
HAL Id: hal-03982041
https://hal.science/hal-03982041v2

Preprint submitted on 16 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Local controllability of the Korteweg-De Vries equation
with the right dirichlet control

Hoai-Minh Nguyen

To cite this version:
Hoai-Minh Nguyen. Local controllability of the Korteweg-De Vries equation with the right dirichlet
control. 2024. �hal-03982041v2�

https://hal.science/hal-03982041v2
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


LOCAL CONTROLLABILITY OF THE KORTEWEG-DE VRIES EQUATION

WITH THE RIGHT DIRICHLET CONTROL

HOAI-MINH NGUYEN

Abstract. The Korteweg-de Vries (KdV) equation with the right Dirichlet control is small time,
locally, exactly controllable for all non-critical lengths and its linearized system is not controllable for
all critical lengths. In this paper, we give a definitive picture of the local controllability properties of
this control problem for all critical lengths. In particular, we show that the unreachable space of the
linearized system is always of dimension 1 and the KdV system with the right Dirichlet control is not
locally null controllable in small time for any critical length. We also give a criterion to determine
whether the system is locally exactly controllable in finite time or not locally null controllable in
any positive time for all critical lengths. Consequently, we show that there exist critical lengths
such that the system is not locally null controllable in small time but is locally exactly controllable
in finite time.

Key words: Controllability, KdV equations, critical lengths, unreachable space, power series ex-
pansion, Hilbert uniqueness method

AMS subject classification: 35Q53, 93B05, 93B07, 93C20, 35C20.
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1. Introduction and the statement of the main results

This paper is devoted to the local controllability of the Korteweg-de Vries (KdV) equation using
the right Dirichlet control. More precisely, we consider the following control problem, for T > 0,

(1.1)


yt + yx + yxxx + yyx = 0 in (0, T )× (0, L),

y(·, 0) = yx(·, L) = 0 in (0, T ),

y(·, L) = u in (0, T ),

y(0, ·) = y0 in (0, L).

Here y is the state, y0 ∈ L2(0, L) is an initial datum, and u is a control, belonging to an appropriate
functional space. The KdV equation has been introduced by Boussinesq [14] and Korteweg and de
Vries [31] as a model for the propagation of surface water waves along a channel. This equation
also furnishes a very useful nonlinear approximation model including a balance between weak non-
linearity and weak dispersive effects, see e.g. [50, 37, 29]. The KdV equation has been investigated
from various aspects of mathematics, including the well-posedness, the existence, and stability of
solitary waves, the integrability, the long-time behavior, etc., see e.g. [50, 37, 29, 48, 33].

1.1. State of the art. The local controllability for the KdV equation has been studied extensively
in the literature, see, e.g., the surveys [44, 17] and the references therein. We briefly review here
some results concerning boundary controls. When the controls are y(·, 0), y(·, L), yx(·, L), Russell
and Zhang [46] proved that the KdV equation is small time, locally exactly controllable. The case
of left boundary control (y(·, L) = yx(·, L) = 0) was investigated by Rosier [43] (see also [26]). The
small-time local, null controllability holds in this case. The exact controllability does not hold for
initial and final data in the L2(0, L) due to the regularisation effect but holds for a subclass of
infinitely smooth initial and final data [35].

A very close setting to the one considered here is the setting in which one controls the right
Neumann boundary, i.e., y(·, 0) = y(·, L) = 0 and yx(·, L) is a control. For initial and final data in
L2(0, L), and controls in L2(0, T ), Rosier [42] proved that the KdV system with the right Neumann
control is small time, locally, exactly controllable provided that the length L is not critical, i.e.,
L /∈ NN

1, where 2

(1.2) NN :=

{
2π

√
k2 + kl + l2

3
; k, l ∈ N∗

}
.

To this end, Rosier studied the controllability of the corresponding linearized system and showed
that the linearized system is exactly controllable if L ̸∈ NN . He as well established that when
L ∈ NN , the linearized system is not controllable. More precisely, Rosier showed that there exists a
non trivial, finite dimensional subspace MN of L2(0, L) such that its orthogonal space is reachable
from 0 for small time whereas MN is not for any time. To tackle the control problem for a critical
length L ∈ NN with initial and final data in L2(0, L) and controls in L2(0, T ), Coron and Crépeau
introduced the power series expansion method [23]. The idea is to take into account the effect of
the nonlinear term yyx absent in the corresponding linearized system. Using this method, Coron

1The letter N stands for the Neumann boundary control.
2N∗ = N \ {0}.
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and Crépeau showed [23] (see also [22, section 8.2]) that the KdV system is small time, locally,
exactly controllable when dimMN = 1. Cerpa [16] developed the analysis in [23] to prove that the
KdV system is finite time, locally, exactly controllable in the case dimMN = 2. Later, Crépeau
and Cerpa [18] succeeded to extend the ideas in [16] to obtain the local, exact controllability in
finite time for all other critical lengths. Recently, with Coron and Koenig [24], we prove that such
a system is not small time, locally, null controllable for a class of critical lengths. This fact is
surprising when compared with known results on internal controls for the KdV equation. It is
known, see [15, 36, 41], that the KdV system (1.1) with u = 0 is small time, locally controllable
using internal controls whenever the control region contains an arbitrary, open subset of (0, L).
The power expansion method is also a starting point of the analysis in [24]. Part of the analysis
is to characterize all controls that bring 0 at 0 to 0 at time T for the corresponding linearized
system. This idea is then used in the study of the water tank problem [25]. It is interesting to
note that there are other types of boundary controls for the KdV equation for which there is no
critical length, see [42, 43, 27, 17]. There are also results on the internal controllability for the KdV
equation, see [46, 32, 15] and the references therein. A minimal time of the null controllability is also
required for some linear partial differential equations. This is the case for equations with a finite
speed of propagation, such as the transport equation, the wave equation, or the hyperbolic system,
see, e.g., [22] and the references therein. But this can also happen for equations with the infinite
speed of propagation, such as some parabolic systems [9], Grushin-type equations [2, 7, 30, 3],
Kolmogorov-type equations [4], and the references therein.

We now turn back to the control problem (1.1). This control problem was first investigated by
Glass and Guerrero [27]. To this end, in the spirit of Rosier’s work mentioned above, they introduced
the corresponding set of critical lengths 3

(1.3) ND =
{
L ∈ R+; ∃z1, z2 ∈ C : (1.4) holds

}
,

where

(1.4) z1e
z1 = z2e

z2 = −(z1 + z2)e
−(z1+z2) and L2 = −(z21 + z1z2 + z22).

They proved that the set ND is infinite and has no accumulation point. Concerning (1.1), Glass and
Guerrero proved that the corresponding linearized KdV system is small time, exactly controllable
with initial and final data in H−1(0, L) using controls in L2(0, T ) if L ̸∈ ND. Developing this result,
they also established that the KdV system (1.1) is small-time locally controllable for initial and

final data in L2(0, L) and controls in H1/6− 4 for non-critical lengths, i.e., L ̸∈ ND.
The KdV equation describes the waves moving to the right. Consequently, the control problem

using boundary controls on the right is more interesting and more difficult than the one using
boundary controls on the left in general. It is known that the KdV equation is locally controllable
in small time using left Dirichlet controls for any length since the corresponding linearized system
is always controllable; there is no critical length for the left Dirichlet controls [43, 26]. This is in
contrast with the right Dirichlet controls considered in the paper.

Even the local controllability of the KdV system using boundary controls has been investigated
extensively in the last two decades, to our knowledge, there is no result on the local controllability
of system (1.1) for critical lengths. In comparison with the set of critical lengths NN , the set ND

is less explicit. Moreover, the unreachable space for the linearized system related to (1.1) has not
been determined due to the lack of an appropriate observability inequality for the linearized system
in a suitable functional setting. As revealed later in this paper, the control properties related to
the unreachable space for the right Dirichlet control are quite distinct from the one for the right
Neumann control.

3The letter D stands for the Dirichlet boundary control.
4Controls in H1/6− means controls in H1/6−ε for all ε > 0.
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1.2. Statement of the main results. The main goal of this paper is to give a rather complete
picture of the local controllability of the control KdV system (1.1). The first main result of this
paper is the characterization of all the critical lengths and the corresponding unreachable space
MD for the corresponding linearized system. The first result in this direction is.

Theorem 1.1. Let L ∈ ND. There exists a unique pair (a, b) ∈ R2 such that a < 0, b > 0,

(1.5) (a+ ib)ea+ib = (a− ib)ea−ib = −2ae−2a,

and

(1.6) L2 = b2 − 3a2.

Set

(1.7) q = −2a(a2 + b2)

L3
> 0,

(1.8) ϕ(x) = −βeαx cos(βx) + βe−2αx + 3αeαx sin(βx) for x ∈ [0, L],

with

(1.9) α = −a/L and β = −b/L,
and

(1.10) Φ(t, x) = eqtϕ(x) for (t, x) ∈ R× [0, L].

Then Φ is a solution of the system

(1.11)

{
Φt +Φx +Φxxx = 0 in R× (0, L),

Φ(·, 0) = Φx(·, 0) = Φ(·, L) = Φxx(·, L) = 0 in R,
and the unreachable space MD of the linearized system of (1.1) is given by

(1.12) MD = span
{
ϕ
}
.

Consequently,

(1.13) dimMD = 1.

Remark 1.1. The main part of Theorem 1.1 is to show that the complex numbers z1, z2 from the
definition of ND in (1.3) can be chosen as

z1 = a+ ib and z2 = a− ib,

for some a < 0 and b > 0. This is non-trivial, see Section 4.

Remark 1.2. Implicit information given in Theorem 1.1 is that the function ϕ, defined in (1.8),
satisfies the following boundary condition:

ϕ(0) = ϕx(0) = ϕ(L) = ϕxx(L) = 0.

Using Theorem 1.1, we can precisely describe the set ND in the following result.

Proposition 1.1. Let L > 0. Then L ∈ ND if and only if L = Ln for some n ∈ N where Ln is
given by

L2
n = 4a2n(e

−6an − 1),

with an < 0 being uniquely determined by

bn cos bn + an sin bn = 0,

where bn satisfies

π + 2nπ < bn < 3π/2 + 2nπ and b2n = 4a2n(e
−6an − 1/4).
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After presenting the results on the unreachable space of the linearized system and the character-
ization of the critical lengths, we next discuss the local controllability of (1.1). Set, for T > 0,

(1.14) XT := C
(
[0, T ];L2(0, L)

)
∩ L2

(
(0, T );H1(0, L)

)
equipped with the corresponding norm:

∥y∥XT
= ∥y∥

C
(
[0,T ];L2(0,L)

) + ∥y∥
L2
(
(0,T );H1(0,L)

).
We later show that System (3.4) is well-posed in XT if ∥y0∥L2(0,L) and ∥u∥H1/3(0,T ) are sufficiently

small, see Proposition 3.4.

Before presenting our result on the local controllability properties of (1.1), we recall several
definitions related to these properties.

Definition 1.1. Let T > 0, and let H ⊂ L2(0, L) and Hc ⊂ H1/3(0, T ) be Hilbert spaces with the
corresponding norm ∥ · ∥H and ∥ · ∥Hc . System (1.1) is locally exactly controllable in time T for
initial and final data in H and controls in Hc if for any η > 0 (small), there exists δ > 0 (small)
such that for all y0, yT ∈ H with ∥y0∥H , ∥yT ∥H ≤ δ, there exists u ∈ Hc with ∥u∥Hc ≤ η such that
y(T, ·) = yT where y ∈ XT is the unique solution of (1.1).

Definition 1.2. If for all T > 0, System (1.1) is locally exactly controllable in time T for initial
and final data in H and controls in Hc, then System (1.1) is said to be small-time locally exactly
controllable for initial and final data in H and controls in Hc.

Definition 1.3. If System (1.1) is locally exactly controllable in some time T > 0 for initial and
final data in H and controls in Hc, then System (1.1) is said to be locally exactly controllable in
finite time for initial and final data in H and controls in Hc

Similar properties are associated with the local null-controllability of System (1.1) for which yT
is taken to be 0 in the previous definitions.

The second main result of this paper is that System (1.1) is not locally null controllable in small

time for controls in H1/2(0, T ) for all critical lengths.

Theorem 1.2. Let L ∈ ND. There exist T = T0 > 0 and ε0 > 0 such that for all solutions y ∈ XT

of the system

(1.15)


yt + yx + yxxx + yyx = 0 in (0, T )× (0, L),

y(·, 0) = yx(·, L) = 0 in (0, T ),

y(·, L) = u in (0, T ),

y(0, ·) = εϕ in (0, L),

with 0 < ε < ε0 and ∥u∥H1/2(0,T ) < ε0, we have

y(T, ·) ̸= 0.

Recall that ϕ is defined in (1.8).

Remark 1.3. The function ϕ defined in (1.8) belongs to C∞([0, L]) and satisfies ϕ(0) = ϕx(L) = 0
(see Remark 1.2).

We next present a criterion on the local controllability property of (1.1) in finite time. Set

(1.16) Ω(z) =

∫ L

0

∣∣∣∣∣∣
3∑

j=1

(
λje

λjL − λj+1e
λj+1L

)
eλj+2x

∣∣∣∣∣∣
2

ϕx(x) dx,
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where λj = λj(z) with j = 1, 2, 3 are the three solutions of the equation

λ3 + λ+ iz = 0

and the convention λj+3 = λj for j ≥ 1 is used. It is clear that Ω is continuous with respect to z.
One can show that, see Remark 7.1,

lim
|z|→∞,z∈R

Ω(z + iq/2) = +∞,

where q is defined by (1.7).
The third main result of this paper is the criterion on the local controllability property of (1.1)

in finite time for initial and final data in L2(0, L) when L ∈ ND.

Theorem 1.3. Let L ∈ ND and let q > 0 be defined by (1.7). Set

ω = min
z∈R

Ω(z + iq/2),

where Ω is defined by (1.16). The following two facts hold.

i) If ω ≥ 0, then system (1.1) is not locally null controllable in any positive time with controls

in H1/2. More precisely, given T > 0 arbitrary, there exists εT > 0 such that for all solution of
y ∈ XT of (1.15) with 0 < ε < εT and ∥u∥H1/2(0,T ) < εT , we have

y(T, ·) ̸= 0.

ii) If ω < 0, then system (1.1) is locally exactly controllable in finite time with controls in H1/3,
and initial and final data in L2(0, L). More precisely, there exist T0 > 0 and ε0 > 0 such that for

all y0, y1 ∈ L2(0, L) with ∥y0∥L2(0,L) ≤ ε0 and ∥y1∥L2(0,L) ≤ ε0, there exists u ∈ H1/3(0, T0) with

∥u∥H1/3(0,T0)
≤ C(∥y0∥L2(0,L) + ∥y1∥L2(0,L))

1/2 such that

y(T0, ·) = y1,

where y ∈ XT0 is the unique solution of (1.1). Here C denotes a positive constant independent of
y0 and y1.

Remark 1.4. Using Scilab, the program is given in Appendix D, one can show that

• if n = 0, then L = 4.5183604, a = −0.5065520, b = 4.6027563, q = 0.2354919.
• if n = 1, then L = 10.866906, a = −0.6903700, b = 10.932497, q = 0.1291104.
• if n = 2, then L = 17.177525, a = −0.7947960, b = 17.232599, q = 0.0933315, and
Ω(iq/2 + 0.2668750) = −0.4687287.

• if n = 3, then L = 23.476776, a = −0.8687610, b = 23.524949, q = 0.0744156, and
Ω(iq/2 + 0.1419531) = −2.3917110.

Parameters of the program (k, j, j0) are given for n = 2. The parameters for n = 0, 1, 3 are also
given there.

As a consequence of Theorem 1.2 and Theorem 1.3 (see also Remark 1.4), there exist critical
lengths for which system (1.1) is not locally null controllable in small time but locally exactly
controllable in finite time even the unreachable space of the corresponding linearized system is of
dimension 1. This result is surprising and distinct when compared with known related results on
the local controllability of the KdV equation. First, it is known that the corresponding KdV system
with the right zero Dirichlet is locally exactly controllable in small time using internal controls.
Second, the unreachable space of the linearized system of the corresponding KdV system with
the right Neumann control might be of arbitrary dimension. Third, the KdV system with the right
Neumann control is locally exactly controllable in small time if the corresponding unreachable space
is of dimension 1.
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Finally, in the case L ̸∈ ND, we can prove the following result, which sharpens the results in [27]
mentioned previously.

Theorem 1.4. Let L ̸∈ ND and T > 0. There exist C > 0 and ε0 > 0 depending only on L
and T such that for all y0, y1 ∈ L2(0, L) with ∥y0∥L2(0,L) ≤ ε0 and ∥y1∥L2(0,L) ≤ ε0, there exists

u ∈ H1/3(0, T ) with ∥u∥H1/3(0,T ) ≤ C(∥y0∥L2(0,L) + ∥y1∥L2(0,L)) such that

y(T, ·) = y1,

where y ∈ XT is the unique solution of (1.1).

1.3. Ideas of the proofs. The characterization of the critical lengths and the unreachable space
is based on the study of system (1.4). In comparison with the characterization of the set NN , the
study of ND is more complex. The main goal and the difficulty in this direction, see Section 4, are
to obtain/characterize all solutions of (1.4). The existence of a smaller class of solutions is easier as
observed previously in [27] (see also Remark 4.2). As a consequence, we derive that dimMD = 1
which is completely different from what is known for the right Neumann control.

Our approaches to Theorem 1.2 and Theorem 1.3 are inspired by the power series expansion
method introduced by Coron and Crépeau [23]. This method has also been applied to other contexts
such as local, bilinear control of Schrödinger’s equations [5, 8, 13], decay of the solutions of the KdV
equations [19, 47, 39], local controllability of Burgers’ equations [34], local controllability of water
tank [25], and the references therein.

The strategy is to use the nonlinear effect to move the solution in the direction prohibited by the
linearized system. The idea of this method is to search for/understand a control u of the form

u = εu1 + ε2u2 + · · · .
The corresponding solution then formally has the form

y = εy1 + ε2y2 + · · · ,
and the non-linear term yyx can be written as

yyx = ε2y1y1,x + · · · .
One then obtains the following systems for y1 and y2:

(1.17)


y1,t + y1,x + y1,xxx = 0 in (0, T )× (0, L),

y1(·, 0) = y1,x(·, L) = 0 in (0, T ),

y1(·, L) = u1 in (0, T ),

and

(1.18)


y2,t + y2,x + y2,xxx + y1y1,x = 0 in (0, T )× (0, L),

y2(·, 0) = y2,x(·, L) = 0 in (0, T ),

y2(·, L) = u2 in (0, T ).

