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I. INTRODUCTION

Nowadays, Global Navigation Satellite System (GNSS) techniques play an important role in outdoor navigation. However, it faces series of critical shortcomings to satisfy the requirements of new applications, e.g. autonomous ground or aerial vehicles operated in complex and challenging environments [START_REF] Huang | Accuracy evaluation of a new generic trajectory prediction model for unmanned aerial vehicles[END_REF]. Indeed, GNSS measurements with multipaths or Non-Line-Of-Sight (NLOS) propagation can generate strong outliers in the estimation domain, which could severely impact the positioning output of standard solutions. Thus, a robust GNSS navigation solution in the presence of aberrant measurements is needed.

Robust statistics were first developed for common regression problems with outliers [START_REF] Rousseeuw | Robust regression and outlier detection[END_REF][START_REF] Hampel | Robust statistics: the approach based on influence functions[END_REF]. Since then, robust estimators have been widely studied and applied including signal processing [START_REF] Daszykowski | Robust statistics in data analysis-a review: Basic concepts[END_REF][START_REF] Zoubir | Robust Statistics for Signal Processing[END_REF] and in particular GNSS [START_REF] Kuusniemi | User-level reliability monitoring in urban personal satellitenavigation[END_REF][START_REF] Pesonen | Robust estimation techniques for gnss positioning[END_REF][START_REF] Borio | Robust signal processing for GNSS[END_REF]. Recent works show that the application of M-estimators turned out to be quite useful to mitigate the impact of residual outliers, working directly on the GNSS observables, within a revised Extended Kalman Filter (EKF) framework [START_REF] Medina | Robust Statistics for GNSS Positioning under Harsh Conditions: A Useful Tool?[END_REF][START_REF] Medina | Robust filtering techniques for rtk positioning in harsh propagation environments[END_REF][START_REF] Crespillo | Tightly coupled GNSS/INS integration based on robust Mestimators[END_REF][START_REF] Ding | Robust Tightly Coupled GNSS/INS Experimental Assessment for Autonomous Aircraft Inspection[END_REF]. In order to solve the main drawback of M-estimators which usually rely on a fixed hyper-parameter, latest studies try to adapt this parameter to the dynamic navigation situation [START_REF] Ding | Learning-enhanced adaptive robust gnss navigation in challenging environments[END_REF]. However, mapping a relation between the GNSS-related data and the appropriate hyper-parameter value by such a black box, without providing semantic information, is difficult to interpret. Indeed, the type and the magnitude of degradation on the positioning performances are linked to the navigation conditions. That is why there is an emergence of context-aware methods which are more adaptive and easier to build, thanks to their link with semantic information [START_REF] Lin | Development of a context-aware vector-based high-sensitivity gnss software receiver[END_REF][START_REF] Sokhandan | Context-aware adaptive multipath compensation based on channel pattern recognition for gnss receivers[END_REF]. However, to do so, the context must be known and in our case is extracted from GNSS data as done in [START_REF] Feriol | Gnss-based environmental context detection for navigation[END_REF]. The GNSS signal does not undergo the same disturbances depending on the environment. For instance, in the areas with low sky openness only few satellites are available. This can create large positioning errors due to bad satellite geometry. Also, in such a constraint environment, the GNSS signal can be impacted by reflections onto surfaces of the surroundings elements thus degrading strongly the estimated position. These reflections are divided into two categories: multipath and NLOS. This distinction is explained by the fact that the magnitude of the positioning error and the mitigation techniques are different. Multipaths are composed of both the Line-Of-Sight (LOS) and the reflected signal. NLOS appears when only the reflected signal reaches the receiver and leads to higher positional error than standard multipaths. Therefore, a semantic knowledge of the environmental context would allow to build a context-adaptive GNSS positioning solution in order to be more robust to the different reception conditions.

In this paper, we propose to improve the positioning performance of a robust-statistics GNSS navigator in challenging conditions, with the main idea of adapting the Huber loss hyper-parameter at each epoch according to the semantic information -environmental context. To do so, an environmental context detection functionality module is realized. According to the predicted output, the associated Huber hyper-parameter is chosen and applied in order to adapt the navigator to the current environment. Main characteristics of the proposed method are addressed as follows:

• The environmental context prediction block is an independent functionality which takes into account available GNSSrelated data and offers as output the predicted context class at each epoch. In this work the context is an enabling input of the positioning solution block.

• The values of hyper-parameter to be applied are fixedly and respectively associated with the learned context classes. In this way, the algorithm can take both the advantages of the good properties of robust M-estimators and the use of provided semantic information. In addition, it is more explicit in terms of interpretability at the navigation filter level.

This context-adaptive robust estimator is validated on real-world data by a wheeled robot evolving in multi-contexts environments on the ISAE-SUPAERO campus (open-sky, trees, urban and canyon). Test results conclude the generalization capability with different GNSS receivers and constellation configurations.

The rest of this paper is organized as follows: Section II covers related works in the literature in aspects of: robust statistics for GNSS navigation, environmental context detection and adaptive GNSS navigation solutions. Section III introduces the proposed CAR-EKF method, and in particular it recalls the considered models and the robust-statistics based estimator for GNSS navigation. Section IV talks about the developed environmental context predictor in a data-driven manner. Then, experimental validation is presented in Section V, where the performances and behaviours of different navigation solutions are analyzed in details. Finally, conclusions and perspectives are drawn in Section VI.

