 1,an C .)

Pseudo-polyhedra

The purpose of this section is to describe the domains on which we shall integrate our forms, in both the archimedean and non-archimedean settings. These domains will be the preimages under functions of the form Log|f | (resp. Log 5 |f | 5 ) of some specific subsets of pR Y t´8uq n (resp. pR Y t´8uq n ) that we call pseudo-polyhedra.

Definition.

-Let S be a non-trivial divisible ordered abelian group with additive notation (in practice we shall consider only cases where S underlies a real-closed field). A subset of pS Y t´8uq m is called a pseudo-polyhedron if it is a finite union of sets of the form # px 1 , x 2 q P ź iPI r´8, b i s ˆź iPJ ra i , b i s s.t. ϕ 1 px 2 q ď 0, . . . , ϕ r px 2 q ď 0 + where ˛I and J are subsets of t1, . . . , mu that partition it;

˛for 1 ď i ď m, a i and b i are elements of S;

˛for 1 ď j ď r, ϕ j is an affine form whose linear part has coefficients in Q.

A subset of S m is a polyhedron if this is a pseudo-polyhedron of pSYt´8uq m . This amounts to requiring that it be a finite union of sets of the form

$ & % x P ź iPt1,...,nu ra i , b i s s.t. ϕ 1 pxq ď 0, . . . , ϕ r pxq ď 0 , .
-, with a i , b i and ϕ i as above.

7.1.1. -Let X be an analytic space over C and let f 1 , . . . , f m be analytic functions on X. Let P be a pseudo-polyhedron of pR Y t´8uq m . The set

pLog 5 |f 1 | 5 , . . . , Log 5 |f m | 5 q ´1pP q
is a closed analytic domain of X.

7.1.2. -Let P be a pseudo-polyhedron of pR Y t´8uq m . The subset |t| ´P :" t|t| ´x, x P P u (with the convention that |t| 8 " 0) is an rcf-definable subset of R m ě0 ; indeed, it is defined by monomial inequalities. One sees easily that if P depends doag-definably on some set of parameters a 1 , . . . , a ℓ P R then |t| ´P depends rcf-definably on |t| a 1 , . . . , |t| a ℓ .

7.1.3.

-In practice, we shall encounter pseudo-polyhedra over the real closed fields R and R.

7.1.3.1.

-Let P Ă pR Y t´8uq m be a pseudo-polyhedron over R. It gives rise by base-change to a pseudo-polyhedron over P R Ă pR Y t´8uq m over the field R which has the following properties: it can be written as a finite union of subsets of pR Y t´8uq m admitting a description like in definition 7.1 with the additional requirement that all the elements a i and b i are bounded; we shall say for short that such a pseudo-polyhedron is bounded.

7.1.3.2.

-Let Π be a bounded pseudo-polyhedron in pR Y t´8uq m . For every x in R Y t´8u which is either negative unbounded or equal to ´8 we set stdpxq " ´8; with this convention, the definition stdpΠq :" tpstdpx 1 q, . . . , stdpx m qqu px 1 ,...,xmqPΠ makes sense, and stdpΠq is a pseudo-polyhedron of pR Y t´8uq m .

To see this, we can assume that Π is of the form # So it suffices to prove that stdpΘq is a polyhedron. Otherwise said, we can assume that I " H and J " t1, . . . , mu and it suffices to show that stdpΠq is a polyhedron. In fact we shall prove more generally that stdpΠq is a polyhedron when Π is any bounded doag-definable subset of R m . We use induction on m; there is nothing to prove if m " 0. Assume now that m ą 0 and that the result holds for integers ă m. By cell decomposition for an o-minimal theory, we can assume that Π is an open cell. So there exists an open doag-definable subset ∆ of R m´1 and two doag-definable functions λ and µ from ∆ to R such that λ ă µ on ∆ and Π is equal to the set of those m-uples px 1 , . . . , x m q P R m such that px 1 , . . . , x m´1 q P ∆ and λpx 1 , . . . , x m´1 q ă x m ă µpx 1 , . . . , x m´1 qu.

px 1 , x 2 q P ź iPI r´8, b i s ˆź iPJ ra i , b i s s.t. ϕ 1 px 2 q ď 0, . . . ,
Up to refining the original cell decomposition, we can even assume that λ and µ are affine with their linear parts having coefficients in Q.

Since the cell Π is bounded, its projection ∆ onto R m´1 is bounded as well, and the constant terms of both λ and µ are bounded too, thus the standard parts stdpλq and stdpµq make sense as affine functions from R m´1 Ñ R, with linear parts having coefficients in Q. Now a direct computation shows that stdpΠq is equal to the set of those m-uples px 1 , . . . , x m q P R m such that px 1 , . . . , x m´1 q P stdp∆q and stdpλqpx 1 , . . . , x m´1 q ď x m ď stdpµqpx 1 , . . . , x m´1 qu.

Since stdp∆q is a polyhedron of R m´1 by our induction hypothesis, we are done.

-Let U be a

Zariski-open subset of X, let g 1 , . . . , g ℓ be regular functions on U and let P be a pseudo-polyhedron of pR Y t´8uq ℓ . Let Q be the closed analytic domain pLog 5 |g| 5 q ´1pP q of U an (with g " pg 1 , . . . , g ℓ q). A point x of U pCq belongs to Q if and only if Log 5 |gpxq| 5 P P , which is equivalent to where we denote by n the set of negligible elements of R.

Notation.

-If Π is a pseudo-polyhedron of pR Y t´8uq ℓ for some ℓ and if a is a non-negative element of R we shall denote by Π a the pseudopolyhedron Π `r´a, as ℓ . If Π and a are bounded then Π a is bounded as well.

Lemma.

-Let X be a C-scheme of finite type, let g : X Ñ A ℓ C be a morphism, and let Π be a bounded pseudo-polyhedron of pR Y t´8uq ℓ . The following are equivalent:

(i) the analytic domain pLog 5 |g| 5 q ´1pstdpΠqq of X an is compact;

(ii) there exists a positive standard number ε such that the semi-algebraic subset pLog|g|q ´1pΠ ε q of XpCq is definably compact.

Proof. -Choose a finite affine open cover pX i q of X and for each i, a finite family pf ij q of regular functions on X i that generate O X pX i q as a C-algebra.

For every i and every positive bounded element M of R (resp. every positive real number M ), denote by K M i (resp. K M i5 ) the subset of X i pCq consisting of points at which Log|f ij | ď M for all j (resp. the subset of X an i consisting of points at which Log 5 |f ij | 5 ď M for all j). For every positive real number M and every positive real number ε we have the inclusions

K M i Ă K M i5 pCq Ă K M `ε i . Assume that (i) holds. As pLog 5 |g| 5 q ´1pstdpΠqq is compact, it is contained in Ť i K M i5
for some positive real number M . Let a be a positive infinitesimal element of R. The subset pLog|g|q ´1pΠ a q of XpCq is contained in pLog 5 |g| 5 q ´1pstdpΠ a qq " pLog 5 |g| 5 q ´1pstdpΠqq; it is thus contained in the definably compact semi-algebraic subset

Ť i K M `1 i . Let I be the set of positive elements a of R such that pLog|g|q ´1pΠ a q Ă Ť i K M `1 i
. This is a definable subset of R ą0 which contains by the above every positive infinitesimal element; thus it contains some standard positive element ε. The semi-algebraic subset pLog|g|q ´1pΠ ε q of XpCq is closed by its very definition, and is contained in the definably compact semi-algebraic subset

Ť i K M `1 i
by the choice of ε, so it is definably compact; thus (ii) holds. Conversely, assume that (ii) holds. Then there exists a positive real number M such that pLog|g|q ´1pΠ ε q Ă

Ť i K M i .
The set of of C-points of pLog 5 |g| 5 q ´1pΠq is contained in pLog|g|q ´1pΠ ε q, hence in

Ť i K M i . The latter is itself contained in the set of C-points of Ť i K M i5 ; thus pLog 5 |g| 5 q ´1pΠq Ă Ť i K M i5
, which implies that pLog 5 |g| 5 q ´1pΠq is compact.

7.5. Notation. -Let X and g be as in Lemma 7.4 above. The set of bounded pseudo-polyhedra Π of pR Y t´8uq ℓ such that the equivalent assertions (i) and (ii) of Lemma 7.4 hold will be denoted by Θpgq. For any Π P Θpgq, we will denote by Λpg, Πq the set of positive real numbers ε as in (ii).

7.6. Remark. -Let X and g be as in Lemma 7.4 above, and let Π P Θpgq. The set Λpg, Πq is non-empty by definition; choose ε therein. If η is any real number in p0, εq then it is clear that Π η P Θpgq and that pε ´ηq P Λpg, Π η q.

