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Résumé

We consider a stochastic Cahn-Hilliard partial differential equation driven by space-time white noise. We
prove the Large Deviations Principle (LDP) for the law of the solutions in the Hölder norm. We use the
weak convergence approach that reduces the proof to establishing basic qualitative properties for controlled
analogues of the original stochastic system..
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1 Introduction
In this paper we consider the following Stochastic Cahn-Hilliard equation with multiplicative space-time

white noise, indexed by ε > 0, given by
∂uε

∂t
(t, x) = −∆(∆uε(t, x)− f(uε(t, x))) +

√
εσ(uε(t, x))Ẇ (t, x), (t, x) ∈ [0, T ]×D,

uε(0, x) = u0(x),
∂uε

∂ν
(t, x) =

∂∆uε

∂ν
(t, x) = 0, on [0, T ]× ∂D,

(1.1)

where T > 0, D = [0, π]d with d = 1, 2, 3, f is a polynomial of degree 3 with positive dominant coefficient
such as f = F ′, where F (u) = (1 − u2)2 is a double equal-well potential. The noise diffusion coefficient σ is a
bounded and Lipschitzian function,W is a space-time Brownian sheet defined on some filtered probability space
(Ω,F ,Ft,P), and ν is the outward normal vector. The initial condition u0 is a real-valued function satisfying
some assumptions that will be specified later.
The deterministic Cahn-Hilliard equation (i.e., σ ≡ 0 in (1.1)) was introduced by Cahn and Hilliad in 1958 as a
mathematical model of spinodal decomposition for a binary allow in order to determine the comprising species
concentrations when the separation phase take place, see [11]. In this model, the function f is the derivative of
the homogeneous free energy F that was given in its original form by

F (u) = −θc
2
u2 +

θ

2
((1 + u) ln(1 + u)− (1− u) ln(1− u)) , −1 < u < 1,

where θc and θ are respectively proportional to the critical and the quenching temperatures. One can see [17]
where it is rigourously justified that F can be replaced in some circumstances by a polynomial of even degree
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with a strictly positive dominant coefficient. For more details on physical aspects of this equation one can see
e.g. ([11], [17], [20], [26], [28]).
Over the past three decades, different questions and properties related to the equation (1.1) have been the subject
of many works. Indeed, the existence of the solution and of its density was established by Cardon-Weber in [13],
a support theorem was showed in [5] by Bo and its co-authors, a Freidin-Wentzell large deviations principle
was obtained by Shi et al. in [32]. Recently, Antonopoulou et al. [1] have attempted to go beyond bounded
coefficient noisy term in order to improve the results of [13]. Also, the Cahn-Hilliard equation driven by non
Gaussian perturbations was studied in a multitude of setting, we can cite e.g. [4] and [25].
Inspired by the pioneering works [35] and [24] of Freidlin and Wentzell on large deviations for diffusion stochastic
processes, growing interest has been paid to this topic during the last three decades. This was thanks to its various
applications in many scientific areas. Also, its nonlinear character and its connection with several mathematic
theories make it an active field of theoretical researches. And besides a considerable literature about the large
deviations for stochastic differential equations (SDE), this aspect has been investigated for the most popular
stochastic partial differential equations (SPDEs) and we here cite e.g. [27] for the stochastic heat equation, [12]
for the stochastic Burgers equation, [15] for the stochastic wave equation of degree two and [33] for a reaction
diffusion equation with non- Gaussian perturbation. Note that in all these works authors used the classical
approach of Freidlin and Wentzell that was developed essentially in [2], [30] and [3]. For a complete and deep
exposition of the topic of large deviations theory we refer to [18].
Recently, the weak convergence approach introduced by Ellis and Dupuis in [21] and developed in [6], [9] and
[10] have gave a new impetus to the study of large deviations both to investigate new random dynamic systems
or to revisit and improve anterior results of the point of relaxing assumptions or simplifying the proof. And
taking advantage of this approach, many works on various SPDEs has been appeared in last few years. See for
a short list e.g. ([8], [19], [23], [31], [29], [34]). The present paper fits into this optic.
It is worth mentioning that the weak convergence approach consists to use a Laplace principle and some
variational representations for exponential functionals of infinite dimensional Brownian motion. The proofs are
based on showing qualitative properties for controlled versions of the origin processes. This fact unable one to
avoid well known difficulties of the classical approach when one wants establish exponential estimates that use
approximation and discretization procedure.
In this work we show a large deviations principle for the stochastic Cahn-Hilliard equation in the Höder norm.
Thereby, we improve the result of [32] that was given in terms of the uniform convergence topology. Moreover,
our proofs are less difficult of that used in [32].
The present paper is organized as follows. Coming section contains basic backgrounds of large deviations theory
and well known results about the solution of the equation (1.1). Section 3 gives the general framework of our
work. And in the last section, we announce and prove our main result.

