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Abstract: Optimal control is a convenient way to develop both supply chain process optimization models 

and describe the dynamics of process fulfillment. A rich diversity of knowledge has been developed for the 

integration of optimization and simulation methods with applications to supply chain management at con-

ceptual, informational, and computational levels. At the same time, model-algorithmic integration and 

alignment frameworks have received less attention. The importance of this level should not be underesti-

mated since synthesis and analysis problems in supply chains imply tight intersections between and within 

the models (e.g., objective functions and constraint systems). This paper seeks to bring the discussion for-

ward by carefully elaborating on the issues of optimization and simulation model and algorithm integration 

and providing implementation guidance. Conventionally, optimization has pre-dominantly been used at the 

planning level while dynamic system control was frequently investigated using simulation models.  This 

study develops an integrated optimization-simulation framework at the model-algorithmic level for the 

given domain. We offer insights on how to describe planning and control in a unified model-algorithmic 

complex with consideration of uncertainty factors which are anticipated at the planning and confronted at 

the control stages. The developed theoretical framework was exemplified by a combined optimization-

simulation modelling of the SC design and planning problem with disruption risks consideration in 

anyLogistix. Copyright © 2022 IFAC 
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1. INTRODUCTION 

Optimization and simulation approaches are most popular in 

supply chain (SC) design and planning with uncertainty and 

risk considerations analysis (Klibi and Martel 2012, Ivanov 

and Sokolov 2020). It is commonly known that simulation 

modeling is a preferable analysis tool in the following cases 

(Schmitt et al. 2017, Macdonald et al. 2018, Ivanov et al. 

2020a, Ghadge et al. 2021): a closed form mathematical 

problem does not exist or cannot be solved analytically, ana-

lytical methods exist, but their computational complexity 

prevents the finding of a feasible solution in a reasonable 

time, while simulation provide an efficient and simple solu-

tion procedure and can be used with the existing qualification 

of decision-makers in the firms; forecast or monitoring of a 

system or object behavior in time is needed. At the same 

time, some limitations of “pure” simulation applications need 

to be ad-dressed, such as the nature of heuristic solutions due 

to fixed structural elements, behavior algorithms and parame-

ters, as well as subjectivity in model development and result 

interpretation. We refer to the works by Snyder et al. (2016), 

Dolgui et al. (2018) and Hosseini et al. (2019) for more re-

cent state-of-the art reviews. Even if SC design with the help 

of mathematical optimization provides powerful decision-

making support, it does not take into account some important 

dynamic restrictions such as inventory control or shipment 

policies for which simulation is considered to be a useful tool 

(Bottani and Montanari 2010, Ivanov 2017a, Schmitt et al. 

2017, Ivanov and Rozhkov 2020). Therefore, modern com-

mercial software for SC simulation and optimization such as 

anyLogistix apply a multi-method technology that combines 

optimization and simulation (Burgos and Ivanov 2021). 

The purpose of the present study is to contribute to existing 

works by integration of planning and control decisions within 

a unified modelling-algorithmic framework. The combination 

of optimization and simulation was seen as a logical way of 

increasing the quality of the SC decision-support system 

(DSS), and different forms of such combinations have been 

developed (Gao and Chen 2016, Frazzon et al. 2018). These 

combinations resulted in the SC DSS that contained simula-

tion models, analytical models, a database (which is presently 

evolving into a knowledge base with artificial intelligence 

roots), and an integration system for alignment of data, ana-

lytical models, simulation models, and decision-making 

needs leading to development of digital SC twins (Ivanov and 

Dolgui 2021b). In such a complex DSS, the integration and 
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1. INTRODUCTION 

Optimization and simulation approaches are most popular in 

supply chain (SC) design and planning with uncertainty and 

risk considerations analysis (Klibi and Martel 2012, Ivanov 

and Sokolov 2020). It is commonly known that simulation 

modeling is a preferable analysis tool in the following cases 

(Schmitt et al. 2017, Macdonald et al. 2018, Ivanov et al. 