8. The main theorem: statement and consequences 8.1. Theorem. -Let X be a smooth scheme over C of pure dimension n.

There exists a unique morphism of sheaves of bi-graded differential R-algebras on

X Zar A ',' ÝÑ B ',' ω Þ ÝÑ ω 5
such that for every Zariski-open subset U of X, every finite family pf 1 , . . . , f m q of regular functions on U , every pair pI, Jq of subsets of t1, . . . , mu and every pI Y Jq-vanishing reasonably smooth function ϕ in S I,J,pf i q , one has

rϕ pLog|f 1 |, . . . , Log|f m |q dLog|f I | ^dArg f J s 5 " ϕ pLog 5 |f 1 | 5 , . . . , Log 5 |f m | 5 q d 1 Log 5 |f I | 5 ^d2 log|f J | 5 .
Moreover, this morphism enjoys the following properties; let U be a Zariskiopen subset of X and let ω P A p,q pU q.

(1) Assume that the support of ω is contained in some definably compact semi-algebraic subset of U pCq. Then ω 5 is compactly supported. We assume from now on that p " q " n.

(2) Let g : U Ñ A ℓ C be a morphism and let Π be an element of Θpgq. The integral ş pLog|g|q ´1pΠq |ω| is bounded, which implies that ş pLog|g|q ´1pΠq ω is bounded too.

(3) Let pV i q be a finite family of Zariski-open subsets of U ; for every i, let g i be a morphism from V i Ñ A ℓ i C and let Π i be an element of Θpg i q. Then std ˜żŤ

i pLog|g i |q ´1pΠ i,ε q ω ¸ÝÑ ż Ť i pLog 5 |g i | 5 q ´1pstdpΠ i qq ω 5 (a) and std ˜żŤ i pLog|g i |q ´1pΠ i,ε q |ω| ¸ÝÑ ż Ť i pLog 5 |g i | 5 q ´1pstdpΠ i qq |ω 5 | 5 (b)
when the positive standard number ε belongs to Ş i Λpg i , Π i q and tends to 0.

Moreover there exists a positive negligible element α P R such that

std ˜żŤ i pLog|g i |q ´1pΠ i,ε qz Ť i pLog|g i |q ´1pΠ i,α q |ω| ¸ÝÑ 0 (c)
when the positive standard number ε belongs to Ş i Λpg i , Π i q and tends to 0.

(4) Assume that the support of ω is contained in a definably compact semialgebraic subset of U pCq, which implies by (1) that ω 5 is compactly supported. Then 

Ş i Λpg i , Π i q a semi-algebraic subset D ε of U pCq satisfying ď i pLog|g i |q ´1 pΠ i,α q Ă D ε Ă ď i pLog|g i |q ´1 pΠ i,ε q. Then std ˆżDε ω ˙ÝÑ ż Ť i pLog 5 |g i | 5 q ´1pstdpΠ i qq ω 5 (f) and std ˆżDε |ω| ˙ÝÑ ż Ť i pLog 5 |g i | 5 q ´1pstdpΠ i qq |ω 5 | 5 (g)
when the positive standard number ε tends to 0.

8.3.

A statement about ordinary limits of complex integrals. -Our purpose is now to state a corollary of our main theorem in a more classical language, namely, in terms of limits of usual complex integrals, without using any ultrafilter nor any non-standard model of R or C.

Let us recall that M denotes the field of meromorphic functions around the origin of C. Let X be a smooth M -scheme of finite type and of pure dimension n, and let pU i q be a finite Zariski-open cover of X. For every i, let pf ij q 1ďjďn i be a finite family of regular functions on U i ; for every subset I and J of t1, . . . , n j u of cardinality n, let ϕ i,I,J be a reasonably smooth and pI Y Jqvanishing complex-valued function defined on some suitable open subset of pR Y t´8uq n i .

Since M is the field of meromorphic function around the origin, X gives rise to a complex analytic space, relatively algebraic, over a small enough punctured disc D ˚, which we still denote by X. Up to shrinking D ˚we can assume that every U i is a relative Zariski-open subset of the analytic space X, and that the functions f ij are relatively algebraic holomorphic functions on U i .

Assume that there exists a relative pn, nq-form ω on X whose support is proper over D ˚and such that

ω| U i " ˆ´1 log|t| ˙n ÿ I,J ϕ i,I,J ˆ´log|f i1 | log|t| , . . . , ´log|f in i | log|t| ˙d log|f i,I | ^dArg f i,J
for every i (otherwise said, the forms locally defined by the above formulas coincide on overlaps, and the global form obtained by glueing them is relatively compactly supported). The t-adic completion of M is the field Cpptqq of Laurent series. Fix τ P p0, 1q and endow Cpptqq with the t-adic absolute value |¨| 5 that maps t to τ ; let us denote by X an the Berkovich analytification of X ˆM Cpptqq.

Then the existence of our morphism of sheaves of bi-graded differential Ralgebras implies the existence of a compactly supported pn, nq-form ω 5 on X an (in the sense of [CLD]) such that

ω 5 | U an i " ˆ´1 log τ ˙n ÿ I,J ϕ i,I,J ˆ´log|f i1 | 5 log τ , . . . , ´log|f in i | 5 log τ ˙d1 log|f i,I | 5 ^d2 log|f i,J | 5
for every i. Now assertion (4) has the following consequence.

Theorem. -We have

lim tÑ0 ż Xt ω| Xt " ż X an ω 5 .
Proof. -Let pz n q be a zero-sequence of non-zero complex numbers such that ş

Xz n ω| Xz n has a limit in R Y t´8, `8u when n tends to infinity, and let U be any ultrafilter on C containing all cofinite subsets of tz n u n . Then applying our general construction with this specific U (we recall that M has a natural embedding into our field C of non-standard complex numbers) we see that ż

Xz n ω| Xz n ÝÑ ż X an ω 5
when n tends to infinity. As this holds for an arbitrary sequence pz n q as above, we are done.

Proof of the main theorem

9.1. Compatibility with integration. -We shall in some sense establish the good behavior with respect to integration before showing the existence of the morphism ω Þ Ñ ω 5 . Let us make this more precise. 9.1.1. Our setting. -We assume that ω can be written ÿ

I,J ϕ I,J pLog|f 1 |, . . . , Log|f m |q dLog|f I | ^dArg f J
where I and J run through the set of subsets of t1, . . . , mu of cardinality n, where pf i q 1ďiďm is a family of regular invertible functions on U , and where ϕ I,J is an pI Y Jq-vanishing reasonably smooth function in S I,J,pf i q for each pI, Jq. We denote by ω 5 the form ÿ

I,J ϕ I,J pLog 5 |f 1 | 5 . . . , Log 5 |f m | 5 q d 1 Log 5 |f I | 5 ^d2 log|f J | 5
(we insist that our morphism has not yet been defined, so ω 5 is currently just a notation for the form above). We also assume that the open covering pV i q is the trivial covering consisting of one open subset V 1 " U and we write g instead of g 1 , Π instead of Π 1 and ℓ instead of ℓ 1 .

The whole subsection 9.1 will be devoted to the proof of (2) and (3) in this setting. 9.1.2. Proof of (2). -We shall in fact prove that ş K |ω| is bounded for any t-bounded definably compact semi-algebraic subset K of U pCq; so, let us fix such a subset K. Since K is definably compact and since Log|f i | only takes bounded values on the invertible locus of f i , there exists a positive standard real number A such that Log|f i | ď A on K for all i; thus there exists a positive standard real number N such that |ϕ I,J pLog|f 1 |, . . . , Log|f m |q| ď N on K for all pI, Jq.

Fix I and J. By the very definition of pI Y Jq-vanishing reasonably smooth functions, there exist two open subsets V 1 I,J Ă V I,J of pR Y t´8uq m , defined by Q-linear inequalities, and such that the following holds: ˛ϕI,J is defined on V I,J and pLog|f 1 |, . . . , Log|f m |qpU pCqq Ă V I,J pRq; ˛ϕI,J | V 1 I,J " 0, and for every i P I Y J, the i-th coordinate function does not take the value ´8 on V I,J zV 1 I,J . Let K I,J be the pre-image of V I,J zV 1 I,J in K under pLog|f 1 |, . . . , Log|f m |q. This is a definably compact semi-algebraic subset of K on which |f i | does not vanish as soon as i P I Y J; by construction, ϕ I,J pLog|f 1 |, . . . , Log|f m |q vanishes on KzK I,J .

By enlarging A, we may assume that for all I, J and all i P I Y J one has the minoration log|f i | ě ´A on K I,J .