2 Preliminaries and main assumptions
In this section we present some assumptions, preliminaries and standard definitions which are needed for

the formulation of the problem.

2.1 Large deviations
For a family of random variables {Xε; ε > 0} defined on a probability space (Ω,F , P ) and taking values

in a Polish space E , the LDP is concerned with events A for which probabilities P (Xε ∈ A) converges to zero
exponentially fast as ε → 0. The exponential decay rate of such probabilities are typically expressed in terms
of a “rate function" I mapping E into [0,∞].

Definition 2.1 The family of random variables {Xε; ε > 0} is said to satisfy the LDP with the good rate
function (or action functional) I : E → [0,∞], on E, if
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1. For each M <∞ the level set {x ∈ E ; I(x) ≤M} is a compact subset of E.
2. Large deviation upper bound : for any closed subset F of E

lim sup
ε→0+

ε logP (Xε ∈ F ) ≤ −I(F ).

3. Large deviation lower bound : for any open subset O of E

lim inf
ε→0+

ε logP (Xε ∈ O) ≥ −I(O).

Where, for A ⊂ E, we define I(A) = infx∈A I(x).

The Freidlin-Wentzell theory [22] describes the path asymptotics, as ε→ 0, of probabilities of the large devia-
tions of the solutions of small noise finite dimensional Stochastic differential equations (SDEs), away from its
law if large number limite. For the case where the driving brownian motion is infinite dimensional, that covers
the stochastic partial differential equations (SPDEs), Budhiraja et al. [10] use certain variational representations
for infinite dimensional brownian motions (from Boué et al. [6] or also Budhiraja et al. [9]) to give a framework
for proving large deviations for a variety of infinite dimensionals systems.

In a many problems one is interested in obtaining exponential estimates on functions which are more general
than indicator functions of closed or open sets. This leads to the study of the, so called, Laplace principle.

Definition 2.2 (Laplace principle) The family of random variables {Xε; ε > 0} defined on the Polish space E,
is said to satisfy the Laplace principle with rate function I if for any bounded continuous function h : E → R,

lim
ε→0

ε logE

(
exp

[
−1

ε
h(Xε)

])
= − inf

f∈E
{h(f) + I(f)},

where E is the expectation with respect to P .

In [35] and [7], Varadhan and Bryc established an equivalence between LDP and Laplace principle (LP) on a
Polish space. In a view of this equivalence, the rest of this paper will be concerned with the study of the Laplace
principle.
In the weak convergence approach which is a suitable for the evaluation of integrals appearing in the Laplace
principle, the integrals are associated to a variational representation through a family of minimal cost functions.
The asymptotic behavior of these minimal cost functions are in turn determined by the weak convergence ap-
proach [21]. The classical approach to large deviation used in [32] for this equation, require more technicalities.
For instance, the time discretizations required in proving the regularity of the skeleton and the exponential
inequalities for the stochastic integral in Hölder norms are also needed. These are usually the most difficult
parts if the large deviations analysis based on the standard approximation method.

2.2 Assumptions and mild solution
Letting q ≥ 1, we define ‖ · ‖q as the usual norm in Lq(D). Assume the following assumptions :

(H1) f is a polynomial function of degree 3 with positive dominant coefficient.

(H2) σ : is a bounded and Lipschitz function.

(H3) u0 ∈ Lp(D) (for some p ≥ 4) is continuous on D.

(H3’) u0 is an γ-Hölder continuous function on D, γ ∈]0, 1].
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Following J. B. Walsh for parabolic problems [36], and C. Cardon-Weber [13], a rigorous meaning for solution
of equation (1.1) can be given by means of the following definition.

Definition 2.3 (Mild solution) A jointly measurable and adapted process {u(t, x); (t, x) ∈ [0.T ] × D} is called
a mild solution of (1.1) with initial condition u0 if it satisfies, for each t ≥ 0 and a.s. for almost all x ∈ D the
following evolution equation :

uε(t, x) =

∫
D
Gt(x, y)u0(y)dy +

√
ε

∫ t

0

∫
D
Gt−s(x, y)σ(uε(s, y))W (ds, dy)

+

∫ t

0

∫
D

∆Gt−s(x, y)f(uε(s, y))dsdy, (2.2)

where Gt(·, ·) denotes the Green kernel corresponding to the operator ∂
∂t + ∆2 with the Neumann boundary

conditions. Note that some useful estimates concerning Gt(·, ·) are given in [13].

The following result of C. Cadon-Weber ([13], Theorem 1.3) asserts the existence and uniqueness of a solution
to (1.1).

