Alexandre Dolgui
email: alexandre.dolgui@imt-atlantique.fr

Mikhail Y Kovalyov
email: kovalyovmy@newman.bas-net.by

Bertrand M T Lin
email: bmtlin@nycu.edu.tw

The problem of maximizing total early work in a two-machine flow-shop is known to be NPhard, for which an O(n 2 d 2) dynamic program and an O(n 4 ε 2) FPTAS exist in the literature. In this paper, we present new optimality properties, which pave the base for an O(nd 2) time dynamic programming algorithm and an O n 3 ε 2 time FPTAS. We further generalize the problem to a distributed flow shop consisting of m parallel two-machine flow-shops. We develop an O(mn(2d) 3m) time dynamic programming algorithm and an O mn 4n ε 3m time FPTAS.

FPTASes for scheduling a distributed flow-shop of maximizing total early work 1 Introduction

The most general problem studied in this paper can be formulated as follows. There are n jobs to be scheduled for processing in m parallel identical two-machine flow-shops. The jobs have a common due date d. Each flow-shop i consists of two machines (1, i) and (2, i). Any job j can be completely processed by any flow-shop. In flowshop i, job j must be processed first on the machine (1, i) during p 1j time units and then on the machine (2, i) during p 2j time units. The values d, p 1j and p 2j , j = 1, . . . , n, are positive integer numbers. No machine can process more than one job at the same time, no job can be processed by two machines at the same time, and processing of any job on any machine cannot be preempted and resumed at a later time.

Given a job schedule, let S hij and C hij denote start and completion times, respectively, of job j on machine (h, i). We have C hij = S hij + p hj .

The completion time of job j is defined as C j = max 1≤i≤m {C 2ij }, and the schedule makespan is defined as C max = max 1≤j≤n {C j }. Note that C hij and S hij are defined only if job j is assigned to the i-th flow-shop. The early work of machine (h, i) on job j is defined as X hij = min{p hj , max{0, d -S hij }}, and the total early work on all jobs is defined as X = h∈{1,2} m i=1 n j=1 X hij . The objective is to maximize the total early work.

We denote this problem as mF 2|d j = d| max{X} and the problem with m = 1 as F 2|d j = d| max{X}. If there is a single flow-shop, that is, if m = 1, then we simplify the three-index notation by skipping the middle index i in it. The optimal objective function value is denoted as X * .

Literature review

Scheduling a two-machine flow-shop has been a popular research topic since the seminal paper of Johnson [START_REF] Johnson | Optimal two and three stage production schedules with setup times included[END_REF] in 1954 until the present time, see, for example, the most recent publications of Gmys et al. [START_REF] Gmys | A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem[END_REF], Levorato et al. [START_REF] Levorato | Exact solutions for the two-machine robust flow shop with budgeted uncertainty[END_REF], Gilenson and Shabtay [START_REF] Gilenson | Multiscenario scheduling to maximise the weighted number of just-in-time jobs[END_REF] and Zinder et al. [START_REF] Zinder | A 5-parameter complexity classification of the two-stage flow shop scheduling problem with job dependent storage requirements[END_REF]. The main application area for these studies is the short-term planning of industrial and service operations in a sequential two-stage system. We consider the common due date case, which often happens if the operations are fulfilled on the products that are delivered together at a given time or that have to be ideally completed at a given time due to the technological or economical reasons.