For every subset L of t1, . . . , mu, denote by D L the subset of U pCq consisting of points at which every f i with i P L is invertible. Let i P t1, . . . , mu; on D tiu we set f i " r i e 2iπα i for every i (where r i " |f i | and α i is a multi-valued function, which we will use only through the well-defined differential form dα i ). Let I and J be two subsets of t1, . . . , mu of cardinality n. Let i 1 ă . . . ă i n be the elements of I, and j 1 ă . . . ă j n be those of J; on D IYJ , we set

dr I r I " dr i 1 r i 1 ^. . .
^dr in r in and dα J " dα j 1 ^. . . ^dα jn . Let S 1 R denote the "unit circle" tz P C, |z| " 1u. Let u I,J be the map from D I,J to pR ą0 q n ˆpS 1 R q n that maps a point x to ´|f i 1 pxq|, . . . , |f in pxq|, f j 1 pxq |f j 1 pxq| , . . . ,

f jn pxq |f jn pxq| ¯.
We denote by ρ j the coordinate function on pR ą0 q n ˆpS 1 R q n corresponding to the j-th factor R ą0 , and by ̟ j the multi-valued argument function corresponding to the j-th factor S 1 R . The form d̟ j is well-defined (we can describe it alternatively as the pull-back under the projection to the j-th factor S 1 R » tpx, yq P R 2 , x 2 `y2 " 1u of the form xdy ´ydx). Let E I,J denote the étale locus of u I,J ; by definability and o-minimality, there exists an integer d such that the fibers of u I,J | E I,J XK are all of cardinality ď d for all I and J.

We then have (we recall that λ " ´log|t|)

ż K |ω| ď N λ n ÿ I,J ż K I,J ˇˇˇd r I r I ^dα J ˇˇ( h) " N λ n ÿ I,J ż K I,J XE I,J ˇˇˇd r I r I ^dα J ˇˇ( i) ď N d λ n ÿ I,J ż u I,J pK I,J XE I,J q ˇˇˇd ρ 1 ρ 1 ^. . . ^dρ n ρ n ^d̟ 1 2π ^. . . ^d̟ n 2π ˇˇ( j) ď N d λ n ÿ I,J ż |f I |pK I,J XE I,J q dρ 1 ρ 1 ^. . . ^dρ n ρ n (k) ď ˆm n ˙2 N d λ n ż r|t| A ,|t| ´As n dρ 1 ρ 1 ^. . . ^dρ n ρ n (l) ď ˆm n ˙2 N d λ n p´2A log|t|q n (m) " ˆm n ˙2N dp2Aq n . (n)
Hence ş K |ω| is bounded, as announced. 9.1.3. Proof of (3) (c). -The proof of (a) and (b) will rest on several steps allowing ourselves to reduce to a simpler case, in which it will be possible to perform some explicit computations that are the core of our proof. But for achieving this reduction we shall need (c), hence we start by proving it.

Let Π P Θpgq. Choose a positive standard real number a in Λpg, Πq (such an a exists in view of Remark 7.6). For every non-negative standard real number ε we set P ε " stdpΠq `r´ε, εs ℓ Ă R ℓ (so P 0 " stdpΠq). Let us introduce some notation:

˛Vε " pLog 5 |g| 5 q ´1 pP ε q Ă U an , for ε a standard element of r0, as; ˛Vε,η " pLog 5 |g| 5 q ´1 pP ε zP η q Ă U an , for ε a standard element of as and η a standard element of p0, εq;

˛Kε " pLog|g|q ´1 pΠ ε q Ă U pCq, for ε any element of R lying on r0, as; ˛Kε,η " pLog|g|q ´1 pΠ ε zΠ η q Ă U pCq, for ε any element of R lying on r0, as and η any element of R lying on p0, εq.

We fix two subsets I and J of t1, . . . , mu of cardinality n. For every standard real number A we shall need the following extra notation:

˛V A ε (resp. V A ε,η
) for the intersection of V ε (resp. V ε,η ) with the closed analytic domain of U an defined by the inequalities Log 5 |f i | 5 ě A for all i P I; ˛KA ε (resp. K A ε,η ) for the intersection of K ε (resp. K ε,η ) with the closed semi-algebraic subset of U pCq defined by the inequalities Log|f i | ě A for all i P I;

The pre-image of V I,J zV 1 I,J (the notation is introduced in the second paragraph of 9.1.2) in K a under pLog|f i |q 1ďiďm is definably compact, and none of the functions f i with i P I vanishes on it; thus there exists some standard real number A such that every point of K a at which at least one of the Log|f i | is smaller than A belongs to the pre-image of V 1 I,J , so ϕ I,J pLog|f |q vanishes at such a point. Using mutatis mutandis the same argument and up to decreasing A if necessary, we can ensure that ϕ I,J pLog 5 |f | 5 q vanishes at every point of V a at which at least one the Log 5 |f i | 5 is smaller than A.

Otherwise said, there exists a standard real number A such that for every element ε of R lying on r0, as, the function ϕ I,J pLog|f |q vanishes on K ε zK A ε and the function ϕ I,J pLog 5 |f | 5 q vanishes on V ε zV A ε . We are now going to show that VolpLog 5 |f I | 5 pV A ε zV A 0 qq tends to zero when ε tends to zero, which is the core of the proof of (3) (c). Our method for proving this claim consists in describing Log 5 |f I | 5 pV A ε q more or less as the image under Log 5 |f I | 5 of a piecewise-linear subset of V A a , which allows us to get rid of non-archimedean geometry and only deal with usual real integration.

Recall that the skeleton of G I,an m is the closed subspace of 

m under f I | V A a .
This is a skeleton of V A a in the sense of [START_REF] Ducros | Espaces de Berkovich, polytopes, squelettes et théorie des modèles[END_REF], 4.6 (see loc. cit., Thm. 5.1; note that some mistake in this paper is corrected in [START_REF]Espaces de Berkovich, polytopes, squelettes et théorie des modèles : erratum[END_REF]); in particular it inherits a canonical piecewise-linear structure and pLog 5 |f I | 5 q| Σ is piecewise-linear. Moreover if W is any compact analytic domain of V A a , the intersection Σ X W is a piecewise-linear subset of Σ and Log 5 |f I | 5 pW q pnq " Log 5 |f I | 5 ppΣ X W q pnq q, where the superscript pnq denotes the pure n-dimensional part of a piecewise-linear set (this last equality is a lemma which is shown in a forthcoming version of [CLD]; its proof is not difficult and rests on the description of a skeleton in terms of tropical dimension, see [CLD], 2.3.3); in particular, the volume of Log 5 |f I | 5 pW q is equal to that of Log 5 |f I | 5 pW X Σq.

Choose ε P p0, as. From the equality V A ε zV A 0 "

Ť 0ăηăε V A ε,η , we get VolpLog 5 |f I | 5 ppV A ε zV A 0 qq " sup 0ăηăε VolpLog 5 |f I | 5 pV A ε,η qq " sup 0ăηăε VolpLog 5 |f I | 5 pΣ X V A ε,η qq " VolpLog 5 |f I | 5 ppΣ X V A ε qzpΣ X V A 0 qq.
Now pΣ X V A ε q 0ăεďa is a non-increasing family of compact piecewise linear subsets of Σ with intersection ΣXV A 0 , and Log 5 |f I | 5 | Σ is piecewise linear. Since dim Σ ď n, this implies that that VolpLog 5 |f I | 5 pΣXV A ε zΣXV A 0 qq tends to zero when ε tends to zero. By the above, this means that VolpLog 5 |f I | 5 pV A ε zV A 0 qq tends to zero, as announced.

In order to end the proof of (3) (c) we now have to understand the consequences in the non-standard world of the limit statement above (which involves only standard objects); this step rests in a crucial way on doag-definability.

For every standard ε P p0, as the set Λ ε :" Log 5 |f I | 5 pV A ε zV A 0 q is doagdefinable, and depends doag-definably on ε. Thus Λ ε,R makes sense for every element ε P R with 0 ă ε ď a.

