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We prove that there exists a rank 1 perturbation of a unitary operator on a complex separable infinite dimensional Hilbert space which is hypercyclic.

Introduction

We are interested in this note in the construction of some special hypercyclic operators on Hilbert spaces. Our work fits into the framework of linear dynamics, which is the study of the properties of the iterates T n , n ≥ 0, of a bounded linear operator T acting on an infinite dimensional separable Banach space X. It is of particular interest to study the behavior of the orbits Orb(x, T ) = {T n x ; n ≥ 0} of vectors x of X under the action of T . For instance when Orb(x, T ) is dense in X, the vector x is said to be hypercyclic. The operator T itself is hypercyclic when there exists an x ∈ X such that x is hypercyclic for T . It is not completely trivial to exhibit hypercyclic operators: the first example of such an operator was given by Rolewicz [START_REF] Rolewicz | On orbits of elements[END_REF], who proved that if B denotes the standard backward weighted shift on 2 (N), λB is hypercyclic for any complex number λ with |λ| > 1. Many more examples of hypercyclic operators on "classical" spaces can be found in the book [START_REF] Bayart | Dynamics of linear operators[END_REF]. It is a non-trivial result of Ansari [START_REF] Ansari | Existence of hypercyclic operators on topological vector spaces[END_REF] and Bernal-Gonzalez [START_REF] Bernal-González | On hypercyclic operators on Banach spaces[END_REF], relying on previous work of Salas [START_REF] Salas | Hypercyclic weighted shifts[END_REF] that any (real or complex) separable infinite-dimensional Banach space X supports a hypercyclic operator. Such a general operator has necessarily the form T = I + N , where N is a nuclear operator on X, so that a nuclear perturbation of the identity operator can indeed be hypercyclic. Obviously a finite rank perturbation of the identity operator can never be hypercyclic.

In [START_REF] Shkarin | A hypercyclic finite rank perturbation of a unitary operator[END_REF] Shkarin investigated the following question: can a finite rank perturbation of a unitary operator on a complex separable infinite-dimensional Hilbert space be hypercyclic? This question came from the work of Salas [START_REF] Salas | Supercyclicity and weighted shifts[END_REF] on supercyclicity of weighted shifts: T is said to be supercyclic (a weaker requirement than hypercyclicity) if there exists a vector

x ∈ X such that {λT n x ; n ≥ 0, λ ∈ C} is dense in X. It is known ( [START_REF] Bourdon | Orbits of hyponormal operators[END_REF], see also [START_REF] Hilden | Some cyclic and non-cyclic vectors of certain operators[END_REF] and [START_REF] Kitai | Invariant closed sets for linear operators[END_REF]) that no hyponormal operator on a Hilbert space can be supercyclic. Salas thus proposed the following question: can a finite rank perturbation of a hyponormal operator on a Hilbert space be supercyclic? Shkarin answered in [START_REF] Shkarin | A hypercyclic finite rank perturbation of a unitary operator[END_REF] this question in the affirmative, and proved: there exists a unitary operator V and an operator R of rank at most 2 acting on a Hilbert space H such that V + R is hypercyclic on H. This yields an example of a contraction A and a rank 1 operator S on H such that A + S is hypercyclic. But a natural question remained open in [START_REF] Shkarin | A hypercyclic finite rank perturbation of a unitary operator[END_REF]:

Question 1.1.
-Does there exist a rank 1 perturbation of a unitary operator on a Hilbert space which is hypercyclic?

Our aim in this paper is to answer Question 1.1 in the affirmative:

Theorem 1.2.
-There exists a unitary operator U and a rank 1 operator R on the complex Hilbert space 2 (N) such that the operator T = U + R is hypercyclic on 2 (N).