The aim is then to find the corresponding controls u1 and u2 such that if y1(0, ·) = y2(0, ·) = 0,
then y1(T, ·) = 0 and the L2-orthogonal projection of y2(T, ·) on MD is a given (non-zero) element
in MD (the space of the directions prohibited by the linearized system, see Proposition 5.1). To
this end, in [23, 16, 18], the authors used delicate contradiction arguments to capture the structure
of their studied KdV system.

We here use the ideas in the spirit of the joint work with Coron and Koenig [24]. The starting
point of the analysis is also the power series expansion method. The strategy is to characterize all
possible u1 which steers 0 at time 0 to 0 at time T (Proposition 6.1). This is done by taking the
Fourier transform with respect to time of the solution y1 and applying Paley-Wiener’s theorem.
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We then investigate the projection of y2 into the unreachable space MD (in Section 6). This is
where our analysis deviates from [24] to take advantage of the fact that q is real and to use the
characterization via Paley-Wiener’s theorem to construct u1 for which the projection of y2 into MD

has a desired direction (see the proof of Assertion ii) of Theorem 1.3). Concerning the projection

of y2 into MD, we use the information of |û(z + iq/2)|2 instead of û(z)û(z + iq) as considered in
[24]. This new proposal has two advantages. First, the way to obtain the projection of y2 into the
unreachable space MD is less complex. More importantly, it allows us to obtain the criterion on the
local controllability of (1.1) in finite time given in Theorem 1.3 by taking into account the fact that
|û(z + iq/2)|2 ≥ 0. Another important part in the proof of the local controllability in Theorem 1.2
and Theorem 1.3 is to obtain the observability for the linearized system with initial/final data in
M⊥

D. To this end, one needs to establish the optimal results on the stability and the well-posedness
of the linearized system of (1.1) and related ones in which the boundary conditions are in fractional
Sobolev spaces, see Section 3. The proof of the local controllability in finite time given in Assertion
ii) of Theorem 1.3 is based on a new strategy to handle the lack of symmetry in our control system
in comparison with the one using the right Neumann control. Concerning the KdV system using the
right Neumann control, one can bring a state forward or backward easily thanks to the symmetry
of the boundary conditions. This is not the case for (1.1) since the Dirichlet condition on the
right is controlled and the Dirichlet condition on the left is imposed to be 0. To overcome this,
we introduce a new approach that involves a KdV system with a new type boundary condition,
investigated in Section 3, in a backward way. Our analysis uses the Banach fixed point arguments
while the Brouwer fixed point theorem is usually applied to related contexts. It is worth noting that
the analysis in this paper is based on the expansion up to the second order even if the unreachable
space is of dimension 1. This explains the cost of the control given in Assertion ii) of Theorem 1.3.
This way is different from what has been done for the KdV system with the right Neumann control
where the expansion up to the third order is required.

Here are other comments on the analysis.

i) Various interpolation inequalities involving fractional Sobolev spaces and their dual spaces are
established and used in the proof of Theorem 1.2 and Theorem 1.3.
ii) The analysis for the well-posedness of the KdV equation with various boundary conditions

is in the spirit of the joint work with Coron and Koenig [24]. This partly involves a connection
between the linear KdV equation and the linear KdV-Burgers equation as previously used by Bona
et al. [11] and inspired by the work of Bourgain [12], and Molinet and Ribaud [38]. In this work, to
deal with the boundary conditions containing the information of yxx and derive optimal estimates
on y, yx, and yxx in fractional Sobolev spaces and their dual spaces, new ideas and technique are
implemented (see Remark 3.6). It is worth noting that similar estimates for yxx are not known
for the KdV equation in the real line setting and it is not clear whether such estimates hold for
that setting. Our estimates particularly allow us to get the observability inequality for the critical
lengths, which plays a role in determining the unreachable space for the linearized KdV system
(see Section 3). The unreachable space is not known previously and this determination is also a
contribution of the paper.
iii) The arguments used in this paper to disprove the small time, local controllability improve the

ones in [24]. One of the key steps in the proof is to establish new (optimal) estimates for solutions
of the KdV equations with various boundary conditions (see Section 3). The proof also relies on the
positivity of a scalar product which comes naturally in the study of the controllability of the KdV
system for small time. The positivity of a scalar product for small time was also a crucial point of
several lacks of small time, local controllability results for systems with infinite propagation speed.
Nevertheless, the previous ways used to derive the positivity are different, see, e.g., [21, 8, 34, 6, 13].
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1.4. Organisation of the paper. The paper is organized as follows. Section 2 is devoted to
the study of the linear KdV-Burgers equation with the periodic boundary condition. Section 3 is
devoted to the study of the (linear and nonlinear) KdV equations with various boundary conditions.
Section 4 is devoted to the study of critical lengths and some properties of the unreachable space
MD. We there prove (1.5), (1.6), and (1.11), and establish Proposition 1.1. In Section 5, we
prove (1.12) and establish the corresponding observability inequality (Lemma 5.2). The proof of
Theorem 1.4 is given at the end of this section. In Section 6, we study properties of the controls
which steer 0 at time 0 to 0 at time T. Using results in Section 6, we study attainable directions
for small time in Section 7. The proofs of Theorem 1.2 and Theorem 1.3 are given in Section 8 and
Section 9, respectively. Several technical results are stated and proved in the appendix. The Scilab
program is also given there.

2. Linear KdV-Burgers equations

This section is devoted to the study of the linear KdV-Burgers equations with the periodic
boundary condition. Here is the main result of this section, which plays an essential role in the
study of the linearized KdV equation with various boundary conditions investigated in Section 3.

Proposition 2.1. Let g ∈ L1
(
R+;L

2(0, L)
)
with

∫ L
0 g(t, x) dx = 0 for a.e. t > 0, and let y0 ∈

L2(0, L) be such that
∫ L
0 y0(x) dx = 0. There exists a unique solution y ∈ C

(
[0,+∞);L2(0, L)

)
∩

L2
(
[0,+∞);H1([0, L])

)
which is periodic in space of the system

(2.1)

{
yt + 4yx + yxxx − 3yxx = g in R+ × (0, L),

y(0, ·) = y0 in (0, L).

Moreover, for t ∈ R+ and x ∈ [0, L],

(2.2) ∥y(t, ·)∥L2(0,L) + ∥y(·, x)∥H1/3(R+) + ∥yx(·, x)∥L2(R+) + ∥yxx(·, x)∥[H1/3(R+)]∗

≤ C
(
∥y0∥L2(0,L) + ∥g∥

L1
(
R+;L2(0,L)

)),
and

(2.3) ∥y(·, x)∥L2(R+) + ∥yx(·, x)∥[H1/3(R+)]∗ ≤ C
(
∥y0∥H−1(0,L) + ∥g∥

L1
(
R+;H−1(0,L)

))
for some positive constant C depending only on L.

The rest of this section consisting of two subsections is organized as follows. In the first subsection,
we present and prove a useful lemma in the spirit of Bourgain’s. The second subsection is devoted
to the proof of Proposition 2.1.

2.1. A useful lemma. The following result in the spirit of Bourgain’s is used in the proof of
Proposition 2.1.

Lemma 2.1. Let (an)n∈Z\{0} ⊂ R be such that
∑

n∈Z\{0} a
2
n < +∞. For −2 < s ≤ 3, there exists

a positive constant C = Cs such that

(2.4)

∫
R
(1 + |z|)2s/3

 ∑
n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

2

dz ≤ C
∑

n∈Z\{0}

a2n.
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Proof. For s > −5/2 and for −1 ≤ z ≤ 1, one has

∑
n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4
≤ C

 ∑
n∈Z\{0}

a2n

1/2

.

It hence suffices to prove that, for −2 < s ≤ 3,

(2.5)

∫
z∈R;|z|>1

(1 + |z|)2s/3
 ∑

n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

2

dz ≤ C
∑

n∈Z\{0}

a2n.

We have

(2.6)

∫
z>1

(1 + |z|)2s/3
 ∑

n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

2

dz

≤ C
∑
m∈N∗

∫ (m+1)3

m3

m2s

 ∑
n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

2

dz.

For m3 ≤ z ≤ (m+ 1)3, one gets

(2.7)
∑

n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

=
∑

k;m+k∈Z\{0}

|m+ k|3−s|am+k|
(z + 4(m+ k)− (m+ k)3)2 + (m+ k)4

≤ C
∑

k;|k|≤2m

m+k∈Z\{0}

|m+ k|3−s|am+k|
m4(|k|+ 1)2

+ C
∑

k; |k|≥2m+1

m+k∈Z\{0}

|k|3−s|am+k|
k4(|k|+ 1)2

.

Combining (2.6) and (2.7) yields

(2.8)

∫
z>1

(1 + |z|)2s/3
 ∑

n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

2

dz

≤ C
∑
m∈N∗

 ∑
k;|k|≤2m

m+k∈Z\{0}

|m+ k|3−s|am+k|
m3−s(|k|+ 1)2

+ C
∑

k; |k|≥2m+1

m+k∈Z\{0}

|m|1+s|am+k|
|k|1+s(|k|+ 1)2


2

≤ C
∑
m∈N∗

 ∑
k

m+k∈Z\{0}

|am+k|2

(|k|+ 1)1+ε


 ∑

k;|k|≤2m

m+k∈Z\{0}

|m+ k|6−2s

m6−2s(|k|+ 1)3−ε
+

∑
k;|k|≥2m+1

m+k∈Z\{0}

m2+2s

|k|2+2s(|k|+ 1)3−ε

 .
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Here 0 < ε ≤ 1 is fixed such that s > (ε − 4)/2 (the fact s > −2 is used). We have, for m ∈ N∗,
|k| ≤ 2m, and m+ k ∈ Z \ {0},

|m+ k|6−2s

m6−2s
≤ C for s ≤ 3,

and, for m ∈ N∗,∑
k;|k|≥2m+1

m+k∈Z\{0}

m2+2s

|k|2+2s(|k|+ 1)3−ε
= m2+2s

∑
k;|k|≥2m+1

m+k∈Z\{0}

1

k2+2s(|k|+ 1)3−ε
≤ C

m2−ε
≤ C for s > (ε− 4)/2.

Using the fact, for m ∈ N∗, ∑
k;m+k∈Z\{0}

1

(|k|+ 1)3−ε
< +∞ for 0 < ε < 1,

we derive from (2.8) that

(2.9)

∫
z>1

(1 + |z|)2s/3
 ∑

n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

2

dz

≤ C
∑
m∈N∗

∑
k;m+k∈Z\{0}

|am+k|2

(|k|+ 1)1+ε
≤ C

∑
k∈Z

1

(|k|+ 1)1+ε

∑
m;m+k∈Z\{0}

|am+k|2,

which yields

(2.10)

∫
z>1

(1 + |z|)2s/3
 ∑

n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

2

dz ≤ C
∑

n∈Z\{0}

|an|2.

Similarly, we have

(2.11)

∫
z<−1

(1 + |z|)2s/3
 ∑

n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

2

dz ≤ C
∑

n∈Z\{0}

|an|2.

Estimate (2.5) now follows from (2.10) and (2.11). The proof is complete. □

2.2. Proof of Proposition 2.1. We only derive the estimates. The uniqueness follows from the
estimates and the existence follows from the proof of these estimates as well.

Multiplying the equation of y by y and integrating by parts, we have

1

2

d

dt

∫ L

0
|y(t, x)|2 dx+ 3

∫ L

0
|yx(t, x)|2 dx =

∫ L

0
g(t, x)y(t, x) dx.

This yields
1

2

d

dt

∫ L

0
|y(t, x)|2 dx ≤ ∥g(t, ·)∥L2(0,L)∥y(t, ·)∥L2(0,L).

Applying the Grönwall lemma, we obtain the desired estimate for ∥y(t, ·)∥L2(0,L).
We next establish the estimates for ∥y(·, x)∥H1/3(R+), ∥yx(·, x)∥L2(R+), and ∥yxx(·, x)∥[H1/3(R+)]∗ .

For notational ease, we assume that L = 2π. It suffices to consider the case g ≡ 0 and the case
y0 ≡ 0 separately.

We first consider the case g ≡ 0. Write the solution under the form

y(t, x) =
∑
n∈Z

an(t)e
inx in R+ × (0, L) = R+ × (0, 2π).
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We then derive that

y0(x) =
∑
n∈Z

an(0)e
inx for x ∈ [0, 2π]

and

a′n(t) =
(
− 3n2 − i(4n− n3)

)
an(t) for t ∈ R+.

We thus have

an(t) = e

(
−3n2−i(4n−n3)

)
tan(0) for t ∈ R+, n ∈ Z.

Since
∫ L
0 y0 dx = 0, it follows that a0 = 0. This in turn implies that a0(t) = 0 for t ∈ R+. We hence

obtain

y(t, x) =
∑

n∈Z\{0}

einxe

(
−3n2−i(4n−n3)

)
tan(0) in R+ × (0, 2π).

Extend y(t, x) for t < 0 by

(2.12) y(t, x) =
∑

n∈Z\{0}

einxe

(
3n2−i(4n−n3)

)
tan(0) in R− × (0, 2π),

and still denote this extension by y(t, x). We have, for z ∈ R and n ∈ Z \ {0},

(2.13)

∫ ∞

0
e

(
−3n2−i(4n−n3)

)
te−itz dt+

∫ 0

−∞
e

(
3n2−i(4n−n3)

)
te−itz dt

=
1

3n2 + i(4n− n3 + z)
+

1

3n2 − i(4n− n3 + z)
=

6n2

9n4 + (4n− n3 + z)2
.

This implies

(2.14) ∥y(·, x)∥2
H1/3(R+)

≤ C

∫
z∈R

(1 + |z|)2/3
 ∑

n∈Z\{0}

n2|an(0)|
n4 + (z + 4n− n3)2

2

dz.

Applying Lemma 2.1 with s = 1, we obtain

(2.15) ∥y(·, x)∥2
H1/3(R+)

≤ C∥y0∥2L2(0,2π).

Similarly, we have

(2.16) ∥yx(·, x)∥2L2(R+) ≤ C

∫
z∈R

 ∑
n∈Z\{0}

|n|3|an(0)|
(z + 4n− n3)2 + n4

2

and

(2.17) ∥yxx(·, x)∥2[H1/3(R+)]∗ ≤ C

∫
z∈R

(1 + |z|)−2/3

 ∑
n∈Z\{0}

n4|an(0)|
(z + 4n− n3)2 + n4

2

.

Applying Lemma 2.1 with s = 0 and s = −1, we get

(2.18) ∥yx(·, x)∥2L2(R+) ≤ C∥y0∥2L2(0,2π).

and

(2.19) ∥yxx(·, x)∥2[H1/3(R+)]∗ ≤ C∥y0∥2L2(0,2π).

The proof of (2.2) in the case g ≡ 0 is complete.
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We next deal with (2.3). From (2.12) and (2.13), we have

∥y(·, x)∥2L2(R+) ≤ C

∫
z∈R

 ∑
n∈Z\{0}

|n|3(|an(0)|/|n|))
n4 + (z + 4n− n3)2

2

dz

and

(2.20) ∥yx(·, x)∥2[H1/3(R+)]∗ ≤ C

∫
z∈R

(1 + |z|)−2/3

 ∑
n∈Z\{0}

|n|4(|an(0)|/|n|)
(z + 4n− n3)2 + n4

2

.

Applying Lemma 2.1 with s = 0 and s = −1, we obtain

(2.21) ∥y(·, x)∥2L2(R+) ≤ C
∑

n∈Z\{0}

|an(0)|2

n2
≤ C∥y0∥2H−1(0,2π)

and

(2.22) ∥yx(·, x)∥2[H1/3(R+)]∗ ≤ C
∑

n∈Z\{0}

|an(0)|2

n2
≤ C∥y0∥2H−1(0,2π).

This yields (2.3).
We next deal with the case y0 ≡ 0. The proof, in this case, can be derived from the previous case

as follows. For t > 0, let W (t) be the mapping which maps y0 to y(t, ·) with g ≡ 0. We then have 5

(2.23) y(t, x) =

∫ t

0
W (t− s)g(s, x) ds.

This implies

(2.24) yx(t, x) =

∫ t

0
∂x

(
W (t− s)g(s, x)

)
ds =

∫ ∞

0
1(0,t)(s)∂x

(
W (t− s)g(s, x)

)
ds.

Hence

∥yx(·, x)∥L2
t (R+) ≤

∫ +∞

0
∥1(0,t)(s)∂x

(
W (t− s)g(s, x)

)
∥L2

t (R+) ds

=

∫ +∞

0

(∫ ∞

0
|1(0,t)(s)∂x

(
W (t− s)g(s, x)

)
|2 dt

)1/2

ds

=

∫ +∞

0

(∫ ∞

s
|∂x
(
W (t− s)g(s, x)

)
|2 dt

)1/2

ds.

By applying the results in the previous case, we have(∫ ∞

s
|∂x
(
W (t− s)g(s, x)

)
|2 dt

)1/2

≤ C∥g(s, x)∥L2
x(0,L)

.

We thus obtain

(2.25) ∥yx(·, x)∥L2
t (R+) ≤ C

∫ +∞

0
∥g(s, x)∥L2

x
ds.

5This identity can be derived from (2.28) and (2.29) in Remark 2.3.
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By the same arguments, we have

(2.26) ∥yxx(·, x)∥[H1/3
t (R+)]∗

≤
∫ +∞

0
∥1(0,t)(s)∂xx

(
W (t− s)g(s, x)

)
∥
[H

1/3
t (R+)]∗

ds

=

∫ +∞

0
∥∂xx

(
W (t− s)g(s, x)

)
∥
[H

1/3
t (s,+∞)]∗

ds ≤ C

∫ +∞

0
∥g(s, x)∥L2

x(0,L)
ds.

Similarly, we obtain

(2.27) ∥y(·, x)∥
H

1/3
t (R+)

≤
∫ +∞

0
∥1(0,t)(s)W (t− s)g(s, x)∥

H
1/3
t (R+)

ds

=

∫ +∞

0
∥W (t− s)g(s, x)|∥

H
1/3
t (s,+∞)

ds ≤ C

∫ +∞

0
∥g(s, x)∥L2

x(0,L)
ds.