Let D be the set of positive elements x P R such that x ă a{2 and Log|f I | `KA ε zK A x ˘Ă Λ 2ε,R for all ε P px, a 2 q. An element x of R belongs to D if and only if the implication p|gpzq| P |t| ´pΠεzΠxq and |f I pzq| P |t| rA,`8q I q ñ |f I pzq| P |t| ´Λ2ε,R holds for all z P U pCq. It thus follows from 7.1.2 that |t| D is definable; but since it is one-dimensional, it is a finite union of intervals by o-minimality, so D is also such a union, hence is definable as well. Moreover, it contains by definition every bounded x whose standard part belongs to p0, a 2 s. As a consequence, D contains rα, a 2 s for some positive negligible element α. For all elements ε of R lying on pα, a{2q we have

Log|f I |pK A ε zK A α q Ă Λ 2ε,R .
The inclusion above holds in particular for every positive standard ε ă a{2; for such an ε we thus have 1

λ n ż |f I |pK A ε zK A α q dρ 1 ρ 1 ^. . . ^dρ n ρ n ď VolpΛ 2ε q.
Since VolpΛ 2ε q ÝÑ 0 when ε ÝÑ 0, it follows that std ˜1 λ n ż The infinitesimal element α above depends a priori on pI, Jq; but by taking it large enough (and still infinitesimal) we can ensure that it does not. Then std ˜żKεzKα |ω| ¸ÝÑ 0 when ε ÝÑ 0, which ends the proof of (3) (c) in our particular setting. (3) (b) involve the form to be integrated ω, which is defined with an explicit formula using the functions f i , and the domain of integration, whose definition uses another family of functions g and a pseudo-polyhedron Π. We will first simplify slightly this set of data, by showing that we may assume that f " g and Π is of the form P R for some pseudo-polyhedron P Ă pRYt´8uq ℓ (and so stdpΠq " P ), with moreover Log 5 |f | 5 ppLog 5 |f | 5 q ´1pP qq " P . This reduction essentially uses (3) (c) through its consequence Remark 8.2, together with some elementary definability arguments.

|f I |pK A ε zK A α q dρ 1 ρ 1 ^. . .
Set h " pf, gq, P " stdpΠq, W " pLog 5 |g| 5 q ´1 pP q Ă V an , and Q " Log 5 |h| 5 pW q Ă R m`ℓ . Then W " pLog 5 |h| 5 q ´1pQq. We are now going to explain why it is sufficient to prove assertion (3) for pQ R , hq instead of pΠ, gq. So we assume (3) (a) and (b) hold for pQ R , hq.

If ε is a positive real number we clearly have pLog 5 |h| 5 q ´1 pQ ε q Ă pLog 5 |g| 5 q ´1 pP ε q. On the other hand for every ε ą 0 the set pLog 5 |h| 5 q ´1 pQ ε q is a neighborhood of W , hence contains pLog 5 |g| 5 q ´1 pP η q for some η which can be taken in p0, εs (here we use topological properness -recall that Π P Θpgq). Let δpεq denote the least upper bound of ! η P p0, εq, pLog 5 |g| 5 q ´1 pP η q Ă pLog 5 |h| 5 q ´1 pQ ε q ) ; note that by compactness we have pLog 5 |h| 5 q ´1 pP δpεq q Ă pLog 5 |h| 5 q ´1 pQ ε q.

Then δ is a doag-definable function; in view of the fact that δpεq ď ε by definition, this implies that there exists a positive rational number r and a positive real number M such that δpεq " M ε r for ε small enough. This implies that pLog|h|q ´1 pQ R, ε 2 q Ă pLog|g|q ´1 pΠ ε q Ă pLog|h|q ´1 pQ R, 2 M ε 1{r q for ε a small enough standard positive real number. Since we assume that (3) when the positive standard number ε belongs to Λpg, Πq and tends to 0. Therefore if the result holds for pQ R , hq it holds for pΠ, gq; we thus can replace Π by Q R and g by h, and then enlarge f (which is harmless) so that g " f . We keep the notation P " stdpΠq and W " pLog 5 |g| 5 q ´1 pP q " pLog 5 |f | 5 q ´1 pP q note that we have Π " P R and pLog 5 |f | 5 q pW q " P . 9.1.5. Arguing piecewise on P . -To allow for more flexibility in the proof, we shall need to argue piecewise on P . We explain here why it is possible; the key point are once again (3) (c), and the additivity of integrals in both frames.

Assume that we are given a finite covering pP i q iPI of P by pseudo-polyhedra, and that for every non-empty subset J of I, statements (3) (a) and (3) (b) hold for pP J , f q with P J :" Ş iPJ P i . Then these statements hold for pP, f q. Indeed, for every i set Π i " P i,R , and every non-empty subset J of I, set Π J " P J,R . For every positive standard ε we have Π ε " Ť i Π i,ε . Now let J be a non-empty subset of I.

If P J " H then for ε small enough we have Ş iPJ Π i,ε " H. If P J ‰ H then by definability and compactness there exists two positive real number A and η such that

P J,ε Ă č iPJ P i,ε Ă P J,Aε
for all positive real number ε ă η which implies (by model-completeness of doag) that

Π J,ε Ă č iPJ Π i,ε Ă Π J,Aε for every positive ε ă η in R The difference ż pLog|f |q ´1pΠεq ω ´ÿ J‰H p´1q |J|`1 ż pLog|f |q ´1pΠ J,ε q ω can be rewritten ÿ J‰H p´1q |J|`1 ˜żŞ iPJ pLog|f |q ´1pΠ i,ε q ω ´żpLog|f|q ´1pΠ J,ε q ω ¸.
It now follows from (3) (c) (which has already be proven) and from the inclusions Π J,ε Ă Ş iPJ Π i,ε Ă Π J,Aε (which hold for ε small enough) that std ˜żŞ iPJ pLog|f |q ´1pΠ i,ε q ω ´żpLog|f|q ´1pΠ J,ε q ω ¸ÝÑ 0 when ε ÝÑ 0 (and remains standard). Thus when ε ÝÑ 0. 9.1.6. -Being allowed to argue piecewise on P , we now would like to cut it into finitely many pieces as nice as possible. This will be achieved by exhibiting a finite covering pP i q of P by pseudo-polyhedra such that for every i the following hold:

˛for every pair pI, Jq of subsets of t1, . . . , mu of cardinality n, either ϕ I,J is identically zero on P i , either for every px 1 , . . . , x m q P P i and every j P I Y J we have x j ‰ ´8; ˛there exists a subset E of t1, . . . , mu such that:

' for every px 1 , . . . , x m q P P i and every j P E we have x j ‰ ´8; ' for every pair pI, Jq of subsets of t1, . . . , mu of cardinality n, there exists a compactly supported smooth function ψ I,J on R E such that for every px 1 , . . . , x m q P P i one has ϕ I,J px 1 , . . . , x m q " ψ I,J px j q jPE .

Let us explain how this can be done. Let ξ be a point of P and let I and J be two subsets of t1, . . . , mu of cardinality n. By the very definition of pI Y Jq-vanishing reasonably smooth functions, there exists a pseudo-polyhedral neighborhhod Q of x in P such that ˛either ϕ I,J is identically zero on Q, either for every px 1 , . . . , x m q P Q and every j P I Y J we have x j ‰ ´8; ˛there exists a subset E of t1, . . . , mu such that:

' we have x j ‰ ´8 for every px 1 , . . . , x m q P Q and every j P E ;

' there exists a compactly supported smooth function ψ on R E such that for every px 1 , . . . , x m q P Q one has ϕ I,J px 1 , . . . , x m q " ψpx j q jPE (note that a priori ψ is a smooth function defined on an open neighborhood of the projection of Q to R E , but since the latter is compact we can assume that ψ is defined on the whole of R E and compactly supported). We now conclude by compactness of P . 9.1.7. -In view of 9.1.5 and of 9.1.6, we can assume that there exists a subset E of t1, . . . , mu satisfying the following: ˛for all px 1 , . . . , x m q in P and all j P E, we have x j ‰ ´8;

˛one can in fact write

ω " ÿ I,J ϕ I,J pLog|f j |q jPE dLog|f I | ^dArg f J and ω 5 " ÿ I,J ϕ I,J pLog 5 |f j | 5 q jPE d 1 Log 5 |f I | 5 ^d2 log|f J | 5
where I and J run through the set of subsets of E of cardinality n, and where the ϕ I,J are smooth, compactly supported functions on R E .