Our method of proof is rather different from the one employed in [START_REF] Shkarin | A hypercyclic finite rank perturbation of a unitary operator[END_REF], the only common point being the criterion for hypercyclicity which we use: it is based on the properties of eigenvectors associated to eigenvalues of T which are of modulus 1, and was first introduced in [START_REF] Bayart | Hypercyclicity and unimodular point spectrum[END_REF]. We use here a recent refinement of this criterion which comes from [START_REF] Grivaux | A new class of frequently hypercyclic operators[END_REF], see Section 2 of this paper. The operators which we construct are intrinsically different from the ones of [START_REF] Shkarin | A hypercyclic finite rank perturbation of a unitary operator[END_REF]: in [START_REF] Shkarin | A hypercyclic finite rank perturbation of a unitary operator[END_REF] the operators live on the function space L 2 (T), and the operator V + R (V unitary, R of rank 2) which is constructed is an operator induced by V + R on an invariant subspace of V + R , where V is the multiplication operator by z on L 2 (T) and R is a rank one operator on L 2 (T). One of the key tools in the proof of [START_REF] Shkarin | A hypercyclic finite rank perturbation of a unitary operator[END_REF] is a result of Belov [START_REF] Belov | On the Salem and Zygmund problem with respect to the smoothness of an analytic function that generates a Peano curve[END_REF] concerning the distribution of values of certain functions ϕ : R → C defined as lacunary trigonometric series.

Our approach here is much more elementary: our unitary operator U is a diagonal operator on 2 (N) with unimodular diagonal coefficients, and these coefficients as well as the two vectors a and b in 2 (N) which define R = b ⊗ a are constructed by induction in such a way that the eigenvectors associated to eigenvalues of modulus 1 of the operator U + R can be explicitly written down. The main idea of the proof of Theorem 1.2 is presented in Section 2, and the inductive construction, which is more technical, is given in Section 3.

2. Main ingredients of the proof of Theorem 1.2 2.1. A criterion for hypercyclicity. -The criterion for hypercyclicity which we are going to use in the proof of Theorem 1.2 is stated in terms of eigenvectors associated to eigenvalues of modulus 1 of the operator. Roughly speaking, if T is a bounded linear operator on a complex separable Banach space X which has "plenty" of such eigenvectors, then T is hypercyclic. Here is the precise definition: Definition 2.1. -We say that T ∈ B(X) has a perfectly spanning set of eigenvectors associated to unimodular eigenvalues if there exists a continuous probability measure σ on the unit circle T such that for any σ-measurable subset B of T with σ(B) = 1, we have sp[ker(T -λ) ; λ ∈ B] = X.

When T has a perfectly spanning set of eigenvectors associated to unimodular eigenvalues, it is automatically hypercyclic. This is proved in [START_REF] Bayart | Hypercyclicity and unimodular point spectrum[END_REF]. The easiest way to check this spanning property of the eigenvectors is to exhibit a family (K i ) i≥1 of compact perfect subsets of T and a family (E i ) i≥1 of eigenvector fields E i : K i → X which are continuous on K i and such that the vectors E i (λ), i ≥ 1, λ ∈ K i , span a dense subspace of X. This can be done rather easily by using the following theorem, which was proved in [START_REF] Grivaux | A new class of frequently hypercyclic operators[END_REF]: Theorem 2.2. -Let X be a complex separable infinite-dimensional Banach space, and let T be a bounded operator on X. Suppose that there exists a sequence (u i ) i≥1 of vectors of X having the following properties: (i) for each i ≥ 1, u i is an eigenvector of T associated to an eigenvalue µ i of T , with

|µ i | = 1 and the µ i 's all distinct; (ii) sp[u i ; i ≥ 1] is dense in X;
(iii) for any i ≥ 1 and any ε > 0, there exists an n = i such that ||u n -u i || < ε.

Then there exists a family (K i ) i≥1 of subsets of T which are homeomorphic to the Cantor set 2 ω and a family (E i ) i≥1 of eigenvector fields E i : K i → X which are continuous on K i for each i and which span X:

sp[E i (λ) ; i ≥ 1, λ ∈ K i ] is dense in X.
So T has a perfectly spanning set of eigenvectors associated to unimodular eigenvalues, and in particular T is hypercyclic.