Assertion (2.2) in the case y0 ≡ 0 now follows from (2.25), (2.26), and (2.27).
Assertion (2.3) in the case y0 ≡ 0 follows similarly and the details are omitted.

The proof is complete. □

Remark 2.1. The proof gives as well that

y ∈ C([0, L];H1/3(0,+∞)), yx ∈ C([0, L];L2(0,+∞)), and yxx ∈ C([0, L]; [H1/3(0,+∞)]∗).

Remark 2.2. Assume that g = 0 in R+ × (0, L) and y0 ∈ C∞([0, L]) is such that
∫ L
0 y0(x) dx = 0,

y0− c ∈ C∞
c ((0, L)) for some constant c. Using (2.12), one can show that y ∈ C∞([0,+∞)× [0, L]).

Moreover, using the equation of y, one can show that ∂kt y(0, 0) = ∂kt y(0, L) = 0 for all k ≥ 1 .

Remark 2.3. Assume that y0 = 0 in (0, L) and g ∈ C∞
c

(
(0,+∞) × [0, L]

)
being such that∫ L

0 g(t, x) dx = 0 for t > 0. One can prove that the solution is then smooth and is 0 around
the time 0. Indeed, for notational ease, assume that L = 2π. One then can show that

(2.28) y(t, x) =
∑

n∈Z\0

einx
∫ t

0
e

(
−3n2−i(4n−n3)

)
(t−s)gn(s) ds,

where

(2.29) g(t, x) =
∑

n∈Z\{0}

gn(t)e
inx.

The properties of y follow.

Remark 2.4. There is no term ∥yxx∥[H2/3(R+)]∗ in (2.3) since we applied Lemma 2.1, which requires
s > −2.

Remark 2.5. In [24, Lemma 4.1], we proved that, when y0 = 0,

(2.30) ∥y(·, x)∥L2(R+) ≤ C∥g∥
L1
(
R+×(0,L)

).
Estimate (2.3) improves this.
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3. Linearized KdV equations

In this section, we establish several well-posedness results (Proposition 3.1, Proposition 3.2, and
Proposition 3.3) for the linearized KdV equation equipped with various boundary conditions in
the energy space XT defined in (1.14) and present some of their consequences. Proposition 3.1
implies the local well-posedness of (1.1) in XT (Proposition 3.4). Proposition 3.1 and Proposi-
tion 3.2 are the starting points of our analysis in deriving the unreachable space and establishing
the corresponding observability inequality in Section 5 (Proposition 5.1). Proposition 3.3 and its
consequence (Proposition 3.5) will be used in the proof of Theorem 1.3.

Here is the first main result of this section.

Proposition 3.1. Let L > 0, T > 0, (h1, h2, h3) ∈ H1/3(0, T ) × H1/3(0, T ) × L2(0, T ), f ∈
L1
(
(0, T );L2(0, L)

)
, and y0 ∈ L2(0, L). There exists a unique solution y ∈ XT of the system

(3.1)


yt + yx + yxxx = f in (0, T )× (0, L),

y(·, 0) = h1, y(·, L) = h2, yx(·, L) = h3 in (0, T ),

y(0, ·) = y0 in (0, L).

Moreover, for x ∈ [0, L],

(3.2) ∥y∥XT
+ ∥y(·, x)∥H1/3(0,T ) + ∥yx(·, x)∥L2(0,T ) + ∥yxx(·, x)∥[H1/3(0,T )]∗

≤ CT,L

(
∥y0∥L2(0,L) + ∥f∥

L1
(
(0,T );L2(0,L)

) + ∥(h1, h2)∥H1/3(0,T ) + ∥h3∥L2(0,T )

)
,

and

(3.3) ∥y(·, x)∥L2(0,T ) + ∥yx(·, x)∥[H1/3(0,T )]∗

≤ CT,L

(
∥y0∥[H1(0,L)]∗ + ∥f∥

L1
(
(0,T );[H1(0,L)]∗

) + ∥(h1, h2)∥L2(0,T ) + ∥h3∥[H1/3(0,T )]∗

)
,

where CT,L denotes a positive constant independent of x, y0, f , and h1, h2, h3.

Here and in what follows, [Hs]∗ denotes the dual space of Hs for s > 0 and it is equipped with
the standard corresponding norm.

Remark 3.1. In Proposition 3.1, we implicitly admit that

y ∈ C([0, L];H1/3(0, T )), yx ∈ C([0, L];L2(0, T )), and yxx ∈ C([0, L]; [H1/3(0, T )]∗).

These facts are derived from the proof. Results and analysis which are related to Proposition 3.1
will be discussed in Remark 3.6.

The next result is on the well-posedness of the linearized KdV system for which the Dirichlet
condition and the second derivative in x on the right are described.

Proposition 3.2. Let L > 0, T > 0, (h1, h2, h3) ∈ H1/3(0, T )×H1/3(0, T )× [H1/3(0, T )]∗,
f ∈ L1

(
(0, T );L2(0, L)

)
, and y0 ∈ L2(0, L). There exists a unique solution y ∈ XT of the system

(3.4)


yt + yx + yxxx = f in (0, T )× (0, L),

y(·, 0) = h1, y(·, L) = h2, yxx(·, L) = h3 in (0, T ),

y(0, ·) = y0 in (0, L).
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Moreover, for 0 ≤ x ≤ L,

(3.5) ∥y∥XT
+ ∥y(·, x)∥H1/3(0,T ) + ∥yx(·, x)∥L2(0,T ) + ∥yxx(·, x)∥[H1/3(0,T )]∗

≤ CT,L

(
∥y0∥L2(0,T ) + ∥f∥

L1
(
(0,T );L2(0,L)

) + ∥(h1, h2)∥H1/3(0,T ) + ∥h3∥[H1/3(0,T )]∗

)
,

and

(3.6) ∥y(·, x)∥L2(0,T ) + ∥yx(·, x)∥[H1/3(0,T )]∗

≤ CT,L

(
∥y0∥[H1(0,L)]∗ + ∥f∥

L1
(
(0,T );[H1(0,L)]∗

) + ∥(h1, h2)∥L2(0,T ) + ∥h3∥[H2/3(0,T )]∗

)
,

for some positive constant CT,L independent of x, y0, f , and (h1, h2, h3).

Here is the third main result of this section.

Proposition 3.3. Let L > 0, T > 0, (h1, h2, h3) ∈ L2(0, T ) × H1/3(0, T ) × L2(0, T ), f ∈
L1
(
(0, T );L2(0, L)

)
, and y0 ∈ L2(0, L). There exists a unique solution y ∈ XT of the system

(3.7)


yt + yx + yxxx = f in (0, T )× (0, L),

yx(·, 0) = h1, y(·, L) = h2, yx(·, L) = h3 in (0, T ),

y(0, ·) = y0 in (0, L).

Moreover, for 0 ≤ x ≤ L,

(3.8) ∥y∥XT
+ ∥y(·, x)∥H1/3(0,T ) + ∥yx(·, x)∥L2(0,T ) + ∥yxx(·, x)∥[H1/3(0,T )]∗

≤ CT,L

(
∥y0∥L2(0,T ) + ∥f∥

L1
(
(0,T );L2(0,L)

) + ∥h2∥H1/3(0,T ) + ∥(h1, h3)∥L2(0,T )

)
and

(3.9) ∥y(·, x)∥L2(0,T ) + ∥yx(·, x)∥[H1/3(0,T )]∗

≤ CT,L

(
∥y0∥[H1(0,L)]∗ + ∥f∥

L1
(
(0,T );[H1(0,L)]∗

) + ∥(h1, h2)∥L2(0,T ) + ∥h3∥[H1/3(0,T )]∗

)
,

for some positive constant CT,L independent of x, y0, f , and (h1, h2, h3).

As a consequence of Proposition 3.1, we obtain the following well-posedness result, which partic-
ularly yields the well-posedness for system (1.1).

Proposition 3.4. Let L > 0 and T > 0. There exists ε0 > 0 such that for (h1, h2, h3) ∈ H1/3(0, T )×
H1/3(0, T )× L2(0, T ), f ∈ L1

(
(0, T );L2(0, L)

)
, and y0 ∈ L2(0, L) with

∥y0∥L2(0,L) + ∥f∥
L1
(
(0,T );L2(0,L)

) + ∥(h1, h2)∥H1/3(0,T ) + ∥h3∥L2(0,T ) ≤ ε0,

there exists a unique solution y ∈ XT of the system

(3.10)


yt + yx + yxxx + yyx = f in (0, T )× (0, L),

y(·, 0) = h1, y(·, L) = h2, yx(·, L) = h3 in (0, T ),

y(0, ·) = y0 in (0, L).
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Moreover, we have

(3.11) ∥y∥XT
+ ∥y(·, x)∥H1/3(0,T ) + ∥yx(·, x)∥L2(0,T ) + ∥yxx(·, x)∥[H1/3(0,T )]∗

≤ CT,L

(
∥y0∥L2(0,L) + ∥f∥

L1
(
(0,T );L2(0,L)

) + ∥(h1, h2)∥H1/3(0,T ) + ∥h3∥L2(0,T )

)
,

for some positive constant CT,L independent of x, y0, f , and (h1, h2, h3).

As a consequence of Proposition 3.3, we obtain the following well-posedness result which will be
used in the proof of Assertion ii) of Theorem 1.3.

Proposition 3.5. Let L > 0 and T > 0. There exists ε0 > 0 such that for (h1, h2, h3) ∈ L2(0, T )×
H1/3(0, T )× L2(0, T ), f ∈ L1

(
(0, T );L2(0, L)

)
, and y0 ∈ L2(0, L) with

∥y0∥L2(0,L) + ∥f∥
L1
(
(0,T );L2(0,L)

) + ∥h2∥H1/3(0,T ) + ∥(h1, h3)∥L2(0,T ) ≤ ε0,

there exists a unique solution y ∈ XT of the system

(3.12)


yt + yx + yxxx + yyx = f in (0, T )× (0, L),

yx(·, 0) = h1, y(·, L) = h2, yx(·, L) = h3, in (0, T ),

y(0, ·) = y0 in (0, L).

Moreover, for 0 ≤ x ≤ L,

(3.13) ∥y∥XT
+ ∥y(·, x)∥H1/3(0,T ) + ∥yx(·, x)∥L2(0,T ) + ∥yxx(·, x)∥[H1/3(0,T )]∗

≤ CT,L

(
∥y0∥L2(0,L) + ∥f∥

L1
(
(0,T );L2(0,L)

) + ∥h2∥H1/3(0,T ) + ∥(h1, h3)∥L2(0,T )

)
,

for some positive constant CT,L independent of x, y0, f , and u.

Remark 3.2. The meaning of the solutions considered in Proposition 3.1, Proposition 3.2, and
Proposition 3.3 are given in Definition 3.1, Definition 3.2, Definition 3.3, respectively. These are
motivated by the integration by parts arguments. The meaning of the solutions in Proposition 3.4
and Proposition 3.5 are understood in the same manner where the nonlinear term yyx plays as a
part of the source f .

Proposition 3.4 and Proposition 3.5 follows from Proposition 3.1 and Proposition 3.3 by standard
arguments. We just mention here that

∥yyx∥L1
(
(0,T );L2(0,L)

) ≤ ∫ T

0
sup

x∈[0,L]
|y(t, x)|

(∫ L

0
|yx(t, x)|2

) 1
2

≤ C

∫ T

0

(∫ L

0
|y(t, x)|2 + |yx(t, x)|2

) 1
2
(∫ L

0
|yx(t, x)|2

) 1
2

≤ C∥y∥2XT
.

The details of the proof are left to the reader. A sharper estimate can be derived from Lemma 8.1

The rest of this section is organized as follows. The proof of Proposition 3.1, Proposition 3.2,
and Proposition 3.3 are given in Section 3.1, Section 3.2, and Section 3.3, respectively.
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3.1. Proof of Proposition 3.1. We first give the meaning of the solutions considered in Proposi-
tion 3.1.

Definition 3.1. Let L > 0, T > 0, (h1, h2, h3) ∈ H1/3(0, T ) × H1/3(0, T ) × L2(0, T ), f ∈
L1
(
(0, T );L2(0, L)

)
, and y0 ∈ L2(0, L). A solution y ∈ XT of the system (3.1) is a function

y ∈ XT such that

(3.14)

∫ T

0

∫ L

0
f(t, x)φ(t, x) dx dt+

∫ L

0
y0(x)φ(0, x) dx+

∫ T

0
h3(t)φx(t, L) dt

−
∫ T

0
h2(t)φxx(t, L) dt+

∫ T

0
h1(t)φxx(t, 0) dt = −

∫ T

0

∫ L

0
y(φt + φx + φxxx) dx dt

for all φ ∈ C3([0, T ]× [0, L]) with φ(T, ·) = 0 and φ(·, 0) = φ(·, L) = φx(·, 0) = 0.

Remark 3.3. One can check that if y is a smooth solution of (3.1) then y is a solution of (3.1)
in the sense of Definition 3.1 by standard integration by parts arguments. In fact, Definition 3.1 is
motivated by such arguments.

The proof of Proposition 3.1 is divided into two parts given in the following two subsections. The
first part is on the existence and the estimates for a constructed solution. The second part is on
the uniqueness.

3.1.1. Existence and estimates. The proof of (3.2) for a solution constructed below is given in two
steps.

Step 1: We first consider the case where y0 = 0 and f = 0. By the linearity, it suffices to consider the
three cases (h1, h2, h3) = (0, 0, h3), (h1, h2, h3) = (h1, 0, 0), and (h1, h2, h3) = (0, h2, 0) separately.
In what follows, we extend h1, h2, h3 by 0 for t > T and still denote y the corresponding solution
and these extensions by h1, h2, h3.

In what follows in this proof, for an appropriate function v defined on R × (0, L), we denote by
v̂ its Fourier transform with respect to t, i.e., for z ∈ C,

v̂(z, x) =
1√
2π

∫ +∞

0
v(t, x)e−izt dt.

Extend y and h1, h2, h3 by 0 for t < 0 and still denote these extensions by y, and h1, h2, h3. Then

(3.15) yt + yx + yxxx = 0 in R× (0, L).

Taking the Fourier transform with respect to t, we obtain, for z ∈ R,

(3.16) izŷ + ŷx + ŷxxx = 0 in (0, L).

For z ∈ C, let λj = λj(z) with j = 1, 2, 3 be the three solutions of the equation λ3 + λ+ iz = 0.
Set

Q(z) :=

 1 1 1
eλ1L eλ2L eλ3L

λ1e
λ1L λ2e

λ2L λ3e
λ3L

 ,

and

Ξ = Ξ(z) := det

 1 1 1
λ1 λ2 λ3
λ21 λ22 λ23

 ,

with the convention λj+3 = λj for j ≥ 1. It is useful to note that

(3.17) H(z) := detQ(z)Ξ(z) in C.
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is an analytic function, see, e.g., [24, Lemma A1]. Moreover, H only has a finite number of zeros
on the real line since H(z) ̸= 0 for z ∈ R with large |z|.

We first consider the case (h1, h2, h3) = (0, 0, h3). Taking into account the equation of ŷ, we
search for the solution of the form

(3.18) ŷ(z, ·) =
3∑

j=1

aje
λjx,

where aj = aj(z) for j = 1, 2, 3. Taking the boundary condition, we then have∑3
j=1 aj = 0,∑3

j=1 aje
λjL = 0,∑3

j=1 ajλje
λjL = ĥ3,

This implies, with the convention λj+3 = λj ,

(3.19) aj =
eλj+2L − eλj+1L

detQ
ĥ3 for j = 1, 2, 3.

To estimate the solution, we proceed as follows. By Lemma C.1 in the appendix, there exists
g3 ∈ C∞(R) with supp g3 ⊂ [T, 3T ] such that if z is a real solution of the equation H(z) = 0 of

order m then z is also a real solution of order m of ĥ3(z)− ĝ3(z), and, for k ≥ 1,

(3.20) ∥g3∥Hk(R) ≤ Ck∥h3∥H−1/3(R).

We now establish (3.2). Let y3 be the solution of (3.1) where (h1, h2, h3) are (0, 0, h3 − g3), and
f = 0, and y0 = 0. We have, by applying (3.19) to y3,

(3.21) ŷ3(z, x) =
ĥ3(z)− ĝ3(z)

detQ(z)

3∑
j=1

(
eλj+2L − eλj+1L

)
eλjx for a.e. x ∈ (0, L).

We derive that, by the choice of g3, for z ∈ R and |z| ≤ γ,

(3.22)

∣∣∣∣∣ ĥ3(z)− ĝ3(z)

H(z)

∣∣∣∣∣
∣∣∣∣∣∣Ξ(z)

3∑
j=1

(
eλj+2L − eλj+1L

)
eλjx

∣∣∣∣∣∣ ≤ CT,γ∥h3 − g3∥H−1/3(R),

and, by Lemma 3.1 below on the behaviors of λj(z) for large z (the case large negative z can be
obtained by considering the conjugate), we obtain, for z ∈ R, |z| ≥ γ with sufficiently large γ,

(3.23)

∣∣∣∣∣∣ 1

detQ

3∑
j=1

(
eλj+2L − eλj+1L

)
eλjx

∣∣∣∣∣∣ ≤ C

(1 + |z|)1/3
.

Combining (3.22) and (3.23) yields

∥y3(·, x)∥H1/3(R) ≤ CT,L∥h3 − g3∥L2(R)

and

∥y3(·, x)∥L2(R) ≤ CT,L∥h3 − g3∥H−1/3(R).

Similarly, we have

∥y3,x(·, x)∥L2(R) + ∥y3,xx(·, x)∥H−1/3(R) ≤ CT,L∥h3 − g3∥L2(R)

and

∥y3,x(·, x)∥H−2/3(R) ≤ CT,L∥h3 − g3∥H−1/3(R).
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The estimates for ∥y(·, x)∥H1/3(0,T ), ∥yx(·, x)∥L2(0,T ), and ∥yxx(·, x)∥[H1/3(0,T )]∗ and the estimate for

∥y(·, x)∥L2(0,T ), ∥yx(·, x)∥[H1/3(0,T )]∗ follow by noting that y = y3 in (0, T )× (0, L) 6.

We also have, by integration by parts, for 0 ≤ τ1 < τ2 ≤ T ,

(3.24)
1

2

∫ L

0
|y(τ2, x)|2 dx− 1

2

∫ L

0
|y(τ1, x)|2 dx+

1

2

∫ τ2

τ1

(
|y(t, L)|2 − |y(t, 0)|2

)
dt

+

∫ τ2

τ1

(
yxx(t, L)y(t, L)− yxx(t, 0)y(t, 0)

)
dt− 1

2

∫ τ2

τ1

(
|yx(t, L)|2 − |yx(t, 0)|2

)
dt = 0.