We note that the functions f j with j P E are invertible on the analytic domain W ; we set Q " pLog 5 |f E | 5 qpW q; this is a compact polyhedron of R E which can also be described as the image of P under the projection to pR Y t´8uq E . We denote by ξ the Lagerberg form ÿ I,J ˆ1 λ 5 ˙n ϕ I,J px j {λ 5 q jPE d 1 x E ^d2 x E on λ 5 Q; by construction, ω 5 " f E ξ. 9.1.8. -We first consider the case where dim Q ă n. In this case the pn, nqform ξ on λ 5 Q is zero, and it suffices to prove that std ˜żpLog|g|q ´1pΠεq

|ω| ¸ÝÑ 0 when ε ÝÑ 0. This will follow quite easily from the rough estimates of 9.1.2. Fix I be any subset of E of cardinality n. For every positive standard real number ε, let Q I ε denote the image of Q ε under the projection map R E Ñ R I . The inequality dim Q ă n implies that VolpQ I ε q ÝÑ 0 when ε ÝÑ 0. Now for every standard positive ε we have the inclusion

pLog|f I |q ´pLog|f |q ´1 pΠ ε q ¯Ă Q I 2ε,R . It follows that 1 λ n ż |f I |ppLog|f |q ´1pΠεqq dρ 1 ρ 1 ^. . . ^dρ n ρ n ď VolpQ I 2ε q.
Since this holds for all I, this implies in view of inequality (k) of paragraph 9.1.2 that std ˜żpLog|g|q ´1pΠεq

|ω| ¸ÝÑ 0 when ε ÝÑ 0. 9.1.9. -We are now going to describe two general methods which we shall use several times to make the situation simpler. The first one essentially combines the fact that the statements we want to prove can be checked piecewise on P (9.1.5) and the fact that they hold as soon as dim Q ă n (9.1.8); the second one follows easily from Remark 8.2. 9.1.9.1. Arguing cellwise on Q. -Let pQ i q be a finite covering of Q by compact polyhedra whose pairwise intersections are of dimension ă n ; for every i, let P i be the pre-image of Q i in P . Assume that statements (3) (a) and (3) (b) hold for every P i ; then they hold for P . Indeed, let I be any finite set of indices of cardinality at least 2. Then the projection of

Ş iPI P i to pR Y t´8uq E is equal to Ş iPI Q i , so it is of dimension ă n.
Therefore the theorem holds for Ş iPI P i in view of 9.1.8; it now follows from 9.1.5 that it holds for P . 9.1.9.2. Affine change of coordinates. -Let M " pm ij q be a matrix belonging to M E pZq with non-zero determinant, and let v " pv j q j P R E . For every point x " px 1 , . . . , x m q in P we set M x " py 1 , . . . , y m q with y i " x i if i R E, and y i " ř jPI m ij x j otherwise. For i R E we set h i " f i ; for i P E we set Assume that statements (3)(a) and (3)(b) hold for pP 1 R , hq. We are going to prove that they hold for pΠ, f q.

h i " |t| v i ś jPI f m ij j . Set P 1 " M P `v;
There exist two standard positive real numbers A and B with A ă B such that

pLog|h|q ´1 pP 1 R,Aε q Ă pLog|f |q ´1 pΠ ε q Ă pLog|h|q ´1 pP 1 R,Bε q
for ε small enough. Then std ˜żpLog|f|q ´1pΠεq ω ¸ÝÑ ż pLog 5 |h| 5 q ´1pP 1 q ω 5 " ż pLog 5 |f | 5 q ´1pP q ω 5 and std ˜żpLog|f|q ´1pΠεq

|ω| ¸ÝÑ ż pLog 5 |h| 5 q ´1pP 1 q |ω 5 | 5 "

ż pLog 5 |f | 5 q ´1pP q |ω 5 | 5
by Remark 8.2. 9.1.10. -We assume now that pω 5 q| W " 0, which means that the form ξ on λ 5 Q is zero, and we are going to prove (3) (a) and (3) (b) under this assumption. We will use the fact that these statements hold whenever dim Q ă n (9.1.8), that they can be checked cellwise on Q (9.1.9.1), that they can be proved after an affine change of coordinates (9.1.9.2), and that J acts trivially on A n,n ; and then we will ultimately rely on the estimates in 9.1.2. We want to prove that std ˜żpLog|f|q ´1pΠεq

|ω| ¸ÝÑ 0 when ε ÝÑ 0. By considering a cell decomposition of Q and using 9.1.9.1, we reduce to the case where Q is a cell. If dim Q ă n we already know that the the required statement holds (9.1.8); we can thus assume that dim Q " n. And in view of 9.1.9.2 we are allowed to perform an affine change of the coordinates indexed by E with integral linear part; hence we can assume that there exists a subset E 0 of E of cardinality n such that Q is contained in the subspace defined by the equations x i " 0 for i running through EzE 0 . The assumption that ξ " 0 now simply means that ϕ E 0 ,E 0 | Q " 0. We fix two subsets I and J of E, both of cardinality n. 

ω I,J " Jpω I,J q " p´1q n ϕ I,J pLog|f 1 |, . . . , Log|f | m q dArg f I ^dLog|f J | " p´1q n 2 `nϕ I,J pLog|f 1 |, . . . , Log|f | m q dLog|f J | ^dArg f I " ϕ I,J pLog|f 1 |, . . . , Log|f | m q dLog|f J | ^dArg f I .
Hence we reduce to the case considered in 9.1.10.2. 9.1.11. Proof of (3) (a) and (3) (b) in the general case. -Now comes the core of our proof; this is the only step in which one uses the actual definition of the non-archimedean integrals (the former ones used only basic properties like additivity or obvious norm estimates). Using once again the flexibility allowed by the former steps (which enables us to argue cellwise, see 9.1.9.1; or to modify the explicit writing of ω, provided pω 5 q| W remains unchanged, see 9.1.10), we will simplify slightly our assumptions, and then reduce to the case in which the integral ş W ω 5 can be computed by an explicit formula. The latter involves a classical real integral and the degree d of an étale map between Berkovich spaces over some skeleton Σ, and the main point of our reasoning consists in interpreting this degree d in the non-standard archimedean world; this is achieved by showing that our étale map also has degree d above "sufficiently many" C-points (over which the degree is now simply the naive one, namely the cardinality of the fibers, which makes sense in our non-standard archimedean world as well).

By considering a cell decomposition of Q and using 9.1.9.1, we reduce to the case where Q is a cell. If dim Q ă n we already know that the required statement holds (9.1.8); we can thus assume that dim Q " n. And in view of 9.1.9.2 we are allowed to perform an affine change of the coordinates indexed by E with integral linear part, we can assume that there exists a subset E 0 of E of cardinality n such that Q is contained in the subspace defined by the equations x i " 0 for i running through EzE 0 . Otherwise said, Q " Q 0 ˆt0u EzE 0 for some convex polyhedron Q 0 of R E 0 . Since dim Q " n by our assumption, dim Q 0 " n. Now ξ| λ 5 Q can be written

1 λ n 5 ϕ ˆxj λ 5 ˙jPE 0 d 1 x E 0 ^d2 x E 0 (with ϕ smooth). Set ω 1 " ϕ pLog|f j |q jPE 0 dLog|f E 0 | ^dArg f E 0 and ω 1 5 " ϕ pLog 5 |f j | 5 q jPE 0 d 1 Log 5 |f E 0 | 5 ^d2 Log 5 |f E 0 | 5 .
Then pω 5 ´ω1 5 q| W " 0, and in view of 9.1.10 this implies that std ˜żpLog|f|q ´1pΠεq |ω ´ω1 | ¸ÝÑ 0 when ε ÝÑ 0. We can thus replace ω with ω 1 , hence reduce to the case where ω is of the form

ω " ϕ pLog|f j |q jPE 0 dLog|f E 0 | ^dArg f E 0 .
Let µ : V Ñ G E 0 m be the map induced by the functions f j for j P E 0 . Since dim Q 0 " n the tropical dimension of f E 0 is n, which forces µ to be dominant, hence generically étale, because both schemes involved are integral of the same dimension and the ground field is of characteristic zero. Let Z be a proper Zariski-closed subset of G E 0 m such that µ is finite étale over the open complement of Z .

Let Since we can argue cellwise on Q (9.1.9.1) we may thus assume the following:

˛pLog 5 |f E 0 | 5 qpBW q Ă BQ 0 ; ˛the morphism W ˆGE 0 ,an m D 1 Ñ D 1 is finite étale.
These two conditions imply that µ| W is finite étale above D 1 ; since the latter is connected (it admits a deformation retraction to skpλ 5 Q0 q), the degree of µ| W over D 1 is constant; let us denote it by d. The map µ| V is in particular finite and flat of degree d above every point of skpλ 5 Q0 q, whence the equalities ż

W ω 5 " p´1q npn´1q{2 d λ n 5 ż λ 5 Q 0 ϕ ˆxj λ 5 ˙jPE 0 dx E 0 " p´1q npn´1q{2 d ż Q 0 ϕpx j q jPE 0 dx E 0 and ż W |ω 5 | 5 " d λ n 5 ż λ 5 Q 0 ˇˇˇˇϕ ˆxj λ 5 ˙jPE 0 ˇˇˇˇd x E 0 " d ż Q 0
|ϕpx j q| jPE 0 dx E 0 9.1.11.1. -By construction, every point of D 1 pCq has d pre-images under µ in W pCq. We would like to exploit this fact in the non-standard archimedean setting; the point is that D 1 pCq and W pCq are acvf-definable, but not rcfdefinable; so we will first have to "approximate" them by rcf-definable subsets for which this statement remains true.

