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Abstract

Habitat connectivity is a key objective of current conservation policies and is commonly
modeled by landscape graphs (i.e., sets of habitat patches [nodes] connected by potential
dispersal paths [links]). These graphs are often built based on expert opinion or species
distribution models (SDMs) and therefore lack empirical validation from data more closely
reflecting functional connectivity. Accordingly, we tested whether landscape graphs reflect
how habitat connectivity influences gene flow, which is one of the main ecoevolutionary
processes. To that purpose, we modeled the habitat network of a forest bird (plumbeous
warbler [Setophaga plumbea]) on Guadeloupe with graphs based on expert opinion, Jacobs’
specialization indices, and an SDM. We used genetic data (712 birds from 27 popula-
tions) to compute local genetic indices and pairwise genetic distances. Finally, we assessed
the relationships between genetic distances or indices and cost distances or connectivity
metrics with maximum-likelihood population-effects distance models and Spearman cor-
relations between metrics. Overall, the landscape graphs reliably reflected the influence of
connectivity on population genetic structure; validation R2 was up to 0.30 and correlation
coefficients were up to 0.71. Yet, the relationship among graph ecological relevance, data
requirements, and construction and analysis methods was not straightforward because the
graph based on the most complex construction method (species distribution modeling)
sometimes had less ecological relevance than the others. Cross-validation methods and
sensitivity analyzes allowed us to make the advantages and limitations of each construction
method spatially explicit. We confirmed the relevance of landscape graphs for conserva-
tion modeling but recommend a case-specific consideration of the cost-effectiveness of
their construction methods. We hope the replication of independent validation approaches
across species and landscapes will strengthen the ecological relevance of connectivity
models.

KEYWORDS
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Resumen

La conectividad entre hábitats es un objetivo fundamental de las políticas de conser-
vación actuales y con frecuencia se modela con grafos de paisaje (conjuntos de teselas
de hábitat [nodos] conectados por vías potenciales de dispersión [enlaces]). Estos grafos
se construyen a menudo con opiniones de expertos y modelos de distribución de especies
(MDE), por lo que carecen de la validación empírica a partir de datos que reflejan de mejor
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manera la conectividad funcional. Por consiguiente, analizamos si los grafos de paisaje
reflejan cómo la conectividad de hábitats influye sobre el flujo genético, que es uno de
los principales procesos evolutivos. Con este propósito, modelamos la red de hábitats de
un ave forestal (Setophaga plumbea) en Guadalupe con grafos basados en la opinión de un
experto, en el índice de especialización de Jacobs o en un MDE. Usamos datos genéticos
(712 aves de 27 poblaciones) para computar los índices genéticos locales y las distan-
cias genéticas entre pares de poblaciones. Por último, analizamos las relaciones entre los
índices o distancias genéticas y las distancias de costo o las métricas de conectividad con
modelos de distancias de tipo maximum-likelihood-population-effect y correlaciones de
Spearman entre las métricas e índices. En general, los grafos de paisaje reflejaron de man-
era confiable la influencia de la conectividad sobre la estructura genética de las poblaciones;
el R2 de validación llegó hasta 0.30 y los coeficientes de correlación llegaron hasta 0.71. Aun
así, la relación entre la pertinencia ecológica de los grafos, los requerimientos de datos y los
métodos de construcción y análisis no fue directa porque los grafos basados en el método
de construcción el más complejo (modelado a partir de la distribución de la especie) a veces
tuvieron menos pertinencia ecológica que los otros. Los métodos de validación cruzada y
los análisis de sensibilidad nos permitieron hacer espacialmente explícitas las ventajas y
limitaciones de cada método de construcción. Así, confirmamos la pertinencia que tienen
los grafos de paisaje para la conservación, aunque recomendamos se considere caso por
caso el ratio entre la complejidad y la calidad de los métodos de construcción. Esperamos
que la replicación de estrategias de validación independiente por varios paisajes y especies
fortalezcan la pertinencia ecológica de los modelos de conectividad.

PALABRAS CLAVE

conectividad de hábitats, grafos de paisaje, genética de paisajes, modelos para la conservación, modelos de
distribución de especies

INTRODUCTION

The functional connectivity of habitat patches depends on their
area and spatial configuration and on the degree to which the
landscape matrix resists movements between them (Taylor et al.,
2006). It determines dispersal and resulting ecoevolutionary
processes, such as gene flow, which is key for long-term pop-
ulation persistence (Frankham, 2015). Connectivity is therefore
a key objective of current conservation policies and several
connectivity modeling approaches have been developed to sup-
port decision-making (Carroll et al., 2012) and to investigate
biological responses to connectivity (Fletcher et al., 2016).

In this context, landscape graphs have been suggested as an
optimal compromise for balancing data requirements, model
complexity, and ecological relevance (Calabrese & Fagan, 2004).
Landscape graphs make it possible to model a habitat net-
work as a graph whose nodes are habitat patches and links are
potential dispersal paths between the nodes (Urban & Keitt,
2001). Graph theoretical metrics quantify the role of every node
and link in the connectivity of the habitat network (Galpern
et al., 2011; Rayfield et al., 2011) and can be used to pre-
dict biological responses in subsequent analyzes (Mony et al.,
2018; Ribeiro et al., 2011). The ability to identify landscape
areas that make large contributions to connectivity from inex-
pensive data makes landscape graphs of strong operational
interest for biodiversity conservation, as reflected by the 54 arti-
cles published from 2000 to 2013 alone (Correa Ayram et al.,
2016).