Theorem 2.2 actually yields a stronger conclusion, as it is known that if T has a perfectly spanning set of eigenvectors associated to unimodular eigenvalues, then it is frequently hypercyclic. See [START_REF] Bayart | Frequently hypercyclic operators[END_REF] for the definition of frequent hypercyclicity and for a proof of this statement in the Hilbert space setting, and [START_REF] Grivaux | A new class of frequently hypercyclic operators[END_REF] for a proof in the Banach space case. When the eigenvalues µ i which appear in the assumption of Theorem 2.2 are N th roots of 1, N ≥ 1, then the operator is not only hypercyclic but chaotic (it is hypercyclic and has a dense set of periodic vectors). We will in the proof of Theorem 1.2 construct the operator T so that the assumptions of Theorem 2.2 are satisfied. It will become clear in the course of the proof that we can choose the µ i 's to be N th roots of 1, and thus the operator of Theorem 1.2 can be made chaotic and frequently hypercyclic. We can reformulate this observation as:

Lemma 2.3. -If λ ∈ T \ {λ n ; n ≥ 1}, then λ is an eigenvalue of D + R if and only if n≥1 a n λ -λ n 2 < +∞ and n≥1 a n b n λ -λ n = 1.
In this case an associated eigenvector u is given by

u = n≥1 a n λ -λ n e n .
2.3. Strategy of the proof of Theorem 1.2. -Let j : {1, 2, . . .} -→ {1, 2, . . .} be a function having the following properties:

• j(1) = 1;

• j(n) < n for every n ≥ 2;

• for any k ≥ 1 the set {n ≥ 2 ; j(n) = k} is infinite, i.e. j takes every value k ≥ 1 infinitely often.

The proof of Theorem 1.2 will be carried out via an induction argument. As Step n, n ≥ 1, we define two unimodular numbers λ n and µ n , a complex number a n and an n-

tuple b (n) = (b (n) 1 , . . . , b (n) 
n ) of complex numbers such that the following properties hold true:

(1) if D n denotes the diagonal operator on C n with diagonal coefficients λ 1 , . . . , λ n , with λ n ∈ {λ 1 , . . . , λ n-1 }, and R n denotes the rank 1 operator b

(n) ⊗ a (n) on C n , i.e. R n x = x, b (n) a (n) for any x ∈ C n , where a (n) = n j=1 a j e j and b (n) = n j=1 b
(n) j e j , then the operator T n = D n +R n acting on C n has n distinct eigenvalues which are the unimodular numbers µ 1 , . . . , µ n . Moreover µ n does not belong to the set of distinct numbers {λ 1 , . . . , λ n , µ 1 , . . . , µ n-1 }, and the vector

u (n) i = n j=1 a j µ i -λ j e j
is an eigenvector of T n associated to the eigenvalue µ i . Additionally for any n ≥ 1, sp[u

(n) i ; i = 1, . . . , n] = sp[e 1 , . . . , e n ].
Thus there exists a positive constant C n such that for any x ∈ C n with x = n j=1 x j e j = n i=1 α i u 1) . Suppose that the construction of the sequences (λ n ) n≥1 , (µ n ) n≥1 , (a n ) n≥1 and (b (n) ) n≥1 has been carried out in such a way that properties (1)-( 8) are satisfied. By (2) the vector a = n≥1 a n e n belongs to 2 (N). By ( 4) and ( 5), we have

(n) i , we have n i=1 |α i | ≤ C n   n j=1 |x j | 2   1 2 (2) C n > C n-1 and C n > 2 (3) 0 < |a n | < 2 -n (4) |b (n) n | < 2 -n (5) we have n-1 i=1 |b (n) i -b (n-1) i | 2 1 2 < 2 -n (6) for any i = 1, . . . , n -1, ||u (n) i -u (n-1) i || < 2 -n C n-1 (7) ||u (n) j(n) -u (n) n || < 2 -n (8) for any k = 1, . . . , n -1 and any i = 1, . . . , k, ||T n u (k) i -µ i u (k) i || < 3 . 2 -(k-
(9') ||b (n) -b (n-1) || = || n-1 i=1 (b (n) i -b (n-1) i )e i + b (n) n e n || < 2.2 -n = 2 -(n-1
) so that the sequence (b (n) ) n≥1 converges in 2 (N) to a certain vector b = n≥1 b n e n , with

(10') ||b (n) -b|| ≤ j≥n ||b (j+1) -b (j) || ≤ j≥n 2 -j < 2 -(n-1) .
So it makes sense to define the rank one operator R = b ⊗ a on 2 (N). Let D be the diagonal operator D = diag(λ n ; n ≥ 1) on 2 (N). We are going to show, using Theorem 2.2, that D + R is then hypercyclic, which will prove Theorem 1.2.

