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Abstract

The problem of maximizing total early work
in a two-machine flow-shop is known to be NP-
hard, for which an O(n2d2) dynamic program

and an O(n
4

ε2 ) FPTAS exist in the literature.
In this paper, we present new optimality prop-
erties, which pave the base for an O(nd2) time

dynamic programming algorithm and an O
(
n3

ε2

)
time FPTAS. We further generalize the problem
to a distributed flow shop consisting of m par-
allel two-machine flow-shops. We develop an
O(mn(2d)3m) time dynamic programming algo-

rithm and an O
(
mn
(

4n
ε

)3m)
time FPTAS.

1 Introduction

The most general problem studied in this pa-
per can be formulated as follows. There are n
jobs to be scheduled for processing in m parallel
identical two-machine flow-shops. The jobs have
a common due date d. Each flow-shop i consists
of two machines (1, i) and (2, i). Any job j can be
completely processed by any flow-shop. In flow-
shop i, job j must be processed first on the ma-
chine (1, i) during p1j time units and then on the
machine (2, i) during p2j time units. The values
d, p1j and p2j , j = 1, . . . , n, are positive integer
numbers. No machine can process more than one
job at the same time, no job can be processed by
two machines at the same time, and processing of
any job on any machine cannot be preempted and
resumed at a later time.

Given a job schedule, let Shij and Chij denote
start and completion times, respectively, of job j
on machine (h, i). We have Chij = Shij + phj .

The completion time of job j is defined as Cj =
max1≤i≤m{C2ij}, and the schedule makespan is
defined as Cmax = max1≤j≤n{Cj}. Note that Chij
and Shij are defined only if job j is assigned to the
i-th flow-shop. The early work of machine (h, i)
on job j is defined as Xhij = min{phj ,max{0, d−
Shij}}, and the total early work on all jobs is de-
fined as X =

∑
h∈{1,2}

∑m
i=1

∑n
j=1Xhij . The ob-

jective is to maximize the total early work.
We denote this problem as mF2|dj =

d|max{X} and the problem with m = 1 as
F2|dj = d|max{X}. If there is a single flow-shop,
that is, if m = 1, then we simplify the three-index
notation by skipping the middle index i in it. The
optimal objective function value is denoted as X∗.

2 Literature review

Scheduling a two-machine flow-shop has been
a popular research topic since the seminal paper
of Johnson [13] in 1954 until the present time, see,
for example, the most recent publications of Gmys
et al. [11], Levorato et al. [17], Gilenson and Shab-
tay [9] and Zinder et al. [29]. The main applica-
tion area for these studies is the short-term plan-
ning of industrial and service operations in a se-
quential two-stage system. We consider the com-
mon due date case, which often happens if the
operations are fulfilled on the products that are
delivered together at a given time or that have to
be ideally completed at a given time due to the
technological or economical reasons.

The scheduling objective of the total early work
maximization was introduced by Sterna and Cz-
erniachowska [28] in 2017, see also a survey of
Sterna [27]. This objective is closely related, and,
in the sense of optimal solutions, equivalent to
the late work minimization, see Chen et al. [6]
for the relevant discussions. For the problem



mF2|dj = d|max{X}, the late work of machine
(h, i) on job j is defined as phj − Xhij . The late
work objective was introduced by B lazewicz [3] in
1984. The applicability of both objectives was jus-
tified by the need of minimizing the information
loss in communication systems (B lazewicz [3]),
timely implementation of crop harvesting works
(Potts and Van Wassenhove [24]), manufacturing
with assignable due dates (Qi et al. [25], Kovalev
et al. [15]) and training of airline pilots (Qi et al.
[25]). Lin et al. [19] proved that the problem
F2|dj = d|max{X} is NP-hard. B lazewicz et al.
[4] developed an O(n2d4) time dynamic program-
ming algorithm. For the un-weighted case, Chen
et al. [5] proposed an O(n2d2) time algorithm and

proposed an O
(
n4

ε2

)
time FPTAS.

The machine environment in the problem
mF2|dj = d|max{X} is known as a distributed
flow-shop. This processing system has recently be-
come popular in scheduling research, see, for ex-
ample, Sevastyanov et al. [26], Naderi and Ruiz
[21, 22], Ruiz et al. [23], and Ali et al. [1]. Dis-
tributed (cloud) manufacturing is considered as
an application area for these studies. A state-
of-the-art of scheduling research in cloud manu-
facturing is provided by Liu et al. [18]. Fot the
problem mF2||Cmax, which differs from mF2|dj =
d|max{X} in that the due date is not given and
the makespan Cmax has to be minimized instead
of maximizing the total early work, are given by
Kovalyov [16] (see also [7]), and independently by
Dong et al. [8].