Despite their strengths, landscape graphs have several lim-
itations (Moilanen, 2011). To estimate functional connectivity,
most graph-based connectivity models compute dispersal paths
from cost surfaces. This requires making assumptions regarding
the costs endured by the focal species when moving across the
landscape matrix (Beier et al., 2008; Zeller et al., 2012). Most
of these assumptions are based on expert opinion, and their
proximity to ecological reality is rarely verified (Sawyer et al.,
2011). Graph nodes are supposed to reflect the spatial distri-
bution of the species habitat, but it is difficult to locate such
habitat areas reliably from spatial environmental data alone,
which brings the validity of the habitat delineation into question
(Moilanen, 2011). Finally, a large range of connectivity met-
rics can be derived from landscape graphs (Baranyi et al., 2011;
Rayfield et al., 2011), but the relationship between the connec-
tivity pattern they quantify and the biological processes they are
supposed to explain has rarely been tested.

To overcome these limitations and reinforce the ecological
relevance of landscape graphs, several types of biological data
have been used at various stages of modeling to define habitat
patches and cost values associated with resistance to movement
(Foltête et al., 2020). According to Beier et al. (2008), using
genetic data, animal movement data, or interpatch movement
measurements is the best option to estimate cost values. An
advantage of genetic relatedness measures between populations
over direct animal movement observations is that gene flow
reflects the individual movements through time that are fol-
lowed by successful reproduction (Robertson et al., 2018), and
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such movements are key for dispersal to contribute to popu-
lation persistence. Animal occurrence data, frequently used for
deriving a species distribution model (SDM), are the second-
best way to define habitat and cost values. Finally, relying on
expert opinion or literature review should be reserved for cases
where empirical data are not available (Beier et al., 2008). Yet,
these assumptions have rarely been explicitly checked.

Genetic data reflect landscape connectivity well (Zeller et al.,
2018) because they provide direct insights into dispersal-driven
gene flow. Provided these data are not used in the graph mod-
eling step, they could be a good candidate for assessing the
ecological validity of graphs constructed using either presence
data or expert opinion (Foltête et al., 2020).

Accordingly, we used 2 independent presence–absence and
genetic data sets to answer the following question: Are land-
scape graphs built from expert opinion or presence–absence
data close reflections of ecoevolutionary processes influenced
by habitat connectivity? We modeled the habitat network of
a forest bird (plumbeous warbler [Setophaga plumbea]) (Khi-
moun et al., 2016) in the Guadeloupe archipelago with expert
opinion and presence–absence data and explored whether land-
scape graphs derived from these 2 approaches predicted genetic
responses. We focused on the plumbeous warbler because of the
importance of connectivity to forest bird species where forests
have been reduced (Callens et al., 2011; Nevil Amos et al., 2014).
We predicted that distances and connectivity metrics computed
from the SDM-derived graph would provide the best predic-
tions of the genetic responses given that its construction implies
an additional modeling step relying on both empirical data and
several types of spatial data.

METHODS

We built 3 landscape graphs by delineating habitat patches
and assigning dispersal costs based on expert opinion, Jacobs’
indices measuring specialization, or an SDM (Figure 1), thereby
reflecting common practitioner use. Graph links connected
habitat patches (nodes) by minimizing dispersal costs between
them and were weighted by the corresponding cost distances,
that is, the accumulated cost along least-cost paths. Using patch
areas and cost distances, we also computed node connectiv-
ity metrics. In parallel, we acquired genetic data in several
bird populations and computed pairwise genetic distances and
population-level genetic indices. We assessed the validity of
landscape graphs regarding species genetic responses by focus-
ing on the relationship between cost distances computed along
graph links and pairwise genetic distances and the relationship
between connectivity metrics computed at the graph node level
and genetic indices computed at this same level.

Study area and biological model

The Guadeloupe archipelago is in the Lesser Antilles (Figure 2)
and is composed of 2 main islands (1440 km2) connected by
a narrow isthmus: Grande-Terre (GT) and Basse-Terre (BT).
The eastern part (i.e., GT) is more anthropized and has less

forest than the western part (i.e., BT), which hosts the Guade-
loupe National Park. Entirely covered by forest before the 16th
century, Guadeloupe experienced major deforestation episodes
due to the agricultural activities of European settlers (Ricklefs &
Bermingham, 2004).

The plumbeous warbler (S. plumbea) is endemic to Guade-
loupe and Dominica. In this forest specialist species (Lovette
et al., 1998), gene flow depends on forest cover and is influenced
by landscape resistance (Khimoun et al., 2017). Thus, studying
the genetic structure of this species could give hints about
the influence of connectivity on genetic processes, thereby
making it an ideal study species for validating connectivity
models.

Spatial and climatic data

To build landscape graphs, we had to define 2 main parame-
ters: habitat patches (graph nodes) and dispersal cost distances
among pairs of nodes (weight of graph links) calculated
from movement resistance surfaces relying on cost scenarios.
We considered 3 methods for defining nodes and cost sce-
narios according to the input data (expert opinion, habitat
specialization indices, and SDM) (Table 1).

We used land-cover and climatic spatial data to create the
SDM and the landscape graphs. We used CORINE Land Cover
data from 2012 to create a base map and the Institut National
de l’Information Géographique et Forestière (IGN) BD TOPO
database of 2012 to locate major roads (excluding dirt roads
and tracks) and built elements. We used the 2010 map of 17
woody vegetation formations created by the Conseil Départe-
mental of Guadeloupe, the IGN, and the Direction Régionale
de l’Office National des Forêts (ONF) (Appendix 2). Annual
mean precipitation and temperature raster layers with a resolu-
tion of 20 m were obtained by interpolation of punctual data
of 61 Météo-France stations from 2012 to 2014 (Perrin et al.,
2022).

We created a categorical raster surface (resolution 20 m) by
classifying initial land-cover types into 10 types and intersect-
ing the different spatial databases (Appendices S1 & S9). From
this raster, we constructed continuous raster layers indicating
the distance from each pixel to the closest road, forest, agri-
cultural, or built elements. The proportions of these landscape
features in circular landscapes of 500-m radius around each pixel
were computed for species distribution modeling.

