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Abstract: In this paper, we consider a buffer allocation problem in manufacturing flow lines
with series-parallel network structure where nodes correspond to buffers of finite capacity, and
arcs correspond to the machines. The machines are supposed to be unreliable, their time to
failure and repair time are assumed to be exponentially distributed. Different machines may
have different production rates and the production rates of all machines are assumed to be
deterministic. The buffer allocation problem is to determine the capacities of all buffers with
respect to a given optimality criterion, which is a function of the average production rate of
the line, the buffer acquisition and installation cost and the inventory cost. In search for the
optimum, the tentative solutions are evaluated by means of an approximate method based on the
Markov models aggregation. We carry out computational experiments with the local search and
genetic algorithms. It turns out that the “massif central” or “big valley” structure of the fitness
landscape is present but only partially: The fitness of the local optima is negatively correlated
with the distance to the best found solution, yet the set of local optima can not be encompassed
by a ball of relatively small radius. Moreover, we show that in many problem instances, several
clusters of local optima can be identified. The symmetries of the fitness function are discussed
and suggested as the possible cause of the local optima clustering. Finally the performance of
genetic algorithms is bfiefly discussed with respect to solutions clustering.
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1. INTRODUCTION

Buffer capacity allocation problems arise in a wide range
of flow line manufacturing systems, such as transfer lines,
flexible manufacturing or robotic assembly systems. The
parts are accumulated in the intermediate buffers when
the machines downstream are less productive than the
upstream machines. It is assumed that machines can break
down and then go through repair. When a breakdown oc-
curs, the corresponding machine is not used in production
for a random repair time, which is independent of the total
number of machines under repair. We assume that there
is a sufficient number of raw parts at the input buffer and
the finished parts depart from the system immediately.
One of the key performance measures of a flow-line is the
average production rate, i.e., the expected number of parts
produced per unit of time in the steady state mode. We
also consider the inventory cost and the buffers cost.

Evaluation of the manufacturing flow-line performance for
given sizes of buffers is studied by Coillard and Proth
(1984), Dallery and Gershwin (1992), Gershwin (1993),
Heavey et al. (1993), Li and Meerkov (2009), and Tan
and Gershwin (2009). A number of models to evaluate the
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performance of lines with unreliable machines and fixed
sizes of buffers were proposed by these and other authors.
Markov models and aggregation or decomposition tech-
niques are often used to calculate the steady state through-
put or other performance indicators for these lines. The
optimization for buffer capacity allocation with respect
to diverse optimality criteria for different types of lines
was studied using such models by Smith and Daskalaki
(1988), So (1997), Gershwin and Schor (2000), Kassoul
et al. (2021), Shi and Gershwin (2009) and other authors.

1.1 The Buffer Allocation Problem Formulation

In this paper, we consider the buffer allocation problem for
lines with a series-parallel network. An example of a line
with a series-parallel network is shown in Fig. 1, where
M1, . . . ,M7 are machines and B0, . . . , B5 are buffers.

Fig. 1. Example of a line with a series-parallel network
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We assume that a machine can be either operational or
under repair. An operational machine may be blocked in
case the downstream buffer is full. It may also be starved
if there are no parts in the upstream buffer. Otherwise
operational machines are working. In what follows, m
denotes the number of machines in the system. A working
machine i, i = 1, . . . ,m, is assumed to have a constant
cycle time Ci, so its average production rate is ui = 1/Ci.

It is supposed that machines may break down only when
they are working. The time to fail and time to repair
for each machine are assumed to be random values with
exponential distributions. Let T i

b denote the average time
till failure, and let λi = 1/T i

b be the failure rate for
a machine i, i = 1, ...,m, if this machine is working.
Similarly, let T i

r and µi = 1/T i
r denote respectively

the time to repair and the repair rate for machine i,
conditioned that this machine is under repair. Given our
assumptions, the system has the steady state mode (see
e.g. Sevast’yanov (1962)). The performance of the system
in this mode is the most important for applications.

Let hj be the capacity of buffer Bj , j = 1, . . . , n. Denote
the vector of decision variables as H = (h1, h2, . . . , hn) ∈
Zn
+, where Z+ is the set of non-negative integers.