Using the estimates for ∥y(·, x)∥H1/3(0,T ), ∥yx(·, x)∥L2(0,T ), and ∥yxx(·, x)∥[H1/3(0,T )]∗ , we obtain the

one for ∥y∥XT
.

The proof in the case (h1, h2, h3) = (h1, 0, 0) or in the case (h1, h2, h3) = (0, h2, 0) is similar after
noting Lemma A.1 in the appendix. We mention here that the solution corresponding to the triple
(h1, 0, 0) is given by

ŷ(z, x) =
ĥ1(z)

detQ

3∑
j=1

(λj+2e
−λjL − λj+1e

−λjL)eλjx for a.e. x ∈ (0, L),

and the solution corresponding to the triple (0, h2, 0) is given by

ŷ(z, x) =
ĥ2(z)

detQ

3∑
j=1

(λj+1e
λj+1L − λj+2e

λj+2L)eλjx for a.e. x ∈ (0, L).

The details are left to the reader.

Remark 3.4. If h1, h2, h3 ∈ C∞
c (R), the constructed solution is also smooth.

Step 2: We now deal with the general case. The starting point of the proof is a connection between
the linearized KdV equation and the linear KdV-Burgers equation. Set v(t, x) = e−2t+xy(t, x),
which is equivalent to y(t, x) = e2t−xv(t, x). One can check that if y satisfies the equation

yt + yx + yxxx = f in R+ × (0, L),

if and only if

vt + 4vx + vxxx − 3vxx = fe−2t+x in R+ × (0, L).

Set, in R+ × (0, L),

(3.25) ψ(t, x) = ψ(t) :=
1

L

∫ L

0
f(t, ξ)e−2t+ξ dξ and g(t, x) := f(t, x)e−2t+x − ψ(t, x).

Then ∫ L

0
g(t, x) dx = 0 for t > 0.

Let y1 ∈ C
(
[0,+∞);L2(0, L)

)
∩L2

loc

(
[0,+∞);H1(0, L)

)
be the unique solution periodic in space of

the system

(3.26) y1,t + 4y1,x + y1,xxx − 3y1,xx = g in (0,+∞)× (0, L),

and

(3.27) y1(0, ·) = y0e
x in (0, L).

6More precisely, one can take y = y3 in (0, T )× (0, L).
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Set

α =
1

L

∫ L

0
y1(0, x) dx.

By Proposition 2.1, we have, for x ∈ [0, L],

(3.28) ∥y1(·, x)− α∥H1/3(R+) + ∥y1,x(·, x)∥L2(R+) + ∥y1,xx(·, x)∥[H1/3(R+)]∗

≤ C
(
∥f∥L1(R+;L2(0,L)) + ∥y0∥L2(0,L)

)
and

(3.29) ∥y1(·, x) − α∥L2(R+) + ∥y1,x(·, x)∥[H1/3(R+)]∗ ≤ C
(
∥y0∥[H1(0,L)]∗ + ∥f∥L1(R+;[H1(0,L)]∗)

)
.

Let y2 ∈ XT be the unique solution of

(3.30)



y2,t + y2,x + y2,xxx = 0 in (0, T )× (0, L),

y2(t, 0) = h1(t)− e2t
(
y1(t, 0) +

∫ t
0 ψ(s) ds

)
in (0, T ),

y2(t, L) = h2(t)− e2t−L
(
y1(t, L) +

∫ t
0 ψ(s) ds

)
in (0, T ),

y2,x(t, L) = h3(t)−
(
e2t−·(y1(t, ·) +

∫ t
0 ψ(s) ds)

)
x
(t, L) in (0, T ),

y2(t = 0, ·) = 0 in (0, L).

Applying the results of Step 1 to y2, and using (3.28) and (3.28), we derive that, for x ∈ [0, L],

∥y2∥XT
+ ∥y2(·, x)∥H1/3(0,T ) + ∥y2,x(·, x)∥L2(0,T ) + ∥y2,xx(·, x)∥[H1/3(0,T )]∗

≤ CT

(
∥(h1, h2)∥H1/3(R+) + ∥h3∥L2(R+) + ∥f∥L1([0,T ];L2(0,L))

)
and

∥y2(·, x)∥L2(0,T ) + ∥y2,x(·, x)∥[H1/3(0,T )]∗

≤ CT

(
∥(h1, h2)∥L2(R+) + ∥h3∥[H1/3(R+)]∗ + ∥f∥L1([0T ];[H1(0,L)]∗)

)
.

The conclusion follows by noting that y = e2t−x
(
y1 +

∫ t
0 ψ(s) ds

)
+ y2 in (0, T )× (0, L).

The proof of the existence of one solution and its estimates is complete if one can show that
using this process, one can construct a solution which verifies Definition 3.1. To this end, one first
notes that if h1, h2, h3, y0, g are smooth and supph1, supph2, supph3 ⋐ (0, T ), supp y0 ⋐ (0, L)
and supp g ⋐ (0, T ) × (0, L) then one can construct a solution with the desired estimates. Indeed,
the solution y1 given by (3.26) is smooth and has the property that y1(t, 0) and y1(t, L) are 0 for t
close to 0 (see Remark 2.2 and Remark 2.3). One can then construct a smooth solution y2 of (3.30)
in the interval (0, 2T ) where the the expression of y2(t, 0), y2(t, L), and y2,x(t, L) are replaced by
the expressions given in (3.30) multiplied by a cutoff function χ, which is 1 in (0, T ) and is 0 for

t > 3T/2. The solution y2 is also smooth (see Remark 3.4). Then e2t−x
(
y1 +

∫ t
0 ψ(s) ds

)
+ y2 is

still a solution in the time interval (0, T ) with the desired estimates. Using this observation, by
standard approximation arguments, one can construct a solution in the sense of Definition 3.1 with
the required estimates. □

In the proof of Proposition 3.1, we used the following elementary result.
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Lemma 3.1. For p ∈ C and z in a sufficiently small conic neighborhood of R+, let λj with j = 1, 2, 3
be the three solutions of the equation λ3 + λ + iz = 0. Consider the convention ℜ(λ1) < ℜ(λ2) <
ℜ(λ3). We have, in the limit |z| → ∞,

(3.31) λj = µjz
1/3 − 1

3µj
z−1/3 +O(z−2/3) with µj = e−iπ/6−2jiπ/3,

Here z1/3 denotes the cube root of z with the real part positive.

Here and in what follows, for s ∈ R, O(zs) denotes a quantity bounded by Czs for large positive
z. Similar convention is used for O(|z|s) for z ∈ C.

µ1

µ2

µ3

Figure 1. The roots λj of λ3 + λ + iz = 0

satisfy, when z > 0 is large, λj ∼ µjz
1/3

where µ3j = −i.

The same proof as in Step 1 of the proof of Proposition 3.1 gives the following result.

Lemma 3.2. Let T > 0 and (h1, h2, h3) ∈ H1/3(0, T ) × H1/3(0, T ) × L2(0, T ). Then the unique
solution y ∈ XT of the system (3.1) with y0 = 0 and f = 0 satisfy, for x ∈ [0, L],

(3.32) ∥y(·, x)∥[H2/3(0,T )]∗ ≤ CT,L

(
∥(h1, h2)∥[H2/3(0,T )]∗ + ∥h3∥[H1(0,T )]∗

)
,

where CT,L denotes a positive constant independent of x, y0, and h1, h2, h3.

3.1.2. Uniqueness. In this section, we establish the uniqueness of the solutions given in Proposi-
tion 3.1. The uniqueness is somehow known for a close definition of the solution which requires φ
less regular. The definition considered here is somehow more advantageous, see Remark 3.5. We
shall highlight the analysis in such a way that one can extend it to other settings considered in this
paper; thus we do not need to repeat the arguments as much as possible. Let y ∈ XT be a solution
with the zero data, i.e., f = 0, y0 = 0, and (h1, h2, h3) = (0, 0, 0). Fix ψ ∈ C∞

c

(
(0, T ) × (0, L)

)
(arbitrarily). Let ỹ ∈ XT be a solution of the backward system

ỹt + ỹx + yxxx = ψ in (0, T )× (0, L),

ỹ(·, 0) = 0, ỹx(·, 0) = 0, ỹ(·, L) = 0 in (0, T ),

ỹ(T, ·) = 0 in (0, L).

Using the construction given in Section 3.1.1, one can assume that ỹ is smooth (see the last part of
Step 2 of Section 3.1.1). Taking φ = ỹ in the definition, we derive that∫ T

0

∫ L

0
ψ(t, x)y(t, x) dt dx = 0.

Since ψ ∈ C∞
c

(
(0, T )× (0, L)

)
is arbitrary, we deduce that

y = 0 in (0, T )× (0, L).

The uniqueness is proved. □
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Remark 3.5. The proof of the uniqueness also gives the uniqueness of the solutions in L1
(
(0, T )×

(0, L)
)
, i.e., one requires y ∈ L1

(
(0, T )× (0, L)

)
instead of y ∈ XT in Definition 3.1.

Remark 3.6. We end this section with some comments on Proposition 3.1 and its proof.

i) The well-posedness of (3.1) in XT is proved in [10, Theorem 2.10 and Proposition 2.16] for
L = 1 when (0, T ) = R+ and the estimate for ∥yx(·, x)∥L2(0,T ) in this case is a consequence of their
results. For L = 1, their results imply that, when (h1, h2, h3) ≡ (0, 0, 0),

(3.33) ∥yx(·, x)∥L2(R+) ≤ C∥y0∥L2(0,1) for x ∈ [0, 1].

Note that L = 1 is smaller than the smallest critical length in NN which is 2π. The estimate
as (3.33) cannot hold for arbitrary L. Such an estimate is not valid for any critical length by
considering a non-zero initial datum in MN .

ii) Similar estimates for ∥y(·, x)∥H1/3(0,T ) and ∥yx(·, x)∥L2(0,T ) as in (3.2) in the real line space

setting can be found in [20, 28]. To our knowledge, variants of the estimate for ∥yxx(·, x)∥[H1/3(0,T )]∗

in (3.2) are not known even in the real line space setting. Our proof of Proposition 3.1 is in the
spirit of [24], which involves the Fourier transform with respect to time of the solution, as in [10],
and a connection between the linearized KdV and the linear KdV-Burger equations. However, in
the study of the linear KdV-Burger equation with periodic boundary conditions, the singularity
of the kernel is appropriately compensated (see the proof of Proposition 2.1), which is one of the
novelties of the analysis. The proof given here is self-contained and is different from the ones in
[20, 28] for the whole line setting, which are based on the Riemann-Liouville fractional integrals
and the theory of Airy functions.

3.2. Proof of Proposition 3.2. We first give the definition of the solutions considered in Propo-
sition 3.2.

Definition 3.2. Let L > 0, T > 0, (h1, h2, h3) ∈ H1/3(0, T ) × H1/3(0, T ) × [H1/3(0, T )]∗, f ∈
L1
(
(0, T );L2(0, L)

)
, and y0 ∈ L2(0, L). A solution y ∈ XT of the system (3.4) is a function y ∈ XT

such that

(3.34)

∫ T

0

∫ L

0
f(t, x)φ(t, x) +

∫ L

0
y0(x)φ(0, x) dx−

∫ T

0
h3(t)φ(t, L) dt

−
∫ T

0
h2(t)φxx(t, L) dt+

∫ T

0
h1(t)φxx(t, 0) dt = −

∫ T

0

∫ L

0
y(φt + φx + φxxx) dx dt

for all φ ∈ C3([0, T ]× [0, L]) with φ(T, ·) = 0, φ(·, 0) = φx(·, 0) = φx(·, L) = 0.

The proof of Proposition 3.1 is similar to the one of Proposition 3.1. The details are left to the
reader. We just present here the formula of the solution of the system when y0 = 0, h1 = 0, h2 = 0,
and f = 0 and discuss the uniqueness.

Extend h3 by 0 for t ̸∈ [0, T ] and still denote this extension by h3. Then h3 ∈ H−1/3(R). Denote
y be the corresponding solution for t ≥ 0 and extend y by 0 for t < 0. Still denote this extension
by y. One then has

(3.35)

{
yt + yx + yxxx = 0 in R× (0, L),

y(·, 0) = 0, y(·, L) = 0, yxx(·, L) = h3 in R.
Taking the Fourier transform with respect to t, from the system of y, we have

(3.36)


izŷ(z, x) + ŷx(z, x) + ŷxxx(z, x) = 0 in R× (0, L),

ŷ(z, 0) = ŷ(z, L) = 0 in R,

ŷxx(z, L) = ĥ3(z) in R.
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Taking into account the equation of ŷ, we search for the solution of the form

(3.37) ŷ(z, ·) =
3∑

j=1

aje
λjx,

where λj = λj(z) with j = 1, 2, 3 are the three solutions of the equation λ3 + λ + iz = 0, and
aj = aj(z) for j = 1, 2, 3. We then have ∑3

j=1 aj = 0,∑3
j=1 aje

λjL = 0,∑3
j=1 ajλ

2
je

λjL = ĥ3,

This implies, with the convention λj+3 = λj ,

(3.38) aj =
eλj+2L − eλj+1L∑3

k=1 e
−λkL(λ2k+2 − λ2k+1)

ĥ3 for j = 1, 2, 3.

We now deal with the uniqueness. Let y ∈ XT be a solution with the zero data, i.e., f = 0,
y0 = 0, and (h1, h2, h3) = (0, 0, 0). Let ψ ∈ C∞

c

(
(0, T ) × (0, L)

)
. Let ỹ ∈ XT be a solution of the

backward system 
ỹt + ỹx + ỹxxx = ψ in (0, T )× (0, L),

ỹ(·, 0) = 0, ỹx(·, 0) = 0, ỹx(·, L) = 0 in (0, T ),

ỹ(T, ·) = 0 in (0, L).

One can show that ỹ is smooth (see the construction of the solutions given in Proposition 3.3 and
the last part of Step 2 of Section 3.1.1; in fact, the arguments are simpler since the data on the
boundary are 0 and the initial datum is 0). Taking φ = ỹ in Definition 3.1, we derive that∫ T

0

∫ L

0
ψ(t, x)y(t, x) dt dx = 0.

Since ψ ∈ C∞
c

(
(0, T )× (0, L)

)
is arbitrary, we deduce that

y = 0 in (0, T )× (0, L).

The uniqueness is proved. □

Remark 3.7. The proof of the uniqueness also gives the uniqueness of the solutions in L1
(
(0, T )×

(0, L)
)
, i.e., one requires y ∈ L1

(
(0, T )× (0, L)

)
instead of y ∈ XT in Definition 3.2.

3.3. Proof of Proposition 3.3. We first introduce the notion of the solutions considered in Propo-
sition 3.3.

Definition 3.3. Let L > 0, T > 0, (h1, h2, h3) ∈ L2(0, T )×H1/3(0, T )× L2(0, T ),
f ∈ L1

(
(0, T );L2(0, L)

)
, and y0 ∈ L2(0, L). A solution y ∈ XT of the system (3.7) is a function

y ∈ XT such that

(3.39)

∫ T

0

∫ L

0
f(t, x)φ(t, x) +

∫ L

0
y0(x)φ(0, x) dx+

∫ T

0
h3(t)φx(t, L) dt

−
∫ T

0
h1(t)φx(t, 0) dt−

∫ T

0
h2(t)φxx(t, L) dt = −

∫ T

0

∫ L

0
y(φt + φx + φxxx) dx dt

for all φ ∈ C3([0, T ]× [0, L]) with φ(T, ·) = 0, φ(·, 0) = φ(·, L) = φxx(·, 0) = 0.



KDV 25

The proof of Proposition 3.3 is similar to the one of Proposition 3.1. We only give here the
formula of the solutions in the case f = 0, y0 = 0, and (h1, h2, h3) = (0, 0, h3). Taking the Fourier
transform with respect to t, from the system of y, we have

(3.40)


izŷ(z, x) + ŷx(z, x) + ŷxxx(z, x) = 0 in R× (0, L),

ŷx(z, 0) = ŷ(z, L) = 0 in R,

ŷx(z, L) = ĥ3(z) in R.
Taking into account the equation of ŷ, we search for the solution of the form

(3.41) ŷ(z, ·) =
3∑

j=1

aje
λjx,

where λj = λj(z) with j = 1, 2, 3 are the three solutions of the equation λ3 + λ + iz = 0, and
aj = aj(z) for j = 1, 2, 3. We then have ∑3

j=1 λjaj = 0,∑3
j=1 aje

λjL = 0,∑3
j=1 ajλje

λjL = ĥ3,

This implies, with the convention λj+3 = λj ,

(3.42) aj =
λj+1e

λj+2L − λj+2e
λj+1L∑3

k=1 λke
λkL(λk+1eλk+2L − λk+2eλk+1L)

ĥ3 for j = 1, 2, 3.

The rest of the proof is almost the same as the one of Proposition 3.1 and is left to the reader. □

4. The set of the critical lengths

The main goal of this section is to establish Theorem 1.1, except for (1.12) and its consequence
(1.13), and Proposition 1.1. The results in this section, in particular in (4.1) will be complemented
with the analysis in the next section (Section 5) to derive (1.12) and (1.13). We begin with

Proposition 4.1. Assume that L ∈ ND. There exists a < 0 and b > 0 such that

(4.1) (a+ ib)e(a+ib) = (a− ib)e(a−ib) = −2ae−2a

and

(4.2) (a+ ib)2 + (a− ib)2 + (a+ ib)(a− ib) = −L2.

These conditions are equivalent to

(4.3) b2 = L2 + 3a2, a2 + b2 = 4a2e−6a, b cos b+ a sin b = 0,

(4.4) a cos b− b sin b > 0.

Moreover,

(4.5) a and b are uniquely determined by L.

Proof. The proof is divided into two steps.

Step 1: We prove (4.1) - (4.4).
Let z1 = a+ ib and z2 = c+ id where a, b, c, d ∈ R. Set

z3 = −(z1 + z2) = −(a+ c)− i(b+ d).
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Note that, if z1 + z2 + z3 = 0, then

(4.6) z21 + z22 + z1z2 = −(z1z2 + z2z3 + z3z1).

Condition (1.4) can be then written as

(4.7) z1 + z2 + z3 = 0, z1e
z1 = z2e

z2 = z3e
z3 , and z1z2 + z2z3 + z3z1 = L2.