Proof of Theorem 1.2 modulo the inductive construction. -For any n ≥ 1, let P n denote the canonical projection of 2 (N) onto sp[e 1 , . . . , e n ]. For any x = j≥1 x j e j ∈ 2 (N), we have 

T n P n x = T n   n j=1 x j e j   = n j=1 λ j x j e j + x, b (n) a (n) . Since a (n) → a, b (n) → b and sup n≥1 ||b (n) || is finite, ||T n P n x-(D +R)
i = 1, . . . , k, ||T u (k) i -µ i u (k) i || ≤ 3 . 2 -(k-1) by (8), as T n P n u (k) i = T n u (k) i
for any n ≥ k. By (6) the sequence (u (n) i ) n≥i converges as n tends to infinity to a certain vector u i ∈ 2 (N), which is nothing but

u i = +∞ j=1 a j µ i -λ j e j .
It is a non zero vector, and making k tend to infinity in the inequalities above shows that T u i = µ i u i , so that u i is an eigenvector of T associated to the eigenvalue µ i .

Let us now prove that the sequence (u i ) i≥1 satisfies the assumptions of Theorem 2.2: assertion (i) is true by construction, as the µ i 's are all distinct. As for assertion (ii), let us consider a vector x = r j=1 x j e j with finite support and ||x|| ≤ 1. Writing x as x = r i=1 α i u (r)

i , we have by ( 1)

||x - r i=1 α i u i || ≤ r i=1 |α i | sup i=1,...,r ||u i -u (r) i || ≤ C r ||x|| sup i=1,...,r k≥r+1 ||u (k) i -u (k-1) i || ≤ C r k≥r+1 2 -k C k-1 ≤ 2 -r
by [START_REF] Bernal-González | On hypercyclic operators on Banach spaces[END_REF]. Hence for any ε > 0 there exists a vector y ∈ sp[u j ; j ≥ 1] such that ||x -y|| < ε, and this proves assertion (ii). Assertion (iii) is a consequence of ( 7): for any k ≥ 1 let A k be the set

A k = {n ≥ 2 ; j(n) = k}. Observe that if n ∈ A k , n ≥ k + 1. For any n ∈ A k we have ||u (n) k -u (n) n || < 2 -n by (7). Let us estimate ||u n -u k ||: ||u n -u k || ≤ ||u n -u (n) n || + ||u (n) n -u (n) k || + ||u (n) k -u k || ≤ m≥n+1 ||u (m) n -u (m-1) n || + 2 -n + m≥n+1 ||u (m) k -u (m-1) k || ≤ 2 m≥n+1 2 -m + 2 -n = 5.2 -n .
Thus if ε is any positive number, since A k is infinite there exists an n ∈ A k such that ||u n -u k || < ε, and assertion (iii) of Theorem 2.2 is satisfied too. We have thus proved that T is hypercyclic, which proves Theorem 1.2 modulo the construction of λ n , µ n , a n and b (n) for each n ≥ 1.

The induction step

In order to complete the proof of Theorem 1.2, we now have to carry out the induction step. Before starting, let us reformulate the first half of condition (1) in a more convenient way: saying that the operator T n = D n + R n acting on C n has n distinct eigenvalues µ 1 , . . . , µ n exactly means that we have

(E) n j=1 a j b (n) j µ i -λ j = 1
for any i = 1, . . . , n.

Let M n ∈ M n (C) be the matrix M n = (m ij ) 1≤i,j≤n with m ij = 1 µ i -λ j . These coefficients are well-defined, as we choose at each step k λ k ∈ {µ 1 , . . . , µ k } and µ k ∈ {λ 1 , . . . , λ k }.