3 Definitions and problem proper-
ties

We start this section with several useful defini-
tions.

Early and non-early jobs: For a given solu-
tion of the problem F2|dj = d|max{X}, job j is
called early if S2j ≤ d−1 and it is called non-early
if S2j ≥ d.

Property 1 Maximization of the total early
work, max{X}, is a regular maximization crite-
rion of job completion times on the machines.

Property 2 There exists an optimal solution of
the problem F2|dj = d|max{X}, which is a non-
delay permutation schedule.

Corollary 1 There exists an optimal solution of
the problem F2|dj = d|max{X}, in which ma-

chine 1 does not stand idle in the time interval
[0,
∑n
j=1 p1j ].

Corollary 2 There exists an optimal solution of
the problem F2|dj = d|max{X}, for which con-
tribution of machine 1 to the objective function is
equal to X∗1 = min{

∑n
j=1 p1j , d}.

Property 3 There exists an optimal solution of
problem F2|dj = d|max{X}, which is a non-delay
permutation schedule (hence, satisfying Corollary
2), and it is a Johnson’s permutation schedule for
the set of early jobs.

Consider a schedule for the problem F2|dj =
d|max{X} satisfying Property 3. Denote by E
and NE the sets of early and non-early jobs, re-
spectively.

Property 4 Contribution of non-early jobs to the
total early work on machine 2 is equal to zero,
and their contribution to the total early work on
machine 1 is equal to

max
{

0,min
{
d−

∑
j∈E

p1j ,
∑
j∈NE

p1j

}}
. (1)

Corollary 3 There exists an optimal solution of
the problem F2|dj = d|max{X}, in which, for
each flow-shop i, early jobs are sequenced in John-
son’s order and followed by non-early jobs in any
order, for example, in Johnson’s order.

Denote by C∗ the makespan value of a John-
son’s permutation of all jobs for the problem
F2|dj = d|max{X}.

Property 5 If
∑n
j=1 p1j ≤ d, then Johnson’s per-

mutation of all jobs is optimal for the problem
F2|dj = d|max{X}, and the maximum total early
work is equal to

∑n
j=1(p1j+p2j)−max{0, C∗−d}.

Consider an arbitrary instance I of the prob-
lem F2|dj = d|max{X} and consider an instance
of this problem obtained from I by re-setting
p1j := min{d− 1, p1j} and p2j := min{d− 1, p2j},
j = 1, . . . , n, which we denote as Ip≤d−1. De-
note optimal objective function values of these in-
stances as X∗(I) and X∗(Ip≤d−1), respectively.

Property 6 Instances I and Ip≤d−1 are equiva-
lent in the sense that an optimal solution of one
instance is an optimal solution of the other in-
stance and X∗(I) = X∗(Ip≤d−1).

Based on Property 6, assume without loss of
generality that p1j ≤ d − 1 and p2j ≤ d − 1,



j = 1, . . . , n, in the problem F2|dj = d|max{X}.
We continue with properties of the general prob-
lem mF2|dj = d|max{X}. We call a job as a con-
tributing one if it starts by d−1 on either machine.
Otherwise, a job is called as a non-contributing
one.

It follows from the above definition that all
early jobs are contributing ones. A non-early job
can be either contributing or non-contributing.

Property 7 There exists an optimal solution of
the problem mF2|dj = d|max{X}, in which, for
each flow-shop i, early jobs are sequenced in the
Johnson’s order, and they are followed by non-
early jobs in any order, for example, in the John-
son’s order.

Consider an arbitrary instance I(m) of the prob-
lem mF2|dj = d|max{X} and consider instance
of this problem obtained from I(m) by re-setting
p1j := min{d− 1, p1j} and p2j := min{d− 1, p2j},
j = 1, . . . , n, which we denote as I

(m)
p≤d−1. Denote

optimal objective function values of the two in-

stances as X∗(I(m)) and X∗(I
(m)
p≤d−1), respectively.

Property 8 Instances I(m) and I
(m)
p≤d−1 are equiv-

alent in the sense that an optimal solution of one
of these instances is an optimal solution of the

other instance, and X∗(I(m)) = X∗(I
(m)
p≤d−1).