In the three numbers a, c, and −(a+ c), there are two numbers of the same sign. Note also that
if (z1, z2, z3) is a solution of (4.7), then (z̄1, z̄2, z̄3) is also a solution. Without loss of generality, one
might assume from now on that

(4.8) ac ≥ 0, |c| ≥ |a|,
and

(4.9) b ≥ 0.

From (1.4), we have

(a+ ib)2 + (c+ id)2 + (a+ ib)(c+ id) = −L2.

This yields

a2 − b2 + c2 − d2 + ac− bd+ i(2ab+ 2cd+ ad+ bc) = −L2.

We thus obtain

(4.10) a2 + ac+ c2 + L2 = b2 + bd+ d2

and

(4.11) 2ab+ 2cd+ ad+ bc = 0.

From (1.4), we have

(4.12) (a+ ib)ea+ib = (c+ id)ec+id = −
(
a+ c+ i(b+ d)

)
e−(a+c)−i(b+d).

Considering the modulus in (4.12), we get

(4.13) (a2 + b2)e2a = (c2 + d2)e2c =
(
(a+ c)2 + (b+ d)2

)
e−2(a+c).

Considering the imaginary parts in (4.12), we obtain

(4.14) (b cos b+ a sin b)ea = (d cos d+ c sin d)ec =
(
− (b+ d) cos(b+ d) + (a+ c) sin(b+ d)

)
e−(a+c).

This implies that c ̸= 0 since otherwise a is also 0 (since |a| ≤ |c|) and one reaches, by (4.13),

|b| = |d| = |b+ d|,
which yields b = d = 0 and L = 0. This is impossible since L > 0.

Using (4.11) and the facts ac ≥ 0 and c ̸= 0, we have

(4.15) d = −2a+ c

2c+ a
b.

This implies

(4.16) b+ d =
c− a

2c+ a
b.

Combining (4.9) and (4.15) yields that

(4.17) b > 0

since b2 + bd+ d2 ≥ L2.

The proof now is divided into four cases.
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• Case 1: a ≥ 0. Thus c ≥ a ≥ 0. Since (a+ c)2e−2(a+c) ≤ e−2 for a+ c ≥ 0, it follows that

(b+ d)2 + e−2 ≥ (b+ d)2 + (a+ c)2e−2(a+c)

≥
(
(a+ c)2 + (b+ d)2

)
e−2(a+c) (4.13)= (a2 + b2)e2a ≥ b2e2a ≥ b2.

In summary, one reaches

(4.18) (b+ d)2 + e−2 ≥ b2.

One has, for c ≥ a ≥ 0,

(4.19) (b+ d)2
(4.16)
=

(
c− a

2c+ a

)2

b2 ≤ b2/4.

Combining (4.18) and (4.19) yields

(4.20) e−2 ≥ 3

4
b2; thus, by (4.17), 0 < b ≤ 0.425.

Since a ≥ 0, it follows from (4.20) that

(4.21) b cos b+ a sin b > 0.

We have

a+ c ≤ (2a2 + 2c2 + 2ac)1/2
(4.10)

≤
(
2(b2 + d2 + bd)

)1/2
=
(
b2 + d2 + (b+ d)2

)1/2
(4.15),(4.19)

≤
(
2b2 + b2/4

)1/2
= (9b2/4)1/2

(4.20)

≤ (3e−2)1/2 ≤ 0.638.

Since 0 ≤ b+ d ≤ b/2 ≤ 0.225 by (4.16), (4.19), and (4.20), it follows that

(4.22) − (b+ d) cos(b+ d) + (a+ c) sin(b+ d) ≤ −(b+ d) cos(0.225) + (a+ c)(b+ d)

≤ −0.97(b+ d) + 0.638(b+ d) ≤ 0.

Combining (4.14), (4.21), and (4.22), we derive that the case a ≥ 0 does not happen.

• Case 2: a < 0 and a ̸= c. Thus c < a < 0 since |c| ≥ |a|.
∗ Case 2.1: a < 0 and c ≤ 2a. We have

d2
(4.15)
=

(
2a+ c

2c+ a

)2

b2 ≤ (4/5)2b2.

It follows that

b2 ≤ (a2 + b2)
(4.13)
= e2(c−a)(c2 + d2) ≤ c2ec + (4/5)2b2.

This yields, since c ≤ 0,
(9/25)b2 ≤ c2ec ≤ 22e−2.

We obtain

(4.23) b2 ≤ 100

9
e−2 ≤ 1.51, which yields, by (4.17), 0 < b ≤ 1.23.

We have

(4.24) a2 + b2
(4.13)
=
(
(a+ c)2 + (b+ d)2

)
e−4a−2c ≥ (a+ c)2e−2a−2c

since a < 0. It follows from (4.23) that

1.51 ≥ b2 ≥ (a+ c)2e−2a−2c − a2 ≥ (a+ c)2
(
e−2a−2c − 1

9

)
.
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Since f1(t) = t2(e2t − 1/9) is an strictly increasing function for t > 0 and

f1(0.66) ≥ 1.55,

it follows that

(4.25) 0.66 ≥ |a+ c| = |c|+ |a| ≥ 3|a|.
Using (4.23) and (4.25), we obtain

(4.26) b cos b+ a sin b ≥ b cos 1.23 + ab > 0.33b+ ab > 0.

and, since 0 < b+ d ≤ b/2 ≤ 0.64 by (4.16) and (4.23),

(4.27) − (b+ d) cos(b+ d) + (a+ c) sin(b+ d)

≤ −(b+ d) cos 0.64 + (a+ c)(b+ d) cos 0.64
(4.25)
< 0.

Here we used the fact sinx ≥ x cos θ0 for 0 ≤ x ≤ θ0 ≤ 1.
Combining (4.14), (4.26), and (4.27), we derive that Case 2.1 does not happen.

∗ Case 2.2: a < 0, 2a ≤ c < a with |a| ≤ 1. We have

a2 + b2
(4.13)
= (c2 + d2)e2(c−a)

(4.15)

≤ (c2 + b2)e2(c−a).

This implies, with s = c− a < 0,

b2(1− e2s) = b2(1− e2(c−a)) ≤ c2e2(c−a) − a2

= (a+ s)2e2s − a2 = a2e2s + 2ase2s + s2e2s − a2 ≤ (2as+ s2)e2s.

We derive that

(4.28) b2 ≤ |2as+ s2|
|1− e2s|

e2s.

Set

g(t) = 2te−2t − 1 + e−2t for t ≥ 0.

Then

g′(t) = (2− 4t− 2)e−2t = −4te−2t < 0 for t > 0,

which yields g(t) < g(0) = 0 for t > 0. This implies

(4.29) |s|e2s ≤ 1

2
(1− e2s).

Combining (4.28) and (4.29) yields

(4.30) b2 ≤ 1

2
(2|a|+ |s|) = 1

2
(|a|+ |c|) ≤ 3/2,

where in the last inequality we used the fact |c| ≤ 2|a| and |a| ≤ 1.
We have

(4.31) a2 + b2
(4.13)
=
(
(a+ c)2 + (b+ d)2

)
e−4a−2c ≥ (a+ c)2e−2a−2c.

It follows from (4.30) that

1

2
(|a|+ |c|) ≥ b2 ≥ (a+ c)2e−2a−2c − a2 ≥ (a+ c)2(e−2a−2c − 1

4
),

(4.32)
1

2
≥ |a+ c|(e−2a−2c − 1

4
),
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Since f2(t) = t(e2t − 1/4) is an increasing function for t ≥ 0 and

f2(0.32) ≥ 0.52,

it follows from (4.32) that

(4.33) |a|+ |c| ≤ 0.32, which yields |a| ≤ 0.16.

Using (4.30) and (4.32), we obtain

(4.34) b cos b+ a sin b ≥ b cos
√

3/2 + ab > 0.33b+ ab > 0,

and, since 0 < b+ d ≤ b/2 ≤
√

3/2/2 ≤ 0.62 by (4.16) and (4.30),

(4.35) − (b+ d) cos(b+ d) + (a+ c) sin(b+ d)

≤ −(b+ d) cos 0.62 + (a+ c)(b+ d) cos 0.62
(4.33)
< 0.

Here we used the fact sinx ≥ x cos θ0 for 0 ≤ x ≤ θ0 ≤ 1.
Combining (4.14), (4.34), and (4.35), we derive that Case 2.2 does not happen.

∗ Case 2.3: a < 0 and 2a ≤ c < a with |a| > 1. We have, by (4.13),

(a2 + b2)e2a = (c2 + d2)e2c

Since |c| ≥ |a| ≥ 1 and d2 ≤ b2 by (4.15), and the function f3(t) = t2e−2t is strictly decreasing in
[1,+∞), we derive that

(a2 + b2)e2a > (c2 + d2)e2c.

Thus Case 2.3 does not happen.

• Case 3: a < 0 and a = c. We derive from (4.16) that

b+ d = 0.

Assertion (4.1)-(4.4) then follow from (4.13), (4.14) and the fact that

ℜ(a+ ib)e(a+ib) = ea(a cos b− b sin b) > 0.

• Case 4: a = 0 and c < 0. It follows that

d = −b/2.

This case does not happen by (4.13).

Step 2: We prove (4.5). Since

L2 = b2 − 3a2 = 4a2(e−6a − 1)

and the function h(t) = 4t2(e6t − 1) is strictly increasing in (0,+∞), it follows that

a is uniquely determined by L.

This in turn implies that

b is uniquely determined by L

since L2 = b2 − 3a2 and b > 0.

The proof is complete. □

We are ready to give
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Proof of Proposition 1.1. By (4.3) and (4.4), we have

L2 = 4a2(e−6a − 1),

where a < 0 is determined by, with b2 = 4a2(e−6a − 1/4), b > 0,

b cos b+ a sin b = 0 and a cos b− b sin b > 0.

Since b > 0 and a < 0, it follows that

cos b < 0 and sin b < 0.

Hence b = bn for some π+2nπ < bn < 3π/2+n2π with n ∈ N. Since bn ≥ π and 4a2n(e
−6an −1/4) =

b2n, it follows that

|an| ≥ 0.43.

This yields

(4.36) | cot bn| = |an/bn| =
1

4|an|(e6|an| − 1/4)
≤ 0.045.

We thus derive that

|bn − 3π/2| ≤ 0.045.

Set

tn = bn − π − n2π.

Since

|bn cos bn| = |an sin bn|,
it follows that

(4.37) (tn + π + n2π) cos tn = |an| sin tn.
For tn ∈ (π/4, π/2), the LHS of (4.37) is a strictly decreasing function of tn and the RHS of (4.37)
is a strictly increasing function of tn since |an| is a increasing function of tn. Hence there exists
a unique tn ∈ (π/4, π/2) such that the identity holds. One can check that the corresponding an
fulfills all the requirements. □

Remark 4.1. It is clear, as n→ +∞, that an/bn → 0 so bn − 3π/2− 2πn→ 0 as n→ +∞.

We end this section with the following result, which yields (1.8) and (1.11). Recall that α and β
are defined by (1.9) and q is defined by (1.7).

Lemma 4.1. Let L ∈ ND. Set

(4.38) η1 = α+ iβ, η2 = α− iβ, and η3 = −2α,

(4.39) φ(x) = (η3 − η2)e
η1x + (η1 − η3)e

η2x + (η2 − η1)e
η3x in [0, L],

and

Ψ(t, x) = eqtψ(x) in R× [0, L].

Then φ(x) = −2iϕ and Ψ satisfies (1.11). Consequently, (1.8) and (1.11) hold.

Proof. Since

η1e
−η1L = η2e

−η2L = η3e
−η3L

η1 + η2 + η3 = 0, η1η2 + η2η3 + η3η1 = 1, and η1η2η3 = −q,
it follows that {

φxxx + φx + qφ = 0 in (0, L),

φ(0) = φx(0) = φ(L) = φxx(L) = 0 in [0, L].
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We derive that Ψ is a solution of (1.11). A computation gives

φ(x) =(−3α+ iβ)e(α+iβ)x + (3α+ iβ)e(α−iβ)x − 2iβe−2αx

=− 6iαeαx sin(βx) + 2iβeαx cos(βx)− 2iβe−2αx

=2i
(
βeαx cos(βx)− βe−2αx − 3αeαx sin(βx)

)
= −2iϕ.

The proof is complete. □

Remark 4.2. In this section, we characterize all solutions of (1.4) and obtain the corresponding
unreachable space MD for the corresponding linearized system. Previously, a subclass of solutions
of (1.4), which corresponding to even and large n in our notations, are given in [27, The proof of
proposition 4]. Our analysis is different from and much more involved than the one given in [27].

5. The unreachable space of the linearized system for a critical length

In this section, we prove that the unreachable space is given by (1.12) and study its controllability
properties of the linearized KdV system:

(5.1)


yt + yx + yxxx = 0 in (0, T )× (0, L),

y(·, 0) = yx(·, L) = 0 in (0, T ),

y(·, L) = u in (0, T ),

for a critical length. The main result of this section is Proposition 5.1 which is based on an
observability inequality with initial data and final data in M⊥

D, where MD is defined by (1.12).
In comparison with the right Neumann boundary control system, this part in the Dirichlet setting
is more complex and technical. The proof of Proposition 5.1 involves the well-posedness and the
estimates for solutions in XT given in Proposition 3.1 and Proposition 3.2.

We begin with the following simple but useful result.

Lemma 5.1. Let L ∈ ND and T > 0. For y0 ∈ L2(0, L) and u ∈ H1/3(0, T ), let y ∈ XT be the
unique solution of the system

yt + yx + yxxx = 0 in (0, T )× (0, L),

y(·, 0) = yx(·, L) = 0 in (0, T ),

y(·, L) = u in (0, T ),

y(0, ·) = y0 in (0, L).

Then ∫ L

0
y(t, x)Φ(t, x) dx is constant on [0, T ].

Recall that Φ is defined by (1.10).

Proof. Using the fact, by integration by parts,

d

dt

∫ L

0
y(t, x)Φ(t, x) dx = 0,

the conclusion follows. □

We are ready to state the main result of this section on the unreachable space for the linearized
KdV system (5.1).
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Proposition 5.1. Let L ∈ ND and T > 0. We have
i) for φ ∈ MD \ {0}, there does not exist u ∈ H1/3(0, T ) such that y(T, ·) = φ where y ∈ XT is

the unique solution of (5.1) with y(0, ·) = 0.

ii) there exists a linear continuous operator L : M⊥
D → H1/3(0, T ) such that y(T, ·) = φ where

y ∈ XT is the unique solution of (5.1) with y(0, ·) = 0 and u = L(φ).
iii) There exists a linear continuous operator L̂ : M⊥

D → H1/3(0, T ) such that y(T, ·) = 0 where

y ∈ XT is the unique solution of (5.1) with y(0, ·) = φ and u = L̂(φ).

Proof. Assertion i) is just a consequence of Lemma 5.1.
We next deal with assertions ii) and iii). Let ψ ∈ M⊥

D. Let y∗ ∈ XT be the unique solution of
the backward linear KdV system

(5.2)


y∗t + y∗x + y∗xxx = 0 in (0, T )× (0, L),

y∗(·, 0) = y∗x(·, 0) = y∗(·, L) = 0 in (0, T ),

y∗(T, ·) = ψ in (0, L).

Applying the observability inequality in Lemma 5.2 below to y∗(T − ·, L− ·), we obtain

(5.3) λ−1∥ψ∥L2(0,L) ≤ ∥y∗xx(·, L)∥[H1/3(0,T )]∗ ≤ λ∥ψ∥L2(0,L)

for some constant λ ≥ 1. Fix a continuous linear mapping

(5.4) L1 : [H
1/3(0, T )]∗ → H1/3(0, T )

such that

(5.5) ⟨L1(h), h⟩H1/3(0,T );[H1/3(0,T )]∗ ≥ C∥h∥2
[H1/3(0,T )]∗ for all h ∈ [H1/3(0, T )]∗,

for some positive constant C. This can be done using the Fourier series or the Fourier transform
appropriately.

We first prove assertion ii). Equipped M⊥
D with the L2(0, L)-scalar product. Define

A : M⊥
D → M⊥

D

by

A(ψ) = y(T, ·),
where y ∈ XT is the unique solution of the following system

(5.6)


yt + yx + yxxx = 0 in (0, T )× (0, L),

y(·, 0) = yx(·, L) = 0 in (0, T ),

y(·, L) = h in (0, T ),

y(0, ·) = 0 in (0, L),

with h = L1(y
∗
xx(·, L)) where y∗ is determined by (5.2) (y(T, ·) ∈ M⊥

D since y(0, ·) = 0 by
Lemma 5.1). An integration by part yields

(5.7)

∫ L

0
y(T, x)z∗(T, x) dx = −

∫ T

0
y(t, L)z∗xx(t, L) dt,

for all solutions z∗ ∈ XT of (5.2) with z∗(T, ·) ∈ M⊥
D.

Using (5.3) and applying the Lax-Milgram theory, we derive that A is linear continuous and its
inverse is also linear continuous. The conclusion of ii) follows by taking L(ψ) = L1(y

∗
xx(·, L)) and

y∗ is the solution of (5.2) with ψ being replaced by A−1(ψ).
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We now deal with assertion iii). Set

H =
{
y∗xx(·, L) ∈ [H1/3(0, T )]∗; where y∗ is determined by (5.2) with ψ ∈ M⊥

D

}
.

It follows from (5.3) that H is a closed subspace of [H1/3(0, T )]∗ so is a Hilbert space. We next
consider the following bilinear form on H:

â(u, v) = ⟨L1(u), v⟩H1/3(0,T );[H1/3(0,T )]∗ .

Using (5.3), we derive from the Lax-Milgram theorem that there exists a continuous linear applica-

tion Â : M⊥
D → H such that

(5.8)

∫ L

0
φ(x)y∗(0, x) dx = â(Âφ, y∗xx(·, L))

for all solution y∗ ∈ XT of (5.2) with ψ ∈ M⊥
D.

Set
L̂ = L1 ◦ Â.

The conclusion of iii) then follows after noting that if y(0, ·) ∈ M⊥
D then y(T, ·) ∈ M⊥

D by
Lemma 5.1, and the fact∫ L

0
y(T, x)y∗(T, x) dx−

∫ L

0
y(0, x)y∗(0, x) dx = −

∫ T

0
y(t, L)y∗xx(t, L) dt.