Expert opinion

We asked a local ornithologist expert from Guadeloupe,
who has been involved in conservation management as a
member of the CSRPN (Conseil Scientifique Régional du Pat-
rimoine Naturel) and in bird ringing campaigns, including the
plumbeous warbler for the CRBPO (Centre de Recherche sur la
Biologie des Populations d’Oiseaux), to identify the vegetation
formations of the plumbeous warbler’s habitat, which we used
to create the habitat patches (graph nodes) of the expert-based
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4 of 15 DANIEL ET AL.

FIGURE 1 Overall methodology in validating graph-based connectivity models with genetic data sets: (A) landscape graph construction and analysis from
spatial data and expert opinion-only and from presence–absence, spatial, and climatic data. Graph-based cost distances between sampled patches and connectivity
metrics (capacity, flux, betweenness centrality) are computed from the 3 different graphs (expert-based, habitat specialization index-derived [spec. index], and species
distribution model-derived [SDM]); (B) genetic data acquisition and analysis in which 27 populations (712 individuals) are sampled in forest patches and 12
microsatellite markers (msats) are analyzed for every individual and local genetic structure indices (allelic richness, relative genetic differentiation) and pairwise
genetic distances are computed at the population level; and (C) statistical validation through analyzes of the relationships between cost distances and genetic
distances and between connectivity metrics and genetic indices aiming at assessing the respective validity of the 3 landscape graphs.

landscape graph (Table 1). These areas represented a class of the
cost surface. We also asked this expert to assign each of the 10
land-cover types a dispersal cost value for use in computing the
least-cost paths between the habitat patches (graph links) of the
expert-based landscape graph.

Habitat specialization indices

We used 991 bird point counts acquired from 2009 to 2011 in
different vegetation units (Khimoun et al., 2016). Detection and
nondetection data recorded for the plumbeous warbler were
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FIGURE 2 Locations where 712 plumbeous warblers from 27 populations were sampled on the Guadeloupe archipelago in the Caribbean.

TABLE 1 Landscape graph elements according to different graph construction methods

Landscape graph Node delineation Cost value for link weights

Expert based Preferred vegetation formation according to expert
opinion

Cost values following expert opinion

Specialization index derived Land-cover type with the highest specialization
index value

Cost values converted from specialization index
values following Bourdouxhe et al. (2020) and
assuming a cost of 1 in the preferred habitat

Species distribution model
(SDM) derived

Areas with suitability scores above the suitability
threshold maximizing the prediction
performance of the SDM

Cost values converted from suitability scores
following Bourdouxhe et al. (2020) and assuming
a cost of 1 in the habitat

considered presence–absence data. From these point data, we
computed a habitat specialization index for each of the 10 land-
cover types following the formula of Jacobs (1974) (Appendix
S4). This index varies from −1 (avoidance) to 1 (exclusive use);
an index value of 0 means the species is neutral relative to
the land-cover type. To avoid pseudoreplication induced by the
presence of points following linear and most accessible tracks
in BT, we iteratively subsampled these points and kept only 2
points per set of linearly distributed points. The land-cover type
with the maximum Jacobs’ index was considered habitat and was
used to delineate habitat patches (nodes) of the specialization-
index-derived graph (Table 1). Following the recommendation
by Keeley et al. (2016), we assigned cost values to land-cover
types with a negative exponential transformation. We used a
formula adapted from Bourdouxhe et al. (2020) to specify the

range of cost values:

costi = e
− ln(costmax )×ln(Jacobsi+1)

Jacobshabitat+1 × costmax,

where costi and Jacobsi are, respectively, the dispersal cost value
and Jacobs’ index associated with land-cover type i; costmax is
the maximum cost value; and Jacobshabitat is the maximum index
value (i.e., associated with the species habitat), which ensures
that the corresponding cost value is equal to 1. Because dispersal
may occur through moderately suitable areas and is avoided only
through the least suitable areas, we used a negative exponential
distribution of the cost values. The maximum cost value was set
to 1000, reflecting previous empirical results (Gurrutxaga et al.,
2010).
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Species distribution model

We used logistic regressions to create the distribution model for
plumbeous warbler because presence–absence methods should
be used when both presence and absence data are available
(Fletcher & Fortin, 2018), as in our case. This type of model is
easy to use in the conservation-oriented modeling approaches
we applied here. We used the same iterative subsampling
approach as described above to avoid pseudoreplication.

After controlling for collinearity and explanatory power of
the predictor variables, we retained the following variables in the
model: percentage of agricultural and artificial areas at a radius
of 500 m around the data point; distance from the data point to
the closest road; distance from the data point to the closest for-
est; and mean annual precipitation. We computed the Matthews’
(1975) correlation coefficient (MCC), which assesses the predic-
tion quality of the model at different suitability thresholds. The
threshold suitability value maximizing the MCC was selected as
the probability threshold above which we considered a pixel
to be a habitat pixel. We converted suitability scores into cost
values using the same formula as for converting specialization
indices into cost values:

costi = e
− ln(costmax )×S1

Sthr. × costmax,

where Sthr. is the threshold probability used for delineating
habitat patches and Si is the suitability score of pixel i.

Landscape graphs

We created landscape graphs whose nodes and links were
defined in 3 different ways according to the information source
(Table 1) with Graphab software (Foltête et al., 2012). The mini-
mum patch size was set to 1 ha. The size of some habitat patches
in BT exceeded the scale at which habitat amount is supposed
to influence population dynamics, which decreases the explana-
tory power of graph-based connectivity metrics (Laroche et al.,
2020). We thus controlled for the maximum size of habitat
patches by fixing their maximum extent to 2500 m side length.
The topology of the landscape graphs was planar because it is
a good approximation of the complete graph. The links were
weighted by pairwise cost distances.