Assume that n ≥ m + 1 because otherwise as-
signing a single job to each flow-shop constitutes
an optimal schedule. Besides, based on Prop-
erty 8, assume without loss of generality that
p1j ≤ d − 1 and p2j ≤ d − 1, j = 1, . . . , n, in
both problems F2|dj = d|max{X} and mF2|dj =
d|max{X}. These assumptions imply that there
exists at least one early job in each flow-shop in
any non-delay schedule for any of these problems.

4 Problem F2|dj = d|max{X}

In this section, we present a dynamic pro-
gramming algorithm, denoted as DP(m = 1),
for the non-trivial case of the problem F2|dj =
d|max{X}, in which

∑n
j=1 p1j ≥ d+1, p1j ≤ d−1

and p2j ≤ d− 1, j = 1, . . . , n.
Re-number jobs 1, . . . , n according to a John-

son’s permutation. In our dynamic programming
algorithm DP(m = 1) for the problem F2|dj =
d|max{X}, partial non-delay permutation sched-
ules of early jobs are constructed by considering
jobs in the order 1, . . . , n, defining a current job

as early or non-early, and adding an early job to
the end of the sequence of early jobs. Non-early
jobs follow early jobs in any order.

Each partial schedule is associated with a state
(j, A,B), where j is the last considered job, and A
and B are the completion times of the last early
job on machines 1 and 2, respectively. Function
X2(j, A,B) is recursively calculated for each state
(j, A,B), which is the maximum total early work
on early jobs on machine 2 in any partial schedule
in this state, which satisfies Property 3. A partial
schedule in the state (j, A,B), for which the value
of X2(j, A,B) is attained, dominates all other par-
tial schedules in this state.

Denote ph,min = min1≤j≤n{phj} and
ph,max = max1≤j≤n{phj}, h = 1, 2. Re-call
that p2,max ≤ d − 1 by Property 6. The initial-
ization is X2(0, 0, 0) = 0 and X2(0, A,B) = −∞
for (A,B) 6= (0, 0). We assume that an artificial
schedule is associated with the state (0, 0, 0),
which consists of a single artificial early job
0 with processing times p10 = p20 = 0. The
recursion for j = 1, . . . , n, A = 0, 1, . . . , d− 1, and
B = A+ p1,min, A+ p1,min + 1, . . . , d− 1 + p2,max

is X2(j, A,B) = max{z1, z2, z3}, where
Case 1, A ≤ B ≤ d− 1: z1 = X2(j − 1, A,B);
Case 2, A = B − p2j , p1j ≤ A ≤ d − 1:
z2 = maxA−p1j+p2,min≤B′≤A{X2(j − 1, A −
p1j , B

′) + p2j −max{0, B − d}};
Case 3, p1j ≤ A < B − p2j ≤ d − 1: z3 =
X2(j − 1, A− p1j , B− p2j) + p2j −max{0, B− d}.

The maximum total early work on machine

2 is equal to X∗2 = max
{
X2(n,A,B) | A =

p1,min, p1,min + 1, . . . , d − 1, B = A + p2,min, A +

p2,min + 1, . . . , d − 1 + p2,max

}
, and the maxi-

mum total early work (on both machines) is equal
to X∗ = X∗1 + X∗2 = d + X∗2 , because X∗1 =
min{

∑n
j=1 p1j , d} and

∑n
j=1 p1j ≥ d+ 1. The cor-

responding optimal schedule can be determined by
tracing back the solutions of the recursive equa-
tion. The running time of the algorithm DP(m =
1) can be evaluated as O(nd(d+p2,max−p1,min)) =
O(nd2).

5 Problem mF2|dj = d|max{X}

In this section, we present a dynamic program-
ming algorithm, denoted as DP(m), for the prob-
lem mF2|dj = d|max{X}. Assume that the jobs
are re-numbered 1, . . . , n according to a Johnson’s
permutation, p1j ≤ d−1, p2j ≤ d−1, j = 1, . . . , n,



and n ≥ m + 1. It follows from definitions and
properties in Section 3 that there exists an opti-
mal solution, in which the jobs in each flow-shop
are sequenced in the following order: early jobs
appear first in Johnson’s order, they are followed
by non-early contributing jobs in any order, and
non-contributing jobs appear last in any order.