The proof is complete. □

Here is the observability inequality used in the proof of Proposition 5.1.

Lemma 5.2. Let L ∈ ND, T > 0, and let y ∈ XT be a solution of the linearized KdV equation in
(0, T ) × (0, L) with y(0, L − ·) ∈ M⊥

D and with y(·, 0) = y(·, L) = yx(·, L) = 0. Then there exists
Λ ≥ 1 depending only on L and T such that

(5.9) Λ−1∥y(0, ·)∥L2(0,L) ≤ ∥yxx(·, 0)∥[H1/3(0,T )]∗ ≤ Λ∥y(0, ·)∥L2(0,L).

Proof. By Proposition 3.1, we have

(5.10) ∥yxx(·, 0)∥[H1/3(0,T )]∗ ≤ C∥y(0, ·)∥L2(0,L).

We next prove

(5.11) ∥y(0, ·)∥L2(0,L) ≤ C∥yxx(·, 0)∥[H1/3(0,T )]∗

by contradiction. Assume that there exists a sequence (φn) such that φn(L− ·) ∈ M⊥
D and

(5.12) ∥yn,xx(·, 0)∥[H1/3(0,T )]∗ ≤ 1

n
∥yn(0, ·)∥L2(0,L) =

1

n
,

where yn ∈ XT is the unique solution of the linearized KdV equation in (0, T )×(0, L) with yn(0, ·) =
φn and yn(·, 0) = yn(·, L) = yn,x(·, L) = 0. Set

(5.13) yn(t, x) = yn(T − t, L− x).

Then yn ∈ XT is a solution of the equation yn,t + yn,x + yn,xxx = 0 in (0, T ) × (0, L). By the
regularizing effect of the linearized KdV equation, without loss of generality, one might assume
that yn(0, ·) = yn(T, L− ·) converges in L2(0, L). Applying Proposition 3.2 to yn, one derives that
yn(0, L− ·) = yn(T, ·) is a Cauchy sequence in L2(0, L). In other words, φn = yn(0, ·) is a Cauchy
sequence in L2(0, L). Let φ be the limit of φn in L2(0, L) and denote y ∈ XT be the corresponding
solution of the linearized KdV system. Then ∥φ∥L2(0,L) = 1 and φ(L− ·) ∈ M⊥

D.
Set y(t, x) = y(T − t, L− x). Then y ∈ XT is a solution of the system

(5.14) yt + yx + yxxx = 0 in (0, T )× (0, L),
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(5.15) y(·, 0) = yx(·, 0) = y(·, L) = yxx(·, L) = 0 in (0, T ),

and

y(0, ·) ∈ M⊥
D (by Lemma 5.1) and ∥y(0, ·)∥L2(0,L)

Proposition 3.2
≥ C∥φ∥L2(0,L) = C.

By Lemma 5.3 below, y(0, ·) = cϕ in (0, L) for some c ∈ R where ϕ is defined by (1.8). Since
y(0, ·) ∈ M⊥

D, it follows that c = 0 and hence y(0, ·) = 0 in (0, L) We obtain a contradiction. Thus
(5.11) is proved.

The conclusion now follows from (5.10) and (5.11). □

In Lemma 5.2, we used the following result, which is also helpful in the proof of Assertion ii) of
Theorem 1.3.

Lemma 5.3. Let L ∈ ND and T > 0. Assume that y ∈ XT is a solution of the system

(5.16)

{
yt + yx + yxxx = 0 in (0, T )× (0, L),

y(·, 0) = yx(·, 0) = y(·, L) = yxx(·, L) = 0 in (0, T ).

There exists some c ∈ R such that

(5.17) y = cΦ in (0, T )× (0, L).

Proof. Set

(5.18) V =
{
φ ∈ L2(0, T ) ∩M⊥

D;∃ y ∈ XT satisfying (5.16) and y(0, ·) = φ
}
⊂ L2(0, L).

We claim that

(5.19) V = {0}.
Admitting the claim, the conclusion now follows from the claim as follows. Set

φ = projMD
y(0, ·).

Then
φ = cϕ for some c ∈ R.

Set
ỹ = y − cΦ in (0, T )× (0, L),

where Φ is defined by (1.10). Then ỹ ∈ XT is a solution of (5.16) and ỹ(0, ·) ∈ M⊥
D. By (5.19), one

has
ỹ(0, ·) = 0.

It follows that
y = cΦ in (0, T )× (0, L),

which is the conclusion.
It remains to prove (5.19). We will prove that V = {0} by contradiction. Assume that V ̸= {0}.

Using the regularity theory for the linear KdV equation and Proposition 3.2, one can show that

V ⊂ C∞([0, L]).

For the same reason, one can show that any bounded sequence in V (equipped L2(0, L)-norm) has
a subsequence converging in V. Thus V is of finite dimension and is not {0}.

We can now involve the arguments via spectral theory in the spirit of [27] or even simpler (see
also [1, 42]) to show that there exists φ ∈ V \ {0} and λ ∈ C such that

(5.20) λφ+ φx + φxxx = 0 in (0, L),

(5.21) φ(·, 0) = φ(·, 0) = φx(·, L) = φxx(·, L) = 0.
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Indeed, this can be done by considering

(5.22)
A : V → V

ψ 7→ −(ψx + ψxxx)

and taking λ ∈ C and φ ∈ V \{0} such that Aφ = λφ. The only point required to be checked is the
fact that ψx + ψxxx ∈ V for ψ ∈ V. To this end, one just notes that −(ψx + ψxxx) = yt(0, ·) where
y ∈ XT is the corresponding solution (thus y(0, ·) = ψ).

Let ηj with j = 1, 2, 3 be the three solutions of the equations

η3 + η + λ = 0.

Then φ has the form
φ = γ1e

η1x + γ2e
η2x + γ3e

η3x in [0, L].

Using the boundary conditions of φ, we obtain
γ1 + γ2 + γ3 = 0,

γ1η1 + γ2η2 + γ3η3 = 0,

γ1e
η1L + γ2e

η2L + γ3e
η3L = 0,

γ1η
2
1e

η1L + γ2η
2
2e

η2L + γ3η
2
3e

η3L = 0.

As in [27, (30)], we then derive that

η1e
−η1L = η2e

−η2L = η3e
−η3L.

Without loss of generality, one can assume that

−η1L = z1 and − η2L = z2,

(here z1 and z2 are the complex numbers in the definition of ND) which yields

φ = cϕ

for some constant c ∈ C. In other words,

φ ∈ MD.

We have a contradiction since φ ̸= 0 and φ ∈ M⊥
D.

The proof is complete. □

By the same arguments used in the proof of Lemma 5.2, we also have the following observability
inequality in the case L ̸∈ ND, which is the key point of the proof of Theorem 1.4.

Lemma 5.4. Let L ̸∈ ND, T > 0, and let y ∈ XT be a solution of the linearized KdV equation with
y(0, ·) ∈ L2(0, L) and y(·, 0) = y(·, L) = yx(·, 0) = 0. Then, for some Λ ≥ 1,

(5.23) Λ−1∥y(0, ·)∥L2(0,L) ≤ ∥yxx(·, 0)∥[H1/3(0,T )]∗ ≤ Λ∥y(0, ·)∥L2(0,L).

Here is a variant of Proposition 5.1 in the case L ̸∈ ND.

Proposition 5.2. Let L ̸∈ ND and T > 0. Then
a) There exists a linear continuous operator L : L2(0, L) → H1/3(0, T ) such that y(T, ·) = φ

where y ∈ XT is the unique solution of (5.1) with y(0, ·) = 0 and u = L(φ).
b) There exists a linear continuous operator L̂ : L2(0, L) → H1/3(0, T ) such that y(T, ·) = 0 where

y ∈ XT is the unique solution of (5.1) with y(0, ·) = φ and u = L̂(φ).
We are ready to give

Proof of Theorem 1.4. Theorem 1.4 follows from Proposition 3.4 and Lemma 5.4 as usual. The
details are omitted. □
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6. Properties of controls which steer 0 at time 0 to 0 at time T

In this section, we study controls that steer 0 at time 0 to 0 at time T for the linearized KdV
system of (1.1). To this end, it is convenient to introduce the following quantities.

Definition 6.1. For z ∈ C, let (λj)1≤j≤3 =
(
λj(z)

)
1≤j≤3

be the three solutions of

(6.1) λ3 + λ+ iz = 0.

Set

(6.2) Q = Q(z) :=

 1 1 1
eλ1L eλ2L eλ3L

λ1e
λ1L λ2e

λ2L λ3e
λ3L

 ,

(6.3) PD = PD(z) :=

3∑
j=1

λ2j
(
λj+1e

λj+1L − λj+2e
λj+2L

)
,

and

(6.4) Ξ = Ξ(z) := det

 1 1 1
λ1 λ2 λ3
λ21 λ22 λ23

 ,

with the convention λj+3 = λj for j ≥ 1.

Remark 6.1. The matrix Q and the quantities PD and Ξ are antisymmetric with respect to λj
(j = 1, 2, 3), and their definitions depend on a choice of the order of (λ1, λ2, λ3). Nevertheless, we
later consider a product of either PD, Ξ, or detQ with another antisymmetric function of (λj), or
deal with |detQ|, and these quantities therefore make sense. The definitions of P , Ξ, and Q are
only understood in these contexts.

Given u ∈ H1/3(0,+∞), let y ∈ C([0,+∞);L2(0, L)) ∩ L2
loc([0,+∞);H1(0, L)) be the unique

solution of the system

(6.5)


yt + yx + yxxx = 0 in (0,+∞)× (0, L),

y(·, 0) = yx(·, L) = 0 in (0,+∞),

y(·, L) = u in (0,+∞),

y(0, ·) = 0 in (0, L).

In what follows in this section, we extend y and u by 0 for t < 0 and still denote these extensions by
y and u, respectively. For an appropriate function v defined on R× (0, L), let v̂ denote its Fourier
transform with respect to t, i.e.,

v̂(z, x) =
1√
2π

∫
R
v(t, x)e−izt dt.

From the system of y, we have

(6.6)


izŷ(z, x) + ŷx(z, x) + ŷxxx(z, x) = 0 in R× (0, L),

ŷ(z, 0) = ŷx(z, L) = 0 in R,

ŷ(z, L) = û(z) in R.

This system has a unique solution outside a discrete set of z in C, see [24, Lemma 2.1].
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Taking into account the equation of ŷ, we search for the solution of the form

ŷ(z, ·) =
3∑

j=1

aje
λjx,

where λj = λj(z) with j = 1, 2, 3 determined by (6.1).
Using the boundary conditions for ŷ, we require that

∑3
j=1 aj = 0,∑3

j=1 e
λjLaj = û,∑3

j=1 λje
λjLaj = 0.

This implies

Q(a1, a2, a3)
T = (0, û, 0)T,

where Q = Q(z) is given in Definition 6.1. We thus obtain

aj =
û

detQ

(
λj+1e

λj+1L − λj+2e
λj+2L

)
.

This yields

(6.7) ŷ(z, x) =
û

detQ

3∑
j=1

(
λj+1e

λj+1L − λj+2e
λj+2L

)
eλjx.

From (6.7), we derive that

(6.8) ∂xxŷ(z, 0) =
û(z)PD(z)

detQ(z)
,

where PD(z) is given in Definition 6.1.
Set

(6.9) G(z) = PD(z)/Ξ(z) and H(z) = detQ(z)/Ξ(z),

where Ξ(z) is given in Definition 6.1. It is convenient to consider ∂xxŷ(z, 0) under the form

(6.10) ∂xxŷ(z, 0) =
û(z)G(z)

H(z)
,

By [24, Lemmas A1 and B1], ∂xxŷ(z, 0) is a meromorphic function, and

(6.11) G(z) and H(z) are entire functions.

We thus have just established the following result.

Lemma 6.1. Let u ∈ H1/3(R+) and let y ∈ C
(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
be the

unique solution of

(6.12)


yt + yx + yxxx = 0 in (0,+∞)× (0, L),

y(·, 0) = yx(·, L) = 0 in (0,+∞),

y(·, L) = u in (0,+∞),

with

(6.13) y(0, ·) = 0 in (0, L).
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Outside a discrete set z ∈ R, we have

(6.14) ŷ(z, x) =
û

detQ

3∑
j=1

(
λj+1e

λj+1L − λj+2e
λj+2L

)
eλjx for a.e. x ∈ (0, L).

Remark 6.2. Assume that û(z, ·) is well-defined for z ∈ C (e.g. when u has a compact support).
Then the conclusions of Lemma 6.1 hold outside of a discrete set z ∈ C.

We end this section with the following result, which is the starting point of our approach, and
follows from Lemma 6.1 and Paley-Wiener’s theorem, see e.g., [45].

Proposition 6.1. Let L > 0, T > 0, and u ∈ H1/3(R+). Assume that u has a compact support
in [0, T ], and u steers 0 at the time 0 to 0 at the time T , i.e., the unique solution y of (6.12) and
(6.13) satisfies y(T, ·) = 0 in (0, L). Then û and ûG/H satisfy the assumption of Paley-Wiener’s
theorem concerning the support in [−T, T ], i.e.,

(6.15) û and ûG/H are entire functions,

and

(6.16) |û(z)|+
∣∣∣∣ ûG(z)H(z)

∣∣∣∣ ≤ CeT |z|,

for some positive constant C.

Remark 6.3. The computations in this section are in the spirit of the ones [24]. Nevertheless, in
the conclusions of Proposition 6.1, we have/require that

ŷ(z, L) and ∂xxŷ(z, 0) are entire functions satisfying (6.16).

This is different with the one used in [24, Proposition 3.1] where one obtains that

∂xŷ(z, L) and ∂xŷ(z, 0) are entire functions satisfying a variant of (6.16).

These differences are important to take into account different boundary conditions, see the proof of
Assertion ii) of Theorem 1.3 in Section 9.2.

7. Attainable directions in the unreachable space in small time

In this section, we investigate whether or not directions in MD, defined in (1.12), can be reached
in small time. The starting point comes from the power series expansion approach. Let y1 and y2
be the solutions of

(7.1)


y1,t + y1,x + y1,xxx = 0 in (0, T )× (0, L),

y1(·, 0) = y1,x(·, L) = 0 in (0, T ),

y1(·, L) = u1 in (0, T ),

y1(0, ·) = 0 in (0, L),

(7.2)


y2,t + y2,x + y2,xxx + y1y1,x = 0 in (0, T )× (0, L),

y2(·, 0) = y2(·, L) = y2,x(·, L) = 0 in (0, T ),

y2(0, ·) = 0 in (0, L),

for some control u1. The key point of this approach is to first understand how one can choose u1
so that

y1(T, ·) = 0
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and then analyse what the behavior of projMD
y2(T, ·) is. To this end, we compute the quantity

(7.3)

∫ L

0
y2(T, x)Φ(t, x) dx,

where Φ is defined in (1.10). Multiplying the equation of y2 by Φ, integrating by parts in (0, T )×
(0, L), we obtain, after using the boundary conditions and the initial conditions,

(7.4)

∫ L

0
y2(T, x)Φ(t, x) dx =

1

2

∫ T

0

∫ L

0
y21(t, x)Φx(t, x) dx.

The goal is then to understand the value of the RHS of (7.4).
We will study the value of the RHS of (7.4) in a more general setting. Motivated by the definition

of y1, we consider the unique solution y ∈ XT of the system, for u ∈ H1/3(0, T ),

(7.5)


yt + yx + yxxx = 0 in (0, T )× (0, L),

y(·, 0) = yx(·, L) = 0 in (0, T ),

y(·, L) = u in (0, T ),

y(0, ·) = 0 in (0, L).

Guided by the definition of ϕ, as suggested in [24, 39], for η1, η2, η3 ∈ C \ {0}, we set

(7.6) φ(x) =

3∑
j=1

(ηj+1 − ηj)e
ηj+2x for x ∈ [0, L],

with the convention ηj+3 = ηj for j ≥ 1. The following assumptions on ηj are used repeatedly
throughout this section:

(7.7) η1 + η2 + η3 = 0, η1η2 + η1η3 + η2η3 = 1,

and

(7.8) η1e
−η1L = η2e

−η2L = η3e
−η3L.

Extend y and u by 0 for t > T and still denote these extensions by y and u, respectively. Then,
by Lemma A.1 in the appendix,

∥u∥H1/3(R+) ≤ C∥u∥H1/3(0,T ).

Assume that

y(T, ·) = 0.

Then the extension y ∈ C([0,+∞);L2(0, L)) ∩ L2((0,+∞);H1(0, L)) is also a solution of the lin-
earized KdV system in [0,+∞)× (0, L) using the control which is the extension of u (by 0 outside
(0, T )), i.e.,

(7.9)


yt + yx + yxxx = 0 in (0,+∞)× (0, L),

y(·, 0) = yx(·, L) = 0 in (0,+∞),

y(·, L) = u in (0,+∞),

y(0, ·) = 0 in (0, L).

In what follows in this section, we study this quantity, for p ∈ R:

(7.10)

∫ T

0

∫ L

0
y2(t, x)φx(x)e

pt dt dx

(
=

∫ +∞

0

∫ L

0
y2(t, x)φx(x)e

pt dt dx

)
.
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We have, by Lemma 6.1 (see also Remark 6.2), for z ∈ C outside a discrete set,

(7.11) ŷ(z, x) = û(z)

∑3
j=1

(
λje

λjL − λj+1e
λj+1L

)
eλj+2x∑3

j=1(λj+1 − λj)e−λj+2L
,

where λj = λj(z) for j = 1, 2, 3 are determined by (6.1).

We begin with

Lemma 7.1. Let p ∈ R, η1, η2, η3 ∈ C\{0}, and let φ be defined by (7.6). Set, for (z, x) ∈ R×(0, L),

BD(z, x) =

∣∣∣∣∣
∑3

j=1

(
λje

λjL − λj+1e
λj+1L

)
eλj+2x∑3

j=1(λj+1 − λj)e−λj+2L

∣∣∣∣∣
2

φx(x),

where λj = λj(z) with j = 1, 2, 3 are the three solutions of λ3 + λ + iz = 0. Let u ∈ H1/3(0,+∞)
with compact support in [0,+∞) and let y ∈ C

(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
be the

unique solution of (7.9). Assume that y(t, ·) = 0 for large t. We have

(7.12)

∫ L

0

∫ +∞

0
|y(t, x)|2φx(x)e

pt dt dx =

∫
R
|û(z + ip/2)|2

∫ L

0
BD(z + ip/2, x) dx dz.

Proof. The conclusion is a direct consequence of Parseval’s theorem and (7.11). □

We next investigate the behavior of∫ L

0
BD(z + ip/2, x) dx

for z ∈ R with large |z|. We have

Lemma 7.2. Let p ∈ R and η1, η2, η3 ∈ C \ {0}. Assume (7.8). We have

(7.13)

∫ L

0
BD(z + ip/2, x) dx = ED|z|−1/3 +O(|z|−2/3) for z ∈ R with large |z|,

where ED = ED(η1, η2, η3) is defined by

(7.14) ED =
1√
3A

3∑
j=1

η2j+2(ηj+1 − ηj),

with 7

A = A(η1, η2, η3) := ηje
−ηjL.