II. LITERATURE REVIEW

Robust statistics for GNSS navigation

Studies show robust statistics have the advantage of both robustness and high efficiency on datasets containing strong contaminated data, which is the case when dealing with harsh GNSS environments [START_REF] Borio | Robust signal processing for GNSS[END_REF][START_REF] Medina | Robust Statistics for GNSS Positioning under Harsh Conditions: A Useful Tool?[END_REF][START_REF] Medina | Robust filtering techniques for rtk positioning in harsh propagation environments[END_REF][START_REF] Medina | On robust statistics for gnss single point positioning[END_REF]. Moreover, robust estimation could be a reasonable trade-off in aspects of computational burden, hardware revision on GNSS receiver and complementary infrastructure.

A framework of robust statistics-based Single Point Positioning (SPP) solution is introduced in [START_REF] Medina | Robust Statistics for GNSS Positioning under Harsh Conditions: A Useful Tool?[END_REF], where the approach, M-estimator, is adapted based on Least-Squares (LS) adjustments. Experimental validation in harsh conditions, e.g. under multiple bridges or dense foliage, shows a promising robustness while standard LS estimators are strongly degraded. In [START_REF] Crespillo | Tightly coupled GNSS/INS integration based on robust Mestimators[END_REF], a robust EKF with an M-estimator update step is used and evaluated through a set of Monte-Carlo simulations. The results show that, compared to standard EKF, the robust algorithm is able to mitigate large positioning errors. But in some conditions it did not perform sufficiently especially in the case with multiple contamination with weak number of visible satellites.

Particularly in [START_REF] Ding | Robust Tightly Coupled GNSS/INS Experimental Assessment for Autonomous Aircraft Inspection[END_REF], the authors experimentally assessed the use of a robust M-estimator based EKF in a tightly-coupled GNSS/inertial framework, for the purpose of aircraft inspection by autonomous robot. Results show that the method is capable of mitigating unexpected outliers by applying appropriate down-weights. This work provides a deep analysis on the use of the robust estimator in multipaths and NLOS conditions.

Environmental context detection

The ability to know in which environment a vehicle is operating is referred as environmental context detection. This appellation first appeared in [START_REF] Groves | Context detection, categorization and connectivity for advanced adaptive integrated navigation[END_REF] and was considered as one way, according to which, to build a more robust navigation solution by adapting the different sensors parameters and navigator structure. Since, different GNSS-based solutions have emerged which have the advantages of being less computationally heavy than image-based solution as well as requiring less data and labelling.

First, [START_REF] Wang | Urban environment recognition based on the gnss signal characteristics[END_REF] introduces an algorithm based on Support Vector Machine (SVM) classifying GNSS data into six urban classes: urban canyon, semi-urban, suburb, viaduct-up, viaduct-down and boulevard (roads bordered by trees). The input features of the model are derived from the Carrier-To-Noise Density Ratio (C/N0), Number of Satellites in View (NSV) and Geometric Dilution of Precision (GDOP). The results attained a promising classification accuracy. However the miss-classifications are not plotted on the map thus not possible to know where they occurred. And the feature vector requires an access to the almanac which needs a minimum time to download.

The work in [START_REF] Liu | Environment classification for global navigation satellite systems using attention-based recurrent neural networks[END_REF] uses Recurrent Neural Network (RNN) on historical data to create the features of interest composed of: mean, standard deviation, median, lower and upper quantile, maximum, minimum of the C/N0, PDOP/HDOP/VDOP (Position/Horizontal/Vertical) values and the NSV. Then, attention mechanism is used on real-time data and outputs of the RNN. The classification task is performed through a Fully Connected Network (FCN) for three classes: open-area, tree shade and city canyon. The classification results give 94% of accuracy, but it is not reproducible due to missing information about the used model with the database unavailable.

More recently [START_REF] Liang | Environment scenario identification based on gnss recordings for agricultural tractors[END_REF] classifies GNSS data into five environment scenarios (open sky, low-density trees, high-density trees, high wall/overpass and tunnel/depot) using a four state Markov Chain Model (MCM). The model is built for each environment by statistical analysis of two main metrics: the NSV with a C/N0 higher than 37 dB-Hz and the HDOP. The environment class is then obtained by using the Frobenius norm which has a similarity measure between the MCM parameter matrix of a test data segment and the parameter matrix of each environmental scenario. The test results achieve an overall accuracy of 97.08%. However the challenging classes are under-represented and the work is non-reproducible.

Adaptive GNSS navigation solution

The main purpose of being able to detect the context is to use this information to modify the navigation solution. Even if this idea is quite recent, different methods exist in the literature and are presented hereafter.

Article [START_REF] Smolyakov | Continuous environment mapping for enhanced low-cost urban navigation[END_REF] uses a map-aiding method to improve the position accuracy. The map is created by average C/N0 measurements with a grid size of 20 meters. The goal is to use this map as an input of different weighting functions which tend to promote satellites close to the zenith (as the C/N0 raises). The experimental results show positioning accuracy improvements of 25% and 35% in dense urban area and in intermediate residential environment respectively. The test is however only conducted on a small part of dataset. The main drawbacks of map-aiding method is that the map is difficult to build due to the high dynamic of the constellations and that it does not give a semantic information about the context.

To resolve the aforementioned point, [START_REF] Sokhandan | Context-aware adaptive multipath compensation based on channel pattern recognition for gnss receivers[END_REF] proposes to classify both the environmental (urban, suburban, indoor, open-sky) and the behavioural context (pedestrian, vehicular). The classifier is a SVM model based on a Gaussian kernel modified by the conformal transformation factor [START_REF] Amari | Improving support vector machine classifiers by modifying kernel functions[END_REF]. For each scenario optimal parameters of the multipaths compensation and tracking algorithms are computed by Monte-Carlo simulations. The results show the adaptive method outperforms the standalone multipaths compensation ones. However this method requires a GNSS receiver hardware revision thus impossible with an off-the-shelf one. Also, the context detection capability is difficult to attest since the metrics are computed only on simulations.