Let n be the set of negligible elements of R. Let η be a positive standard real number and set Q η " Q0 zpBQ 0 q η . Let x P pLog|T |q ´1 pQ η,R q. The point x belongs to pLog 5 |T | 5 q ´1p Q0 q, hence the intersection µ ´1pxq X pLog|f |q ´1 pΠ `nℓ q " µ ´1pxq X pLog 5 |f | 5 q ´1 pP q " µ ´1pxq X W has exactly d elements. Let mpxq and M pxq be respectively the greatest lower bound and the least upper bound of the set Θ of those u P r1, |t| ´1s such that µ ´1pxq X |f | ´1p|t| ´Π ¨ru ´1, usq has exactly d elements. Since Θ is definable, if follows from the above that std pLog mpxqq " 0 and std pLog M pxqq ą 0. Now m and M are definable functions; as a consequence, the greatest lower bound of M on pLog|T |q ´1 pQ η,R q is equal to |t| Bpηq for some Bpηq with negative standard part, and the least upper bound of m on pLog|T |q ´1 pQ η,R q is equal to |t| bpηq for some negative negligible bpηq. 9.1.11.2. -Let δ be a positive real number. Choose η such that the volume of pBQ 0 q 2η is smaller than δ. Let ε be a positive real number such that ε ă minpBpηq, ηq. Let Π 1 be the subset of Π ε consisting of points whose projection to the variables in E 0 belongs to Q η , and let Π 2 be the complement of Π 1 in Π ε . One has ż pLog|f |q ´1pΠεq ω " ż pLog|f |q ´1pΠ 1 q ω `żpLog|f|q ´1pΠ 2 q ω.

It follows from inequality (k) of 9.1.2 that there exists a positive standard real number M (independent of δ, η, ε....) such that ş pLog|f |q ´1pΠ 2 q |ω| ď M VolppBQ 0 q 2η q ď M δ. Now since bpηq ă ε ă Bpηq the map µ induces a d-fold covering pLog|f |q ´1 pΠ 1 q ÝÑ pLog|T |q ´1 pQ η,R q, so ż

pLog|f |q ´1pΠ 1 q ω " d λ n ż pLog|T |q ´1pQ η,R q ϕ pLog|T |q dLog|T | ^dArg T " p´1q npn´1q{2 d ż Q η,R ϕpx j q jPE 0 dx E 0 " p´1q npn´1q{2 d ż Qη ϕpx j q jPE 0 dx E 0 .
Therefore ˇˇˇˇż pLog|f |q ´1pΠ 1 q ω ´żW ω 5 ˇˇˇˇď sup P 0 |ϕ|dVolpQ 0 zQ η q ď dVolppBQ 0 q 2η q sup when the standard positive real number ε tends to zero. 9.2. Construction of the map ω Þ Ñ ω 5 . -It is clear that there is at most one such morphism of sheaves. We are going to prove that there is actually one by using our comparison theorem for integrals and the fact that forms are naturally embedded into currents on Berkovich spaces. Let p and q be two integers. Let U be a Zariski-open subset of X. Let ω be a section of A p,q on U that can be written ω " ÿ |I|"p,|J|"q ϕ I,J pLog|f 1 |, . . . , Log|f m |q dLog|f I | ^dArg f J with f i regular functions on U and ϕ I,J an pI YJq-vanishing reasonably smooth function in S I,J,pf i q for each pI, Jq (we shall say for short that ω is tropical on U ).

Let ω 5 be the section ÿ of B p,q on U . It suffices to show that ω 5 only depends on ω, and not on the particular way we have written it. One immediately reduces to proving that ω 5 " 0 if ω " 0; for that purpose we suppose that ω 5 ‰ 0, and we are going to prove that ω ‰ 0. Since ω 5 ‰ 0 and since U an is boundaryless, there exists a smooth compactly supported pn ´p, n ´qq form η on U an such that ş U an ω 5 ^η ‰ 0 ( [CLD], Cor. 4.3.7). Every point of U an has a basis of affinoid neighbourhoods V having the following properties:

˛the restriction η| V can be written ÿ with g i regular functions on V and ψ I,J compactly supported smooth functions on R ℓ . ˛The domain V is a Weierstraß domain of Ω an for some open subscheme Ω of U (see 6.2).

Then we can find such a V with ş V ω 5 ^η ‰ 0. Since V is a Weierstraß domain in Ω an , and since η| V does not change if we replace each g i by a function having the same norm on V ([CLD], Lemme 3.1.10), we can assume by approximation that each of the functions g i comes from a function belonging to OpΩq, which we still denote by g i . Then by replacing Ω by the intersection of the sets Dpg i q, we can assume that g i P OpΩq ˆfor all i. Now set This is a section of A n´p,n´q on Ω. By 9.1 the integral ş V ω 5 ^η can be expressed as a limit of standard parts of integrals of ω| Ω ^η7 on suitable definably compact semi-algebraic subsets of ΩpCq. Then these integrals cannot be all equal to zero, which implies that ω| Ω ^η7 ‰ 0, and a fortiori that ω ‰ 0. We thus are done with the proof in the particular setting of 9.1.1. 9.3. Proof of (3). -We are now going to prove (3) in the general case. The reasoning is tedious but rather formal; it uses as a crucial input the particular case handled above in 9.1, together with the additivity of the integrals in both settings.

For all i we set P i " stdpΠ i q and W i " pLog 5 |g i | 5 q ´1 pP i q Ă V an i ; we also set W " Ť i W i . 9.3.1. Reduction to the case where Π i " P i,R for all i. -Assume that (3) holds for pP i,R q i . Since stdpΠ i q " stdpP i,R q, there exists a positive negligible element a such that Π i Ă P i,R,a and P i,R Ă Π i,a for every i. Let ε be a standard positive real number. By the above

P i,R,ε{2 Ă Π i,ε Ă P i,R,2ε
for all i. Then it follows from Remark 8.2 that statements (3)(a) and (3)(b) hold for pΠ i q.

We then have for all standard ε ą 0 and all i ď i Π i,ε z ď i Π i,α`a Ă ď i P i,R,2ε z ď i P i,R,α , so (3)(c) holds for pΠ i q i with the negligible element α `a instead of α. We henceforth assume from now on that Π i " P i,R for all i. 9.3.2. -Fix an index i. Let x be a point of W i . There exists a Zariski-open subset Ω of V i on which ω is tropical, and such that x P Ω an . The point x has a Weierstraß neighborhood Ω 1 in Ω an ; by construction, Ω 1 X W i is of the form pLog 5 |h| 5 q ´1pQq for some family h " ph 1 , . . . , h N q of regular functions on Ω 1 and some pseudo-polyhedron Q of pR Y t´8uq N . By compactness, it follows that there exists a finite family pV ij q of Zariskiopen subsets of V i and, for each pi, jq, a finite family h ij " ph ijk q 1ďkďℓ ij of regular functions on V ij and a pseudo-polyhedron P ij of pR Y t´8uq ℓ ij such that the following hold:

˛for each pi, jq, the form ω is tropical on V ij ; ˛Wi " Ť j W ij with W ij " pLog 5 |h ij | 5 q ´1pP ij q. We set Π ij " P ij,R ; for every non-empty set I of pairs pi, jq we set ˛ℓI " ř pi,jqPI ℓ ij ; ˛ΠI " ś pi,jqPI Π ij Ă pR Y t´8uq ℓ I ;

˛PI " ś pi,jqPI P ij Ă pR Y t´8uq ℓ I ; ˛VI " Ş pi,jqPI V ij and W I " Ş pi,jqPI W ij . We also denote by h I the concatenation of the functions h ij for pi, jq P I; this is a family of ℓ I invertible functions on V I and W I " pLog 5 |h I | 5 q ´1 pP I q Ă V an I . For every I, the form ω| |ω| ¸ÝÑ 0 (q) when the positive standard number ε tends to 0.

The equality W " Ť pi,jqPI V ij can be rewritten ď i pLog 5 |g i | 5 q ´1 pP i q looooooooomooooooooon understood as contained in V an i " ď pi,jq pLog 5 |h ij | 5 q ´1 pP ij q looooooooooomooooooooooon Understood as contained in V an ij .

If a is a small enough positive real number then for every i, j the sets pLog 5 |g i | 5 q ´1 pP i,a q and pLog 5 |h ij | 5 q ´1 pP ij,a q are compact in view of assertion (1). Hence for a small enough, the infimum mpaq of all positive real numbers b such that ď i pLog 5 |g i | 5 q ´1 pP i,a q Ă ď pi,jq pLog 5 |h ij | 5 q ´1 pP ij,b q is well-defined. This is a doag-definable function of a that tends to zero when a tends to zero. It follows that there exists a positive rational number ρ such that ď i pLog 5 |g i | 5 q ´1 pP i,a q Ă ď pi,jq pLog 5 |h ij | 5 q ´1 pP ij,ρa q for a small enough. We can perform the same kind of reasoning for the converse inclusion, and by taking ρ big enough we can thus assume that we also have ď i pLog 5 |g i | 5 q ´1 pP i,ρa q Ą ď pi,jq pLog 5 |h ij | 5 q ´1 pP ij,a q for a small enough.