The optimization criterion used in this paper is:

maxφ(H) = TamR(V (H))−Q(H)− J(H), (1)

where

• Tam amortization time of the line (line life);
• V (H) average production rate (steady state through-

put);
• R(V ) revenue related to the production rate V ;
• J(H) cost of buffer configuration H;
• dj maximal admissible capacity of buffer Bj ;
• Q(H) = c1q1(H)+. . . +cnqn(H) average steady state

inventory cost, where qj(H) is the average steady
state number of parts in buffer bj , for j = 1, . . . , n.

The function φ(H) has to be maximized, subject to the
constraints h1 ≤ d1, h2 ≤ d2,. . . , hn ≤ dn, bounding
the admissible buffer size. Functions R(V ) and J(H) are
assumed to be monotone and non-decreasing. J(H) may
be a linear function, or e.g. a step-function to model some
standard buffer capacities, or may be a penalty function,
imposing a penaly on solutions where the total capacity of
all buffers exceeds some upper bound.

Exact computation of the production rate and inventory
levels in a line with more than two serial machines is
problematic due to the exponential growth of the number
of states in the corresponding Markov model. Therefore,
most of the techniques developed for the analysis of
such systems are based on analytical approximations or
simulations. Most of the analytical approximations are
based on the two-machine Markov models, and either
aggregation (De Koster, 1987) or decomposition (Dallery
et al., 1989; Gershwin, 1987; Li, 2005). Simulation models
require more computational resources but may be applied
to a wider class of systems (Dolgui and Svirin, 1995;
Sörensen and Janssens, 2004).

In this paper, we use the two-machine Markov model, inde-
pendently developed by Levin and Pasjko (1969), Dubois

and Forestier (1982) and Coillard and Proth (1984). For
any tentative buffer allocation, the production rate is
evaluated using the aggregation algorithm (Dolgui, 1993)
which is similar to the techniques from (Terracol and
David, 1987; Dolgui and Svirin, 1995).

The aggregation algorithm consists in recursive replace-
ment of two adjacent machines by a single machine. The
parameters λ∗, µ∗, c∗ of each emerging machine are cal-
culated from differential equations corresponding to the
two-machine Markov model. After n iterations of such ag-
gregation procedure the system reduces to a single machine
with parameters λ∗, µ∗, c∗ and the estimate of the overall
production rate V (H) is given by c∗µ/(λ∗+µ). The steady
state inventory levels are found in each application of the
two-machine Markov model.

The buffer allocation problem is known to be NP hard
as shown by Dolgui et al. (2013, 2018) and therefore it
features some properties of the well-known combinarotial
optimization problems, one of such properties is that often
it is easy to find a locally optimal solution (computable in
polynomial time w.r.t. the problem input size), although
it is hard to find the global optimum (requires exponential
time in the worst case).

1.2 “Big Valley” or “Massif Central”

In many combinatorial optimization problems, local op-
tima of the objective function (or fitness) tend to be
grouped in a “big valley“ (in the case of minimization
problems) or “massif central“ (in the case of maximiza-
tion problems). This fitness landscape structure has been
observed e.g. in NK-landscapes (Stuart and Simon, 1987),
in the traveling salesman problem (TSP) (Boese et al.,
1993; Hains et al., 2011), in the graph bisection (Boese
et al., 1993), and flowshop scheduling (Reeves, 1999). More
precisely, the “big valley“ or “massif central“ is described
by the following two statements (Boese et al., 1993):

(1) Values of the objective function in the local optima
tend to deteriorate with increasing distance to the
global optimum (i.e. there is a correlation of objective
function in the local optima with the distance to the
global optimum).

(2) Local optima are located relatively close both to each
other and to the global optimum (they are located in
a ball, which is smaller than the whole search space
by several orders of magnitude).

The presence of such structure partly explains good per-
formance of genetic algorithms (GAs). If different local
optima are found in the GA population and the new
solution is built by means of a crossover operator, then the
intuition suggests that such algorithm should have good
chances to find the global optimum. This is supported by
the theoretical analysis in the case of the Jump benchmark
of Dang et al. (2016), and by the experimental studies, e.g.
of Hains et al. (2011). In this respect, identification of the
“big valley“ or “massif central“ structure, or the absence
of such structure, is of great practical interest.