Theorem 2.1 (Existence, uniqueness and the regularity of solutions) Under the assumptions (H1)-(H3), there
exists a unique solution (in the Walsh’s sense) of the equation (1.1) which satisfies

sup
0≤t≤T

(
E‖u(t, ·)‖qp

)1/q
<∞, (2.3)

for q ≥ p if d ∈ {1, 2} and for p ≤ q < 6p
(6−p)+ if d = 3. Moreover, under (H1)- (H3’), ([13], Theorem 4.1) gives

the a.s. β–Hölder continuous property for the trajectories of the solution with β ≤ γ
4 and β < 1

2 (1− d
4 ).

Theorem 2.2 (The solution mapping of equation (1.1)). Assuming (H1)-(H3’). Let α ≤ γ
4 ∧

1
2 (1− d

4 ) and set
E0 = Lp(D) ∩ Cγ(D), for some p ≥ 4, γ ∈]0, 1]. There exists a measurable function

Gε : E0 × C([0, T ]×D : R)→ Cα([0, T ], Lp(D)),

such that, for any filtered probability space (Ω,F ,Ft, P ) with a Brownian sheet W as above and u0 ∈ E0,
uε = Gε(u0,

√
εW ), is the unique mild solution of (1.1) (with initial condition u0) and satisfies (2.3).

In order to be able to apply the weak convergence approach for large deviations theory, we need a Polish
space setting carrying the probability laws of the family {uε(t, x); ε ∈ (0, 1], (t, x) ∈ [0, T ]×D}. And regarding
the Hölder property of u we introduce the space Cα([0, T ], Lp(D)) endowed with the following norm

‖u‖α,p = sup
t∈[0,T ]

‖u(t, ·)‖p + sup
t6=t′t,t′∈[0,T ]

‖u(t, ·)− u(t′, ·)‖p
|t− t′|α

, (2.4)

for p ≥ 4 and α ∈]0, 1[. And because our setting requires a Polish space state, we recall that if α′ < α, then the
separable space Cα

′,0([0, T ], Lp(D))of functions belonging to Cα
′
([0, T ], Lp(D)) and satisfying

lim
δ−→0

sup
0<|t−t′|<δ,t6=t′

‖u(t, ·)− u(t′, ·)‖p
|t− t′|α′ = 0

is a polish space containing Cα([0, T ], Lp(D)). Hence, we can restrict ourselves in all the sequel to the space
Eα := Cα,0([0, T ], Lp(D)) for α < γ

4 ∧
1
2 (1− d

4 ).
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3 Framework for the Laplace Principle
The obtention of Laplace principle by the weak convergence approach is based on an important result given

by Budhiraja et al. [10].

3.1 Laplace principle of functionals of Brownian sheet.
Consider the filtered probability space (Ω,F ,Ft, P ) defined in the introduction, and let E0 and E be

Polish spaces such that the initial condition u0 takes values in a compact subspace of E0. Moreover, let
{Gε : E0 × C([0, T ]×D;R)→ E , ε > 0} be a family of measurable maps.

For u0 ∈ E0, Define
Xε,u0 := Gε(u0,

√
εW ). (3.5)

In the sequel we will give sufficient conditions for the Laplace principle for Xε,u0 to hold uniformly in u0 for
compact subsets of E0.

For N ∈ IN, consider the following

SN =

{
φ ∈ L2([0, T ]×D) :

∫ T

0

∫
D
φ2(s, y)dsdy ≤ N

}
,

which is a compact metric space, equipped with the weak topology on L2([0, T ]×D).

Let P2 be the class of all predictable processes φ such that
∫ T
0

∫
D φ

2(s, y)dsdy <∞, a.s. Also, define

PN2 =
{
v(ω) ∈ P2 : v(ω) ∈ SN , P − a.s

}
,

the space of controls.
The following condition is the standing assumption of Theorem 3.1 which states the Laplace principle for the
family {Xε,u0}ε>0 defined by (3.5). For u ∈ L2([0, T ]×D), define I(u) ∈ C([0, T ]×D : R) as

I(u)(t, x) :=

∫ t

0

∫ x

0

u(s, y)dsdy.

Assumption (A) : There exists a measurable map G0 : E0×C([0, T ]×D;R)→ E such that the following hold :
(A1) For every M <∞ and a compact set K ⊂ E0, the set

ΓM,K :=
{
G0(u0, I(u)); u ∈ SM , u0 ∈ K

}
is a compact subset of E .

(A2) Consider M <∞ and a family {vε : ε > 0} ⊂ P2
M , and {uε0} ⊂ E0 such that vε → v and uε0 → u0 in

distribution (as SN -valued random elements) as ε→ 0. Then

Gε(uε0,
√
εW + I(vε))→ G0(u0, I(u)),

in distribution as ε→ 0.