We then have for all positive standard real number a the inclusions ď i pLog|g i |q ´1 pΠ i,a q Ă ď pi,jq pLog|h ij |q ´1 pΠ ij,2ρa q and ď i pLog|g i |q ´1 pΠ i,2ρa q Ą ď pi,jq pLog|h ij |q ´1 pΠ ij,a q.

But then by a definability argument (using 7.1.2), there exist a positive negligible element β P R and an element γ P R with positive standard part such that the above inclusions hold for all elements a P R with β ď a ď γ.

By the same kind of arguments, we can increase β and ρ and decrease γ so that we have for all I and all a P rβ, γs the inclusions č pi,jqPI pLog|h ij |q ´1 pΠ ij,a q Ă pLog|h I |q ´1 pΠ I,ρa q and č pi,jqPI pLog|h ij |q ´1 pΠ ij,ρa q Ą pLog|h I |q ´1 pΠ I,a q.

Together with (o), (p) and (q) above and with the additivity of both the archimedean and the Berkovich integrals, this ends the proof of (2). 9.4. End of the proof. -It remains to show (1) and (4). The proofs essentially consist in standard computations, once granted the existence of our map of complexes and the comparison theorems (3) (a), (b) and (c) for integrals.

We use the assumptions of (1). Choose a finite open affine cover pU i q of U . For every i, let pf ij q j be a finite generating family of the C-algebra O X pU i q. By our assumption on the support of ω and by Lemma 3.2, there exists A P R such that the ω is zero outside the set E A :" ď i tx P U i pCq, Log|f ij pxq| ď A for all ju .

We also set E A,5 " ď i tx P U an i , Log 5 |f ij pxq| 5 ď A for all ju . 9.4.1. Proof of (1). -We are going to prove that ω 5 is zero outside E A,5 , which will show that it is compactly supported. Let y be a point of U an zE A,5 . The point y belongs to U i for some i. Let us choose a neighborhood V of y in U an i zE A,5 of the form Log 5 |g| ´1 5 pP q where g " pg 1 , . . . , g m q is a finite family of regular functions on U i and where P Ă pRYt´8uq m is a product of intervals, each of which is either of the form pλ, µq or of the form p´8, µq. Up to shrinking P we can assume that for some ε ą 0 the pre-image Log 5 |g| ´1 5 pP `r0, εq m q still avoids E A,5 . Let ϕ be a reasonably smooth function on pR Y t´8uq m whose support is contained in P , which does not vanish at gpyq, and which takes only non-negative values. We shall prove that the form ϕpLog 5 |g| 5 qω 5 P A p,q pU an i q is zero; this will ensure that ω 5 vanishes around y and thus imply our claim.

Since Log 5 |g| ´1 5 pP `r0, εq m q is contained in U an zE A,5 , the pre-image Log|g| ´1pP R q avoids E. As the support of ϕ is contained in P and as ω vanishes outside E, the form ϕpLog|g|qω vanishes. But this form belongs to A p,q pU i q and its image in B p,q pU i q is precisely ϕpLog 5 |g| 5 qω 5 . The latter is thus zero, as announced. 9.4.2. Proof of (4). -Assume moreover that p " q " n and let us prove (f) and (g). It follows from ( 2 Assertion (4) follows immediately.

  is a valuation |¨| 5 , and |C ˆ|5 " R ˆ{Λ. The valuation ring C ˝of |¨| 5 is the set of the elements z P C such that |z| ă |t| ´1{N for all integer N ą 0, and the maximal ideal of C ˝is the set C ˝˝of elements z of C such that |z| ă |t| 1{N for some integer N ą 0 (note that C ˝contains the ring of bounded elements of C).

4. 1

 1 .1.4. -If ϕ is tame at x, we shall denote by ϕpxq the element ϕpξq for ξ any lifting of x in U p ˚Rq (it is well defined in view of 4.1.1.2). 4.1.2. Examples. -In each of the following examples, the function ϕ is tame at every point of U pRq:

  4.5. -Let V be an open subset of pR Y t´8uq m which can be defined by a boolean combination of Q-linear inequalities. The following facts follow straightforwardly from the definition. 4.5.1. -If ϕ : V Ñ R is a reasonably smooth function, then it is continuous, and ϕ| V XR m is smooth. 4.5.2. -For V Ă R m , a function from V to R is reasonably smooth if and only if it is smooth. 4.5.3. -The set of reasonably smooth functions on V is a subalgebra of the algebra of R-valued functions on V . It is endowed with partial derivation operators defined in the obvious way.

  (a) V is an open subset of pR Y t´8uq m , defined by Q-linear inequalities such that V R contains pLog|f 1 |, . . . , Log|f m |qpU pCqq; (b) ϕ is a reasonably smooth function on V which is pI Y Jq-vanishing.

  Remark. -Statement (3c) has the following consequence. Assume that we are given for every small enough positive standard ε in

  to R I via the mapping sk : R I Ñ G I,an m sending plogpr i qq iPI to the seminorm assigning the real number max mPZ I |a m | ś iPI r m i i to a Laurent polynomial ř mPZ I a m T m . Let Σ be the pre-image of the skeleton of G I,an

^dρ n ρ n ¸ÝÑ 0 when ε ÝÑ 0 .

 00 In view of inequality (k) of paragraph 9.1.2, this implies thatstd ˜żK A ε zK A α |ϕ I,J pLog|f 1 |, . . . , Log|f m |qdLog|f I | ^dArg f J | ¸ÝÑ 0 when ε ÝÑ 0. But by the choice of A the integral ż K A ε zK A α |ϕ I,J pLog|f 1 |, . . . , Log|f m |qdLog|f I | ^dArg f J | is equal to ż KεzKα |ϕ I,J pLog|f 1 |, . . . , Log|f m |qdLog|f I | ^dArg f J | ,so that std ˜żKεzKα |ϕ I,J pLog|f 1 |, . . . , Log|f m |qdLog|f I | ^dArg f J | ¸ÝÑ 0 when ε ÝÑ 0.
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 14 Proof of (3) (a) and (3) (b) in our setting. -Assertions (3) (a) and

pLog 5

 5 (a) and (3) (b) hold for pQ R , hq (and since (3) (c) has already been proved) it follows from Remark 8|g| 5 q ´1pP q |ω 5 | 5

żż

  pLog|f |q ´1pΠ J,ε q ω ¸ÝÑ 0 when ε ÝÑ 0 As statements (3) (a) and (3) (b) hold for every P J ,pLog 5 |f | 5 q ´1pP J q ω 5 " ż pLog 5 |f | 5 q ´1pP q ω 5 when ε ÝÑ 0.We prove in the same way that std ˜żpLog|f|q ´1pΠεq |ω| ¸ÝÑ ż pLog 5 |f | 5 q ´1pP q |ω 5 | 5

  this is a pseudo-polyhedron. By expressing Log|h|, dLog|h| and darg h in terms of Log|f |, dLog|f | and darg f , and the same with Log 5 instead of Log and |¨| 5 instead of |¨|, we get equalities ω " ÿ I,J ψ I,J pLog|h 1 |, . . . , Log|h m |q dLog|h I | ^dArg h J and ω 5 " ÿ I,J ψ I,J pLog 5 |h 1 | 5 , . . . , Log 5 |h m | 5 q d 1 Log 5 |h I | 5 ^d2 log|h J | 5 .

  D be the affinoid domain of G E 0 ,an m defined by the condition Log 5 |T | 5 P Q 0 and let D 1 be the open subset of D defined by the condition Log 5 |T | 5 P Q0 . Let also sk denote the canonical homeomorphism between R E 0 and the skeleton of G E 0 ,an m . The images under Log 5 |f E 0 | 5 of the boundary of D and the image of Z an under Log 5 |T | 5 are of dimension ă n.

  | 5 qq ´1pstdpΠqq |ω 5 | 5 .

ϕ

  I,J pLog 5 |f 1 | 5 , . . . , Log 5 |f m | 5 q d 1 Log 5 |f I | 5 ^d2 log|f J | 5

  |I|"n´p,|J|"n´q ψ I,J pLog 5 |g 1 | 5 , . . . , Log 5 |g ℓ | 5 q d 1 log|g I | 5 ^d2 log|g J | 5

  η 7 " ÿ |I|"n´p,|J|"n´q ψ I,J pLog|g 1 |, . . . , Log|g ℓ |q dLog|g I | ^dArg g J .