1.3 Contribution of the Paper

On the basis of computational experiments we show that
the distribution of local optima for many instances of the
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We assume that a machine can be either operational or
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case the downstream buffer is full. It may also be starved
if there are no parts in the upstream buffer. Otherwise
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r denote respectively

the time to repair and the repair rate for machine i,
conditioned that this machine is under repair. Given our
assumptions, the system has the steady state mode (see
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put);
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which is similar to the techniques from (Terracol and
David, 1987; Dolgui and Svirin, 1995).
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it is easy to find a locally optimal solution (computable in
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In many combinatorial optimization problems, local op-
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tion problems). This fitness landscape structure has been
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tend to deteriorate with increasing distance to the
global optimum (i.e. there is a correlation of objective
function in the local optima with the distance to the
global optimum).

(2) Local optima are located relatively close both to each
other and to the global optimum (they are located in
a ball, which is smaller than the whole search space
by several orders of magnitude).

The presence of such structure partly explains good per-
formance of genetic algorithms (GAs). If different local
optima are found in the GA population and the new
solution is built by means of a crossover operator, then the
intuition suggests that such algorithm should have good
chances to find the global optimum. This is supported by
the theoretical analysis in the case of the Jump benchmark
of Dang et al. (2016), and by the experimental studies, e.g.
of Hains et al. (2011). In this respect, identification of the
“big valley“ or “massif central“ structure, or the absence
of such structure, is of great practical interest.

1.3 Contribution of the Paper

On the basis of computational experiments we show that
the distribution of local optima for many instances of the
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buffer allocation problem on lines with a series-parallel
structure has multiple clusters. The problem features caus-
ing such structures are discussed. The “massif central”
structure is identified but only in part: While the negative
correlation between the objective function in local optima
and their distance to the global solution is present, yet the
concentration of all local optima in a tiny fraction of the
search space is not confirmed. The observed structures of
fitness landscape appear to be similar to those in (Hains
et al., 2011), and preliminary experiments suggest that in
both cases the GA combined with a local search is able to
locate the cluster of high quality local optima.

2. INVESTIGATION OF LOCAL OPTIMA
PROPERTIES

The distance to global optimum in our case, we will calcu-
late in the metric l1. To verify the “massif central” struc-
ture, we developed a method for finding the number of
integer points in a ball of a given radius at the intersection
with a parallelepiped whose faces are parallel to coordinate
planes. The method was obtained by reducing the problem
to a combinatorial formulation, already considered earlier
for the case of non-negative integer points, using generat-
ing functions, see Sachkov (1982).

2.1 Problem Instances Used In Computational Experiment

For computational experiments we use three series of
problems:

Series Number of Lines Number of Machines

AS 8 4 – 14
BN 10 5
VP 4 5

Table 1. List of series

The AS series consists of instances created from lines 1,2,6,7,8
from Ancelin and Semery (1987) with real data from
Renault production. A distinctive feature of the 7 and 8
lines is the presence parallel sections (see figures 2, 3). Line
parameters 1,2,6,7,8 are given in tables 2-6.

Fig. 2. Line structure AS7

Fig. 3. Line structure AS8

Instances bn5.1-bn5.10 consist of 10 lines from Dolgui et al.
(2000) with m = 5. There are two bottlenecks in each line.
By bottleneck we mean here a line section of two relatively
slow machines and a buffer between them.

Problems vp6.9-vp6.10, vp7.9-vp7.10 are defined on serial
five-machine lines of Vouros and Papadopoulos (1998).

buffers machines

i di j TO
j TB

j Ui

1 20 1 244.2 150 10
2 17 2 255.3 300 10
3 38 3 176 75 10
4 48 4 184 600 10

5 192 450 10

Table 2. Problem parameters AS1

Buffers Machines

i di j TO
j TB

j Ui

1 0 1 10000 440 22
2 50 2 20000 440 23
3 20 3 5000 430 22
4 50 4 40000 520 23
5 0 5 30000 430 24
6 80 6 2442 440 22
7 20 7 1840 520 23
8 100 8 1680 430 21
9 100 9 2208 920 24

Table 3. Problem parameters AS2

Buffers Machines

i di j TO
j TB

j Ui

1 60 1 29880 22000 385
2 60 2 29880 22000 426
3 50 3 876000 22300 330
4 70 4 29880 22000 372
5 60 5 33250 27500 316
6 80 6 144000 8500 340
7 45 7 102300 74000 340
8 25 8 113300 7200 340
9 35 9 540000 60000 380
10 80 10 538800 349000 350
11 40 11 5064000 73700 400
12 45 12 468000 306000 400
13 65 13 1032000 54000 319