Here and in what follows, for s ∈ R, O(zs) denotes a quantity bounded by Czs for large positive
z. Similar convention is used for O(|z|s) for z ∈ C.

Proof. We first consider the case where z is positive and large. We use the following convention
ℜ(λ1) < ℜ(λ2) < ℜ(λ3).

We first look at the denominator of BD(z + ip/2, x). We have, by Lemma 3.1, at (z + ip/2, x),

(7.15)
1∑3

j=1(λj+1 − λj)e−λj+2L
· 1∑3

j=1(λ̄j+1 − λ̄j)e−λ̄j+2L

=
eλ1Leλ̄1L

(λ3 − λ2)(λ̄3 − λ̄2)

(
1 +O

(
e−C|z|1/3)).

7A does not depend on j by (7.8).
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We next deal with the numerator of BD(z + ip/2, x). Set, for (z, x) ∈ R× (0, L),

(7.16) f(z, x) =

3∑
j=1

(λje
λjL − λj+1e

λj+1L)eλj+2x, g(z, x) =

3∑
j=1

(λ̄je
λ̄jL − λ̄j+1e

λ̄j+1L)eλ̄j+2x,

and 8

fm(z, x) = λ3e
λ3Leλ2x−λ2eλ2Leλ3x−λ3eλ3Leλ1x, gm(z, x) = λ̄3e

λ̄3Leλ̄2x−λ̄2eλ̄2Leλ̄3x−λ̄3eλ̄3Leλ̄1x.

We have∫ L

0
f(z + ip/2, x)g(z + ip/2, x)φx(x) dx

=

∫ L

0
fm(z + ip/2, x)gm(z + ip/2, x)φx(x) dx+

∫ L

0
(f − fm)(z + ip/2, x)gm(z + ip/2, x)φx(x) dx

+

∫ L

0
fm(z+ip/2, x)(g−gm)(z+ip/2, x)φx(x) dx+

∫ L

0
(f−fm)(z+ip/2, x)(g−gm)(z+ip/2, x)φx(x) dx.

By Lemma 3.1, we have

(7.17)

∫ L

0
|(f − fm)(z + ip/2, x)gm(z + ip/2, x)φx(x)| dx

+

∫ L

0
|(f − fm)(z + ip/2, x)(g − gm)(z + ip/2, x)φx(x)| dx

+

∫ L

0
|fm(z + ip/2, x)(g − gm)(z + ip/2, x)φx(x)| dx ≤ C|e(λ3+λ̄3)L|e−C|z|1/3 .

We next estimate

(7.18)

∫ L

0
fm(z + ip/2, x)gm(z + ip/2, x)φx(x)

=

∫ L

0
fm(z + ip/2, x)gm(z + ip/2, x)

 3∑
j=1

ηj+2(ηj+1 − ηj)e
ηj+2x

 dx.

We first have, by Lemma 3.1, at z + ip/2,

(7.19)

∫ L

0

(
− λ3e

λ3Leλ2xλ̄2e
λ̄2Leλ̄3x − λ2e

λ2Leλ3xλ̄3e
λ̄3Leλ̄2x + λ2e

λ2Leλ3xλ̄2e
λ̄2Leλ̄3x

)

×

 3∑
j=1

ηj+2(ηj+1 − ηj)e
ηj+2x

 dx
(7.8)
= A−1e(λ3+λ̄3+λ2+λ̄2)L

(
S1(z + ip/2) +O

(
e−C|z|1/3)),

where

(7.20) S1(z) :=
3∑

j=1

η2j+2(ηj+1 − ηj)

(
λ2λ̄2

λ3 + λ̄3 + ηj+2
− λ2λ̄3
λ3 + λ̄2 + ηj+2

− λ3λ̄2
λ2 + λ̄3 + ηj+2

)
(z).

8The index m stands the main part.
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We next obtain, by Lemma 3.1, at z + ip/2,

(7.21)

∫ L

0

(
λ3e

λ3Leλ1xλ̄3e
λ̄3Leλ̄1x − λ3e

λ3Leλ1xλ̄3e
λ̄3Leλ̄2x − λ3e

λ3Leλ2xλ̄3e
λ̄3Leλ̄1x

)

×

 3∑
j=1

ηj+2(ηj+1 − ηj)e
ηj+2x

 dx = e(λ3+λ̄3)L
(
S2(z + ip/2) +O(e−C|z|1/3)

)
,

where

(7.22) S2(z) :=
3∑

j=1

ηj+2(ηj+1 − ηj)

(
− λ3λ̄3
λ1 + λ̄1 + ηj+2

+
λ3λ̄3

λ1 + λ̄2 + ηj+2
+

λ3λ̄3
λ2 + λ̄1 + ηj+2

)
(z).

We have, at z + ip/2,

(7.23)

∫ L

0
λ3e

λ3Leλ2xλ̄3e
λ̄3Leλ̄2x

 3∑
j=1

ηj+2(ηj+1 − ηj)e
ηj+2x

 dx = e(λ3+λ̄3)LS3(z + ip/2),

where

(7.24) S3(z) :=
3∑

j=1

ηj+2(ηj+1 − ηj)λ3λ̄3

(
eλ2L+λ̄2L+ηj+2L − 1

)
λ2 + λ̄2 + ηj+2

(z).

We finally get, by Lemma 3.1, at z + ip/2,

(7.25)

∣∣∣∣∣∣
∫ L

0

(
λ3e

λ3Leλ1xλ̄2e
λ̄2Leλ̄3x + λ2e

λ2Leλ3xλ̄3e
λ̄3Leλ̄1x

)( 3∑
j=1

ηj+2(ηj+1 − ηj)e
ηj+2x

)
dx

∣∣∣∣∣∣
= |e(λ3+λ̄3)L|O(e−Cz1/3).

By Lemma 3.1, we have, at z + ip/2,

(7.26)


λ1 + λ̄1 + λ2 + λ̄2 + λ3 + λ̄3 = O(z−1/3),

λ1 + λ̄1 + λ3 + λ̄3 = O(z−1/3),

(λ3 − λ2)(λ̄3 − λ̄2) = 3z2/3(1 +O(z−1/3)).

We claim that

(7.27) |z|−1/3|S1(z + ip/2)|+ |S2(z + ip/2)|+ |S3(z + ip/2)| = O(1) for large positive z.

Admitting this, by combining (7.15), (7.19), (7.21), (7.23), (7.25), and (7.26), and using (7.27), we
obtain

(7.28)

∫ L

0
BD(z + ip/2, x) dx =

A−1S1(z + ip/2)

3z2/3
+O(|z|−2/3).

We first derive the the asymptotic behavior of S1(z+ ip/2). We have, by Lemma 3.1, at z+ ip/2,

(7.29) λ2λ̄2 = z2/3 +O(1), λ2λ̄3 = z2/3eiπ/3 +O(1), λ3λ̄2 = z2/3e−iπ/3 +O(1),
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and

(7.30)
1

λ3 + λ̄3 + ηj+2
=

1 +O(z−1/3)√
3z1/3

,
1

λ2 + λ̄3 + ηj+2
=

1 +O(z−1/3)

(eiπ/6 + i)z1/3
,

1

λ3 + λ̄2 + ηj+2
=

1 +O(z−1/3)

(e−iπ/6 − i)z1/3
.

It follows that

(7.31) S1(z + ip/2) =

(
1√
3
+ 2ℜ eiπ/3

eiπ/6 + i

)
3∑

j=1

η2j+2(ηj+1 − ηj)|z|1/3 +O(1)

=
√
3

3∑
j=1

η2j+2(ηj+1 − ηj)|z|1/3 +O(1).

We next deal with S2(z + ip/2). Since

3∑
j=1

ηj+2(ηj+1 − ηj) = 0,

it follows that

S2(z + ip/2) =
3∑

j=1

ηj+2(ηj+1 − ηj)

(
− λ3λ̄3
λ1 + λ̄1 + ηj+2

+
λ3λ̄3
λ1 + λ̄1

)
(z + ip/2)

+

3∑
j=1

ηj+2(ηj+1 − ηj)

(
λ3λ̄3

λ1 + λ̄2 + ηj+2
− λ3λ̄3
λ1 + λ̄2

)
(z + ip/2)

+

3∑
j=1

ηj+2(ηj+1 − ηj)

(
λ3λ̄3

λ2 + λ̄1 + ηj+2
− λ3λ̄3
λ2 + λ̄1

)
(z + ip/2).

Using Lemma 3.1, we derive that

(7.32) S2(z + ip/2) = O(1).

We next derive the asymptotic behavior of S3(z+ ip/2). From Lemma 3.1, we have, at z+ ip/2,

(7.33) λ2 + λ̄2 = O(z−2/3).

Using (7.8), we derive from (7.24) that

S3(z + ip/2) = z2/3
3∑

j=1

(ηj+1 − ηj)ηj+2

ηj+2

(
A−1ηj+2 − 1

)
+O(1)

= z2/3
3∑

j=1

(ηj+1 − ηj)
(
A−1ηj+2 − 1

)
+O(1).

Since
∑3

j=1(ηj+1 − ηj) = 0 and
∑3

j=1(ηj+1 − ηj)ηj+2 = 0, it follows that

(7.34) S3(z + ip/2) = O(1).
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Combing (7.28) and (7.31) yields∫ L

0
BD(z + ip/2, x) dz = ED|z|−1/3 +O(z−2/3),

where

(7.35) ED =
1√
3A

3∑
j=1

η2j+2(ηj+1 − ηj).

The conclusion in the case where z is large and negative can be derived from the case where z is
positive and large as follows. Define, for (z, x) ∈ R× (0, L), with large |z|,

MD(z, x) =

∑3
j=1(λje

λjL − λj+1e
λj+1L)eλj+2x∑3

j=1(λj+1 − λj)e−λj+2L
.

Then

BD(z + ip/2, x) = |MD(z + ip/2, x)|2φx(x).

It is clear from the definition of MD that

MD(−z, x) =MD(z̄, x).

We then have

BD(−z + ip/2, x) = |MD(−z + ip/2, x)|2φx(x) = |MD(z − ip/2, x)|2φx(x).

We thus obtain the result in the case where z is negative and large by the corresponding expression
for large positive z in which p is replaced by −p. The conclusion follows. □

As a consequence of Lemmas 7.1 and 7.2, we obtain

Proposition 7.1. Let L ∈ ND. Let u ∈ H1/3(0,+∞) with compact support in [0,+∞), and let
y ∈ C([0,+∞);L2(0, L)) ∩ L2

loc

(
[0,+∞);H1(0, L)

)
be the unique solution of (7.9). Assume that

y(t, ·) = 0 for large t. We have

(7.36)

∫ +∞

0

∫ L

0
|y(t, x)|2Φx(t, x) dx dt =

∫
R
|û(z + iq/2)|2

∫ L

0
B(z + iq/2, x) dx dz,

where

B(z, x) =

∣∣∣∣∣
∑3

j=1

(
λje

λjL − λj+1e
λj+1L

)
eλj+2x∑3

j=1(λj+1 − λj)e−λj+2L

∣∣∣∣∣
2

ϕx(x),

with λj = λj(z) (j = 1, 2, 3) being the three solutions of λ3 + λ+ iz = 0. Moreover,

(7.37)

∫ L

0
B(z + iq/2, x) dx = E|z|−1/3 +O(|z|−2/3),

where

E = − be2a

2
√
3aL2

(b2 + 9a2) > 0.

Recall that q, a, b, ϕ, and Φ are defined in Theorem 1.1.

Remark 7.1. Note that

(7.38) Ω(z) = |
3∑

j=1

(λj+1 − λj)e
−λj+2L|2

∫ L

0
B(z, x) dx.
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We then derive from (7.37) and Lemma 3.1 that

lim
|z|→+∞,z∈R

Ω(z + iq/2) = +∞.

Proof of Proposition 7.1. We will apply Lemmas 7.1 and 7.2 with p = q,

η1 = α+ iβ, η2 = α− iβ, and η3 = −2α,

where α and β are defined in (1.9). Thus

(7.39) A = η3e
−η3L = −2αe2αL =

2a

L
e−2a.

We have
√
3AED =η21(η3 − η2) + η22(η1 − η3) + η23(η2 − η1)

=(α+ iβ)2(−3α+ iβ) + (α− iβ)2(3α+ iβ)− 8iα2β

=− 12iα2β + 2iβ(α2 − β2)− 8iα2β.

This implies

(7.40)
√
3AED = −2i(β2 + 9α2)β =

2ib

L3
(b2 + 9a2).

We obtain

ED =
ibe2a√
3aL2

(b2 + 9a2).

Since, by Lemma 4.1,
φ = −2iϕ,

the conclusion now follows from Lemmas 7.1 and 7.2. □

Using Proposition 7.1, we derive the following result which is the key ingredient for the analysis
of the local controllability of the KdV system (1.1) in small time.

Proposition 7.2. Let L ∈ ND and T < 1. Let u ∈ H1/3(0,+∞) and let y ∈ C([0,+∞);L2(0, L))∩
L2
loc

(
[0,+∞);H1(0, L)

)
be the unique solution of (7.9). Assume that u(t) = 0 for t > T , and

y(t, ·) = 0 for large t. Then

(7.41)

∫ ∞

0

∫ L

0
|y(t, x)|2Φx(t, x) dx dt = E∥ueq·/2∥2

[H1/6(0,+∞)]∗

(
1 +O(T 2/9)

)
.

Proof. We have, by Proposition 7.1 and Lemma B.2,

|û(z + iq/2)|2
∣∣∣∣∫ L

0
B(z + iq/2, x) dx

∣∣∣∣ ≤ C|û(z + iq/2)|2

1 + |z|1/3
.

Applying Proposition 7.1 again and using the fact
∫
R dz =

∫
z∈R;|z|<m dz +

∫
z∈R;|z|≥m dz, we derive

that

(7.42)

∣∣∣∣∫
R
|û(z + iq/2)|2

∫ L

0
B(z + iq/2, x) dx dz − E

∫
R

|û(z + iq/2)|2

(1 + |z|2)1/6
dz

∣∣∣∣
≤ C

∫
|z|<m

|û(z + iq/2)|2

(1 + |z|2)1/6
+ Cm−1/3

∫
|z|>m

|û(z + iq/2)|2

(1 + |z|2)1/6
dz.

Applying Lemma 7.3 below with s = 1/6, we have

(7.43) |û(z + iq/2)| ≤ C(|z|T 4/3 + T 1/3)∥ueq·/2∥[H1/6(0,+∞)]∗ .
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Combining (7.42) and (7.43) yields

(7.44)

∣∣∣∣∫
R
|û(z + iq/2)|2

∫ L

0
B(z + iq/2, x) dx dz − E

∫
R

|û(z + iq/2)|2

(1 + |z|2)1/6
dz

∣∣∣∣
≤ C∥ueq·/2∥2

[H1/6(0,+∞)]∗(T
8/3m8/3 + T 2/3m2/3 +m− 1

3 ).

By choosing m = T−2/3, we obtain∣∣∣∣∫
R
|û(z + iq/2)|2

∫ L

0
B(z + iq/2, x) dx dz − E

∫
R

|û(z + iq/2)|2

(1 + |z|2)1/6
dz

∣∣∣∣ ≤ C∥ueq·/2∥2
H−1/6(0,+∞)

T 2/9.

The conclusion follows. □

In the proof of Proposition 7.2, we have used the following lemma.

Lemma 7.3. Let 0 < T < 1, 0 < s < 1/2 and let v ∈ [Hs(0,+∞)]∗ with supp v ⊂ [0, T ]. Extend v
by 0 for t < 0 and still denote this extension by v. There exists a positive constant C independent
of T and v such that, for z ∈ R,

(7.45) |v̂(z)| ≤ C(|z|T
3
2
−s + T

1
2
−s)∥v∥[Hs(0,+∞)]∗ .

Proof. Fix χ ∈ C1(R) such that χ = 1 in [0, T ], χ = 0 for t ≥ 2T , and 0 ≤ χ ≤ 1 and χ′ ≤ C/T in
R. Then

(7.46) |v̂(z)| ≤ ∥v∥[Hs(0,+∞)]∗∥e−iz·χ∥Hs(0,+∞).

We have

(7.47) C∥e−iz·χ∥2Hs(0,+∞) ≤
∫ 4T

0

∫ 4T

0

|χ(x)|2|e−izx − e−izy|2

|x− y|1+2s
dx dy

+

∫ 4T

0

∫ 4T

0

|χ(x)− χ(y)|2

|x− y|1+2s
dx dy +

∫ 2T

0

∫ ∞

4T

1

|x− y|1+2s
dx dy.

Using the fact, for x ∈ R,
|eix − 1|2 = 4 sin2(x/2) ≤ x2,

we derive that the RHS of (7.47) is bounded by

(7.48) Cz2T 3−2s + CT 1−2s + CT 1−2s.

The conclusion now follows from (7.46) and (7.48). □

8. Small time local controllability properties of the KdV system - Proof of
Theorem 1.2

The main result of this section is the following, which implies, in particular, Theorem 1.2 after
applying Proposition 7.2 and Lemma 8.2 at the end of this section. This result is also the key
ingredient in the proof of Assertion i) of Theorem 1.3.

Theorem 8.1. Let L ∈ ND, T > 0, and α > 0. Assume that

(8.1)

∫ T

0

∫ L

0
|ξ(t, x)|2Φ(t, x) dx dt ≥ α∥v∥2

[H1/6(0,T )]∗
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for all v ∈ H1/3(0, T ) such that ξ(T, ·) = 0 in (0, L) where ξ ∈ XT is the unique solution of the
system

(8.2)


ξt + ξx + ξxxx = 0 in (0, T )× (0, L),

ξ(·, 0) = ξx(·, L) = 0 in (0, T ),

ξ(·, L) = v in (0, T ),

ξ(0, ·) = 0 in (0, L).