From each landscape graph, we computed 3 complementary
metrics reflecting the ways each patch contributes to the con-
nectivity of the habitat network (Baranyi et al., 2011). First, we
computed the capacity (capa), a proxy for the carrying capac-
ity of the patch representing its demographic potential and the
intrapatch connectivity. It was equal to patch area.

We then computed the flux index (F) to measure the con-
tribution of each habitat patch to immigration and emigration
flows. This metric is largely inspired by the incidence function
by Hanski and Gilpin (1991). We used the following formula:

Fi =
∑n

j=1; j≠i
capa

j
× e−𝛼×di j , (3)

where i is the index of the focal patch, j is the index of all the
other n patches, and dij is the cost distance between patches
i and j. Alpha (α) was computed according to different dis-
persal kernels to test for the influence of the scale at which
between-patch connections are assigned significant weights for
computing the metrics. To that purpose, we set α values such
that p = e−𝛼×di j = 0.05 for distances dij ranging from 500 to
15,000 m (with steps of 500 m), whereby we considered the
amount of reachable habitat (Saura & de la Fuente, 2017)
beyond the immediate neighborhood of a population.

Finally, we computed the betweenness centrality (BC) index
to quantify the role of each patch for the traversability (Urban
& Keitt, 2001) of the entire habitat network:

BCi =
∑

j

∑

k

capa
j
× capa

k
× e−𝛼×d jk , (4)

j , k ∈ {1, … , n} , k < j , i ∈ Pjk,

where Pjk is the set of crossed habitat patches along the least-
cost paths between patches j and k, including patch i, so that
only these paths are considered for computing the metric for
patch i. Alpha (α) had the same range of values as in the F cal-
culation. This index makes it possible to identify stepping stones
in the habitat network. The BC index should have high values at
patches that are key for maintaining high genetic diversity levels
(Zetterberg et al., 2010), although this has rarely been proven.

Field sampling and genotyping

We mist-netted 712 birds in 27 forest patches (9 and 18 from GT
and BT, respectively) (Figure 2). Twenty sites were sampled in
2012–2013 and the other 7 in 2020 (protocol in Khimoun et al.,
2017). Four sites were sampled twice, and temporal genetic dif-
ferentiation was tested using GENEPOP (Raymond & Rousset,
1995). This temporal genetic differentiation was not significant
for 3 of the 4 populations. The relative level of genetic differen-
tiation between the only differentiated population and the other
ones remained stable. We thus pooled the data. Permissions for
bird sampling were granted by Direction de l’Environnement,
de l’Aménagement et du Logement (DEAL) of Guadeloupe,
Parc National de la Guadeloupe, Conservatoire du Littoral, and
ONF de Guadeloupe.

Total DNA extraction was performed following either a
standard phenol–chloroform protocol (2012–2013 data set)
(Khimoun et al., 2017) or using commercial Blood Genomic
DNA Mini-Preps Kits (BIO BASIC Inc., Markham, Canada)
(2020 data set) from blood samples stored in Queen’s lysis
buffer. Individuals were genotyped at 12 microsatellite loci
(Khimoun et al., 2016; Khimoun et al., 2017). Loci were ampli-
fied in simplex in a Dyad thermal cycler (Bio-Rad, Hercules, CA,
USA), PCR products were multiloaded for analyzes in an auto-
mated sequencer (ABI3730), and allele scoring was performed
using GENEIOUS R.8 (Kearse et al., 2012).
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Genetic structure indices

After checking for Hardy–Weinberg equilibrium and for the
absence of linkage disequilibrium, we assessed the genetic diver-
sity of each population by its allelic richness (Ar), computed
using a rarefaction method implemented in ADZE 1.0 (Szpiech
et al., 2008) to account for heterogeneous sample sizes. The
relative genetic differentiation of each population was assessed
by the mean of inverse weight metric (MIW) in the graph4lg
R package (Savary et al., 2021b). The MIW of a population is
the mean of the inverse pairwise genetic differentiation values
between each population and the 26 others. Highest MIW val-
ues are obtained for the populations that are the least genetically
different from the others. Genetic differentiation between pop-
ulations (hereafter genetic distances) was estimated by pairwise
FST (Weir & Cockerham, 1984).

Validation of cost distances and connectivity
metrics associated with landscape graph links
and nodes

We assessed the ecological validity of landscape graphs by study-
ing the relationship between cost distances computed along
their links and genetic distances between populations connected
by these links and the relationship between connectivity metrics
and genetic indices computed at the level of patches occupied
by sampled populations (Figure 1). In both cases, a strong rela-
tionship between these variables meant that landscape graphs
correctly reflected reality.

Cost distances depend on cost scenarios and aim at reflecting
dispersal constraints across landscapes more realistically than
geographic distances. Therefore, we tested whether cost dis-
tances were better predictors of FST than geographic distances
with Mantel and partial Mantel tests, following the causal mod-
eling approach of Cushman et al. (2006). The cost distances that
best explained pairwise genetic distances were the most reliable
estimates of landscape connectivity among pairs of populations.
For each graph, we thus modeled pairwise genetic distances
as a function of cost distances between populations along
the links of the landscape graphs with maximum-likelihood
population-effects (MLPE) models (Clarke et al., 2002). These
models include a population random effect to control for
the nonindependence of the observations inherent to distance
matrices.

Because the spatial scale and the topology of the links consid-
ered can influence the relationship between landscape distances
and genetic distances (Savary et al., 2021a; Van Strien et al.,
2015), we assessed the relationship between these distances by
considering different sets of links: all population pairs; only the
links between population pairs located on the same part of the
island (intraisland pruning conserving only BT–BT or GT–GT
links); and all population pairs separated by a cost distance lower
than a threshold value (threshold pruning) (several thresholds
were tested iteratively). The 2 latter approaches reflect the fact
that a study area is sometimes divided in several parts for carry-
ing out the analyzes (Angelone & Holderegger, 2009) and that

iterative thresholding can help determine the scale of landscape
effects on genetic structure (Emaresi et al., 2011).