The work in [START_REF] Hussain | Adaptive gnss receiver design for highly dynamic multipath environments[END_REF] proposes an Adaptive Environment based Navigation method that modifies the tracking loop parameters depending on the context. This information is derived from satellite availability, geometry and positioning accuracy. Three different classes are defined: open-sky (standard), half-sky (partially degraded), quarter-sky (highly degraded). This method shows an improvement of the signal continuity and an positioning error diminution compared to standard receiver solutions. The possibility of using this method for dynamic navigation is unknown since the recordings were made statically. Also, the receiver was configured to track all the GPS, Galileo, GLONASS, Beidou and multi-frequency, which is not always the case for any vehicle/drone hardware setup.

More recently in [START_REF] Ding | Learning-enhanced adaptive robust gnss navigation in challenging environments[END_REF], the authors propose an adaptive robust GNSS positioning algorithm based on robust statistics. Their main idea is to adapt the Huber loss hyper-parameter to the current navigation situation from GNSS observable-related information via a lightweight neural network. A significant positioning improvement is achieved with respect to methods with fixed hyperparameters. However, such a black-box relation connecting the GNSS observables and the weighting hyper-parameter could be difficult to be interpreted.

III. ROBUST GNSS NAVIGATION BY ADAPTIVE LOSS FUNCTION

Considered models for GNSS navigation

In GNSS navigation framework, the unknown state vector is defined as 

x k = p ⊤ u,k v ⊤ u,k b u,k d u,k ⊤ ,
   p u,k v u,k b u,k d u,k    x k =    I 3 ∆t • I 3 0 3 I 3 0 6×2 0 2×6 1 ∆t 0 1    F k-1 x k-1 + w k-1 . ( 1 
)
where I 3 is the 3 × 3 identity matrix, ∆t being the sampling period, the process noise referred as

w k-1 ∼ N (0, Q k-1 ). Matrix Q can be obtained by Q = σ 2 a GI 3 G ⊤ , where σ 2 a is the acceleration noise variance and G = ∆t 2 /2 • I 3 ∆t • I 3 ⊤ .
By Time-Of-Arrival (TOA) ranging, the user's position can be determined from measured pseudoranges of at least four visible satellites. In addition, the Doppler frequency gives the information about the radial velocity of satellites, so-called the pseudovelocity or pseudorange rate. Assuming a single-frequency GNSS receiver in nominal conditions, the full set of available GNSS observables (pseudorange and pseudorange rate) at a given epoch k can be modeled by the compact form:

      ρ j k . . . ρj k . . .       z k =        p u,k -p j k + b u,k + ϵ j k . . . los j k ⊤ (v u,k -v j k ) + d u,k + εj k . . .        h k (x k ) +       n j ρ,k . . . n j ρ,k . . .       n k , (2) 
where p j k is the j th satellite's position, so ||p u,k -p j k || is the geometric distance between satellite j and the receiver; v j k is the j th satellite's velocity; los j k is the Line-Of-Sight (LOS) unit vector from the receiver to satellite j; ϵ j k and εj k represent the other elements which are known from broadcast navigation message, i.e., satellite clock bias, clock drift, relativistic bias, instrumental group delay, ionospheric and tropospheric propagation delays; measurement noise n k ∼ N (0, R k ) when in nominal conditions.

If w k-1 and n k are both distributed as Gaussian, then the EKF provides an optimal estimate of x k . However, in the case of harsh GNSS propagation conditions, this assumption does not hold with the presence of multipaths and NLOS. Consequently, the result could be strongly impacted by faulty these measurements if not accounted for. This is why recent studies relied on filters based on robust statistics [START_REF] Medina | Robust Statistics for GNSS Positioning under Harsh Conditions: A Useful Tool?[END_REF][START_REF] Crespillo | Tightly coupled GNSS/INS integration based on robust Mestimators[END_REF][START_REF] Ding | Robust Tightly Coupled GNSS/INS Experimental Assessment for Autonomous Aircraft Inspection[END_REF], which we recall thereafter.

Robust M-estimation

Many estimation problems, such as linear regression, are classically solved by the Weighted Least-Squares (WLS) estimator. The WLS is optimal under Gaussian assumption (and yields the EKF [START_REF] Bell | The iterated kalman filter update as a gauss-newton method[END_REF]). However, it loses its efficiency when the normality assumption is not satisfied, which is generally the case when dealing with outliers in GNSS measurements.

Considering a general linear regression problem in vector form z = Hx+e, the M-estimator generalizes the maximum likelihood estimation by minimizing the sum of a general loss function ρ(•), instead of l 2 -norm, of observation residuals (r i ) 1≤i≤n :

xM = argmin x n i=1 ρ r i (x) σ i = argmin x n i=1 ρ (r i (x)) , (3) 
where σ i is a known scale parameter and r i (x) = r i (x)/σ i . It can be shown [28, p.179] that xM satisfies:

n i=1 w (r i (x M )) r i (x M ) ∂r i (x) ∂x x=xM = 0, (4) 
where w(•) is the weight function derived from ρ(•). This equation can be solved by an Iterative Re-weighted Least-Squares (IRLS) process. It is important to note the substantial difference between (4) and a WLS estimator: the weights in (4) depend on function w(•) with r i (x) as input, updated at each iteration. In the following the solution of M-estimation is written as:

xM IRLS === argmin x ∥r(x)∥ 2 W(r(x)) -1 , (5) 
where W(r(x)) is the diagonal reweighting matrix defined for each iteration n of the IRLS:

W (n) = diag w r(x (n) ) .
The key idea behind the robust estimation is to use loss functions appropriately penalizing measurement outliers. In the literature there exists several loss functions [START_REF] Fox | Robust regression[END_REF] and we focus on the Huber loss in this paper. It is a combination of l 1 -norm (less sensitive to outliers, but not differentiable at zero) and l 2 -norm (differentiable everywhere, but highly sensitive to outliers), behaving quadratically for small residuals and linearly for large ones. The Huber loss is formulated as:

ρ (α) (r) = r 2 /2 if |r| ≤ α α|r| -α 2 /2 if |r| > α =⇒ w (α) (r) = min 1, α |r| ,
where α ∈ R + is a hyper-parameter which controls the transition between l 1 -norm and l 2 -norm loss. Its standard value is 1.345, which guarantees an efficiency of 95% under Gaussian noise [START_REF] Maronna | Robust statistics: theory and methods (with R)[END_REF]. The Huber loss was used in a number of studies related to robust GNSS navigation, e.g. [START_REF] Medina | Robust Statistics for GNSS Positioning under Harsh Conditions: A Useful Tool?[END_REF], [START_REF] Crespillo | Tightly coupled GNSS/INS integration based on robust Mestimators[END_REF] and [START_REF] Ding | Robust Tightly Coupled GNSS/INS Experimental Assessment for Autonomous Aircraft Inspection[END_REF]. Also, Huber loss is able to limit the influence of large residuals to a certain level (depending also on the hyper-parameter α) but not completely eliminate them, which is suitable for the weak redundant observation situation. Fig. 1 shows how α impacts the Huber loss and weight functions. 

M-estimation EKF

The EKF has a two-step prediction-update recursive loop. In the considered GNSS navigation framework, the a priori state and covariance are predicted by the system dynamic model ( 1) and GNSS measurements, with observation model [START_REF] Rousseeuw | Robust regression and outlier detection[END_REF], are taken at the update step to compute the a posteriori estimates. In order to mitigate the influence of outliers, an M-estimation EKF (M-EKF) was proposed [START_REF] Medina | Robust Statistics for GNSS Positioning under Harsh Conditions: A Useful Tool?[END_REF][START_REF] Ding | Robust Tightly Coupled GNSS/INS Experimental Assessment for Autonomous Aircraft Inspection[END_REF]. It does not impact the prediction step:

xk|k-1 = F k-1 xk-1|k-1 , Σ k|k-1 = F k-1 Σ k-1|k-1 F ⊤ k-1 + Q k-1 .
The M-EKF update block is based on the M-estimator presented in Section III.2, through an IRLS solver. We first rewrite the original update step in an equivalent augmented WLS form via linearization [START_REF] Bell | The iterated kalman filter update as a gauss-newton method[END_REF]:

z k = H k x k + n k , (6) 
where, H k is the Jacobian matrix of h k about xk|k-1 ,

z k = xk|k-1 z k -h k (x k|k-1 ) + H k xk|k-1 , H k = I H k , n k = -F k-1 x k-1 -xk-1|k-1 -w k-1 n k ,
and the covariance of n k is given by

E n k n ⊤ k = R k = diag(Σ k|k-1 , R k ) = L k L ⊤ k ,
where L k can be obtained by the Cholesky decomposition. Similarly to a common linear system, the regression problem ( 6) is pre-whitened and can be expressed in the compact form:

L -1 k z k z k = L -1 k H k H k x k + L -1 k n k n k , (7) 
so that E n k n ⊤ k = I. While the EKF would define the a posteriori state through a standard LS, the M-EKF, based on (3), brings in turn the solution of [START_REF] Pesonen | Robust estimation techniques for gnss positioning[END_REF]. It can be expressed via the same form as [START_REF] Zoubir | Robust Statistics for Signal Processing[END_REF]:

xM k|k IRLS === argmin x k z k -H k x k 2 Wα(x k ) -1 , (8) 
where W α (x k ) is given by Huber weight function, thus for each iteration n:

W (n) α = diag w (α) z k -H k x(n) k .

Adaptive Huber loss by context detection

One major limitation of the presented M-EKF in GNSS navigation is that the Huber hyper-parameter α is set as fixed, which may not be suitable for an evolving environment, making the robust estimator perform poorly. Indeed, it could be more appropriate to have an aggressive down-weighting in harsh conditions while fairly tolerant when the environment is just slightly challenging.

A kind of adaptive robust methodology was proposed in previous work [START_REF] Ding | Learning-enhanced adaptive robust gnss navigation in challenging environments[END_REF], which adjusts the Huber hyper-parameter to adapt the down-weighting at each epoch. This functionality was achieved with data-driven methods which connects the GNSS data directly with the chosen alpha. Dissimilar to [START_REF] Ding | Learning-enhanced adaptive robust gnss navigation in challenging environments[END_REF], the novel method proposed in this paper aims to take both advantages of the environmental context prediction and adaptive penalization on outliers' influences according to the context class.

The main idea is to take the environmental context class as a determinant proxy according to which the Huber hyper-parameter value is chosen. Both intuitively and empirically, the hyper-parameter's value could be fixedly associated with the environmental context type. For example, for nominal cases (in open sky) at epoch k 1 , a sufficiently large α k1 should be used; at k 2 , when in a challenging environment, a fairly small value α k2 should be adopted; at instant k 3 , for the most challenging context types (e.g. in urban canyon or under bridges), a quite low value α k3 is to be applied. This results in the Context-Adaptive Robust EKF (CAR-EKF), illustrated in Fig. 2, where the Huber hyper-parameter α k is adjusted at each step k according to the predicted context class from available information. In this subsection, we focus on the CAR-EKF method, and the context prediction module will be presented in Section IV. Derived from the M-EKF solution (8), the CAR-EKF estimator is defined by the following expression: at step k,