For h ∈ E , and u0 ∈ E0, define the rate function

Iu0
(h) := inf

{v∈L2([0,T ]×D):h=G0(u0,I(v))}

{
1

2

∫ T

0

∫
D
v2(s, y)dyds

}
, (3.6)

5



where the infimum over an empty set is taken to be ∞.

The following theorem is due to proved by Budhiraja et al.( [10], Theorem 7) and states the Laplace principle
for the family Xε,u0 .

Theorem 3.1 (Theorem 7 in [10]) Let G0 : E0×C([0, T ]×D;R)→ E be a measurable map satisfying assumption
(A). Suppose that for all h ∈ E, u0 → Iu0

(h) is a lower semi-continuous map from E0 to [0,∞]. Then for every
u0 ∈ E0, Iu0

(h) : E → [0,∞], is a rate function on E and the family {Iu0
, u0 ∈ E} of rate functions has compact

level sets on compacts. Furthermore, the family Xε,u0 satisfies the Laplace principle on E with rate function Iu0

defined by (3.6), uniformly in u0 on compact subsets of E0.

3.2 The controlled and limiting equations for the spde (1.1)
In the context of the spde under our study, E0 = Lp(D)∩ Cγ(D), for some p ≥ 4, γ ∈]0, 1] is the space of the

initial condition, and E = Eα := Cα,0([0, T ], Lp(D)) for α < γ
4 ∧

1
2 (1− d

4 ) the space of solutions.

The solution map of equation (1.1) is uε = Gε(u0,
√
εW ). Then, for v ∈ PN2 , uε,v := Gε(u0,

√
εW + I(v)) is the

solution map of the stochastic controlled equation for the spde (1.1) :

∂uε,v

∂t
(t, x) = −∆(∆uε,v(t, x)− f(uε,v(t, x))) +

√
εσ(uε,v(t, x))

∂2W

∂t∂x
+ σ(uε,v(t, x))v(t, x),

whose mild solution is

uε,v(t, x) =

∫
D
Gt(x, y)u0(y)dy +

√
ε

∫ t

0

∫
D
Gt−s(x, y)σ(uε,v(s, y))W (ds, dy)

+

∫ t

0

∫
D

∆Gt−s(x, y)f(uε,v(s, y))dsdy +

∫ t

0

∫
D
Gt−s(x, y)σ(uε,v(s, y))v(s, y)dsdy. (3.7)

Also, define the map G0(u0, I(v)) := uv, where uv is the solution of the following zero-noise equation :

uv(t, x) =

∫
D
Gt(x, y)u0(y)dy +

∫ t

0

∫
D
Gt−s(x, y)σ(uv(s, y))v(s, y)dsdy

+

∫ t

0

∫
D

∆Gt−s(x, y)f(uv(s, y))dsdy. (3.8)

The following theorem gives a statement of existence and uniqueness for the solution of the stochastic controlled
equation given by (3.7).

Theorem 3.2 (Existence and uniqueness of controlled process) Assuming (H1) − (H3). Let Gε denote the
solution mapping, and let v ∈ PN2 for some N ∈ IN. Define

uε,v = Gε(u0,
√
εW + I(v)),

then uε,v is the unique solution of equation (3.7), which satisfies

sup
ε≤1

sup
v∈PN2

sup
0≤t≤T

E
(
‖uε,v(t, ·)‖qp

)
<∞, (3.9)

for q ≥ p if d = 1, 2, and p ≤ q < 6p
(6−p)+ in the case d = 3.
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Proof. For v ∈ PN2 , set

dQε,v := exp

{
− 1√

ε

∫ t

0

∫
D

v(s, y)W (ds, dy)− 1

2ε

∫ t

0

∫
D

v(s, y)2dsdy

}
dP.

Since is defined by an exponential martingale, Qε,v is a probability measure on Ω. And by Girsanov theorem
the process

W̃ (dt, dx) = W (dt, dx) +
1√
ε

∫ t

0

∫
D

v(s, y)dsdy

is a space-time white noise on the space Ω under the probability measure Qε,v. Rewriting (3.7) using W̃ (dt, dx)
we obtain (2.2) with W̃ (dt, dx) in place of W (dt, dx). Let u be the unique solution of (2.2) with W̃ (dt, dx) on
the space (Ω,F , Qε,v). Then u satisfies (3.7), Qε,v a.s. And by equivalence of probabilities, then u satisfies (3.7),
P a.s.
For the uniqueness, if u1 and u2 are two solutions of (3.7) on (Ω,F ,P), then u1 and u2 are solutions of (2.2)
governed by W̃ (dt, dx) on (Ω,F , Qε,v). By the uniqueness of the solution of (2.2), we obtain u1 = u2, Qε,v a.s.
And by equivalence of probabilities, we obtain u1 = u2, P a.s.
Concerning the estimate (3.9), it holds true for the three first terms by the estimations (2.16), (2.17) and (2.35)
in [13]. It remains to show it for the last term. Indeed, by the estimation (1.11) in [13], there exists a constant
c > 0 such that∥∥∥∥∫ t