Then equations (E) can be rewritten as the matrix equation

      1 µ 1 -λ 1 . . . 1 µ 1 -λ n . . . . . . 1 µ n -λ 1 . . . 1 µ n -λ n       .       a 1 b (n) 1 a 2 b (n) 2 . . . a n b (n) n       =      1 1 . . . 1      , i.e. M n       a 1 b (n) 1 a 2 b (n) 2 . . . a n b (n) n       =      1 1 . . . 1      .
We are now ready to begin the construction.

• We start by taking λ 1 = 1 and a 1 = 4 -1 for instance. Then we take µ 1 ∈ T with µ 1 = λ 1 and |µ 1 -λ 1 | so small (with

|µ 1 -λ 1 | < 1 in particular) that if we set b (1) 1 = µ 1 -λ 1 a 1 , then |b (1) 1 | < 2 -1 . Of course T e 1 = µ 1 e 1 .
• Suppose now that the construction has been carried out until Step n -1. We have to construct λ n ∈ T, µ n ∈ T, a n ∈ C and b (n) ∈ C n such that properties ( 1)-( 8) hold true. First of all, let ε > 0 be a positive number which is so small that:

0 < ε < 4 -(n+1) (a) n j=1 (1 + 2 -j )   n-1 j=1 1 |µ j(n) -λ j | 2   1 2 ε < 4 -(n+1) (b) 1 min j=1,...,n-1 |a j |   1 +   n-1 j=1 |a j | 2   1 2    n j=1 (1 + 2 -j ) ε < 2 -n . (c)
We first construct the n th diagonal coefficient λ n of D n : it is chosen very close to µ j(n) . More precisely: by the induction assumption µ j(n) is an eigenvalue of the matrix M n-1 , so that

n-1 j=1 a j b (n-1) j µ j(n) -λ j = 1.
It follows that there exists δ > 0 such that for any λ ∈ T\{λ 1 , . . . , λ n-1 } with |λ -µ j(n) | < δ, we have

• 1 - n-1 j=1 a j b (n-1) j λ -λ j < ε • n j=1 (1 + 2 -j )   n-1 j=1 1 |λ -λ j | 2   1 2 ε < 4 -(n+1) •   n-1 j=1 |a j | 2 . 1 µ j(n) -λ j - 1 λ -λ j 2   1 2 < ε.
We choose λ n ∈ T \ {λ 1 , . . . , λ n-1 , µ 1 , . . . , µ n-1 } such that |λ n -µ j(n) | < δ. We then have:

1 - n-1 j=1 a j b (n-1) j λ n -λ j < ε (d) n j=1 (1 + 2 -j )   n-1 j=1 1 |λ n -λ j | 2   1 2 ε < 4 -(n+1) (e)   n-1 j=1 |a j | 2 . 1 µ j(n) -λ j - 1 λ n -λ j 2   1 2 < ε. (f)
Once λ n is chosen, the next step is to choose µ n . We take

µ n ∈ T\{λ 1 , . . . , λ n , µ 1 , . . . , µ n-1 } with |µ n -λ n | so small that 1 - n-1 j=1 a j b (n-1) j µ n -λ j < ε (g) n j=1 (1 + 2 -j )   n-1 j=1 1 |µ n -λ j | 2   1 2 ε < 4 -(n+1) (h)   n-1 j=1 |a j | 2 . 1 µ j(n) -λ j - 1 µ n -λ j 2   1 2 < ε (i) and |µ n -λ n | |µ i -λ n | < 2 -n C n-1
for any i = 1, . . . , n -1 (j)

||M -1 n || ≤ (1 + 2 -n ) ||M -1 n-1 ||. (k)
It is easy to see that conditions (g), (h), (i) and (j) can be fullfilled if |µ n -λ n | is small enough. That condition (k) can be made to hold too is not so immediate, but not too hard either: first of all for any ε > 0 there exists a δ > 0 such that if

|µ n -λ n | < δ , then det M n-1 (µ n -λ n ) det M n -1 < ε . Indeed (µ n -λ n ) det M n = det
Mn , where Mn is the matrix obtained from M n by multiplying its last line by (µ n -λ n ). If |µ n -λ n | is extremely small, the coefficients ( Mn ) nj , j = 1, . . . , n -1, are almost equal to zero, while ( Mn ) nn = 1. Thus det Mn can be made as close as we wish to det M n-1 , and it is possible to ensure that