We describe DP(m) as an algorithm to find a
longest path in a special multi-layered directed
acyclic graph. Denote this graph as G(V,U),
where V is the set of nodes and U is the set of arcs.
A node in this graph is represented by a (3m +
1)-tuple (j, A1, . . . , Am, B1, . . . , Bm, D1, . . . , Dm),
which is associated with a partial non-delay per-
mutation schedule of jobs 1, . . . , j, and plays the
role of a state in the dynamic programming al-
gorithm. Values Ai and Bi are completion times
of the last early job on machines (1, i) and (2, i),
respectively, and Di is the total processing time
of contributing non-early jobs on machine (1, i),
i = 1, . . . ,m. Based on definitions of the job types
and properties in Section 3, we require Ai ≤ d−1,
Ai ≤ Bi, Bi ≤ d − 1 + p2,max − p1,min and
Di ≤ d− 1 + p1,max − p1,min, i = 1, . . . ,m.

Graph G(V,U) is recursively constructed as
follows. Layer 0 consists of a single (3m + 1)-
component node E = (0, . . . , 0), which repre-
sents an artificial empty schedule with Ai =
Bi = Di = 0, i = 1, . . . ,m. Any arc
goes from a node of a layer j − 1 to a node
of the layer j, j = 1, . . . , n. A node P =
(j−1, A1, . . . , Am, B1, . . . , Bm, D1, . . . , Dm) of the
layer j − 1 is linked to the following nodes

of layer j: (a) at most m nodes Q
(i)
early =

(j, A
(i)
1 , . . . , A

(i)
m , B

(i)
1 , . . . , B

(i)
m , D1, . . . , Dm), i ∈

{1, . . . ,m}, (2) at most m nodes Q
(i)
contr =

(j, A1, . . . , Am, B1, . . . , Bm, D
(i)
1 , . . . , D

(i)
m ), i ∈

{1, . . . ,m}, and (3) one node Pnon = (j −
1, A1, . . . , Am−1, B1, . . . , Bm, D1, . . . , Dm). A-
components and B-components of the node

Q
(i)
early, 1 ≤ i ≤ m, are defined such that A

(i)
h =

Ah, B
(i)
h = Bh for h 6= i, and A

(i)
i = Ai +

p1j , B
(i)
i = max{A(i)

i + p1j , Bi} + p2j . An arc

(P,Q
(i)
early) is introduced if and only if max{A(i)

i +
p1j , Bi} ≤ d − 1. This arc is associated with
an assignment of job j to the flow-shop i as an
early job, i = 1, . . . ,m. D-components of the

node Q
(i)
contr, 1 ≤ i ≤ m, are defined such that

D
(i)
h = Dh for h 6= i and D

(i)
i = Di + p1j .

An arc (P,Q
(i)
contr) is introduced if and only if

D
(i)
i + p1j ≤ d − 1 + p1,max − p1,min. This arc

is associated with an assignment of job j to the

flow-shop i as a contributing non-early job, i =
1, . . . ,m. Arc (P, Pnon) is always introduced. It
is associated with the decision that job j is a non-
contributing job. The length of an arc (P,Q) is

denoted as l(P,Q). If Q = Q
(i)
early, then it repre-

sents contribution of the early job j to the total

early work and it is calculated as l(P,Q
(i)
early) =

p1j + min{p2j ,max{0, d − (B
(i)
i − p2j)}}. If Q ∈

{Q(i)
contr, Pnon}, then we set l(P,Q) = 0, which

means that we postpone calculation of the con-
tribution of the non-early job j to the total early
work until all jobs are scheduled.

In the graph, a path in the graph
G(V,U) from the node E to a node
(j, A1, . . . , Am, B1, . . . , Bm, D1, . . . , Dm) with
the maximum length determines an opti-
mal solution to a sub-problem of problem
mF2|dj = d|max{X}, in which jobs 1, . . . , j
are scheduled, Ai and Bi are the completion
times of the last early job on machines (1, i) and
(2, i), respectively, and Di is the total processing
time of contributing non-early jobs on machine
(1, i), i = 1, . . . ,m. The total early work of this
solution is equal to the length of this path plus∑m
i=1 max{0,min{d−Ai, Di}}.
Denote by Ln the set of nodes of layer n

in the graph G(V,U). Our dynamic program-
ming algorithm DP(m) is an algorithm that
finds a maximum length path from the start
node E to each node Q ∈ Ln. Its running
time can be evaluated as O(|U |) = O(m|V |) =
O(mndm(d + p2,max − p1,min)m(d − 1 + p1,max −
p1,min)m) = O(mn(2d)3m). Taking into account
(1), an optimal solution to the problem mF2|dj =
d|max{X} is determined by a path with the value

max
{
l(E,Q) +

∑m
i=1 max{0,min{d − Ai, Di}} |

Q = (n,A1, . . . , Am, B1, . . . , Bm, D1, . . . , Dm)
}
.