14 45600 31120 319

Table 4. Problem parameters AS6

Buffers Machines

i di j TO
j TB

j Ui

1 15 1 50000 12000 1000
2 10 2 48000 2000 3450
3 15 3 55000 9000 2780
4 10 4 39000 6000 3030
5 25 5 75000 10000 3333
6 10 6 59000 11000 2560
7 10 7 28000 8000 3030

8 35000 8000 3125
9 65000 35000 2174
10 20000 4000 800

Table 5. Problem parameters AS7

2.2 Computational Experiment

A series of experiments were carried out on existing
instances for determination of the landscape structure. To
find a local optimum, we used the local search algorithm
LSA. At each iteration, the LSA searches through the
neighborhood of radius 1 in metric l1 around the current
solution. If an improving feasible solution in terms of the
objective function is found in the neighborhood, then it
becomes the new current solution. The process continues
as long as an improvement can be found. Starting from
any feasible solution, the LSA moves iteratively to a local

Buffers Machines

i di j TO
j TB

j Ui

1 1300 1 87000 27000 23
2 200 2 77000 22000 27
3 0 3 580000 18000 38
4 0 4 410000 12500 30
5 0 5 580000 18000 38
6 2000 6 410000 12500 30
7 0 7 725000 21000 20

8 550000 14000 40
9 430000 24000 43
10 270000 22000 33

Table 6. Problem parameters AS8

optimum, i.e. a solution that does not have an improving
neighbour within the radius 1 in metric l1.

In each run, the local search algorithm starts at a randomly
generated solution H whose elements hi are chosen with
the uniform distribution between 1 and di. This procedure
was repeated 300 times to create the necessary sample size.
Using on this sample, we calculated the total number of
admissible solutions |Ω| in the minimal ball encompassing
all the local optima found. In our case, the ball was chosen
in the metric l1, centered in the best found local optimum.

In Table 7-10 the column V 1 contains the cardinality |Ω|
for balls containing local optima, the column V 2 contains
cardinality of the entire space of feasible solutions, and
the column V 1/V 2 is the ratio of the two. As can be seen
from the tables, the second part of the “massif central” /
“big valley” conjecture was not confimed and in most of
the instances under consideration the optima are scattered
throughout the solution space.

instance V 1 V 2 V 1/V 2

1 2,84E+05 5,74E+05 0,49
2 8,88E+11 9,48E+11 0,94
3 8,60E+01 4,85E+03 0,02
4 2,34E+22 2,89E+22 0,81
5 4,17E+07 9,75E+07 0,43
6 1,00E+00 5,23E+08 0,00

Table 7. Results of running a local search
multiple times for a series as.1 - as.6

instance V 1 V 2 V 1/V 2

9 7,97E+03 1,00E+04 0,80
10 7,55E+03 1,46E+04 0,52

Table 8. Results of running a local search
multiple times for the series vp6.9 - vp6.10

instance V 1 V 2 V 1/V 2

9 6,50E+03 1,00E+04 0,65
10 9,95E+03 1,46E+04 0,68

Table 9. Results of running a local search
multiple times for the series vp7.9 - vp7.10

The first part of the “massif central” / “big valley”
conjecture is about the correlation ρ(ϕ(ξ), r(ξ, ξ∗)) of the
value of objective function at local optima ϕ(ξ) to the
distance r(ξ, ξ∗) to a global optimum. Our experiments
suggest that there is a negative correlation ρ, and all values
of the correlation are significantly different from 0 with a
confidence level of 95% (Tables 11–12).

instance V 1 V 2 V 1/V 2

1 1,44E+05 1,94E+05 0,74
2 9,96E+03 1,94E+05 0,05
3 9,07E+04 1,94E+05 0,47
4 2,06E+04 1,94E+05 0,11
5 6,95E+04 1,94E+05 0,36
6 6,94E+04 1,94E+05 0,36
7 2,45E+04 1,94E+05 0,13
8 3,42E+03 1,94E+05 0,02
9 6,28E+04 1,94E+05 0,32
10 1,00E+00 1,94E+05 0,00

Table 10. Results of 300 runs of the local search
for the series bn5.1 - bn5.10

instance ρ(r(ξ, ξ∗), ϕ(ξ))
Series as.1 - as.5

1 -0,87078206
2 -0,437208613
7 -0,547348483
8 -0,943725905

Series vp6.9 - bn6.10

9 -0,833583818
10 -0,778237651

Table 11. Results of 300 runs of the local search
for series as and vp6

instance ρ(r(ξ, ξ∗), ϕ(ξ))
Series bn5.1 - bn5.9

1 -0,706451573
2 -0,872602935
3 -0,914939714
4 -0,999969666
5 -0,972555479
6 -0,729655068
7 -0,973827419
8 -0,846807033
9 -0,884916669

Series vp7.9 - bn7.10

9 -0,907792301
10 -0,889724863

Table 12. Correlation ρ(ϕ(ξ), r(ξ, ξ∗)) in series
bn and vp7

It is interesting that in problems as.4, bn5.1, the entire
set of local optima splits into clusters, and in each of the
clusters, the negative correlation ρ is observed.