1 (µ n -λ n ) det M n - 1 det M n-1 < ε | det M n-1 | , from which it follows that det M n-1 (µ n -λ n ) det M n -1 < ε . Notice that 1 det M n - µ n -λ n det M n-1 < ε |µ n -λ n | | det M n-1 | •
Then the formula M -1 n = 1 det Mn t comM n yields that:

-the coefficients (n, j) and (i, n) of M -1 n , i, j = 1, . . . , n, can be made arbitrarily small if |µ n -λ n | is small enough, as ( t comM n ) nj and ( t comM n ) in do not depend on |µ n -λ n |, while det M n can be made arbitrarily small with |µ n -λ n |; -the coefficients (i, j), i, j = 1, . . . , n -1 can be made very close to the coefficients (M -1 n-1 ) ij . Indeed the dominant term in the computation of ( t comM n ) ij is the one involving

1 µn-λn , that is 1 µn-λn ( t comM n-1 ) ij . So (M -1 n ) ij can be made as close as we wish to 1 (µ n -λ n ) det M n ( t comM n-1 ) ij = det M n-1 (µ n -λ n ) det M n (M -1 n-1 ) ij .
Hence M -1 n is very close to the matrix A n for the operator norm on M n (C), where

(A n ) ij = (M -1 n-1 ) ij for i, j = 1, . . . , n -1 and (A n ) in = (A n ) nj = 0 for i, j = 1, . . . , n. Hence there exists γ > 0 such that ||M -1 n || ≤ (1 + 2 -n )||M -1 n-1 || if |µ n -λ n | < γ, and property (k) is satisfied if µ n is sufficiently close to λ n .
Now that λ n and µ n are constructed, it remains to fix a n and b (n) . We take first

a n = 2 -(n+1) |µ n -λ n |.
There is now not much room for the choice of b (n) : we must have

M n     a 1 b (n) 1 . . . a n b (n) n     =    1 . . . 1    i.e.     a 1 b (n) 1 . . . a n b (n) n     = M -1 n    1 . . . 1    .

The numbers b

(n) j are completely determined by these equations, and so we set

b (n) i = 1 a i n j=1 (M -1 n ) ij .
It now remains to check that with this construction, properties (1)-( 8) are satisfied:

• property (1) is true by construction, since

M n     a 1 b (n) 1 . . . a n b (n) n     =    1 . . . 1    .
• property ( 2) is trivially true if C n is sufficiently large.

• as

a n = 2 -(n+1) |µ n -λ n |, 0 < |a n | < 2 -n , so (3) 
is true.

• let us now check property [START_REF] Belov | On the Salem and Zygmund problem with respect to the smoothness of an analytic function that generates a Peano curve[END_REF]. We have

M n-1     a 1 b (n-1) 1 . . . a n-1 b (n-1) n-1     =    1 . . . 1    . Hence M n       a 1 b (n-1) 1 . . . a n-1 b (n-1) n-1 0       =      1 . . . 1 c n      where c n = n-1 j=1 a j b (n-1) j µ n -λ j • By (g) we have |1 -c n | < ε, so that M n       a 1 (b (n) 1 -b (n-1) 1 
) . . .

a n-1 (b (n) n-1 -b (n-1) n-1 ) a n b (n) n       = |1 -c n | < ε. Hence       a 1 (b (n) 1 -b (n-1) 1 
) . . .

a n-1 (b (n) n-1 -b (n-1) n-1 ) a n b (n) n       < ε ||M -1 n || ≤ ε (1 + 2 -n ) ||M -1 n-1 || ≤ . . . ≤ ε n j=1 (1 + 2 -j )
by (k) and the fact that ||M -1

1 || = |µ 1 -λ 1 | < 1, that is   n-1 j=1 |a j | 2 |b (n) j -b (n-1) j | 2 + |a n b (n) n | 2   1 2 < ε n j=1 (1 + 2 -j ).
In particular

  n-1 j=1 |a j | 2 |b (n) j -b (n-1) j | 2   1 2 < ε n j=1
(1 + 2 -j ) (l) so that min j=1,...,n-1

|a j |   n-1 j=1 |b (n) j -b (n-1) j | 2   1 2 < ε n j=1 (1 + 2 -j ). By (c) we get that   n-1 j=1 |b (n) j -b (n-1) j | 2   1 2 < 2 -n ,
which is property (5).