xCAR k|k IRLS === arg min x k z k -H k x k 2 W[α k (context k ),x k )] -1 , (9) 
where α k is determined based on the class of the predicted context k . Next, the core question is, how to assign the hyper-parameter value for each environmental context class? Even if one has access to the context ground truth, there is no clear reference for the α values for each context class. Keeping in mind that the Huber hyper-parameter should represent how harsh the conditions are, we propose to associate its value to a quantitative level of how challenging each context could be to the GNSS navigation. Let A = {α (1) , . . . , α (p) } denote the p different hyper-parameter values for p recognized context classes. Considering the role of α in the M-EKF update, an logarithmic scale is taken, so that, for some α 0 , β 1 , . . . , β p : ∀1 ≤ m ≤ p, α (m) = α 0 exp(β m ), where α 0 should be a standard default value, and β m can be seen as an indicator of how challenging the context is to the GNSS navigation. So for instance, the nominal condition (open sky context) numbered as m 1 , which is not challenging at all, a high value of β m1 should be adopted; on the contrary, m 2 representing the context of severely harsh conditions, the β m2 value should be sufficiently small. Implementation details are hereafter presented in V.2.

Compared to other works trying to directly infer position corrections, e.g. [START_REF] Kanhere | Improving GNSS Positioning using Neural Network-based Corrections[END_REF][START_REF] Du | A Novel Error Correction Approach to Improve Standard Point Positioning of Integrated BDS/GPS[END_REF], the proposed approach takes advantages of all the following aspects: the robust statistics, the environmental context detection and data-driven methods. Already shown with success in [START_REF] Ding | Learning-enhanced adaptive robust gnss navigation in challenging environments[END_REF], estimating the single adaptive hyper-parameter α simplifies the problem while still benefiting from the good properties of the M-EKF. Furthermore, to the best of our knowledge, this method is the only one providing simultaneously the environmental context and robust positioning results through only GNSS measurements.

IV. GNSS-BASED ENVIRONMENTAL CONTEXT DETECTION

Due to the fact that the literature methods are not reproducible and their dataset not available (Section II), we proposed our solution in [START_REF] Feriol | Gnss-based environmental context detection for navigation[END_REF] along with its database1. This previous work is applied in this paper as the context classifier. As a reminder the goal was to use GNSS data from an off-the-shelf receiver to classify the environmental context. Four classes of interest were defined: canyon, open-sky, trees and urban, with visual representations of them shown in Fig. 3. In each of these types of environment, the GNSS navigation performances could be very different due to the potential presence of perturbations. In the open-sky case, the GNSS signal is supposed to be very good and the constellation topology should be excellent. Under trees, the radio signal can be attenuated and undergo multipaths [START_REF] Ma | Gps signal degradation modeling[END_REF], but the number of available satellites remains high. In urban environment, the signal can be reflected creating multipaths on medium to high building surfaces; however the sky openness still remains high with a large number of tracked satellites. Finally, a canyon defines a narrow street with a high chance of occlusion (i.e. a low number of satellites in view) and NLOS or multipaths; in this environment both the signal availability and quality is a problem and thus the most challenging class. In our work, only the impacts linked to the environment are considered, thus external degradation such as spoofing or jamming are not relevant.

Features of interest

In order to be able to detect properly the environmental context, we believe that using mixed information about the constellation geometry, signal quality and positioning estimates could help the context detection, as previously mentioned in Section II. Therefore, the chosen features of interest are derived from those three families, as illustrated in Fig. 4. Since one of the GNSS receivers used in the work (see Section V.1) is commercial and proprietary, the GNSS data related features are mainly based on the observables and accessible measurements. The receiver was setup to track both GPS and Galileo constellations. A detailed description of the features included in the 15-dimensional feature vector v(t) is given hereafter.

For the constellation characterization, four features are extracted. The first one is the NSV. This feature is able to differentiate open-sky areas where the NSV will be high from canyon ones where NSV will be low. However this feature does not help to distinguish intermediate situations such as trees or urban. Therefore an additional feature derived from the NSV, but with a threshold on the C/N 0 , is used as done in [START_REF] Gao | Environmental context detection for adaptive navigation using gnss measurements from a smartphone[END_REF]:

N SV _f iltered = i∈Sv M ask(i), with M ask(i) = 1, if C/N 0,i > ξ 0, otherwise , (10) 
1https://doi.org/10.34849/T4ICUX with i the satellite ID, S v a set containing the IDs of all the visible satellites (i.e. i ∈ S v if the i th satellite is visible), and ξ the threshold value. In our case we found empirically that a proper value for the threshold was 30 dB-Hz. This threshold has been obtained by looking at the evolution of the signal quality when passing from an open-sky environment to under trees.

The satellites elevations are also used to characterize the constellation since that, in cluttered environments, the mean elevation value tends to be higher due to tall structures which occlude the signal of low elevation satellites. The PDOP also gives information about the constellation geometry and it is therefore used as a feature.

The C/N 0 is a good indicator about the signal quality. It is the ratio of the received carrier power to the noise density and is often expressed in dB-Hz. Thus a lower C/N 0 means that the signal has been attenuated and, in a situation where jamming is not considered, this means that this effect is due to the environment. Because of the high variance of this metric for kinematic situations, we decided to filter it by using a temporal window of 2 seconds on which the mean and the variance are computed.