2020a, Ghadge et al. 2021): a closed form mathematical 

problem does not exist or cannot be solved analytically, ana-

lytical methods exist, but their computational complexity 

prevents the finding of a feasible solution in a reasonable 

time, while simulation provide an efficient and simple solu-

tion procedure and can be used with the existing qualification 

of decision-makers in the firms; forecast or monitoring of a 

system or object behavior in time is needed. At the same 

time, some limitations of “pure” simulation applications need 

to be ad-dressed, such as the nature of heuristic solutions due 

to fixed structural elements, behavior algorithms and parame-

ters, as well as subjectivity in model development and result 

interpretation. We refer to the works by Snyder et al. (2016), 

Dolgui et al. (2018) and Hosseini et al. (2019) for more re-

cent state-of-the art reviews. Even if SC design with the help 

of mathematical optimization provides powerful decision-

making support, it does not take into account some important 

dynamic restrictions such as inventory control or shipment 

policies for which simulation is considered to be a useful tool 

(Bottani and Montanari 2010, Ivanov 2017a, Schmitt et al. 

2017, Ivanov and Rozhkov 2020). Therefore, modern com-

mercial software for SC simulation and optimization such as 

anyLogistix apply a multi-method technology that combines 

optimization and simulation (Burgos and Ivanov 2021). 

The purpose of the present study is to contribute to existing 

works by integration of planning and control decisions within 

a unified modelling-algorithmic framework. The combination 

of optimization and simulation was seen as a logical way of 

increasing the quality of the SC decision-support system 

(DSS), and different forms of such combinations have been 

developed (Gao and Chen 2016, Frazzon et al. 2018). These 

combinations resulted in the SC DSS that contained simula-

tion models, analytical models, a database (which is presently 

evolving into a knowledge base with artificial intelligence 

roots), and an integration system for alignment of data, ana-

lytical models, simulation models, and decision-making 

needs leading to development of digital SC twins (Ivanov and 

Dolgui 2021b). In such a complex DSS, the integration and 
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alignment of simulation and optimization models plays a cru-

cial role. Such integration and alignment are multi-

dimensional and contain four levels, i.e., conceptual, model-

algorithmic, informational, and computational (Pedrielli et al. 

2015, Gao and Chen 2017). The literature developed a rich 

diversity of knowledge at the conceptual, informational, and 

computational levels. At the same time, model-algorithmic 

integration and alignment frameworks have received less 

attention. The importance of this level should not be underes-

timated. The synthesis and analysis problems in complex 

systems imply tight intersections be-tween and within the 

models (e.g., objective functions and constraint systems). 

This paper seeks to bring the discussion forward by carefully 

elaborating on the issues of optimization and simulation 

model and algorithm integration described above and provid-

ing some ideas and implementation guidance on how to think 

in relation to these challenges. The purpose of the present 

study is to contribute to existing works by arguing that, rather 

than simulation and optimization opposing each other, the 

consideration of these perspectives can be done within an 

integrated framework to enhance the quality of SC DSS. 

More specifically, we focus on the integration of planning 

and control decisions. Conventionally, optimization has pre-

dominantly been used at the planning level while dynamic 

system control was frequently investigated in the simulation 

models (Namdar et al. 2021, Pavlov et al. 2019, 2020).  The 

objectives of developing the integrated optimization-

simulation framework at the model-algorithmic level are to 

obtain insights on how to describe SC planning and control in 

a unified model-algorithmic complex with consideration of 

structural dynamics and disruptions which are anticipated at 

the planning and confronted at the control stages. 

2. INTEGRATION OF SIMULATION AND OPTIMIZA-

TION APPROACHES 

 

Simulation and optimization combination depends on the 

modeling objective and can differ regarding conceptual and 

algorithmic alignment.  Three major combinations can be 

distinguished as follows (Fig. 1): 

• Optimization inside the simulation, e.g., for searching the 

exogenous variable ranges, 

• Simulation inside the optimization, e.g., for making the 

relaxed solutions obtained analytically more precise, and 

• Hybrid simulation-optimization techniques, e.g., simula-

tion-based optimization.  