To assess the ecological validity of every cost scenario while
controlling for potential model overfitting, we adapted the
leave-one-out cross-validation method to our specific objectives
and genetic distance data. When creating the MLPE models,
we removed iteratively 1 of the 27 populations and all the links
including it from the training data (i.e., 26 links for a complete
topology). Then, we predicted the genetic distances involving
this population with the calibrated model. The genetic distance
associated with a given population pair was therefore predicted
twice overall if it was included in the topology retained for the
analysis. The mean of these 2 predicted genetic distances was
compared with the corresponding observed genetic distances to
assess the predictive quality of each cost scenario and link set.
We computed a validation R2 to quantify the prediction error
(Appendix S6). We also computed the root mean square of the
errors (RMSE) associated with each population pair from the 2
corresponding predicted values and the mean of these RMSE at
the population level. Finally, the predictive capacity of these cost
distance models was compared with that of null models predict-
ing genetic distances as a function of geographic distances with
and without pruning.

To assess the ecological relevance of the connectivity metrics
and identify metrics reflecting the best population genetic struc-
ture, we computed Spearman’s rank correlations between the 2
genetic indices (Ar, MIW) and the connectivity metrics (capac-
ity, F, BC). We only considered the 27 forest patches occupied
by the sampled populations.

RESULTS

Graph construction parameters

According to the expert, the plumbeous warbler occupies all
types of woody vegetation formations except coastal thickets
and fallow lands with low-growth woody vegetation (Appendix
2). The assigned cost values ranged from 1 to 10; the small-
est values were assigned to forests (Table 2). The ocean and
artificial areas were the most resistant land-cover types (highest
costs). For allowing comparisons with the other cost scenarios,
we rescaled these cost values between 1 and 1000 (Appendices
S5 & S13).

The maximum Jacobs’ specialization index (0.73) was
obtained for the land-cover type delineated as habitat areas by
the expert, whereas the minimum was obtained for open areas
(−0.83), agricultural areas (−0.68), and artificial areas (−0.26)
(Table 2). Although there was no bird count in seminatural areas,
these areas were mostly urban green spaces, and we assigned
them the same index as for artificial areas. The cost values con-
verted from these indices exhibited sharp contrasts as illustrated
by the costs of 281 and 52, respectively, assigned to agricultural
and artificial areas (Appendices S10 & S13).

The bird count point data set included 206 presence points
and 785 absence points of the study species. The resulting SDM
had good prediction accuracy (Area Under the Curve (AUC) =
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8 of 15 DANIEL ET AL.

TABLE 2 Habitat specialization indices and raw expert-based cost values associated with every land-cover type and corresponding cost values according to the
expert-based and specialization index-based cost scenarios for plumbeous warbler’s dispersal

Land cover type

Initial values Cost values

exp. spec. index exp. based spec. index derived

Habitat 1 0.73 1 1

Suboptimal woody vegetation 2 0.46 112 3

Seminatural 4 –0.26 334 52

Semiopen 3 0.29 223 6

Open areas 4 –0.83 334 513

Agricultural 3 –0.68 223 281

Wet areasa 3 –1 223 1000

Watera 4 –1 334 1000

Oceana 10 –1 1000 1000

Artificial 10 –0.26 1000 52

Note: Because the cost values derived from the species distribution models do not depend on land-cover types, they are not included in this table.
Abbreviations: exp., cost values deriving from expert opinion; spec. index, cost values obtained from the Jacobs’ specialization indices.
aGiven the absence of bird count points in water, wet areas, and the ocean, we set the corresponding indices at −1.

0.918) (Appendix S11). The suitability threshold maximizing the
MCC above which we considered a pixel to be a habitat pixel
was 0.328 (MCC = 0.547). The distance to the closest forest
had the strongest effect on presence probability. It negatively
influenced the suitability scores, as did the proportion of agri-
cultural and artificial pixels in the 500 m surrounding a pixel. In
contrast, an increase in distance to the closest road and in mean
precipitation tended to increase the suitability (Appendix 12).

Cost values derived from the SDM were very different
because the conversion of already contrasted presence prob-
abilities assigned either very low or very high cost values to
pixels (Appendix S10). In forest areas, mostly coinciding with
habitat patches, pixels had low cost values, equal or close to 1
(Appendices S9 & S13). Because presence probabilities strongly
decreased as distance to the closest forest increased and to
a lesser extent as the proportion of agricultural and artificial
areas increased, pixels located far from the main habitat patches
were associated with high cost values (Appendix S13). This led
to higher cost values in agricultural areas compared with the
cost values associated with this land-cover type in the other
cost scenarios (223 and 281 for the expert-based and special-
ization index-derived scenarios, respectively). Because artificial
areas also took high values overall, areas dominated by artificial
and agricultural areas (e.g., around the isthmus) were assigned
much higher cost values in the SDM-derived scenario than in
the others (Appendix S13).

Graph element properties

The expert-based and specialization index-derived graphs
shared the same nodes. They had more nodes with a smaller
average area (n = 1653, mean area = 39 ha) than the SDM-
derived graph (n = 621, mean = 102 ha). Overall, the cost
distances between populations separated by the isthmus (BT–

GT) were larger than the cost distances between population
pairs from BT or GT (BT–BT or GT–GT). However, because
of the high cost values assigned to both agricultural and artifi-
cial areas when building the graph from the SDM, the difference
between the cost distances computed across the isthmus and the
others was even larger when using the SDM-derived scenario
rather than the other scenarios (Appendices S14 & S15).

