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Abstract—NanoContact Vortex Oscillator (NCVO) is a highly
nonlinear electronic device that can depict chaotic or nonchaotic
behaviors according to the applied DC bias current or the mag-
netic field. The potential use of such device in computing systems
requires the build of a realistic model capable of describing its
dynamics. In this paper, we demonstrate an efficient approach
for the modeling of the NCVO device based on a recurrent
neural network. The proposed model compared to micromagnetic
simulations at different current values, shows promising results.

Index Terms—computing systems, NCVO, modeling, chaos,
recurrent neural network

I. INTRODUCTION

NanoContact Vortex Oscillator (NCVO) is a highly nonlin-
ear spintronic device. Depending on the DC bias current and
the applied magnetic field, the NCVO can engage to a chaotic
state or stay in a non-chaotic state. Chaos involves highly
nonlinear dynamics that leads to apparent random largely
unpredictable signals that are in fact deterministic but sensitive
to initial conditions [1]. For that, NCVO can be exploited
in complex computing applications such as random numbers
generation, data encryption, and reservoir computing. In fact, it
has been shown recently [2] that, for a well-defined geometry,
it is possible to move continously from a commensurable
or stable state to an incommensurable or chaotic state. This
easy switching between different regimes is very promising to
obtain optimal computational performances [3].

Modeling NCVO device is not a trivial task. This is mainly
because the magnetization dynamics that govern the NCVO
operation involves too many degrees of freedom. In fact,
physics stands helpless so far to find explicit equations that
describe the accurate change in the state of NCVO. Thus, the
use of SPICE, VerilogA, or any similar modeling tool becomes
impossible due to the lack of an obvious mathematical model.
In this paper, we resort to neural networks that seem very
appropriate to deal with the NCVO’s nonlinear magnetization
oscillations, as they are data-driven and self-adaptive that can
learn several time series and regenerate them. Furthermore,
these networks involve large number of nonlinearly-connected
neurons, which makes them well worthy for such purpose.

The rest of this paper is organized as follows: Section II
introduces the NCVO, its structure and the physics behind. It
also reveals the influence on the current behavior. In Section
III, we expose our own work in modeling NCVO based on
recurrent neural network. The obtained results are shown in
Section IV. Finally, Section V gives some concluding remarks.

Fig. 1: (a) Composition of a spin valve. (b) Vortex’s gyrotropic
motion in permalloy layer, with uniform magnetization in cobalt layer.
(c) Power spectra and time traces (in set) of the magnetization in
chaotic case. (d) Variation of fmod/f0 versus current [2].

II. NCVO AND PHYSICS BEHIND

NCVO consists in an extended spin valves structure made of
multiple stacked thin layers including two ferromagnetic layers
(Fig. 1a). The electrical current passes through a metallic
NanoContact (NC) lithography on top. Most of the flowing
currents are perpendicular to the surface, producing a large
Oersted Ampère field with a circulating configuration. This
allows the formation of a magnetic vortex only in the upper
ferromagnetic layer below the NC. The remaining currents
spread in the plane to farther regions, generating a spin transfer
torque that move the vortex core away from the center. At a
given distance from the NC, this torque is compensated by
a magnetic damping, leading to a self-sustained gyration of
the vortex core around the NC (Fig. 1b). In contrast, the
magnetization of the lower magnetic cobalt layer remains
uniform. This layer serves as a reference for measuring the
magnetoresistance (MR) signal of the spin valve. The resis-
tance of the device is then proportional to the azimuthal angle
of the vortex core. With an applied DC current and due to the
MR effect, an oscillating voltage VGMR at the vortex gyration
frequency appears across the device, [2].

To study this phenomenon, an NCVO has been tested exper-
imentally for different current values I. At some values above
10.3mA, the power spectrum shows a modulation effect (Fig.
1c) where two sideband frequencies ±fmod are associated to
the gyration frequency f0. Figure 1d shows the variation of
the fraction fmod/f0 as function of I . The plateaux are a sign



of phase-locking phenomenon. At these points the state of
the NCVO is said to be commensurate, otherwise the device
operates in a chaotic manner.