The scheduling objective of the total early work maximization was introduced by Sterna and Czerniachowska [START_REF] Sterna | Polynomial time approximation scheme for two parallel machines scheduling with a common due date to maximize early work[END_REF] in 2017, see also a survey of Sterna [27]. This objective is closely related, and, in the sense of optimal solutions, equivalent to the late work minimization, see Chen et al. [START_REF] Chen | Mirror scheduling problems with early work and late work criteria[END_REF] for the relevant discussions. For the problem mF 2|d j = d| max{X}, the late work of machine (h, i) on job j is defined as p hj -X hij . The late work objective was introduced by B lazewicz [START_REF]Scheduling preemptible tasks on parallel processors with information loss[END_REF] in 1984. The applicability of both objectives was justified by the need of minimizing the information loss in communication systems (B lazewicz [START_REF]Scheduling preemptible tasks on parallel processors with information loss[END_REF]), timely implementation of crop harvesting works (Potts and Van Wassenhove [START_REF] Potts | Single machine scheduling to minimize total late work[END_REF]), manufacturing with assignable due dates (Qi et al. [START_REF] Qi | Single machine scheduling with assignable due dates[END_REF], Kovalev et al. [START_REF] Kovalev | Single machine scheduling with assignable due dates to minimize maximum and total late work[END_REF]) and training of airline pilots (Qi et al. [START_REF] Qi | Single machine scheduling with assignable due dates[END_REF]). Lin et al. [START_REF] Lin | Two-machine flow-shop scheduling to minimize total late work[END_REF] proved that the problem F 2|d j = d| max{X} is NP-hard. B lazewicz et al. [START_REF] Pesch | The two-machine flow-shop problem with weighted late work criterion and common due date[END_REF] developed an O(n 2 d 4) time dynamic programming algorithm. For the un-weighted case, Chen et al. [START_REF] Chen | Two-machine flow shop scheduling with a common due date to maximize total early work[END_REF] proposed an O(n 2 d 2) time algorithm and proposed an O n 4 ε 2 time FPTAS. The machine environment in the problem mF 2|d j = d| max{X} is known as a distributed flow-shop. This processing system has recently become popular in scheduling research, see, for example, Sevastyanov et al. [START_REF] Sevastyanov | Makespan minimization in parallel flow shops[END_REF], Naderi and Ruiz [START_REF] Naderi | The distributed permutation flowshop scheduling problem[END_REF][START_REF] Naderi | A scatter search algorithm for the distributed permutation flowshop scheduling problem[END_REF], Ruiz et al. [START_REF] Ruiz | Iterated Greedy methods for the distributed permutation flowshop scheduling problem[END_REF], and Ali et al. [START_REF] Ali | Distributed permutation flowshop scheduling problem with total completion time objective[END_REF]. Distributed (cloud) manufacturing is considered as an application area for these studies. A stateof-the-art of scheduling research in cloud manufacturing is provided by Liu et al. [START_REF] Liu | Scheduling in cloud manufacturing: state-of-the-art and research challenges[END_REF]. Fot the problem mF 2||C max , which differs from mF 2|d j = d| max{X} in that the due date is not given and the makespan C max has to be minimized instead of maximizing the total early work, are given by Kovalyov [START_REF] Kovalyov | Efficient epsilonapproximation algorithm for minimizing the makespan in a parallel two-stage system[END_REF] (see also [START_REF] Dong | Corrigendum to "An FPTAS for the parallel two-stage flowshop problem[END_REF]), and independently by Dong et al. [START_REF] Dong | An FPTAS for the parallel two-stage flowshop problem[END_REF].

Definitions and problem properties

We start this section with several useful definitions.

Early and non-early jobs: For a given solution of the problem

F 2|d j = d| max{X}, job j is called early if S 2j ≤ d-1 and it is called non-early if S 2j ≥ d.
Property 1 Maximization of the total early work, max{X}, is a regular maximization criterion of job completion times on the machines.

Property 2 There exists an optimal solution of the problem F 2|d j = d| max{X}, which is a nondelay permutation schedule.

Corollary 1 There exists an optimal solution of the problem F 2|d j = d| max{X}, in which ma-chine 1 does not stand idle in the time interval [0,

n j=1 p 1j].
Corollary 2 There exists an optimal solution of the problem F 2|d j = d| max{X}, for which contribution of machine 1 to the objective function is equal to X * 1 = min{ n j=1 p 1j , d}.

Property 3 There exists an optimal solution of problem F 2|d j = d| max{X}, which is a non-delay permutation schedule (hence, satisfying Corollary 2), and it is a Johnson's permutation schedule for the set of early jobs.

Consider a schedule for the problem F 2|d j = d| max{X} satisfying Property 3. Denote by E and N E the sets of early and non-early jobs, respectively.

Property 4 Contribution of non-early jobs to the total early work on machine 2 is equal to zero, and their contribution to the total early work on machine 1 is equal to

max 0, min d - j∈E p 1j , j∈N E p 1j . (1)
Corollary 3 There exists an optimal solution of the problem F 2|d j = d| max{X}, in which, for each flow-shop i, early jobs are sequenced in Johnson's order and followed by non-early jobs in any order, for example, in Johnson's order.