To get rid of satellite-based features which would modify the input feature vector size, due to the evolving constellation, the mean of both the indicators are computed over all the available satellites [START_REF] Crespillo | Tightly coupled GNSS/INS integration based on robust Mestimators[END_REF][START_REF] Ding | Robust Tightly Coupled GNSS/INS Experimental Assessment for Autonomous Aircraft Inspection[END_REF]:

µ C/N0 (t) = 1 N SV (t) i∈Sv µ C/N0,i (t), with µ C/N0,i (t) = 1 10 
9 k=0 C/N 0,i (t -k), (11) 
σ 2 C/N0 (t) = 1 N SV (t) i∈Sv σ 2 C/N0,i (t), with σ 2 C/N0,i (t) = 1 10 9 k=0 C/N 0,i (t -k) -µ C/N0,i (t) 2 . ( 12 
)
For the u-blox M8T receiver, the horizontal/vertical accuracy data are extracted as features. For a software-defined receiver, the other one used in the study (see V.1), it is obtained from the covariance matrix of the previous epoch Σ k-1|k-1 (Fig. 2). Finally, the pseudorange residuals are used as the last feature. It is an important feature since it measures the difference between the measured pseudorange and the estimated one. This metric should be larger in multipaths situations since the measured range is biased by reflections.

Classifier

After defining the input feature vector, a classifier must be chosen to perform the detection part. Even if deep learning methods offer good results and are commonly used nowadays, they still need a minimum amount of data and parameters tuning. For our simple case, classical machine learning methods can perform well and are easier to parameterize. SVMs are especially of interest since they offer probabilities as output which can be used in Bayesian filtering, as done for instance in [START_REF] Wang | Urban environment recognition based on the gnss signal characteristics[END_REF]. This type of model also handles well high dimensional data and multiple classes. The whole classification flow chart is given in Fig. 5.

The SVM is highly sensitive to magnitude differences. This problem can be mitigated by the use of standardization such as z-score. This preprocessing is chosen over normalization due to the high probability of outlier in GNSS data. It is also possible to use non-linear function such as Sigmoid to further reduce the importance of those outliers. To avoid miss-classification it is possible to use Error-Correcting Output Codes (ECOC) methods which reduce a multi-class problem to a set of binary classification problems. Each binary problem correspond to a specific learner and with four classes of interests, six learners are needed. Those learners are Gaussian kernel-based SVM for the previously mentioned reasons. Generally, data are not linearly separable which implies that using a linear sum of vectors would not be enough to classify correctly the different samples. In order to mitigate this problem it is possible to use a kernel function which modifies the feature space. The goal is to obtain a feature space in which data are linearly separable. The Gaussian kernel used in this work is defined by

K( ⃗ x i , ⃗ x j ) = exp(-∥ ⃗ x i -⃗ x j ∥/σ 2 ).
The hyper-parameter γ = 1/σ 2 called the kernel scale defines the size of the kernel which in practice has an influence on the number of samples used as support-vectors. The soft-margin parameter C is another hyper-parameter of the model. It has been introduced in [START_REF] Cortes | Support-vector networks[END_REF] to mitigate the problem of miss-labelled samples or non-separable data. This parameter allows classification errors in the margin to avoid over-fitting. The optimal values of both hyper-parameters can be found thanks to Bayesian optimization. There are two sets of parameters, one for each receiver (Sec. V.1 a)).

V. EXPERIMENTAL ASSESSMENT 1. Experimentation set-up a). Recording platform

The real-world data was recorded by using a wheeled rover maneuvered remotely with an average speed of about 4 km/h. The rover, shown in Fig. 6, is equipped with a u-blox M8T GNSS receiver, providing GPS and Galileo data (pseudorange, Doppler frequency, C/N 0 ) at 5 Hz, and a USRP-X310 (Universal Software Radio Peripheral) from Ettus used as a front-end. The latter provides combined 32-bit in-phase and quadrature samples of the GNSS signal at 4 MHz. These samples are then post-processed by a homemade GNSS software receiver (MSR) [START_REF] Priot | Accurate Events Synchronization in a System-on-Chip Navigation Receiver[END_REF]. It is based on a generic bi-constellation (GPS and Galileo) receiver [START_REF] Hegarty | Understanding GPS Principles and Applications[END_REF] which was developed in Matlab within our laboratory. The u-blox M8T, the USRP-X310 and a mobile reference module (introduced hereunder) are connected to the same NovAtel VEXXIS GNSS-804 antenna through a signal splitter. A positioning reference system, consisting of two NovAtel PwrPak7-E1 modules (GNSS receiver plus MEMS IMU), is used along with a dedicated offline post-processing software. One of the reference system modules was configured as the base station (connected to the antenna mounted on the rooftop of our laboratory and having a well known position) and the second as the mobile station (set up on the rover), thus enabling to perform Differential GNSS (DGNSS) corrections. The combination of DGNSS and IMU provides continuously available position, velocity and attitude even through short periods of time when satellite signals are blocked or unavailable, with an accuracy of the solution up to tens of centimeters thanks to the offline post-processing.

GNSS antenna NovAtel

GNSS receiver u-blox

Reference system NovAtel GNSS front-end Ettus 

CAR-EKF implementation details

In accordance with the presented classifier, 4 levels of α were considered, i.e. C = {canyon, open-sky, trees, urban} denoting the considered 4 context classes, p = 4 with α 0 = 1.345 the standard value, and β (canyon) , β (urban) , β (trees) , β (open-sky) = {-2, -1, 0, 1} respectively. Thus, α (canyon) , α (urban) , α (trees) , α (open-sky) = {0.182, 0.495, 1.345, 3.656}. These values are validated through empirical tests mainly based on the positioning performances. A sufficient range of α values should be insured, thus various re-weighting, or not, that we need can be reached. For instance, in open-sky an α = 3.656 is large enough and bigger than any normalized residual that we observed, thus not penalizing any measurement (see Fig. 1 (right), α is the threshold). For the case of canyon, a adequately low-valued α should be adopted in order to down-weight sufficiently the big residuals; however, this has to be done carefully to avoid stability issue. For the latter, after series of tests, α = 0.182 turned out to be a good trade-off in terms of positioning accuracy and stability.