0

∫
D

Gt−s(·, y)σ(uε,v(s, y))v(s, y)dsdy

∥∥∥∥
p

≤ c
∫ t

0

(t− s) d4 ( 1
r−1)‖σ(uε,v(s, ·))v(s, ·)‖ρds,

where ρ ∈ [1, p] and 1
r = 1

p −
1
ρ +1. Using the boundedness of σ, taking ρ = 2 in the last inequality and applying

Cauchy Schwarz inequality we get a.s.∥∥∥∥∫ t

0

∫
D

Gt−s(·, y)σ(uε,v(s, y))v(s, y)dsdy

∥∥∥∥
p

≤ c
d
2

(
1
r − 1

)
+ 1

T
d
2 ( 1

r−1)+1‖v‖HT

≤ c
d
2

(
1
r − 1

)
+ 1

T
d
2 ( 1

r−1)+1N. (3.10)

Note that, with the condition p ≥ 4, there exists r satisfying (3.10) that can be taken in [ 43 , 3[. Then

E

(∥∥∥∥∫ t

0

∫
D

Gt−s(·, y)σ(uε,v(s, y))v(s, y)dsdy

∥∥∥∥q
p

)
<∞. (3.11)

Hence, (3.9) holds. �

Remark 3.1 (Hölder regularity of controlled and limiting processes) Assuming (H1) − (H3′). Both processes
{uε,v(t, ·); t ∈ [0, T ]} and {uv(t, ·); t ∈ [0, T ]}, defined by (3.7) and (3.8) respectively, live in the space Eα.

Proof.
The Hölder regularity for these two processes can be obtained by arguing as in the point ii) of the proof of
Theorem 4.1. �
For h ∈ Eα, and u0 ∈ E0, define the rate function

Iu0
(h) := inf

v

{
1

2

∫ T

0

∫
D
v2(s, y)dyds

}
, (3.12)

where the infimum is taken over all v ∈ L2([0, T ]×D) such that
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h(t, x) =

∫
D
Gt(x, y)u0(y)dy +

∫ t

0

∫
D
Gt−s(x, y)σ(h(s, y))v(s, y)dsdy

+

∫ t

0

∫
D

∆Gt−s(x, y)f(h(s, y))dsdy. (3.13)

Note that under assumptions (H1)-(H3), for every v ∈ PN2 , the equation (3.13) admits a unique solution which
belongs to C([0, T ], Lp(D)), and moreover

sup
t∈[0,T ]

‖uv(t, ·)‖qp <∞, (3.14)

for q ≥ p if d ∈ {1, 2} and for p ≤ q ≤ 6p
(6−p)+ if d = 3. The proof is omitted since is similar to that of Theorem

3.1 of [13] but by replacing the stochastic integral by the integral containing v.

4 The main result
The main result of this paper is the following :

Theorem 4.1 Under the assumptions (H1)-(H3’), the law of the solution {uε; ε ∈ (0, 1]}, defined by (2.2),
satisfies, on Eα, a large deviation principle with the rate function Iu0

, define by (3.12), uniformly for u0 in
compact subsets of E0.

In view of Theorem 3.1, to prove Theorem 4.1 it suffices to verify conditions (A1) and (A2).

Remark 4.1 This result improve that of Shi and al. [32] where the LDP was established by the classical approach
in the space C([0, T ];Lp(D)) equipped with the topology of uniform convergence.

Proof of Theorem 4.1 As mentioned above, here we will show that the conditions (A1) and (A2) hold. In a
first time we deal with (A2). That is, we need to show that for all q ≥ p we have

‖uε,v
ε

(t)− uv(t)‖qα,p −→ 0 in probability as ε −→ 0. (4.15)

To do it, we will use a localization argument introduced in [14]. For M > 0, define the following event

AMε (t) = {w ∈ Ω; sup
s∈[0,t]

‖uε,v
ε

(s)‖p ∨ sup
s∈[0,t]

‖uv(s)‖p ≤M}.

and set
Yε(t) := uε,v

ε

(t)− uv(t).