Denote by C * the makespan value of a Johnson's permutation of all jobs for the problem F 2|d j = d| max{X}.

Property 5 If n j=1 p 1j ≤ d, then Johnson's permutation of all jobs is optimal for the problem F 2|d j = d| max{X}, and the maximum total early work is equal to n j=1 (p 1j +p 2j)-max{0, C * -d}. Consider an arbitrary instance I of the problem F 2|d j = d| max{X} and consider an instance of this problem obtained from I by re-setting p 1j := min{d -1, p 1j } and p 2j := min{d -1, p 2j }, j = 1, . . . , n, which we denote as I p≤d-1 . Denote optimal objective function values of these instances as X * (I) and X * (I p≤d-1), respectively. Property 6 Instances I and I p≤d-1 are equivalent in the sense that an optimal solution of one instance is an optimal solution of the other instance and X * (I) = X * (I p≤d-1).

Based on Property 6, assume without loss of generality that p 1j ≤ d -1 and p 2j ≤ d -1, j = 1, . . . , n, in the problem F 2|d j = d| max{X}. We continue with properties of the general problem mF 2|d j = d| max{X}. We call a job as a contributing one if it starts by d-1 on either machine. Otherwise, a job is called as a non-contributing one.

It follows from the above definition that all early jobs are contributing ones. A non-early job can be either contributing or non-contributing.

Property 7 There exists an optimal solution of the problem mF 2|d j = d| max{X}, in which, for each flow-shop i, early jobs are sequenced in the Johnson's order, and they are followed by nonearly jobs in any order, for example, in the Johnson's order.

Consider an arbitrary instance I (m) of the problem mF 2|d j = d| max{X} and consider instance of this problem obtained from I (m) by re-setting p 1j := min{d -1, p 1j } and p 2j := min{d -1, p 2j }, j = 1, . . . , n, which we denote as I Assume that n ≥ m + 1 because otherwise assigning a single job to each flow-shop constitutes an optimal schedule. Besides, based on Property 8, assume without loss of generality that p 1j ≤ d -1 and p 2j ≤ d -1, j = 1, . . . , n, in both problems F 2|d j = d| max{X} and mF 2|d j = d| max{X}. These assumptions imply that there exists at least one early job in each flow-shop in any non-delay schedule for any of these problems.

Problem F 2|d j = d| max{X}

In this section, we present a dynamic programming algorithm, denoted as DP(m = 1), for the non-trivial case of the problem F 2|d j = d| max{X}, in which n j=1 p 1j ≥ d+1, p 1j ≤ d-1 and p 2j ≤ d -1, j = 1, . . . , n.

Re-number jobs 1, . . . , n according to a Johnson's permutation. In our dynamic programming algorithm DP(m = 1) for the problem F 2|d j = d| max{X}, partial non-delay permutation schedules of early jobs are constructed by considering jobs in the order 1, . . . , n, defining a current job as early or non-early, and adding an early job to the end of the sequence of early jobs. Non-early jobs follow early jobs in any order.

Each partial schedule is associated with a state (j, A, B), where j is the last considered job, and A and B are the completion times of the last early job on machines 1 and 2, respectively. Function X 2 (j, A, B) is recursively calculated for each state (j, A, B), which is the maximum total early work on early jobs on machine 2 in any partial schedule in this state, which satisfies Property 3. A partial schedule in the state (j, A, B), for which the value of X 2 (j, A, B) is attained, dominates all other partial schedules in this state.