 

 
 

Fig. 1. Optimization and simulation combination variants 

The first two combinations variants (Figs 1a and 1b) are usu-

ally used for modeling a high frequency of numerical realiza-

tions for relatively small-dimensional problems. These com-

binations are widely automated due to standardized proce-

dures and do not require decision-maker or modeler involve-

ment. Examples of hybrid combinations can be found in 

(Ivanov et al. 2014a, 2015, 2016a,b, Frazzon et al. 2018). The 

analysis allows for the preliminary conclusion that integra-

tion and alignment of simulation and optimization is com-

prised of multiple dimensions, i.e., conceptual, model-

algorithmic, informational, and computational levels. While 

the conceptual, informational, and computational levels have 

attracted considerable research attention, the model-

algorithmic combination and simulation has mostly been 

considered within particular software, whereby a human in-

teraction for interpretation of results of one model and trans-

forming these results into the input of another model was 

presumed. The synergetic effects and the model-algorithmic 

integration and alignment frameworks have received less 

attention. Notwithstanding the application software package, 

the importance of this level should not be underestimated. 

Synthesis and analysis problems in complex systems imply 

tight intersections between and within the models (e.g., ob-

jective functions and constraint systems). As such, simulation 

and optimization combination problems in the SC need to be 

studied further with regards to building more sophisticated 

SC DSS. 

 

3. GENERALIZED FRAMEWORK OF INTEGRATED 

SIMULATION-OPTIMIZATION MODELLING  

 

Optimal control is a convenient way to develop both supply 

chain process optimization models and describe the dynamics 

of process fulfilment (Dolgui et al. 2019, Ivanov et al. 2021). 

Consider a generalized form of an objective function of a SC 

design or planning problem (1): 
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rect numerical experiments can be run in a simulation model. 
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 plays the role of parametric alignment. Its val-

ues are obtained in the optimization model and used as input 

into the simulation model.  

In a generalized form, the combined problem (5) needs to be 

solved. 
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where x


 = (x1,…, xn)т is a parametric vector of SC design; f0 

is an objective function (or  a set of objective function in a 

multi-criteria optimization); )()( xf A

i


 are analytical con-

straints; )()( xSim

i


  are algorithmic constraints (e.g., inventory 

control policy) that are considered via simulation. Such a 

procedure is implemented in modern commercial software for 

SC optimization and simulation, e.g., in anyLogistix (Dolgui 

et al. 2020, Ivanov 2020c, Singh et al. 2021).  

In this case, the objective function description and the con-

straint system settings can form a number of possible combi-

nations of analytical and simulation methods. Consider a 

simple example. A general simulation model can be de-

scribed by N simulation sub-models and are described with 

the help of isochronal operators (6) 
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The model and result consistency should meet the functoral 

homomorphism conditions (Ivanov and Sokolov 2012).  

4. EXAMPLE OF INTEGRATED SIMULATION-

OPTIMIZATION MODELLING IN ANYLOGISTIX 

This section demonstrates an integrated optimization-

simulation decision-support system for SC design and plan-

ning with consideration of disruption risks. In particular, the 

SC design and material flow plans in the SC need to be com-

puted to suggest ways for reconfiguration of product flows in 

the event of disruptions. More specifically, three problems 

need to be solved. The first problem is to find the aggregate 

product flows to be moved in some periods through the SC 

network subject to demand from the customer and minimiz-

ing total SC cost. The second problem consists of a detailed 

dynamic analysis of ordering, production, inventory and 

sourcing control policies within the periods. The third prob-

lem is the parametrical synthesis of a resilient SC design, 

e.g., to find the optimal capacities of the firms in the SC de-

sign.  

Following this structure, an integrated optimization-

simulation decision-support system for SC design and plan-

ning with consideration of disruption risks has been devel-

oped in multi-method software anyLogistix (Fig. 2). 

 

Fig. 2. Integrated simulation-optimization modelling of resil-

ient SC in anyLogistix 

anyLogistix is a multi-method software for SC simulation 

and optimization. It contains a CPLEX solver for network 

optimization and a simulation engine based in the well-

known AnyLogic simulation software (Burgos and Ivanov 

2021). According to Fig. 2, the first step is setting and solv-

ing a multi-period, multi-stage network optimization prob-

lem. The second step is the setting and experimental running 

of the simulations to investigate the dynamics of the aggre-

gate flows found in step 1. The third, and final step is the 

optimization of the SC design parameters (i.e., capacities) 

subject to the insights gained via simulation and using the 

inverse optimization model. 