  V I is tropical. It follows therefore from 9.1 thatstd ˜żpLog|h I |q ´1pΠ I,ε q ω ¸ÝÑ ż pLog 5 |h I | 5 q ´1pP I q ω 5 (o) std ˜żpLog|h I |q ´1pΠ I,ε q |ω| ¸ÝÑ ż pLog 5 |h I | 5 qqpP I q |ω 5 | 5 (p)when the positive standard number ε tends to 0, and that there exists a positive negligible α P R such that std ˜żpLog|g|q ´1pΠ I,ε zΠ I,α q

EE

  ), (3) (a) and (3) (b) that if the standard positive ε is small enough then ş E A`ε |ω| is bounded, and that std ˜żE ε tends to zero (while remaining standard and positive). But since ω is zero outside E A we have ż ε as above. And since ω 5 is zero outside E A,5 by 9.4.1, we have ż

  D be a definable subset of p ˚Rq n with definably compact closure.

	The integral	ş

D dx 1 ^. . . ^dx n is called the volume of D and is denoted by VolpDq.

If D is a cube, i.e., D is of the form ś 1ďiďn ra i , b i s, then VolpDq "

  ra i , b i s and the non-negative locus of g; it suffices to prove that E is almost equal to K. By definition, E Ă K. Now let x be a point on K at which f is positive, and let ξ be any pre-image of x on ś ra i , b i s. Since f pxq ą 0 we have gpξq ą 0, hence ξ P E and x P E. Thus the difference KzE is contained in the zero-locus of f , which is at most pn ´1q-dimensional since f is non-constant.

4. Smooth functions and smooth forms over R and C

4.1. Smooth functions and smooth forms over the field R. -Recall that A denotes the ring of t-bounded elements of ˚C, m denotes its maximal ideal (i.e., the set of t-negligible elements) and A r and m r denote the intersections of A and m with ˚R. The reduction modulo m will be denoted by a Þ Ñ a. 4.1.1. -Let U be a semi-algebraic open subset of R m , for some m. 4.1.1.1. -If x is a point of R m lying on U pRq and if ξ is any point of A m r lifting

x, then ξ lies on U p ˚Rq: this comes from the fact that U can be defined by a positive boolean combination of strict inequalities (which follows from Théorème 2.7.1 of

[START_REF] Bochnak | Roy -Géométrie algébrique réelle[END_REF]

). For short, we shall call such a ξ a lifting of x in U p ˚Rq.

4.1.1.2. -Let ϕ be a smooth function from U to R. Let x P U pRq. We shall say that ϕ is tame at x if it satisfies the following condition: for every lifting ξ of x in U p ˚Rq and every multi-index I, the element B I ϕpξq of ˚R is t-bounded.

  ˙p ϕp´log |g 1 |{ log|t|, . . . , ´log|g m |{ log|t|qdlog|g I | ^darg g J (where dlog|g I | " dlog|g i 1 |^. . .^dlog|g ip | if i 1 ă i 2 ă . . . ă i p are the elements of I, and similarly for darg|g J |). Since ϕ is pI Y Jq-vanishing, the restriction of ω to U 1 X U 2 is zero, so that ω and the zero form on U 1 glue to a pp, qq-form on U which (obviously) does not depend on V 1 ; we shall allow ourselves to denote it by ˆ´1 log|t| ˙p ϕp´log |g 1 |{ log|t|, . . . , ´log|g m |{ log|t|qdlog|g I | ^darg g J .

  In view of Prop. 3.13, it follows that E has exactly n i elements, contradiction. 5.3.2. -Now we remark that if N is a t-negligible t-bounded definable subset of p ˚Rq n , then ż Conclusion. -In view of 5.3.1 and 5.3.2 it is sufficient to prove that for all i the integrals ż ^. . . ^dg n agree up to a t-negligible element. So let us fix i. We denote by σ 1 ă σ 2 ă . . . ă σ n i the continuous sections of f | E over Ω 1 i and by τ 1 ă τ 2 ă . . . ă τ n i the continuous sections of g| F over Ω 1

	Ş j is non-empty; but for every x P jPI D 1 j is almost equal to D 1 . jPI D 1 Ş j the intersection jPI D 1 f ´1pxq X EXf ´1pN q In particular Ş
		ż		
	EXf ´1pΩ 1 i q	ϕdf 1 ^. . . ^df n and	i q F Xg ´1pΩ 1	ψdg 1

ϕdf 1 ^. . . ^df n and ż F Xg ´1pN q ψdg 1 ^. . . ^dg n are t-negligible. Indeed, let N be an integer such that the fibers of f | E and of g| F all have cardinality ď N , and let M be a t-bounded positive element such that |ϕ| and |ψ| are bounded by M on E and F respectively.

Then ˇˇˇˇż

EXf ´1pN q ϕdf 1 ^. . . ^df n ˇˇˇˇď N M ż N dT 1 ^. . . ^dT n

and ˇˇˇˇż

F Xg ´1pN q ψdg 1 ^. . . ^dg n ˇˇˇˇď N M ż N dT 1 ^. . . ^dT n ,

whence our claim.

5.3.3.

  Log|f m |q dLog|f I | ^dArg f J where dLog|f | I stands for dLog|f i 1 |^. . .^dLog|f ip | if i 1 ă i 2 ă . . . ă i p are the elements of I, and dArg f J stands for

	darg f j 1 2π	arg f jq ^. . .^d 2π

  ϕ r px 2 q ď 0 + where the notation is as in Definition 7.1 and where the elements a i and b i are all bounded. Set

	Θ "	#	x P	+ ra i , b i s s.t. ϕ 1 pxq ď 0, . . . , ϕ r pxq ď 0 ź iPJ	.
	This is a bounded polyhedron of R J and one has stdpΠq " ˜ź iPI r´8, stdpb i qs ¸ˆstdpΘq.	

  Let ω I,J be the form ϕ I,J pLog|f 1 |, . . . , Log|f m |q dLog|f I | ^dArg f J . It suffices to prove that The case where I " J " E 0 . -We then have ϕ IJ | Q " 0. Let P 1 be the pre-image of BQ on P . Since ϕ I,J | Q " 0 we have The case where I ‰ E 0 . -Choose i P IzE 0 . Then since x i vanishes identically on P we have for every ε|f i | ´pLog|f |q ´1 pΠ ε q ¯Ă " |t| 2ε , |t| ´2ε ‰ .Therefore there exists some positive standard real number A such that|f I | ´pLog|f |q ´1 pΠ ε q ¯Ă " |t| 2ε , |t| ´2ε ‰ tiu ˆ"|t| A , |t|

	9.1.10.2. ´A‰ Iztiu
	for ε small enough (see 9.1.2). In view of inequality (k) of loc. cit., it follows
	that	std	˜żpLog|f|q ´1pΠεq	|ω I,J | ¸ÝÑ 0
	when ε ÝÑ 0.				
		std	˜żpLog|f|q ´1pΠεq	|ω I,J | ¸ÝÑ 0
	when ε ÝÑ 0. 9.1.10.1. std	˜żpLog|f|q ´1pΠεq	|ω I,J | ¸" std	R qεq ˜żpLog|f|q ´1ppP 1	|ω I,J | for
	all ε, and since dim BQ ă n the result follows from 9.1.8.

9.1.10.3. The case where J ‰ E 0 . -Since the operator J acts trivially on A n,n we have

X underlies a morphism of locally ringed sites ψ : pXp ˚Rq, C 8 X q Ñ pX, O X q; hence ψ ˚Ωp X{ ˚R is for every p a well-defined C 8 X -module on Xp ˚Rq, which we denote by A p or A p X . The sheaf A 0 X is equal to C 8 X , and the C 8 X -module A 1 X is locally free (of rank n if X is of pure dimension n); for every p, we have A p X " Λ p A 1 X . The sheaf A p X is called the sheaf of smooth p-forms on Xp ˚Rq. One has for every p a natural differential d :A p X Ñ A p`1 X . The sheaf ˚C b˚R A pX is called the sheaf of complex-valued p-forms on Xp ˚Rq. Every complex-valued p-form ω defined on a semi-algebraic open subset U of Xp ˚Rq can be evaluated at any point u of U , giving rise to an element ωpuq of the ˚C-vector space ˚C b O X,u Ω p X,u . 3.4.2. Integral of an n-form. -We still denote by X a smooth separated ˚R-scheme of finite type; we assume that it is of pure dimension n for some n, and that Xp ˚Rq has been given an orientation. Let ω be a complex-valued smooth n-form on some semi-algebraic open subset U of Xp ˚Rq, and let E be a semi-algebraic subset of U whose closure in U is definably compact.