Figures 4 and 5 show diagrams of local optima for
problems as.6, bn5.1, where the ordinate shows the value of
objective function of local optimum ϕ(H), and the abscissa
is distance in metric l1 to the best found solution.

Clustering effect is especially well manifested in instances
with parallel sections of line. This effect can be justified
by the fact that there are several different paths in lines
with a parallel structure. from start buffer to end buffer.
Thus, if there are two parallel paths that are identical
in their network structure, such that one path will have
relatively large buffers, and other one will have relatively
small buffers, then it is possible to obtain two solutions
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Buffers Machines

i di j TO
j TB

j Ui

1 1300 1 87000 27000 23
2 200 2 77000 22000 27
3 0 3 580000 18000 38
4 0 4 410000 12500 30
5 0 5 580000 18000 38
6 2000 6 410000 12500 30
7 0 7 725000 21000 20

8 550000 14000 40
9 430000 24000 43
10 270000 22000 33

Table 6. Problem parameters AS8

optimum, i.e. a solution that does not have an improving
neighbour within the radius 1 in metric l1.

In each run, the local search algorithm starts at a randomly
generated solution H whose elements hi are chosen with
the uniform distribution between 1 and di. This procedure
was repeated 300 times to create the necessary sample size.
Using on this sample, we calculated the total number of
admissible solutions |Ω| in the minimal ball encompassing
all the local optima found. In our case, the ball was chosen
in the metric l1, centered in the best found local optimum.

In Table 7-10 the column V 1 contains the cardinality |Ω|
for balls containing local optima, the column V 2 contains
cardinality of the entire space of feasible solutions, and
the column V 1/V 2 is the ratio of the two. As can be seen
from the tables, the second part of the “massif central” /
“big valley” conjecture was not confimed and in most of
the instances under consideration the optima are scattered
throughout the solution space.

instance V 1 V 2 V 1/V 2

1 2,84E+05 5,74E+05 0,49
2 8,88E+11 9,48E+11 0,94
3 8,60E+01 4,85E+03 0,02
4 2,34E+22 2,89E+22 0,81
5 4,17E+07 9,75E+07 0,43
6 1,00E+00 5,23E+08 0,00

Table 7. Results of running a local search
multiple times for a series as.1 - as.6

instance V 1 V 2 V 1/V 2

9 7,97E+03 1,00E+04 0,80
10 7,55E+03 1,46E+04 0,52

Table 8. Results of running a local search
multiple times for the series vp6.9 - vp6.10

instance V 1 V 2 V 1/V 2

9 6,50E+03 1,00E+04 0,65
10 9,95E+03 1,46E+04 0,68

Table 9. Results of running a local search
multiple times for the series vp7.9 - vp7.10

The first part of the “massif central” / “big valley”
conjecture is about the correlation ρ(ϕ(ξ), r(ξ, ξ∗)) of the
value of objective function at local optima ϕ(ξ) to the
distance r(ξ, ξ∗) to a global optimum. Our experiments
suggest that there is a negative correlation ρ, and all values
of the correlation are significantly different from 0 with a
confidence level of 95% (Tables 11–12).

instance V 1 V 2 V 1/V 2

1 1,44E+05 1,94E+05 0,74
2 9,96E+03 1,94E+05 0,05
3 9,07E+04 1,94E+05 0,47
4 2,06E+04 1,94E+05 0,11
5 6,95E+04 1,94E+05 0,36
6 6,94E+04 1,94E+05 0,36
7 2,45E+04 1,94E+05 0,13
8 3,42E+03 1,94E+05 0,02
9 6,28E+04 1,94E+05 0,32
10 1,00E+00 1,94E+05 0,00