The acceleration noise variance was set to σ 2 a = 1.05 m 2 •s -4 . The variances of n ρ,k and n ρ,k are based on the sigma-ε model [START_REF] Hartinger | Variances of gps phase observations: The sigma-ε model[END_REF], which links the C/N 0 measurement to the observation variance, defined by

σ 2 ρj = σ 2 ρ •10 -(C/N0,j)/10 , σ 2 ρj = σ 2 ρ •10 -(C/N0,j)/10
, where σ ρ = 200 m and σ ρ = 30 m/s. The navigator's state and covariance were initialized by a WLS estimator after convergence, through a static point positioning procedure in an open-sky environment.

Results

a). Context detection performances

Four different tests are conducted to attest the performances of the proposed method. For each test, one trajectory was used as a learning database whereas the other one was used as test for both receivers. Additional data previously acquired were also integrated in the learning set in order to obtain a more complete database.

The confusion matrix for both tests for the MSR receiver are given in Tab. 2. The satellite view of the prediction is available in Fig. 8. The same information concerning the experiments with the u-blox M8T are given in Tab. 3 and Fig. 9. From the confusion matrix it can be seen that the method achieves good results for both receivers, with a correct classification rate of 93.35% for the MSR receiver and of 93.01% for the u-blox M8T receiver. However the classifier capability is limited when it comes to mixed environments and transition areas as shown in the satellites views. This might be explained by the following two reasons: first, those areas were excluded from the learning set, since it is hard to label them as ground truth; second, the GNSS signal in such areas are highly variant, thus difficult to learn. For the two test trajectories, based on GNSS observables provided by u-blox and MSR receivers respectively, the overall 2D RMSE, the error at 95% of the CDF and the maximum error (at 100% of the CDF) are reported in Table 4. The 2D position error against time, the applied α k based on predicted context class at each step, and the empirical CDF curves are shown in Figures: Fig. For the case of Trajectory (A) by u-blox data, the u-blox M8T solution gives the most accurate estimates in terms of 2D RSE at 95% and 100% of the CDF, followed by the CAR-EKF. In terms of 2D RMSE, the M-EKF gives the most overall robust result and similar performance is given by the CAR-EKF. Shown in Fig. 10, the CAR-EKF performs similarly to the M-EKF but not as accurate as the u-blox solution especially for the errors more than 95% of the CDF. This fact could not rule out that the proposed CAR-EKF has possible limitations: in some cases an aggressive α k would induce a bias towards the prior (as it excludes more measurements thus giving more weights to the prior), and consequently makes it quite hard to escape from accumulated errors. Nevertheless, in terms of positioning accuracy, comparable performances to the M-EKF are still maintained. For this kind of potential "local limitation", either enlarging the value of α allowing recovery, or richer observation information (more satellites) should be adopted in order to leverage more on the GNSS measurement rather than the prior estimates.

For Trajectory (A) with the data provided by the MSR receiver, the CAR-EKF reduces the maximum 2D RSE by 40.8%, 36.0% and 16.2% compared to the EKF, M-EKF and the u-blox M8T solution. Pictured in Fig. 11, it occurred during the canyon section (about 590-720s) particularly when passing under the suspended walkways. For the rest parts of the trajectory, the CAR-EKF achieves the same performance as the M-EKF. We can notice that, during challenging sections, where the M-EKF shows large errors, weaker values of α k are applied, in accordance to the context prediction, appropriately penalizing the outliers, and larger ones are preferred in nicer environments. Finally, the u-blox M8T solution gives comparable performances during challenging parts but less adaptive results during the trees section (about 150-400s).

The other test set Trajectory (B) was with an entirely different satellite configuration, e.g. the constellation geometry and visible satellite IDs. A significant positioning improvement can be observed both for the data provided by u-blox and MSR.

For Trajectory (B) by u-blox, the CAR-EKF reduces the maximum 2D RSE by 40.2%, 35.1% and 11.2% compared to the EKF, M-EKF and the u-blox M8T solution respectively. Illustrated in Fig. 12, during the challenging sections of urban (about 400-600s) and canyon (about 600-730s), adaptive α k values are correspondingly devoted, thus achieving a further robustness compared to the other algorithms. For the open-sky (0-120s) and trees (160-380s) parts, all these three presented navigators show comparable results.

For Trajectory (B) with the MSR data, the CAR-EKF mitigates the maximum 2D RSE by 40.1%, 23.0% and 24.4% when comparing to the EKF, M-EKF and the u-blox M8T solution. Shown in Fig. 13, the maximum errors happened within the canyon context (about 600-730s). Meanwhile, the u-blox M8T solution performs as poorly as the M-EKF during this challenging section, while the CAR-EKF chooses lowest values and alleviates this breakdown.

To sum up, the proposed CAR-EKF turns out to be an adaptive robust positioning solution in multi-contexts environments. Its robustness is also demonstrated with different GNSS receivers and satellite configurations. Furthermore, when comparing the CAR-EKF performances for a given trajectory, the MSR receiver could be more appropriate as it provides more raw information even if containing larger outliers. 

VI. CONCLUSION

This paper proposes to enhance robust statistics-based estimation for GNSS navigation, based on environmental context detection output, in order to better handle the evolving challenging conditions. To insure good classification performances, GNSS observable data, signal quality, constellation geometry and part of the estimates information are used as input features.

Based on the predicted context class, the CAR-EKF adapts accordingly the value of the Huber hyper-parameter, achieving a more conservative behavior in the presence of stronger outliers. In real-world scenarios of multiple contexts (open-sky, trees, urban and canyon), the context classifier obtained correct classification rates of 93.01% for the u-blox and 93.35% for the MSR receiver dataset. In terms of positioning accuracy, for the overall horizontal RMSE, the CAR-EKF performs better or equally to the M-EKF and the u-blox M8T commercial GNSS solution. As for the maximum 2D RSE, the CAR-EKF managed to reduce the error up to 36% and 24.4% with respect to the M-EKF and u-blox M8T solution, which occurred during the most challenging canyon sections. The results show a good generalization capability, in terms of satellite configurations and GNSS receivers, of the proposed method, and imply that a standard GNSS receiver is more appropriate providing more complete information compared to the commercial u-blox one.