Genetic structure

On average, populations from BT and GT had similar levels of
genetic diversity, although the allelic richness was more variable
in BT (BT: 4.63 [SD = 0.34]; GT: 4.82 [SD = 0.13]) (Appendix
S3). The main differences in allelic richness were observed in
BT, where the populations inside the largest forest patches were
more diverse than populations on their margins. Similarly, MIW
exhibited a bimodal distribution on BT (≥50 or ≤26) and had
intermediary values on GT (26–50) (Appendix S3). The lowest
MIW values, corresponding with the most genetically differen-
tiated populations, were observed for BT populations on the
margins of the main forest patches (Appendix S3). Overall, pop-
ulations were highly differentiated genetically, with over 90%
of population pairs significantly differentiated (Appendix S7).
This differentiation was more significantly related to cost dis-
tances than to geographic distances according to the causal
modeling approach (Appendix S8), suggesting a dominant pat-
tern of isolation by landscape resistance rather than isolation by
distance.

Validation of cost distances associated with
landscape graph links

The models explaining FST as a function of geographic dis-
tances had much less predictive power than the models based
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CONSERVATION BIOLOGY 9 of 15

FIGURE 3 Validation R2 of the maximum-likelihood population-effects (MLPE) models explaining pairwise genetic distances (FST) as a function of the cost
distances between 27 plumbeous warbler populations along the links of the landscape graphs (vertical boxes, cost scenarios used for computing cost distances when
creating landscape graphs; spec. index derived, cost values converted from Jacobs’ specialization indices; SDM-derived, cost values converted from suitability scores
of the species distribution model; matching colors, set of links [population pairs] considered in the models; All pairs, all population pairs; Thr. pruning, population
pairs separated by a cost distance lower than a given cost distance threshold [only results of the best models obtained using a distance threshold reported for each
cost scenario]; Intra-island, only pairs of populations located on the same part of the island are considered [Basse-Terre–Basse-Terre or
Grande-Terre–Grande-Terre]).

on cost distances. The validation R2 values associated with the
MLPE models based on geographic distances were negative
when considering all population pairs (−0.05), a pruning thresh-
old (−0.03), and on only intraisland links (−0.04). The MLPE
models with the cost distances along the graph links as predictor
variables provided contrasting results according to the cost sce-
nario and the set of links considered (Figure 3). Whatever the
cost scenario, the models considering all population pairs had
very low or negative validation R2, especially when they included
cost distances deriving from the SDM-derived landscape graph
(R2 = −0.04). In contrast, when only a subset of links was con-
sidered in the models, the validation R2 was up to 0.30 under
the cost scenario derived from specialization indices. Valida-
tion R2 reached maximum values of 0.25 and 0.21 with cost
distances derived from the SDM and expert-based landscape
graphs, respectively (Figure 3).

The set of links to consider for maximizing the predictive
performance of the model was not the same depending on
the cost distances used (Figures 3 & 4). For the specialization
index-derived method, the best MLPE model relied on a set
of intra-island links (BT–BT and GT–GT links; BT–GT links
discarded) (Figure 4B), whereas the model relying on a cost
distance threshold to prune the links had a poor predictive per-
formance. In this latter model, BT–GT links were included in

the analyzes. For the expert-based or SDM-derived cost sce-
nario, link selection based on the cost distance threshold and on
the intra-island location led to similar topologies. Only few or no
BT–GT links were conserved when the best pruning threshold
was applied to cost distances based on the expert or SDM sce-
nario, respectively. This led to similar validation R2 for a given
scenario.

The different performances depending on the link set con-
sidered partly stemmed from the fact that the genetic distances
between BT and GT populations were not predicted correctly
by cost distances. This was especially the case with the SDM-
derived cost distances, which led to a very negative validation
R2 when a complete topology was considered. Besides, the pre-
diction errors of the best models mainly concerned population
pairs involving BT populations, especially those located on the
margin of the largest forest patches (Figure 4).

Validation of connectivity metrics associated
with landscape graph nodes

The 2 genetic indices (Ar, MIW) were each significantly cor-
related to all 3 habitat connectivity metrics (capacity, F, BC).
For each cost scenario, we only report the highest correlation
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10 of 15 DANIEL ET AL.

FIGURE 4 Genetic distance prediction errors of the maximum-likelihood population-effects (MLPE) models (abbreviations defined in legend of Figure 3).
The means of the prediction errors of the genetic distances involving a given population and the populations connected to it (26 for a complete topology) are
computed for each population. The prediction error considered is the square root of the mean of the squared differences between the observed genetic distance and
the genetic distance predicted by the MLPE models in which 1 of the 2 populations of a pair has been excluded from the training data set (2 values for each pair).
The corresponding validation R2 of the MLPE model is reported. Results shown are for models including cost distances computed from cost scenarios deriving
from (A, B) expert opinion, (C, D) Jacobs’ specialization indices, or (E, F) species distribution model (SDM) and considering populations pairs either selected based
on a threshold pruning (A, C, E) or corresponding to populations located on the same subpart of the island (Basse-Terre–Basse-Terre or
Grande-Terre–Grande-Terre) (B, D, F).
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CONSERVATION BIOLOGY 11 of 15

TABLE 3 Spearman’s rank correlation coefficients (r) between genetic indices and connectivity metrics (n = 27 plumbeous warbler’s populations, 712
individuals total) on the Guadeloupe archipelago.

Genetic index Connectivity metric Habitat delineation, cost scenario rsp. optim.
a doptim.