Owing to (3.9) and (3.14), we have P(AMε (T )c) −→ 0 as ε −→ 0 and M −→ ∞. Then, by using Lemma A.1
in [14], it suffices to show

i) for all t ∈ [0, T ];
lim
ε−→0

E
[
1AMε (t)‖Yε(t)‖qp

]
= 0 (4.16)

ii) there exists β > 0 such that for all t, t′ ∈ [0, T ],

sup
ε∈]0,1[

E
[
1AMε (T )‖Yε(t)− Yε(t′)‖qp

]
≤ c|t− t′|βq. (4.17)
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To prove i), we write

Yε(t) =
√
ε

∫ t

0

∫
D

Gt−s(·, y)σ(uε,v
ε

(s, y))W (ds, dy) +

∫ t

0

∫
D

∆Gt−s(·, y)
[
f(uε,v

ε

(s, y))− f(uv(s, y))
]
dsdy,

+

∫ t

0

∫
D

Gt−s(·, y)σ(uε,v
ε

(s, y)) [vε(s, y)− v(s, y)] dsdy

+

∫ t

0

∫
D

Gt−s(·, y)
[
σ(uε,v

ε

(s, y))− σ(uv(s, y))
]
v(s, y)dsdy

=

4∑
i=1

Jεi (t).

Then

E
[
1AMε (t)‖Yε(t)‖qp

]
≤ c

4∑
i=1

E
(
1AMε (t)‖Ji(t)‖qp

)
≤ c

4∑
i=1,i6=2

E
(
‖Ji(t)‖qp

)
+ cE

(
1AMε (t)‖J2(t)‖qp

)
. (4.18)

For Jε1 (t), first we apply Hölder inequality and we get

E
(
‖Jε1 (t)‖qp

)
= E

(∫
D

|Jε1 (t, x)|pdx
) q
p

≤ c
∫
D

E|Jε1 (t, x)|qdx. (4.19)

Later we use Burkholder inequality, the boundedness of σ and estimation (4.16)

E|Jε1 (t, x)|q ≤ cε
q
2

(∫ t

0

∫
D

G2
t−s(x, y)σ2(uε,v

ε

(s, y))dsdy

)q/2
≤ cε

q
2

(∫ t

0

∫
D

G2
t−s(x, y)dsdy

)q/2
< cε

q
2 . (4.20)

Concerning Jε2 (t), using (3.16) in [4] and Hölder inequality we get for 1 ≤ ρ ≤ p and 1 < γ ≤ q

E
(
1AMε (t)‖Jε2 (t)‖qp

)
≤ cE

(
1AMε (t)

∫ t

0

‖f(uε,v
ε

(s, ·))− f(uv(s, ·))‖γρds
) q
γ

,

≤ cE

(∫ t

0

1AMε (s)‖f(uε,v
ε

(s, ·))− f(uv(s, ·))‖qρds
)
.

Note that, for the last inequality, taking in account the fact that AMε (t) ⊂ AMε (s) for 0 ≤ s ≤ t, we have used
the following upper estimate∣∣∣∣1AMε (t)

∫ t

0

∫
D

φ(s, y)dyds

∣∣∣∣ ≤ ∣∣∣∣∫ t

0

∫
D

1AMε (s)φ(s, y)dyds

∣∣∣∣ ,
for t ∈ [0, T ] and for a measurable function φ : Ω× [0, T ]×D −→ R, one can see Remark 3.2. in [14]. Since f is

a polynomial function of degree 3, we can write

‖f(uε,v
ε

(s, ·))− f(uv(s, ·))‖qρ ≤ c
[
‖uε,v

ε

(s, ·)− uv(s, ·)‖qρ + ‖uε,v
ε

(s, ·)2 − uv(s, ·)2‖qρ

+‖(uε,v
ε

(s, ·)3 − uv(s, ·)3‖qρ
]
.
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Taking ρ = p
3 , we have

‖uε,v
ε

(s, ·)− uv(s, ·)‖qρ ≤ c‖uε,v
ε

(s, ·)− uv(s, ·)‖qp;

‖uε,v
ε

(s, ·)2 − uv(s, ·)2‖qρ ≤ c‖uε,v
ε

(s, ·)− uv(s, ·)‖qp
(
‖uε,v

ε

(s, ·)‖qp + ‖uv(s, ·)‖qp
)

;

‖uε,v
ε

(s, ·)3 − uv(s, ·)3‖qρ ≤ c‖uε,v
ε

(s, ·)− uv(s, ·)‖qp
×
(
‖uε,v

ε

(s, ·)‖qp + ‖uε,v
ε

(s, ·)‖qp‖uv(s, ·)‖qp + ‖uv(s, ·)‖qp
)
.