However, the implemented hyper-parameter values for each context class might have a possible limitation in the situation where an over-selective α k could lead to an over-confidence on the priors (possibly containing bias due to dynamic process). Thus seeking an optimal value set associated with the learned context classes would be an improvement of this work. Also, we will explore the extension of the robust statistics-based context-adaptive methodology in future works to a broader set of problems, and also to sensor fusion topics.
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 1 Figure 1: Huber loss function ρ (α) (•) (left) and weight function w (α) (•) (right) with different hyper-parameter values. The limit case α → ∞ is equivalent to the case of l2-norm loss (LS).

Figure 2 :

 2 Figure 2: Diagram of the proposed CAR-EKF, where the Huber hyper-parameter α k is adjusted according to the predicted context class.
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 3 Figure 3: Sky-orientated views of the different contexts (from left to right: Canyon, Open-sky, Trees and Urban)
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 4 Figure 4: GNSS-based feature vector
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 5 Figure 5: Context-classification framework
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 677 Figure 6: Rover employed for measurement campaigns Figure 7: Two trajectories were recorded on the ISAE-SUPAERO campus
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 8 Figure 8: Bird view of the class prediction for trajectory (A) (left) and trajectory (B) (right) for the MSR receiver

Figure 9 :

 9 Figure 9: Bird view of the class prediction for trajectory (A) (left) and trajectory (B) (right) for the u-blox M8T receiver

  10 and Fig.11 for Trajectory (A), Fig.12and Fig.13for Trajectory (B).

Figure 10 :

 10 Figure 10: Positioning performances for Trajectory (A) on the data provided by u-blox receiver: 2D RSE against time and the applied kernel α k (left); CDF of the 2D RSE with a zoomed window from 90% to 100% (right).

Figure 11 :

 11 Figure 11: Positioning performances for Trajectory (A) on the data provided by MSR receiver and the u-blox M8T solution: 2D RSE against time and the applied kernel α k (left); CDF of the 2D RSE with a zoomed window from 90% to 100% (right).

Figure 12 :

 12 Figure 12: Positioning performances for Trajectory (B) on the data provided by the u-blox M8T receiver: 2D RSE against time and the applied kernel α k (left); CDF of the 2D RSE with a zoomed window from 90% to 100% (right).

Figure 13 :

 13 Figure 13: Positioning performances for Trajectory (B) on the data provided by MSR receiver and the u-blox M8T solution: 2D RSE against time and the applied kernel k (left); CDF of the 2D RSE with a zoomed window from 90% to 100% (right).

  where p u,k is the user's position in North-East-Down (NED) frame, v u,k its velocity, b u,k and d u,k are referred as the clock bias and clock drift of the GNSS receiver respectively [25, p.473] [26, p.264]. A mobile agent with low dynamics is considered in this work, thus a constant velocity process model is adopted:

Table 1 :

 1 Details of the trajectories

Trajectory ID Receiver Nb of samples Recording start at Nb of labelled epoch

  

	Trajectory (A)	u-blox	4819	13h46	3250
	Trajectory (B)	u-blox	4450	15h49	3376
	Trajectory (A)	MSR	4464	13h46	3084
	Trajectory (B)	MSR	4371	15h49	3293

Table 2 :

 2 Confusion matrix for trajectory (A) (left) and trajectory (B) (right) for the MSR receiver

	True	Predicted Canyon Open-Sky Trees Urban	T%	F%	True	Predicted Canyon Open-Sky Trees Urban T% F%
		Canyon	772	0	0	0	100.0 0.0		Canyon	686	0	39	16	92.6 7.4
		Open-Sky	0	535	0	42	92.7	7.3		Open-Sky	0	588	0	74	88.8 11.2
		Trees	77	0	566	0	88.0 12.0		Trees	0	0	987	45	95.6 4.4
		Urban	126	0	66	891	82.3 17.7		Urban	0	0	7	844	99.2 0.6

Table 3 :

 3 Confusion matrix for trajectory (A) (left) and trajectory (B) (right) for the u-blox M8T receiver

	True	Predicted Canyon Open-Sky Trees Urban	T%	F%	True	Predicted Canyon Open-Sky Trees Urban T% F%
		Canyon	769	0	0	0	100.0 0.0		Canyon	721	0	3	12	98.0 2.0
		Open-Sky	0	574	0	77	87.7 12.3		Open-Sky	0	647	0	22	96.7 3.3
		Trees	58	0	651	20	89.3 10.7		Trees	0	0	1040	8	99.2 0.8
		Urban	154	6	0	968	85.8 14.2		Urban	0	30	80	813	88.1 11.9

Table 4 :

 4 Positioning performances

			Trajectory (A)		Trajectory (B)	
	Receiver Algorithm	2D RMSE (m)	2D RSE (m) 95% CDF Maximun	2D RMSE (m)	2D RSE (m) 95% CDF Maximun
		EKF	1.39	2.83	5.92	2.03	3.42	7.17
	u-blox	M-EKF u-blox M8T	1.30 1.43	2.45 2.48	5.10 3.58	1.79 1.76	3.17 2.31	6.61 4.83
		CAR-EKF	1.33	2.63	4.90	1.54	2.79	4.29
		EKF	1.68	3.47	5.07	2.19	4.11	6.09
	MSR	M-EKF	1.57	2.82	4.69	1.71	2.87	4.74
		CAR-EKF	1.36	2.26	3.00	1.48	2.65	3.65
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