To illustrate, we consider a multi-stage SC in line with the 

study by Ivanov et al. (2013) that is comprised of production 

plants (nodes 1 and 6) that deliver a single product to a cen-

tral distribution hub (node 4) via two intermediate terminals 

(nodes 2 and 3). From node 4, the product is shipped to the 

customer (node 5) directly or via an outsourcing terminal 

(node 7) (see Fig. 3). The objective is to find the optimal plan 

of material flow in the SC that minimizes total costs and sat-

isfies customer demand.  The network throughput is limited 

by maximum node capacities and arc throughputs (cf. Fig. 3). 

The multi-criteria modifications of this model have been 

shown in (Ivanov et al. 2013, 2014a, 2016b). Disruptions 

may change the SC design shown in Fig. 3 for some period of 

time. This is why the planning horizon is divided in some 

periods, i.e., so-called intervals of structural constancy (cf. 

Ivanov et al. 2014a, 2016b). 
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Figure 3. Supply chain design 

The event of transition to the next period is a change in the 

SC design, i.e., either a disruption or recovery. These events 

are fixed in the form of a disruption scenario. Within the in-

tervals of structural constancy, the SC design remains un-

changed. Suppliers deliver certain order quantities to nodes 1 

and 6 at the beginning of each period. Inventory from previ-

ous periods may be used in the following periods. Procure-

ment costs are constant. If the processing and warehouse ca-

pacity is exceeded by the delivered quantity, unprocessed and 

non-stored goods are sent back to an additional warehouse 

(not in the main network) subject to additional return costs. 

Sourcing, transportation, processing, return, fixed, and inven-

tory costs are assumed to be a linear function from the quanti-

ties. No over or under costs are allowed. 

Consider the following notations.  tx


 is a SC state vector 

that can be classified in a number of structural states, e.g., 

normal operation, partially disrupted state, and disrupted state 

according to the disruption profile;  ty


 is the output vector 

such as produced and shipped quantities in the SC;  tu


 is a 

control vector that represents the SC plan or schedule; 


 is a 

vector of SC design parameters such as capacities; 


, 


 are 

analytic (simulation) multi-dimensional transition and output 

functions, respectively;  0X ,  fX  are the  values of  tx  

at the initial and final points of time, respectively;   fttt ,0  

is a fixed modeling interval;  t


 is a vector of impulse sto-

chastic disturbances subject to some disruption scenari-

os   gt 


;      pko ,, JJJ


 are objective functionals that 

refer to operations, channel and resource control in the SC 

(e.g., customer service level, on-time-delivery, and capacity 

utilization, see Ivanov et al. 2016b); and  are the weight 

coefficients of individual functionals in (11). 

Consider a SC that contains a set of nodes 

)(tX 
= }),({ NitAxi  , a set of 

arcs },),({)(  NjitetE xij   , and a set of parameters 

},),({)(  NjitwtW ij   for the flow transportation (if 

ji  ), flow processing, and storage (if ji  ). 
ikN

 is the 

set of node numbers for the nodes transmitting products to 

iA  at time interval k . 
ikN

 is the set of node numbers for 

the nodes receiving products from iA  at time interval k . 

Consider an integrated simulation-optimization model of SC 

design with disruption considerations (Eqs 8-11). 
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Solution of problem (8)-(9) towards the optimization of (11) 

can be implemented by decomposition into two sub-

problems, i.e., problem A: variation of 


 for a fixed SC 

parameter vector p


; and problem B: variation of p


 for 


. 

The integrated simulation-optimization model for problem A 

is shown in Eq. (12) 

    nim
p
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
 



0
, (12) 

where  0q  is an analytical-simulation description of para-

metric connections of optimization and simulation models, 

and   is a set of possible values of SC design parameters 

described by vector vp


, e.g., production and transportation 

capacity limits. 

The integrated simulation-optimization model for problem A 

is shown in Eq. (13)  
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, (13) 

where Z is a set of possible values of disturbance vector, e.g., 

levels of production capacity degradation. 