Denote p h,min = min 1≤j≤n {p hj } and p h,max = max 1≤j≤n {p hj }, h = 1, 2. Re-call that p 2,max ≤ d -1 by Property 6. The initialization is X 2 (0, 0, 0) = 0 and X 2 (0, A, B) = -∞ for (A, B) = (0, 0). We assume that an artificial schedule is associated with the state (0, 0, 0), which consists of a single artificial early job 0 with processing times p 10 = p 20 = 0. The recursion for j = 1, . . . , n, A = 0, 1, . . . , d -1, and

B = A + p 1,min , A + p 1,min + 1, . . . , d -1 + p 2,max is X 2 (j, A, B) = max{z 1 , z 2 , z 3 }, where Case 1, A ≤ B ≤ d -1: z 1 = X 2 (j -1, A, B); Case 2, A = B -p 2j , p 1j ≤ A ≤ d -1: z 2 = max A-p1j +p2,min≤B ≤A {X 2 (j -1, A - p 1j , B) + p 2j -max{0, B -d}}; Case 3, p 1j ≤ A < B -p 2j ≤ d -1: z 3 = X 2 (j -1, A -p 1j , B -p 2j) + p 2j -max{0, B -d}.
The maximum total early work on machine 2 is equal to X * 2 = max X 2 (n, A, B) | A = p 1,min , p 1,min + 1, . . . , d -1, B = A + p 2,min , A + p 2,min + 1, . . . , d -1 + p 2,max , and the maximum total early work (on both machines) is equal to 5 Problem mF 2|d j = d| max{X}

X * = X * 1 + X * 2 = d + X * 2 , because X * 1 = min{ n j=1 p 1j ,
In this section, we present a dynamic programming algorithm, denoted as DP(m), for the problem mF 2|d j = d| max{X}. Assume that the jobs are re-numbered 1, . . . , n according to a Johnson's permutation, p 1j ≤ d-1, p 2j ≤ d-1, j = 1, . . . , n, and n ≥ m + 1. It follows from definitions and properties in Section 3 that there exists an optimal solution, in which the jobs in each flow-shop are sequenced in the following order: early jobs appear first in Johnson's order, they are followed by non-early contributing jobs in any order, and non-contributing jobs appear last in any order.

We describe DP(m) as an algorithm to find a longest path in a special multi-layered directed acyclic graph. Denote this graph as G(V, U), where V is the set of nodes and U is the set of arcs. A node in this graph is represented by a (3m + 1)-tuple (j, A 1 , . . . , A m , B 1 , . . . , B m , D 1 , . . . , D m), which is associated with a partial non-delay permutation schedule of jobs 1, . . . , j, and plays the role of a state in the dynamic programming algorithm. Values A i and B i are completion times of the last early job on machines (1, i) and (2, i), respectively, and D i is the total processing time of contributing non-early jobs on machine (1, i), i = 1, . . . , m. Based on definitions of the job types and properties in Section 3, we require

A i ≤ d -1, A i ≤ B i , B i ≤ d -1 + p 2,max -p 1,min and D i ≤ d -1 + p 1,max -p 1,min , i = 1, . . . , m.
Graph G(V, U) is recursively constructed as follows. Layer 0 consists of a single (3m + 1)component node E = (0, . . . , 0), which represents an artificial empty schedule with A i = B i = D i = 0, i = 1, . . . , m.

Any arc goes from a node of a layer j -1 to a node of the layer j, j = 1, . . . , n. A node P = (j -1, A 1 , . . . , A m , B 1 , . . . , B m , D 1 , . . . , D m) of the layer j -1 is linked to the following nodes of layer j: (a) at most m nodes Q Acomponents and B-components of the node

Q (i) early , 1 ≤ i ≤ m, are defined such that A (i) h = A h , B (i) h = B h for h = i, and
A (i) i = A i + p 1j , B (i) i = max{A (i) i + p 1j , B i } + p 2j . An arc (P, Q (i) early) is introduced if and only if max{A (i) i + p 1j , B i } ≤ d -1.
This arc is associated with an assignment of job j to the flow-shop i as an early job, i = 1, . . . , m. D-components of the node Q

(i) contr , 1 ≤ i ≤ m, are defined such that D (i) h = D h for h = i and D (i) i = D i + p 1j . An arc (P, Q (i) contr) is introduced if and only if D (i) i + p 1j ≤ d -1 + p 1,max -p 1,
min . This arc is associated with an assignment of job j to the flow-shop i as a contributing non-early job, i = 1, . . . , m. Arc (P, P non) is always introduced. It is associated with the decision that job j is a noncontributing job. The length of an arc (P, Q) is denoted as l(P, Q).