MIW Capacity expert based, spec.ind. 0.50 *

MIW Capacity SDM derived 0.57b **

Ar Capacity expert based, spec.ind. 0.55b *

Ar Capacity SDM derived 0.45

MIW F expert based 0.68 *** 1000

MIW F spec. ind. derived 0.71b *** 500

MIW F SDM derived 0.58 ** 3500

Ar F expert based 0.42 * 1000

Ar F spec. ind. derived 0.48b * 500

Ar F SDM derived 0.37 3500

MIW BC expert based 0.63 *** 1000

MIW BC spec. ind. derived 0.68b *** 500

MIW BC SDM derived 0.63 *** 3500

Ar BC expert based 0.51b ** 500

Ar BC spec. ind. derived 0.50 ** 500

Ar BC SDM derived 0.42 * 1500

Note: Values are reported according to the genetic index (MIW, mean inverse weight; Ar, allelic richness), connectivity metric (capacity; F [flux metric]; BC [betweenness centrality metric]),
method used for delineating habitat patches and fixing cost values (expert based, expert-based scenario; spec. ind. derived, habitat delineation and cost values deriving from Jacobs’ special-
ization indices; SDM derived, habitat delineation and cost values deriving from suitability scores of the species distribution model), and distance at which dispersal probability is set to 0.05
for computing α values. For each combination of a genetic index, a connectivity metric, and a construction scenario, the correlation coefficients (rsp. optim .) obtained when using the optimal
distance (doptim .) and corresponding α value for computing the connectivity metric are shown (spec., species; ind., index).
aSignificance: *p < 0.05; **p < 0.01; ***p < 0.001.
bThe highest correlation coefficient for each combination of a genetic index and a connectivity metric.

coefficients obtained across the range of d values we used to
compute the metrics (Table 3). These coefficients took large val-
ues (up to 0.71) and tended to be slightly higher between the
connectivity metrics and the MIW rather than the allelic rich-
ness. The optimal d value used to compute the metric was always
≤3500 m.

The correlations obtained with metrics computed using the
SDM-derived landscape graph were overall lower than those
obtained with the 2 other graphs (Table 3). In all but 1 case
(MIW vs capacity), the metrics computed from the landscape
graphs based on expert opinion and on the specialization
indices led to stronger correlations than metrics computed using
the SDM-derived graph. Thus, we could not determine whether
such differences of correlation strength stemmed from differ-
ences in terms of patch delineation or from cost distances
associated with the graph links.

DISCUSSION

Most connectivity models based on landscape graphs lack a pos-
teriori empirical validation (Foltête et al., 2020; Kadoya, 2009).
Using genetic data, we demonstrated that landscape graphs
constructed using either expert opinion or presence–absence
data reliably modeled the influence of habitat patch connec-
tivity on population genetic structure. We thus confirmed
their relevance for conservation modeling. Yet, the relation-

ship between graph ecological relevance, data requirements,
and construction and analysis methods was not straightforward.
The graph based on the most complex construction method
(SDM) had a similar or even lower ecological relevance than the
others.

Empirical validation of landscape graphs by
genetic data

The observed genetic differentiation pattern provides sup-
port for an isolation-by-landscape resistance hypothesis over
the isolation-by-distance hypothesis. Furthermore, whatever the
landscape graph construction method, the cost distances associ-
ated with graph links accurately predicted the genetic distances
between populations sampled in graph nodes. Because genetic
distance was partly due to the random and unpredictable effects
of genetic drift, a validation R2 up to 0.30 seems satisfactory.
The relationship between genetic distances and cost distances
computed under different cost scenarios has most often been
evidenced based on correlative approaches (Balbi et al., 2018;
Creech et al., 2014). Introducing a novel cross-validation
approach applied to linear mixed models, we showed that
landscape graphs could be useful for implementing predictive
approaches in landscape genetics. Predicting genetic distances
between a whole set of habitat patches without implementing an
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12 of 15 DANIEL ET AL.

exhaustive genetic sampling protocol strengthens the usefulness
of this approach in conservation modeling (Keller et al., 2015).

Although Moilanen (2011) raised concern about the uncer-
tain ecological relevance of the multitude of metrics deriving
from landscape graphs, a restricted set of these metrics
sufficiently reflects how habitat connectivity influences ecoevo-
lutionary processes (Baranyi et al., 2011; Urban & Keitt, 2001).
Accordingly, we computed 3 complementary connectivity met-
rics (capacity, F, BC) and found that they were each significantly
correlated with the local genetic diversity of each population and
with their level of genetic differentiation with other populations.

Our results are consistent with previous studies showing
the same landscape genetic relationships (Castillo et al., 2016;
Creech et al., 2014), including studies using similar graph-based
connectivity metrics and genetic indices (Bertin et al., 2017;
Peterman et al., 2015). However, few studies have assessed these
relationships with connectivity metrics completely independent
of genetic data (but see Savary et al. [2022]). The indepen-
dent validation approach we implemented therefore strengthens
the robustness of landscape genetic inferences by showing that
the metrics associated with the nodes and links of landscape
graphs reliably reflect the drivers of both genetic drift and
gene flow. This means that ranking habitat patches accord-
ing to different connectivity metrics provides insight into the
respective genetic responses of the populations occupying them
and would help in the design of conservation measures. Nev-
ertheless, our results are valid for a single species in a single
landscape. Thus, to provide broad guidance to conservation sci-
entists and planners, we call for studies spanning a wider range
of species and landscapes while relying on an independent val-
idation approach. In addition, when historical land-cover data
are available, they should be used to test whether there is a
mismatch between the observed genetic structure and the cur-
rent landscape (Epps & Keyghobadi, 2015; Landguth et al.,
2010; Robertson, Fletcher, & Austin, 2018) and to adjust the
connectivity models accordingly.

Relationships among graph ecological
relevance, data requirements, and construction
and analysis methods

Apart from validating the landscape graph approach, we aimed
to compare the ecological relevance of graphs built using either
expert-based information or empirical data. Our hypothesis
that the graph deriving from an SDM would provide the most
realistic outputs was only partly supported.