Table 10. Results of 300 runs of the local search
for the series bn5.1 - bn5.10

instance ρ(r(ξ, ξ∗), ϕ(ξ))
Series as.1 - as.5

1 -0,87078206
2 -0,437208613
7 -0,547348483
8 -0,943725905

Series vp6.9 - bn6.10

9 -0,833583818
10 -0,778237651

Table 11. Results of 300 runs of the local search
for series as and vp6

instance ρ(r(ξ, ξ∗), ϕ(ξ))
Series bn5.1 - bn5.9

1 -0,706451573
2 -0,872602935
3 -0,914939714
4 -0,999969666
5 -0,972555479
6 -0,729655068
7 -0,973827419
8 -0,846807033
9 -0,884916669

Series vp7.9 - bn7.10

9 -0,907792301
10 -0,889724863

Table 12. Correlation ρ(ϕ(ξ), r(ξ, ξ∗)) in series
bn and vp7

It is interesting that in problems as.4, bn5.1, the entire
set of local optima splits into clusters, and in each of the
clusters, the negative correlation ρ is observed.

Figures 4 and 5 show diagrams of local optima for
problems as.6, bn5.1, where the ordinate shows the value of
objective function of local optimum ϕ(H), and the abscissa
is distance in metric l1 to the best found solution.

Clustering effect is especially well manifested in instances
with parallel sections of line. This effect can be justified
by the fact that there are several different paths in lines
with a parallel structure. from start buffer to end buffer.
Thus, if there are two parallel paths that are identical
in their network structure, such that one path will have
relatively large buffers, and other one will have relatively
small buffers, then it is possible to obtain two solutions
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with close values of the objective function, but located at
a large distance from each other.

Fig. 4. The set of local optima obtaained in as.4

Fig. 5. The set of local optima obtained in bn5.1.

Another reason for clustering effect is the two-machine line
symmetry. This property is indicated by Levin and Pasjko
(1969) for a serial line, consisting of two machines and a
buffer between them. If we swap the parameters of the
first and the second machines so that the input buffer of
the line will become its output, and the output buffer will
become the input, then line performance will not change.

Consider an example of a three-machine serial line t.1
with the parameters: TO

i = TB
i = 1, i = 1, . . . , 3; U1 = 1,

U2 = 0.5 , U3 = 1; dj = 4, cj = 0, j = 1, . . . , 2; Tam =
7000; J(H) = 50 · (h1 + h2); if V (H) < 2570 then
R(V (H)) = 0.9 · V (H), otherwise R(V (H)) = 2570.

Fig. 6. Values of the objective function on the set D for
problem t.1

The set of global optima (see Fig. 6) of this example splits
into two clusters. The first cluster contains solutions H1 =
(1, 2) and H2 = (1, 3), and the second is the solutions
H3 = (2, 1) and H4 = (3, 1). Clustering of the optima in
this example is a consequence of the line symmetry effects

in the aggregation algorithm from Dolgui (1993); Dubois
and Forestier (1982), which is used to evaluate the line.

In the general case, for lines with n ≥ 3 buffers, the effect
of symmetry can be observed in several internal areas of a
line. As a consequence, with this aggregation algorithm, a
set of local optima may be divided into several clusters.

After falling into one of the clusters, a sequence of points
generated by an algorithm, based on the local search
principles, usually remains in the cluster until the end of
the calculations. For example, for a tabu-search algorithm,
transition between clusters is unlikely, which also makes
such instances difficult for it. The GA with local optimiza-
tion heuristic from Dolgui et al. (2007) turned out to be
more efficient than the Tabu Search. As experiments have
shown, the population of the pure GA, and that of the
GA with local search, contain individuals from different
clusters, although there is a competition between different
clusters for representation in the population.

Fig. 7. Final population of the pure GA on instance as.4

Fig. 8. Final population of the GA with local optimization
heuristic on instance as.4 (note that here the scale of
both axes is different from that in Figures 4 and 7)

Problem as4 can serve as an illustrative example. Fig. 4
shows the structure of the set of local optima obtained by
the multistart of the local search. Figures 7 and 8 show
the final populations of the pure GA and the GA with
local optimization heuristic. Multiple clusters are clearly
present in both cases.

We expect that the GA could be further improved if each
pair of parent solutions were chosen from the same cluster
(then the crossover could have a similar effect as e.g.
in Dang et al. (2016)). Excluding the equivalent solutions
in view of the problem symmetries may reduce the num-
ber of clusters in the GA population. This should have
the same effect as the usage of non-degenerate solution

encodings (Reeves and Dai, 1999) and may be the subject
for further research as well.
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