If Q = Q (i)
early , then it represents contribution of the early job j to the total early work and it is calculated as l(P, Q

(i) early) = p 1j + min{p 2j , max{0, d -(B (i) i -p 2j)}}. If Q ∈ {Q (i)
contr , P non }, then we set l(P, Q) = 0, which means that we postpone calculation of the contribution of the non-early job j to the total early work until all jobs are scheduled.

In the graph, a path in the graph G(V, U) from the node E to a node (j, A 1 , . . . , A m , B 1 , . . . , B m , D 1 , . . . , D m) with the maximum length determines an optimal solution to a sub-problem of problem mF 2|d j = d| max{X}, in which jobs 1, . . . , j are scheduled, A i and B i are the completion times of the last early job on machines (1, i) and (2, i), respectively, and D i is the total processing time of contributing non-early jobs on machine (1, i), i = 1, . . . , m. The total early work of this solution is equal to the length of this path plus

FPTASes

Assume that a lower bound L is known. For a given relative error ε, 0 < ε < 1, calculate scaling factor δ = εL 4n . For any instance I * of F 2|d j = d| max{X} and mF 2|d j = d| max{X}, consider a modified instance I 0 , in which original job processing times p 1j and p 2j , j = 1, . . . , n, and the due date d are replaced by the rounded job processing times p 0 1j = δ

 (m) p≤d-1 . Denote optimal objective function values of the two instances as X * (I (m)) and X * (I (m) p≤d-1), respectively. Property 8 Instances I (m) and I (m)p≤d-1 are equivalent in the sense that an optimal solution of one of these instances is an optimal solution of the other instance, and X * (I (m)) = X * (I (m) p≤d-1).

 d} and n j=1 p 1j ≥ d + 1. The corresponding optimal schedule can be determined by tracing back the solutions of the recursive equation. The running time of the algorithm DP(m = 1) can be evaluated as O(nd(d+p 2,max -p 1,min)) = O(nd 2).

 m , D 1 , . . . , D m), i ∈ {1, . . . , m}, (2) at most m nodes Q (i) contr = (j, A 1 , . . . , A m , B 1 , . . . , B m , D (i) 1 , . . . , D (i) m), i ∈ {1, . . . , m}, and (3) one node P non = (j -1, A 1 , . . . , A m-1 , B 1 , . . . , B m , D 1 , . . . , D m).

m

 i=1 max{0, min{d -A i , D i }}. Denote by L n the set of nodes of layer n in the graph G(V, U). Our dynamic programming algorithm DP(m) is an algorithm that finds a maximum length path from the start node E to each node Q ∈ L n . Its running time can be evaluated as O(|U |) = O(m|V |) = O(mnd m (d + p 2,max -p 1,min) m (d -1 + p 1,maxp 1,min) m) = O(mn(2d) 3m). Taking into account (1), an optimal solution to the problem mF 2|d j = d| max{X} is determined by a path with the value max l(E, Q) + m i=1 max{0, min{d -A i , D i }} | Q = (n, A 1 , . . . , A m , B 1 , . . . , B m , D 1 , . . . , D m) .

 j = 1, . . . , n, and the due date d 0 = δ d δ , respectively.

Lemma 1 An optimal solution of the modified instance I 0 is a (1 -ε)-approximation solution for the original instance I * .

Denote by X(S, I) the total early work determined by a solution S ∈ {T, O} for an instance I ∈ {I * , I 0 }. Statement of the lemma follows from the following chain of relations:

For F 2|d j = d| max{X}, relation d ≤ X * is satisfied, and we can set L = d. For mF 2|d j = d| max{X}, consider a feasible solution in which all jobs are processed by a single flow-shop according to Johnson's order. If the minimum makespan, C * , of this solution satisfies C * ≤ d, then this solution is optimal for problem mF 2|d j = d| max{X} with the total early work X * = n i=1 (p 1j + p 2j). Consider the non-trivial case, in which C * ≥ d+1, implying that the total early work of the Johnson's solution, X 0 , satisfies X 0 ≥ d. In this case, since this solution is feasible for the general problem mF 2|d j = d| max{X}, we have d ≤ X 0 ≤ X * . Therefore, we can set L = d for the problem mF 2|d j = d| max{X}.

Our FPTASes {G ε } and {H ε } for the problems F 2|d j = d| max{X} and mF 2|d j = d| max{X}, respectively, have running times O n