• property (4) is a consequence of the equations

n j=1 a j b (n) j µ n -λ j = 1, i.e. n-1 j=1 a j b (n) j µ n -λ j + a n b (n) n µ n -λ n = 1 and n-1 j=1 a j b (n-1) j µ j(n) -λ j = 1.
We have

a n b (n) n = (µ n -λ n )   1 - n-1 j=1 a j b (n) j µ n -λ j   = (µ n -λ n )   n-1 j=1   a j b (n-1) j µ j(n) -λ j - a j b (n) j µ n -λ j     = (µ n -λ n )   n-1 j=1 a j 1 µ j(n) -λ j - 1 µ n -λ j b (n-1) j + n-1 j=1 a j µ n -λ j (b (n-1) j -b (n) j )   .
Thus

|a n b (n) n | ≤ |µ n -λ n |   n-1 j=1 |a j | 2 1 µ j(n) -λ j - 1 µ n -λ j 2   1 2   n-1 j=1 |b (n-1) j | 2   1 2 + |µ n -λ n |   n-1 j=1 |a j | 2 |b (n-1) j -b (n) j | 2   1 2   n-1 j=1 1 |µ n -λ j | 2   1 2
. Now by (i) and (l), we have

|a n b (n) n | ≤ |µ n -λ n |   ε ||b (n-1) || + ε n j=1 (1 + 2 -j )   n-1 j=1 1 |µ n -λ j | 2   1 2    .
We have seen in Section 2.3 that properties (4) and (5) at Step j ≤ n -1 imply that ||b (j) -b (j-1) || ≤ 2 -(j-1) (this is assertion (9')), so that ||b (n-1) || ≤ n-1 j=2 2 -(j-1) ≤ 1. Combining this with property (h), we obtain that

|a n b (n) n | < |µ n -λ n |(ε + 4 -(n+1) ). Since ε < 4 -(n+1) by (a), |b (n) n | < 2 . 4 -(n+1) |µ n -λ n | |a n | • As a n = 2 -(n+1) |µ n -λ n |, this yields that |b (n) n | < 2 -n
, and (4) holds true. • property (6) is easy: for i = 1, . . . , n -1,

||u (n-1) i -u (n) i || = |a n | |µ i -λ n | = 2 -(n+1) |µ n -λ n | |µ i -λ n | < 2 -n
by (j). So ( 6) is true.

• in order to prove property [START_REF] Bourdon | Orbits of hyponormal operators[END_REF], we have to estimate

||u (n) j(n) -u (n) n || = n j=1 a j µ j(n) -λ j e j - n j=1 a j µ n -λ j e j =   n-1 j=1 |a j | 2 1 µ j(n) -λ j - 1 µ n -λ j 2   1 2 + |a n | 1 µ j(n) -λ n - 1 µ n -λ n < ε + |a n | |µ n -µ j(n) | |µ j(n) -λ n | . |µ n -λ n | • by (i). Now as a n = 2 -(n+1) |µ n -λ n |, |a n | |µ n -µ j(n) | |µ j(n) -λ n | . |µ n -λ n | ≤ 2 -(n+1) |µ n -λ n | + |λ n -µ j(n) | |µ j(n) -λ n | ≤ 2 -(n+1) 1 + |µ n -λ n | |µ j(n) -λ n | < 2 -(n+1) (1 + 2 -n ) by (j). It follows then from (a) that ||u (n) j(n) -u (n) n || ≤ ε + 2 -(n+1) (1 + 2 -n ) < 2 -n , so (7) 
is true.