The solution of the problem (12)-(13) is based on an iterative 

procedure. At iteration 0 , initial values for    0  
  

need to be given, e.g., a SC disruption profile. The iterative 

search terminates when the difference between function-

als          e<p,qfp,qf ~
01

1

0 



 




 , where e~  is a given 

error value. 

Step 1. An initial SC structural dynamics control policy 

   fg ttttu ,, 0


is determined via simulation. 

Step 2. Main equation system  tuxfx ,,


   is integrated with 

the boundary condition and  tuu g


  which results in a vec-
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The event of transition to the next period is a change in the 

SC design, i.e., either a disruption or recovery. These events 

are fixed in the form of a disruption scenario. Within the in-

tervals of structural constancy, the SC design remains un-

changed. Suppliers deliver certain order quantities to nodes 1 

and 6 at the beginning of each period. Inventory from previ-

ous periods may be used in the following periods. Procure-

ment costs are constant. If the processing and warehouse ca-

pacity is exceeded by the delivered quantity, unprocessed and 

non-stored goods are sent back to an additional warehouse 

(not in the main network) subject to additional return costs. 

Sourcing, transportation, processing, return, fixed, and inven-

tory costs are assumed to be a linear function from the quanti-

ties. No over or under costs are allowed. 

Consider the following notations.  tx


 is a SC state vector 

that can be classified in a number of structural states, e.g., 

normal operation, partially disrupted state, and disrupted state 

according to the disruption profile;  ty


 is the output vector 

such as produced and shipped quantities in the SC;  tu


 is a 

control vector that represents the SC plan or schedule; 


 is a 

vector of SC design parameters such as capacities; 


, 


 are 

analytic (simulation) multi-dimensional transition and output 

functions, respectively;  0X ,  fX  are the  values of  tx  

at the initial and final points of time, respectively;   fttt ,0  

is a fixed modeling interval;  t


 is a vector of impulse sto-

chastic disturbances subject to some disruption scenari-

os   gt 


;      pko ,, JJJ


 are objective functionals that 

refer to operations, channel and resource control in the SC 

(e.g., customer service level, on-time-delivery, and capacity 

utilization, see Ivanov et al. 2016b); and  are the weight 

coefficients of individual functionals in (11). 

Consider a SC that contains a set of nodes 

)(tX 
= }),({ NitAxi  , a set of 

arcs },),({)(  NjitetE xij   , and a set of parameters 

},),({)(  NjitwtW ij   for the flow transportation (if 

ji  ), flow processing, and storage (if ji  ). 
ikN

 is the 

set of node numbers for the nodes transmitting products to 

iA  at time interval k . 
ikN

 is the set of node numbers for 

the nodes receiving products from iA  at time interval k . 

Consider an integrated simulation-optimization model of SC 

design with disruption considerations (Eqs 8-11). 
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Solution of problem (8)-(9) towards the optimization of (11) 

can be implemented by decomposition into two sub-

problems, i.e., problem A: variation of 


 for a fixed SC 

parameter vector p


; and problem B: variation of p


 for 


. 

The integrated simulation-optimization model for problem A 

is shown in Eq. (12) 
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where  0q  is an analytical-simulation description of para-

metric connections of optimization and simulation models, 

and   is a set of possible values of SC design parameters 

described by vector vp


, e.g., production and transportation 

capacity limits. 

The integrated simulation-optimization model for problem A 

is shown in Eq. (13)  
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where Z is a set of possible values of disturbance vector, e.g., 

levels of production capacity degradation. 

The solution of the problem (12)-(13) is based on an iterative 

procedure. At iteration 0 , initial values for    0  
  

need to be given, e.g., a SC disruption profile. The iterative 

search terminates when the difference between function-

als          e<p,qfp,qf ~
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 , where e~  is a given 

error value. 

Step 1. An initial SC structural dynamics control policy 

   fg ttttu ,, 0


is determined via simulation. 