6 FPTASes

Assume that a lower bound L is known. For
a given relative error ε, 0 < ε < 1, calculate
scaling factor δ = εL

4n . For any instance I∗ of
F2|dj = d|max{X} and mF2|dj = d|max{X},
consider a modified instance I0, in which origi-
nal job processing times p1j and p2j , j = 1, . . . , n,
and the due date d are replaced by the rounded

job processing times p01j = δ
⌊
p1j
δ

⌋
, p02j = δ

⌊
p2j
δ

⌋
,

j = 1, . . . , n, and the due date d0 = δ
⌊
d
δ

⌋
, respec-

tively.



Lemma 1 An optimal solution of the modified in-
stance I0 is a (1 − ε)-approximation solution for
the original instance I∗.

Denote by X(S, I) the total early work
determined by a solution S ∈ {T,O} for an
instance I ∈ {I∗, I0}. Statement of the lemma
follows from the following chain of relations:
X(O, I∗) ≥ X(O, I0)− nδ ≥ X(T, I0)− nδ ≥
m∑
i=1

min
{
δ
⌊d
δ

⌋
, δ
∑
j∈T (i)

A

⌊p1j
δ

⌋}
+

∑m
i=1 min

{
δ
⌊
d
δ

⌋
, δ
∑
j∈T (i)

B

⌊
p2j
δ

⌋}
− nδ ≥∑m

i=1 min
{
d− δ|T (i)

A |, δ
∑
j∈T (i)

A

⌊
p1j
δ

⌋}
+

m∑
i=1

min
{
d− δ|T (i)

B |, δ
∑
j∈T (i)

B

⌊p2j
δ

⌋}
− nδ =

m∑
i=1

min
{
d, δ

∑
j∈T (i)

A

(
⌊p1j
δ

⌋
+ 1)

}
+

m∑
i=1

min
{
d, δ

∑
j∈T (i)

B

(
⌊p2j
δ

⌋
+ 1)

}
− δ

m∑
i=1

(|T (i)
A | +

|T (i)
B |)− nδ ≥
m∑
i=1

min
{
d, δ

∑
j∈T (i)

A

(
⌊p1j
δ

⌋
+ 1)

}
+

∑m
i=1 min

{
d, δ

∑
j∈T (i)

B

(
⌊
p2j
δ

⌋
+ 1)

}
−

3nδ ≥X(T, I∗) − 4nδ = X(T, I∗) − εL ≥
X(T, I∗)(1− ε).

For F2|dj = d|max{X}, relation d ≤ X∗ is
satisfied, and we can set L = d. For mF2|dj =
d|max{X}, consider a feasible solution in which
all jobs are processed by a single flow-shop accord-
ing to Johnson’s order. If the minimum makespan,
C∗, of this solution satisfies C∗ ≤ d, then this solu-
tion is optimal for problem mF2|dj = d|max{X}
with the total early work X∗ =

∑n
i=1(p1j + p2j).

Consider the non-trivial case, in which C∗ ≥ d+1,
implying that the total early work of the Johnson’s
solution, X0, satisfies X0 ≥ d. In this case, since
this solution is feasible for the general problem
mF2|dj = d|max{X}, we have d ≤ X0 ≤ X∗.
Therefore, we can set L = d for the problem
mF2|dj = d|max{X}.

Our FPTASes {Gε} and {Hε} for the problems
F2|dj = d|max{X} and mF2|dj = d|max{X},
respectively, have running times O

(
n3

ε2

)
and

O
(
mn
(

4n
ε

)3m)
, respectively.

7 Conclusions and suggestions for
future research

In this paper, we investigated a flow-shop
scheduling problem of maximizing total early
work. Given a two-machine flow-shop, we pre-
sented an O(nd2) time dynamic programming al-

gorithm and an O
(
n3

ε2

)
time FPTAS. We then

generalized the problem setting to m paral-
lel two-machine flow-shops. We developed an
O(mn(2d)3m) time dynamic programming algo-

rithm, and an O
(
mn
(

4n
ε

)3m)
time FPTAS.
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