• lastly, we have to estimate the quantities ||T n u j(i) || + 2 -j(i) < 2.2 -j(i) + ||u (j(i)) j(j(i)) ||. Since j(m) < m for every m ≥ 2, there exists for each i ≤ n -1 an integer s i such that j [s i -1] (i) > j [s i ] (i) and j [s i ] (i) = 1, where j [s] (i) denotes for each s ≥ 1 the s th iterate of the function j. Thus ||u (k) i || ≤ 2(2 -i + 2 -j(i) + 2 -j(j(i)) + . . . + 2 -j [s i -1] (i) + 2 -1 ) + ||u and this estimate proves [START_REF] Grivaux | A new class of frequently hypercyclic operators[END_REF].

2. 2 .

 2 Eigenvectors of rank one perturbations of diagonal operators. -We are looking for a hypercyclic operator T on the space 2 (N) endowed with the canonical basis (e n ) n≥1 of the form T = U + R, where U is a unitary operator and R is an operator of rank 1. The unitary operator which we construct is a diagonal operator D defined by De n = λ n e n , n ≥ 1, where λ n is for each n ≥ 1 a complex number of modulus 1 with the λ n 's all distinct. The operator R has the form R = b ⊗ a, where a = n≥1 a n e n and b = n≥1 b n e n are two elements of 2 (N): Rx = x, b a for any x ∈ 2 (N). Our aim is to define the coefficients λ n and the numbers a n and b n in such a way that the operator T = D + R satisfies the assumptions of Theorem 2.2. Let λ ∈ T be a complex number of modulus 1. Then with the notation above, λ is an eigenvalue of the operator T = D + R with associated eigenvector u ∈ 2 (N) \ {0} if and only if (D + R)u = λu, i.e. Du + u, b a = λu, i.e. (λ -D)u = u, b a. If λ ∈ {λ n ; n ≥ 1}, λ -D is injective, and thus the equation above admits a non-zero solution u if and only if a ∈ Ran(λ-D), a = (λ-D)a where a ∈ 2 (N) is unique and a , b = 1. If a = n≥1 a n e n , then necessarily a = n≥1 a n λ -λ n e n , and a , b = 1 means that n≥1 a n b n λ -λ n = 1.

  x|| tends to zero as n tends to infinity. Applying this to x = u (k) i yields that for any k ≥ 1 and any

i

  || for k = 1, . . . , n -1 and i = 1, . . . , k: since T k u i belongs to sp[e 1 , . . . , e k ], we have T p u(k) i = D k u (k) i + R p u (k) i for p ≥ k, so that (T p -T p-1 )u (k) i = (R p -R p-1 )u (k) i = u (k) i , b (p) -b (p-1) a (p) for p ≥ k + 1. Thus ||(T p -T p-1 )u (k) i || ≤ ||b (p) -b (p-1) || . ||u (k) i || . ||a (p) ||.By the induction assumption and (5) which we have already proved for p = n, we know that (9') holds true for any p ≤ n:||b (p) -b (p-1) || ≤ 2 -(p-1) for k + 1 ≤ p ≤ n. Moreover for k + 1 ≤ p ≤ n, ||a (p) || ≤ 1 by (3) which is true until step n, and so it remains to prove that ||u (k) i || ≤ 3 for any k = 1, . . . , n -1. By the induction assumption and (6), we have ||u(j) i -u (j-1) i || ≤ 2 -j for i + 1 ≤ j ≤ n -1. Hence ||u ≤ 2 -i for any 1 ≤ k ≤ n -1. So ||u (k) i || ≤ 2 -i + ||u (i)i ||. Now for any i ≤ n -1, we have by[START_REF] Bourdon | Orbits of hyponormal operators[END_REF] of the induction assumption that ||u

i

  || ≤ 2 -i so that ||u (k) i || ≤ 2.2 -i + ||u

  ) ||. Then since i ≤ n -1 and j(i) < i we can again estimate||u (i) j(i) || ≤ ||u (j(i))

  3. So ||(Tp -T p-1 )u (k) i || ≤ 3 . 2 -(p-1) for any k + 1 ≤ p ≤ n. This yields that ||T n u (k) i -µ i u (k) i || < 3 n p=k+1 2 -(p-1) ≤ 3 . 2 -(k-1)
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