We used 991 presence–absence observations and both cli-
matic and landscape variables for fitting the SDM; the same
presence–absence data and only land-cover data were needed
for computing habitat specialization indices. Only land-cover
data and expert opinion were needed for the simplest expert-
based approach. These graph construction methods thus
differed in terms of both data requirement and complexity,
which determine the overall modeling cost. Despite these differ-
ences, the connectivity metrics derived from the expert-based
or specialization-index graphs were almost always the most

correlated to the genetic indices. The best model explaining
genetic distances included cost distances computed with cost
values derived from specialization indices, while cost distances
obtained using the SDM-derived and expert-based cost sce-
narios led to similar predictive performances. This indicates
that, compared with the SDM approach, simpler empirical
approaches or expert-based approaches could be reliable and
more cost-effective in many instances. Therefore, although our
results confirm that integrating empirical data in landscape
graph modeling leads to reliable models (Kadoya, 2009), they
bring into question the cost-effectiveness of such an approach
when it is based on an SDM.

The quality of the SDM cannot explain why the SDM-derived
graph did not always appear as the most realistic. The SDM had
a good accuracy (AUC > 0.9), reflecting the quality of these
models for specialist species such as the plumbeous warbler
(McPherson & Jetz, 2007). Interestingly, the use of presence–
absence data did not explain the main differences between
the graphs. We used these same data to compute specializa-
tion indices, and the metrics derived from the graph built from
these indices were more similar to the metrics derived from
the expert-based graphs than those derived from the SDM-
derived graph. Therefore, the choices made for delineating
habitat patches and setting cost values seem to be equally impor-
tant, if not more, than the data used for modeling landscape
graphs.

Using suitability scores for delineating habitat patches pro-
duced fewer patches of larger sizes, partly because areas
dominated by suitable pixels were bordered by areas with
slightly lower suitability scores, sufficient for being inte-
grated into habitat patches. This has already been observed
(Bourdouxhe et al., 2020; Godet & Clauzel, 2021), although an
opposite result can also be obtained when variables included
in the SDM tend to decrease suitability in areas otherwise
identified as habitat patches (Stevenson-Holt et al., 2014). The
different correlations between genetic indices and connectiv-
ity metrics deriving from the graphs could be due to these
differences in node delineation.

The methods used for setting the cost values substantially
affected our results. The negative exponential function intro-
duced by Keeley et al. (2016) for converting suitability scores
into cost values assigned high cost values to pixels located far
from forest areas. Consequently, we obtained large cost dis-
tance values between populations separated by the isthmus,
around which forest areas were much less frequent than agri-
cultural and artificial areas. This did not allow for predicting
well the genetic distances between these populations. Yet, the
cost scenario based on specialization indices obtained using the
same conversion function led to better predictions of these
same genetic distances (highest validation R2 for a complete
topology). This means that this difference was not due to the
negative exponential function in itself, but rather to the range
of values to which it is applied. Because the transformation
of expert opinion or empirical data into cost values is key
to connectivity modeling, future studies might consider com-
paring different types of transformation for identifying best
practices.
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The scale at which the connections between populations or
patches were considered largely affected the results. The set of
links considered for predicting genetic distances from cost dis-
tances largely influenced the quality of the predictions, and in
differing ways depending on the cost scenario. The inability of
our models to predict the genetic distances separating popula-
tions from BT and GT may lie on the fact that at large scales,
the influence of drift on genetic differentiation may be much
larger than that of gene flow (Hutchison & Templeton, 1999),
thereby preventing models based on cost distances from per-
forming well. Although these complex results partly stem from
the specific topography and spatial distribution of the Guade-
loupe forests, they recall the importance of the topology of the
population networks for the reliable assessment of landscape
genetic relationships (Savary et al., 2021a; Van Strien, 2017).

Implications for biodiversity conservation and
landscape planning

Our results confirm the relevance of the wide range of
graph-based methods specifically developed for conservation
purposes (Foltête et al., 2014; Zetterberg et al., 2010). We fur-
ther illustrated how landscape graphs can be used to address
conservation issues whether genetic data are available or not.

Genetic data allowed us to assess the ecological validity of
each graph element. First, our graph-based approach showed
that the genetic diversity of plumbeous warbler populations was
positively affected by the availability of forest areas at a limited
radius around populations. The lower genetic diversity observed
in forest patches located on the margins of the large BT forest
patches indicated that this species is negatively affected by the
breaking apart of forest patches, even when large forest areas
are reachable nearby. Together, these results suggest the fol-
lowing conservation measures for maintaining genetic diversity
in the plumbeous warbler populations of Guadeloupe: protect
forest patches in northwestern GT; restore connectivity on BT
between the small peripheral forest patches and the large cen-
tral patches; and restore forest patches on the western part of
the isthmus between BT and GT to allow long-distance gene
flow (Frankham et al., 2017).

We also distinguished populations whose genetic differen-
tiation mostly originated from the habitat pattern and matrix
resistance from populations associated with high prediction
errors where other factors could explain it. In the latter case,
complementary field surveys should be carried out, for example,
to identify other factors that could reduce population sizes (e.g.,
antagonistic interspecific interactions) or gene flow (unmodeled
landscape barriers) and explain genetic structure. This illus-
trates that making the model limitations spatially explicit with
predictive approaches when genetic data are available could
expand the usefulness of the landscape graph approach for
conservation modeling.

In contrast, when genetic data are not available, the con-
struction and analysis parameters cannot be optimized, but we
showed that the set of parameters we used still led to cost
distances and metrics that significantly explained the genetic

responses. Thus, although landscape graph modeling should
preferably be used for studying specialist species occupying dis-
crete habitat patches (Urban & Keitt, 2001), it could continue
to be a useful tool for addressing conservation issues in a wide
range of species for which genetic data acquisition is difficult
or expensive. The availability and the quality of either infor-
mation from the literature or expert opinion or empirical data
should determine the graph construction method because we
found that empirical approaches were not necessarily the most
cost-effective. In particular, using an SDM for constructing a
landscape graph should be restricted to the cases where expert
opinion and land-cover data do not allow for delineating habitat
patches or setting cost values.
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