III. RECURRENT NEURAL NETWORK

The behavior of an NCVO varies with respect to the value
of the current flowing through the device. Thus, there is a
need for Neural Long-Term memory [4] capable of saving and
regenerating large amount of time series patterns. We suggest
the use of Conceptors-Reservoir Computing [5] that passes
serially through two phases: ’Loading phase’ where patterns
are installed to the network, and ’Recall phase’ at which the
patterns are regained according to the conceptor’s value.

To model this system, an RNN with N neurons is built by
randomly creating a N × N internal connection matrix W ∗,
an N ×M input weights matrix W in, and a N random bias
vector b. The scalar pattern p(n) drives the network by the
state-update equation below, then the final output is computed
linearly from the network through the readout matrix W out:

x(n+ 1) = tanh(W ∗x(n) +W inp(n) + b) (1a)
y(n) =W outx(n) ≈ p(n) (1b)

Before start, the network undergoes a sequence of steps:
• Training readout matrix: an M -dimensional white noise
ν(n) is introduced to the network to collect the states. Accord-
ingly, W out is computed via the optimization problem below.
Note that the readout neuron is trained on a random signal,
and thus it should perform well for any temporal signal.

xν(n+ 1) = tanh(W ∗xν(n) +W inν(n) + b) (2a)

min
W out

∑
n

(W outxν(n)− ν(n))2 (2b)

• Training recurrent reservoir matrix: The input internalization
weights matrix W is induced from W ∗. This transformation
enables the new reservoir to mimic the impact of the drivers
pj in the absence of them. For that, the K patterns are fed
into the reservoir by separate runs to compute the states xj
where 1 6 j 6 K. Then W is calculated by minimizing the
quadratic loss below after the washout period n0 ends:

xj(n+ 1) = tanh(W ∗xj(n) +W inpj(n) + b) (3a)∑
j=1,..K

∑
n=n0,..L

‖W ∗xj(n) +W inpj(n)−Wxj(n)‖2 (3b)

• Computation of Conceptors: Conceptors are N×N matrices
that guide the system to which temporal pattern it should
engage at the exploitation time (see Eq (4a)). The quadratic
loss function for the computation of the matrices Cj is derived
in [5] and its explicit solution is as shown in Equation (4b):

x(n+ 1) = Cj tanh(Wx(n) + b) (4a)

Cj = Rj(Rj + (αj)−2I)−1 (4b)

Rj = E[xj(n)xj(n)T ] is the N×N correlation matrix of state
xj(n), and α is the aperture parameter that can be understood
as a virtual scaling factor of the reservoir states.

IV. RESULTS

In this section, we present the dynamics generated by the
recurrent neural network, built in Section III, in its try to depict
the real dynamics of the NCVO magnetizations. The 1000-
unit reservoir was loaded with the 81 training samples pj(n),
is that from 12mA to 20mA with a step of 0.1mA. Then the
conceptors Cj are computed after tuning their apertures αj .
Due to the limited space, we will only show examples of the x-
magnetization component corresponding to some chaotic and
commensurate regimes. Note that this technique works well
regardless of the applied current and for the y-component as
well. The reservoir is able to mimic the real behavior of the
magnetization oscillations even in its chaotic region, where
at the current values taken below the NCVO is locked to a
commensurate state only at I = 12mA.

Fig. 2: Variation of Mx magnetization component of NCVO at I =
12mA, 13mA, 15mA, and 17mA with Original signal (black plot)
and generated signal (red plot).

V. CONCLUSION

We have demonstrated the way of building a recurrent
neural network responsible for describing the magnetization
oscillations of a NCVO device. Regardless of the value of
current flowing in the NCVO, the LTM network performs well.
This work could be considered as the first footstep in the field
of circuit design based on NCVO components.
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