Then

E
(
1AMε (t)‖Jε2 (t)‖qp

)
≤ c

∫ T

0

E
(
1AMε (s)‖Yε(s)‖qp

)
ds. (4.21)

For Jε3 (t), Holder inequality, the boundedness of σ and the Cauchy schwarz inequality yield

E
(
‖Jε3 (t)‖qp

)
≤ c

∫
D

E|J3(t, x)|qdx

≤ c

∫
D

E

(∫ t

0

∫
D

Gt−s(x, y) |vε(s, y)− v(s, y)| dsdy
)q

dx

≤ c sup
x∈D

(∫ t

0

∫
D

G2
t−s(x, y)dy

)q
E
(
‖vε − v‖qHT

)
≤ cE

(
‖vε − v‖qHT

)
. (4.22)

For Jε4 (t), the same arguments as before yield that a.s we have

‖Jε4 (t)‖qp ≤ ‖v‖qHT

(∫
D

(∫ t

0

∫
D

G2
t−s(x, y)[σ(uε,v

ε

(s, y))− σ(uv(s, y))]2dsdy

) p
2

dx

)q/p

≤ Nq

(∫
D

[(∫ t

0

∫
D

G2
s(x, y)dsdy

) p
2−1 ∫ t

0

∫
D

G2
t−s(x, y)|Yε(s, y)|pdsdy

]
dx

)q/p

≤ c

(∫
D

[∫ t

0

∫
D

G2
t−s(x, y)|uε,v

ε

(s, y)− uv(s, y)|pdsdy
]
dx

)q/p
≤ c

(∫ t

0

(∫
D

G2
t−s(x, y)dx

)∫
D

|Yε(s, y)|pdyds
)q/p

≤ c

(∫ t

0

(t− s)− d4 ‖Yε(s, y)‖ppds
)q/p

≤ c

(∫ t

0

(t− s)− d4
) q
p−1 ∫ t

0

(t− s)− d4 ‖Yε(s, y)‖qpds

≤ c

∫ t

0

(t− s)− d4 ‖Yε(s)‖qpds. (4.23)

Hence, combining (4.18)-(4.23) we obtain

E
(
1AMε (t)‖Yε(t)‖qp

)
≤ c

(
ε
q
2 + E

(
‖vε − v‖qHT

)
+

∫ T

0

(
1 + (t− s)− d4

)
E
(
1AMε (s)‖Yε(s)‖qp

)
ds

)
.
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We obtain (4.16) by applying a version of Gronwall lemma given by (Lemma 15, [16]).

To prove ii), consider t ; t′ ∈ [0, T ] such that t < t′. We have

Yε(t)− Yε(t′) = (u
ε,vε

(t)− u
ε,vε

(t′))− (uv(t)− uv(t′)).

Then

E
(
1AMε (T )‖Yε(t)− Yε(t′)‖qp

)
≤ E

(
1AMε (T )‖u

ε,vε

(t)− u
ε,vε

(t′)‖qp
)

+ P(AMε (T ))‖uv(t)− uv(t′)‖qp.

At beginning we deal with the first term and we write (3.7) as

uε,v
ε

(t, x) = Iε,v
ε

0 (t, x) + Iε,v
ε

1 (t, x) + Iε,v
ε

2 (t, x) + Iε,v
ε

3 (t, x),

where Iε,v
ε

i (t, x) stands for the i-th term in (3.7). By Lemma 2.2. in [13], there exists a constant c > 0 such that

‖Iε,v
ε

0 (t)− Iε,v
ε

0 (t′)‖qp ≤ c|t− t′|
qγ
4 . (4.24)

The same reference gives the existence of β > 0 such that 0 < β < 1
2

(
1− d

4

)
such that

E
(
‖Iε,v

ε

1 (t)− Iε,v
ε

1 (t′)‖qp
)
≤ c
√
ε|t− t′|βq. (4.25)

Concerning Iε,v
ε

2 we have

Iε,v
ε

2 (t′)− Iε,v
ε

2 (t) =

∫ t

0

∫
D

∆[Gt′−s(·, y)−Gt−s(·, y)]f(uε,v
ε

(s, y))dsdy

+

∫ t′

t

∫
D

∆Gt′−s(·, y)f(uε,v
ε

(s, y))dsdy

≡ Iε,v
ε

2,1 (t, t′) + Iε,v
ε

2,2 (t, t′).