Step 2. Main equation system  tuxfx ,,


   is integrated with 

the boundary condition and  tuu g


  which results in a vec-

 

 

     

 

tor function  txg


. At the end of integration, 

GJ  and trans-

versality conditions are computed 

Step 3. At ftt   until 0tt   with  tuu g


 , the integra-

tion with adjoint equation system is performed as shown in 

Eqs (14) and (15). 
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 (15) 

where    tuxftH ,,T 
  is Hamiltonian function,  t  

and  t  are Lagrange multipliers,  t


 is vector of ad-

joint equation system,       tutxq


,
1


 and       tutxq


,2
  are 

components of the constraint system. At 
0tt   , the first ap-

proximation of  0ti


is obtained. The Iteration 0r is 

completed.  

Step 4. Steps 2 and 3 are repeated until      r
G

r
G JJ

1  is 

reached: termination of the algorithm. 

The solution results in the vector of dynamic coeffi-

cients     0tt 


  which are connected with the adjoint 

equation system via Hamiltonian and represent the SC struc-

tural dynamics control plan with disruption considerations. 

The optimality of the gained solution has been discussed in 

(Ivanov et al. 2016b). 

The optimization-simulation model of flow reconfiguration in 

the SC according to structural dynamics can now be written 

in line with Ivanov et al. (2014a) as balance equations (16)-

(17) and capacity constraints (18-19): 
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and objective function (20)  
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The model (16)-(20) details the analytical part of the integrat-

ed simulation-optimization model presented in Sect. 3. Eqs 

(16)-(18) describe the SC flow dynamics. Note that 

)(),(),( ttt iiji  w  are known for intervals of structural 

constancy, and )(te ij  reflects the SC structural dynamics 

according to the disruption scenario Sc . Eq. (19) sets in-

ventory constraints subject to maximal warehouse capacity as 

well as flow dynamics constraints on processing and delivery. 

)(tV i  is maximal warehouse capacity at lA ; kijx   is flow 

  transmitted from iA  to jA  and received at jA ; kjy   

is flow   to be stored at jA ; kjg   is flow   to be deliv-

ered from jA ; kjz   is flow   to be returned from jA  if 

maximum storage capacity is exceeded. Functions 

)(,)(),(),( ttutzty iijii    are unknown, and con-

trols )(,)( ttu iij    uniquely define )(tz i  and 

)(ty i . Therefore, the pairs )(),( tzty ii   can be con-

sidered as SC dynamic structural states. In the objective func-

tion (20), the following notations are used. )(tc ij  are trans-

portation costs for   from iA  to jA , )(th i  are invento-

ry costs for   at iA , )(ti  are processing costs for   

at iA  , and )(tr i  are return costs for   at iA . 

5. CONCLUSIONS 

The purpose of the present study is to contribute to existing 

works by arguing that, rather than simulation and optimiza-

tion opposing each other, the consideration of these perspec-

tives can be done within an integrated framework to enhance 

the quality of supply chain decision-support systems. Con-

ventionally, optimization has predominantly been used at the 

SC design level while dynamic system control (i.e., inventory 

and shipment control) was investigated in simulation models.   

This study develops an integrated optimization-simulation 

framework at the model-algorithmic level for the given do-

main. This provides insights on how to describe planning and 

control in a unified model-algorithmic complex with consid-

eration of uncertainty factors which are anticipated at the 

planning and confronted at the control stages. Using the uni-

fied formal language of the dynamic control system analysis, 

SC design and control problems have been described in uni-

fied model-algorithmic complex with uncertainty factor con-

siderations. This is a difference to typical approaches which 

either separately solve SC design problems with optimization 

and SC control problems with simulation or achieve some 

level of integration numerically. Moreover, the developed 

theoretical framework was exemplified by a combined opti-

mization-simulation modeling of the SC design and planning 

problem with disruption risks consideration in anyLogistix. 

The results gained provide evidence that the modeling needs 

to be based on a combined methodology to achieve the ade-

quacy, precision, and validity of models accuracy, closeness, 

and consistency of results. The formalized model integration 

allows description of how the ad-vantages of some methods 

can compensate for the limitations of other methods (Ivanov 

2009). Moreover, the synergetic effects from the combined 

usage of different methods can be achieved resulting in new 
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knowledge generation about the system and its dynamic be-

havior (Dolgui et al. 2018, Ivanov and Dolgui 2020).    
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