By (1.12) in [13], the Hö inequality and the estimation (3.9) there exists 1 ≤ ρ ≤ p and κ ∈ [0, 1] such that

E
(
‖Iε,v

ε

2,2 (t, t′)‖qp
)
≤ cE

(∫ t′−t

0

(t′ − t− s)− 1
2+

d
4 (κ−1)‖f(uε,v

ε

(t+ s, ·))‖ρds

)q

≤ c|t′ − t|q(
1
2+

d
4 (κ−1))

∫ t′−t

0

(t′ − t− s)− 1
2+

d
4 (κ−1)E

(
‖f(uε,v

ε

(t+ s, ·))‖qρ
)
ds

≤ c|t′ − t|(q+1)( 1
2+

d
4 (κ−1)). (4.26)

Using (3.14) in [4], Hölder inequality and the estimation (3.9), there exist θ ∈
]
0, 12 + d

4 (κ− 1)
[
and γ ∈]

1
1
2+

d
4 (κ−1)−θ

, q
[
such that

E
(
‖Iε,v

ε

2,1 (t, t′)‖qp
)
≤ c|t′ − t|θqE

(
‖f(uε,v

ε

(·, ∗))‖qLγ([0,T ],Lρ(D))

)
≤ c|t′ − t|θq. (4.27)

Concerning Iε,v
ε

3 we have

Iε,v
ε

3 (t′)− Iε,v
ε

3 (t) =

∫ t

0

∫
D

[Gt′−s(·, y)−Gt−s(·, y)]σ(uε,v
ε

(s, y))vε(s, y)dsdy

+

∫ t′

t

∫
D

Gt′−s(·, y)σ(uε,v
ε

(s, y))vε(s, y)dsdy

≡ Iε,v
ε

3,1 (t, t′) + Iε,v
ε

3,2 (t, t′).
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By Cauchy-Schwarz inequality, the fact that ‖vε‖HT ≤ N a.s. and by Lemma 1.8. in [13] we obtain the existence
of η > 0 such that

E
(
‖Iε,v

ε

3,i (t, t′)‖qp
)
≤ c|t′ − t|ηq, (4.28)

for i = 1, 2.
Therefore, by (4.24), (4.25), (4.27) and (4.28) we obtain (4.17) for the first term. And arguing similarly and
using the estimation (3.14) we obtain (4.17) for the second term. Hence, the condition (A2) is checked.

Concerning (A1), it will be a consequence of the continuity of the mapping h : HNT −→ Eα with respect to the
weak topology. It consists to consider v, (vn) ⊂ HNT such that for any g ∈ HNT ,

lim
n−→+∞

〈v − vn, g〉HNT = 0,

and to prove
lim

n−→+∞
‖uvn − uv‖α,p = 0. (4.29)

The proof will be omitted since we can proceed as in (A2) and by using the following estimate

sup
‖v‖≤N

sup
t∈[0,T ]

‖uv(t)‖p <∞, (4.30)

which follows from Lemma 3.1. in [32].

Finally, since the conditions (A1) and (A2) are held, the proof of the Theorem 4.1 is completed. �

5 Appendix
We recall here some useful results that we have used in the proofs of our result. The following lemma gives

well-known estimates on space and time increments for the Green function G associated to the Cahn-Hilliard
operator. For the proof, we refer to [13] .

Lemma 5.1 There exists positive constants c, γ and γ′ satisfying γ < 4 − d, γ ≤ 2 and γ′ < 1 − d
4 such that

for all y, z ∈ D, 0 ≤ s < t ≤ T and 0 ≤ h ≤ t we have
1. ∫ t

0

∫
D
|Gr(x, y)−Gr(x, z)|2drdy ≤ c|y − z|γ (5.31)

2. ∫ t

0

∫
D
|Gr+h(x, y)−Gr(x, y)|2drdy ≤ c|h|γ

′
(5.32)

3. ∫ t

s

∫
D
|Gr(x, y)|2dsdy ≤ c|t− s|γ

′
(5.33)

The following lemma is a version of the Garsia-Rademich-Rumsay lemma. For the proof, we refer to [14] and
references therein.

Lemma 5.2 let (Yn)n be a sequence of Cα([0, T ];Lp([0, 1])) valued stochastic processes, let (τn) be a sequence
of stopping times and let p ∈]1,+∞[ such that

1. For any t ∈ [0, T ],
lim

n−→+∞
E
(
1{t≤τn}‖Yn(t, ·)‖qp

)
= 0.

12



2. There exists γ > 0 such that for any (t, t′) ∈ [0, T ]

sup
n

E
(
1{t∨t′≤τn}‖Yn(t, ·)− Yn(t′, ·)‖qp

)
≤ c|t− t′|γ+d.

Then, for 1 ≤ r < p and θ < γ
p one has

lim
n−→+∞

E
(
1{t≤τn}‖Yn(t, ·)‖rθ,p,τn

)
= 0;

where
‖u‖θ,p,τ := sup

t∈[0,T∧τ ]
‖u(t)‖p + sup

t 6=t′t,t′∈[0,T∧τ ]

‖u(t)− u(t′)‖p
|t− t′|θ

,

for a stopping time τ .
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