There exists ε0 > 0 depending only on α, T , and L such that for all 0 < ε < ε0, and for all solutions
y ∈ XT/2 of the system

(8.3)


yt + yx + yxxx + yyx = 0 in (0, T/2)× (0, L),

y(·, 0) = yx(·, L) = 0 in (0, T/2),

y(·, L) = u in (0, T/2),

y(0, ·) = εϕ in (0, L),

with ∥u∥H1/2(0,T/2) < ε0, we have

y(T/2, ·) ̸= 0.

Recall that ϕ is defined in (1.8).

Proof. Let ε0 be a small positive constant, which depends only on α, T , and L, and is de-
termined later. We prove Theorem 8.1 by contradiction. Assume that there exists a solution
y ∈ C

(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
of (8.3) with y(t, ·) = 0 for t ≥ T/2, for some

0 < ε < ε0, for some u ∈ H1/3(0,+∞) with suppu ⊂ [0, T/2] and ∥u∥H1/2(0,T ) < ε0.

Using the fact y(t, ·) = 0 for t ≥ T/2, from Proposition 3.4, we have, for ε0 small,

(8.4) ∥y∥
L2
(
R+;H1(0,L)

) ≤ C
(
∥y0∥L2(0,L) + ∥u∥H1/3(R+)

)
,

which in turn implies, by Proposition 3.1 and Lemma 8.1 below,

(8.5) ∥y∥
L2
(
R+×(0,L)

) ≤ C
(
∥y0∥L2(0,L) + ∥u∥L2(R+)

)
.

Here and in what follows, C denotes a positive constant depending only on T and L (C thus does
not depend on α).

Let y1 and y2 be the solution of the following systems

(8.6)


y1,t + y1,x + y1,xxx = 0 in R+ × (0, L),

y1(·, 0) = y1,x(·, L) = 0 in R+,

y1(·, L) = u in R+,

y1(0, ·) = 0 in (0, L),

(8.7)


y2,t + y2,x + y2,xxx + y1y1,x = 0 in R+ × (0, L),

y2(·, 0) = y2,x(·, L) = y2(·, L) = 0 in R+,

y2(0, ·) = 0 in (0, L).

Then, by Proposition 3.1,

(8.8) ∥y1∥XT
≤ C∥u∥H1/3(R+)
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and

(8.9) ∥y1∥L2
(
(0,T )×(0,L)

) ≤ C∥u∥L2(R+),

which in turn imply, by Proposition 3.1 and Lemma 8.1 below,

(8.10) ∥y2∥XT
≤ C∥y1y1,x∥L1((0,T );L2(0,L)) ≤ C∥u∥1/2

L2(R+)
∥u∥3/2

H1/3(R+)
,

and

(8.11) ∥y2∥L2
(
(0,T )×(0,L)

) ≤ C∥y21∥L1((0,T );L2(0,L)) ≤ C∥u∥3/2
L2(R+)

∥u∥1/2
H1/3(R+)

.

Set

δy = y − y1 − y2 in R+ × (0, L).

We have
δyt + δyx + δyxxx + yδyx + δy(y1 + y2)x + (y1y2)x + y2y2,x = 0 in R+ × (0, L),

δy(·, 0) = δyx(·, L) = δy(·, L) = 0 in R+,

δy(0, ·) = εϕ in (0, L).

Applying Proposition 3.1 and using Lemma 8.1 below, we derive that

(8.12) ∥δy∥XT
≤ C

(
∥y1y2,x∥L1((0,T );L2(0,L)) + ∥y2y1,x∥L1((0,T );L2(0,L)) + ∥y2y2,x∥L1((0,T );L2(0,L))

)
(8.8)−(8.11)

≤ C∥u∥L2(R+)∥u∥2H1/3(R+)
+ Cε,

and

(8.13) ∥δy∥
L2
(
(0,T )×(0,L)

) ≤ C
(
∥yδyx∥L1((0,T );L2(0,L)) + ∥(y1 + y2)δyx∥L1((0,T );L2(0,L))

)
+ C

(
∥(y1 + y2)δy∥L1((0,T );L2(0,L)) + ∥y1y2∥L1((0,T );L2(0,L)) + ∥y22∥L1((0,T );L2(0,L))

)
(8.4)−(8.5),(8.8)−(8.12)

≤ C∥u∥3/2
L2(R+)

∥u∥5/2
H1/3(R+)

+ C∥u∥2L2(R+)∥u∥H1/3(R+) + Cε

≤ C∥u∥3/2
L2(R+)

∥u∥3/2
H1/3(R+)

+ Cε.

In (8.12), we absorbed the contribution in the RHS of

∥yδyx∥L1((0,T );L2(0,L)) + ∥δy(y1 + y2)x∥L1((0,T );L2(0,L)),

which is bounded by Cε0∥δy∥XT
. Combining (8.11) and (8.13) yields

(8.14) ∥y − y1∥L2
(
(0,T )×(0,L)

) ≤ C∥u∥3/2
L2(R+)

∥u∥1/2
H1/3(R+)

+ Cε.

Since y = 0 for t ≥ T/2 and u = 0 for t ≥ T/2, after using the regularizing effect of the linear KdV
equation, and considering the projection into M⊥

D, we derive that

(8.15) ∥y1(T, ·)∥L2(0,L) ≤ C∥u∥3/2
L2(R+)

∥u∥1/2
H1/3(R+)

+ Cε.

Since y1(T, ·) ∈ M⊥
D by Lemma 5.1, it follows from Proposition 5.1 that there exists u1 ∈

H1/3(0, T ) such that

(8.16) ∥u1∥H1/3(0,T ) ≤ C∥y1(T, ·)∥L2(0,L)
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and the solution ỹ1 ∈ XT of the system
ỹ1,t + ỹ1,x + ỹ1,xxx = 0 in (0, T )× (0, L),

ỹ1(·, 0) = ỹ1,x(·, L) = 0 in (0, T ),

ỹ1(·, L) = u1 in (0, T ),

ỹ1(0, ·) = 0 in (0, L),

satisfies
ỹ1(T, ·) = −y1(T, ·).

Using (8.15), we derive from (8.16) that

(8.17) ∥u1∥H1/3(0,T ) ≤ C∥u∥3/2
L2(R+)

∥u∥1/2
H1/3(R+)

+ Cε,

which in turn implies, by Proposition 3.1,

(8.18) ∥ỹ1∥XT
≤ C∥u∥3/2

L2(R+)
∥u∥1/2

H1/3(R+)
+ Cε.

Set
ỹ = y1 + ỹ1 in (0, T )× (0, L).

Then

(8.19)


ỹt + ỹx + ỹxxx = 0 in (0, T )× (0, L),

ỹ(·, 0) = ỹx(·, L) = 0 in (0, T ),

ỹ(·, L) = u+ u1 in (0, T ),

ỹ(0, ·) = ỹ(T, ·) = 0 in (0, L).

We have

(8.20) ∥y − ỹ∥
L2
(
(0,T )×(0,L)

) ≤ ∥y − y1∥L2
(
(0,T )×(0,L)

) + ∥ỹ1∥L2
(
(0,T )×(0,L)

)
(8.14),(8.18)

≤ C∥u∥3/2
L2(R+)

∥u∥1/2
H1/3(R+)

+ Cε.

Multiplying the equation of y with Φ(t, x), integrating by parts on [0, L], and using (1.11), we
have

(8.21)
d

dt

∫ L

0
y(t, x)Φ(t, x) dx− 1

2

∫ L

0
y2(t, x)Φx(t, x) dx = 0.

Integrating (8.21) from 0 to T and using the fact y(T, ·) = 0 yield

(8.22)

∫ L

0
y0(x)Φ(0, x) dx+

1

2

∫ T

0

∫ L

0
y2(t, x)Φx(t, x) dx dt = 0.

We have

(8.23) ∥y2 − ỹ2∥
L1
(
(0,T )×(0,L)

) ≤ ∥y − ỹ∥
L2
(
(0,T )×(0,L)

)∥y + ỹ∥
L2
(
(0,T )×(0,L)

)
(8.5),(8.20)

≤ C∥u∥5/2
L2(R+)

∥u∥1/2
H1/3(R+)

+ Cε0ε.

Combining (8.22) and (8.23) yields

(8.24)

∫ L

0
y0(x)Φ(0, x) dx+

1

2

∫ T

0

∫ L

0
ỹ2(t, x)Φx(t, x) dx dt ≤ C∥u∥5/2

L2(R+)
∥u∥1/2

H1/3(R+)
+ Cε0ε.
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Applying (8.1) to ỹ after noting (8.19), we derive from (8.24) that, for ε0 sufficiently small,

ε∥ϕ∥2L2(0,L) +
1

2
α∥u+ u1∥2[H1/6(R+)]∗ ≤ C∥u∥5/2

L2(R+)
∥u∥1/2

H1/3(R+)
+ Cε0ε.

Using (8.17), it follows that, for sufficiently small ε0,

α∥u∥2
[H1/6(R+)]∗ ≤ C∥u∥5/2

L2(R+)
∥u∥1/2

H1/3(R+)
.

We derive from Lemma A.1 that

α∥u∥2
[H1/6(0,T/2)]∗ ≤ C∥u∥5/2

L2(0,T/2)
∥u∥1/2

H1/3(0,T/2)
.

Note that

∥u∥L2(0,T/2) ≤ C∥u∥3/4
[H1/6(0,T/2)]∗

∥u∥1/4
H1/2(0,T/2)

and

∥u∥H1/3(0,T/2) ≤ C∥u∥1/4
[H1/6(0,T/2)]∗

∥u∥3/4
H1/2(0,T/2)

.

This yields

∥u∥5/2
L2(0,T/2)

∥u∥1/2
H1/3(0,T/2)

≤ C∥u∥2
[H1/6(0,T/2)]∗∥u∥H1/2(0,T/2).

So, for fixed sufficiently small ε0,

u = 0.

Hence y(t, ·) = εΨ(t, ·) ̸≡ 0 for all t > 0. We have a contradiction.

The proof is complete. □

In the proof of Theorem 8.1, we repeatedly used the following useful result.

Lemma 8.1. Let L > 0 and T > 0 and let f ∈ L2
(
(0, T );H1(0, L)

)
and g ∈ L2

(
(0, T ) × (0, L)

)
.

Then

(8.25) ∥fg∥
L1
(
(0,T );L2(0,L)

) ≤ C∥f∥
1
2

L2
(
(0,T )×(0,L)

)∥f∥ 1
2

L2
(
(0,T );H1(0,L)

)∥g∥
L2
(
(0,T )×(0,L)

)
and

(8.26) ∥(fg)x∥L1((0,T );[H1(0,L)]∗)

≤ C
(
∥fg∥L1((0,T );L2(0,T )) + ∥(fg)(·, 0)∥L1(0,T ) + ∥(fg)(·, L)∥L1(0,T )

)
,

for some positive constant C depending only on L. Consequently, for f, g ∈ L2
(
(0, T );H1(0, L)

)
,

(8.27) ∥fgx∥L1
(
(0,T );L2(0,L)

) ≤ C∥f∥
1
2

L2
(
(0,T )×(0,L)

)∥f∥ 1
2

L2
(
(0,T );H1(0,L)

)∥gx∥L2
(
(0,T )×(0,L)

).
Proof. We first establish (8.25). We have

(8.28) ∥fg∥2
L1
(
(0,T );L2(0,L)

) = ∫ T

0

(∫ L

0
|fg|2(s, x) dx

) 1
2

ds

≤
∫ T

0
sup

x∈[0,L]
|f(s, x)|

(∫ L

0
|g|2(s, x) dx

) 1
2

ds.
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Using the fact

(8.29) sup
x∈[0,L]

|f(s, x)| ≤ C

(∫ L

0
|f(s, x)|2 dx+

∫ L

0
|f(s, x)||fx(s, x)|2 dx

) 1
2

≤ C∥f(s, ·)∥
1
2

L2(0,L)
∥f(s, ·)∥

1
2

H1(0,L)
,

we derive from (8.28) that

∥fgx∥2
L1
(
(0,T );L2(0,L)

) ≤ C

∫ T

0
∥f(s, ·)∥

1
2

L2(0,L)
∥f(s, ·)∥

1
2

H1(0,L)
∥g(s, ·)∥L2(0,L) ds

≤ C∥f∥
1
2

L2
(
(0,T )×(0,L)

)∥f∥ 1
2

L2
(
(0,T );H1(0,L)

)∥g∥
L2
(
(0,T )×(0,L)

) (by Hölder’s inequality),

which is (8.25).
We next derive (8.26). We have, for 0 ≤ t ≤ T ,∫ L

0
(fg)x(t, x)φ(x) dx = −

∫ L

0
fg(t, x)φx(x) dx+ (fg)(t, L)φ(L)− (fg)(t, 0)φ(0) for φ ∈ H1(0, L).

This implies, by the trace theory applied to φ ∈ H1(0, L), for 0 ≤ t ≤ T ,

∥(fg)x(t, ·)∥[H1(0,L)]∗ ≤ C
(
∥(fg)(t, ·)∥L2(0,L) + ∥(fg)(t, 0)∥L1(0,T ) + ∥(fg)(t, L)∥L1(0,T )

)
.

Estimate (8.26) follows.

The proof is complete. □

To derive Theorem 1.2 from Theorem 8.1, we also need to use the following simple lemma.

Lemma 8.2. Let T > 0, 0 < s < 1, φ ∈ C1([0,+∞]). Then

∥φv∥[Hs(R+)]∗ ≤ C∥v∥[Hs(R+)]∗ for v ∈ [Hs(R+)]
∗ with supp v ⊂ [0, T ],

where C is a positive constant independent of v.

Proof. Without loss of generality, one might assume that suppφ ⊂ [0, 2T ]. Using the duality
between [Hs(R+)]

∗ and Hs(R+), it suffices to prove that

∥φV ∥Hs(R+) ≤ C∥V ∥Hs(R+) for V ∈ Hs(R+),

for some positive constant C independent of V . This follows immediately from the Gagliardo-
Nirenberg characterization of the norm of Hs(R+). □

9. Local, exact controllability of the KdV equation in a positive time - Proof of
Theorem 1.3

This section consists of two subsections. In the first one, we give the proof of Assertion i). The
proof of Assertion ii) is given in the second subsection.
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9.1. Proof of Assertion i) of Theorem 1.3. We first consider the case ω = 0. We have∣∣∣∣∣∣
3∑

j=1

(
λje

λjL − λj+1e
λj+1L

)
eλj+2x

∣∣∣∣∣∣
2

(z)

=

3∑
j=1

(
λje

λjL − λj+1e
λj+1Leλj+2x

)
(z)

3∑
j=1

(
λje

λjL − λj+1e
λj+1Leλj+2x

)
(−z̄)

and similarly,

|Ξ(z)|2 = Ξ(z)Ξ(−z̄),
where Ξ is defined in (6.4). It follows that

|Ξ(·+ iq/2)|2|Ω(·+ iq/2)|2 is an analytic function in z ∈ R.

There thus exists a finite set {zj ; 1 ≤ j ≤ m} ⊂ R such that

Ω(zj + iq/2) = 0 for 1 ≤ j ≤ m and Ω(z + iq/2) ̸= 0 for z ∈ R \ {zj ; 1 ≤ j ≤ m}.

For ρ > 0, set

Jρ =
{
z ∈ R; Ω(z + iq/2) ≥ ρ

}
.

Since Ω(·+ iq/2) is continuous in R and Ω(z + iq/2) → +∞ as |z| → +∞ by (7.37) of Proposi-
tion 7.1 and Lemma 3.1, we derive that

δ(ρ) := |R \ Jδ| → 0 as ρ→ 0.

Let T > 0 be arbitrary and let y be a solution of (7.9) such that y(t, ·) = 0 for t ≥ T . Applying
Proposition 7.1 and taking into account the fact ω ≥ 0, we get

(9.1)

∫ +∞

0

∫ L

0
|y(t, x)|2Φx(t, x) dx dt =

∫
R

∫ L

0
|û(z + iq/2)|2B(z + iq/2, x) dx dz,

where we extend u by 0 for t < 0 and t > T . This implies

(9.2)

∫ +∞

0

∫ L

0
|y(t, x)|2Φx(t, x) dx dt

=

∫
Jρ

∫ L

0
|û(z + iq/2)|2B(z + iq/2, x) dx dz +

∫
R\Jρ

∫ L

0
|û(z + iq/2)|2B(z + iq/2, x) dx dz

≥ C1ρ∥ueq·/2∥2[H1/6(0,T )]∗ − C2ρ

∫
R\Jδ

|û(z + iq/2)|2 dz

Lemma 8.2
≥ C1ρ∥u∥2[H1/6(0,T )]∗ − CTρδ(ρ)∥u∥2[H1/6(0,T )]∗ .

By choosing ρ sufficiently small, we arrive that

(9.3)

∫ ∞

0

∫ +∞

0
|y(t, x)|2Φx(t, x) dx dt ≥ Cρ∥u∥2

[H1/6(0,T )]∗ .

Applying Theorem 8.1, we derive that system (1.1) is not locally null controllable at time T/2.
Since T is arbitrary, the conclusion follows.

We next deal with the case ω > 0. It is clear that (9.3) holds with ρ = ω. The conclusion follows
by Theorem 8.1 as before since T is arbitrary. □
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9.2. Proof of Assertion ii) of Theorem 1.3. Set

(9.4) σ(t) = e
− 1

1−t2 1(−1,1),

where 1(−1,1) denotes the characteristic function of the interval (−1, 1). Then σ ∈ C∞
c (R) and

(9.5) |σ̂(z)| ≤ c1e
−c2

√
|z| for z ∈ R,

see e.g., [49]. Let m ∈ N be large and denote

σm(t) =
1

m
σ(t/m) for t ∈ R.

Let z0 ∈ R be such that
Ω(z0 + iq/2) = ω < 0.

Consider um defined by

(9.6) ûm(z) = eimzσ̂m(z − iq/2− z0) detQ(z)Ξ(z).

Applying Paley-Wiener’s theorem, see e.g., [45], and using (9.5), one can check that the function
vm which is defined by v̂m(z) = σ̂m(z − iq/2 − z0) detQ(z)Ξ(z) belongs to L2(R) with support in
[−m,m]. We then derive that um ∈ L2(R) with support in [0, 2m] since um(t) = vm(t + m) for
t ∈ R. Using (9.5), one can also derive that um ∈ C∞(R).

Let y = ym be the unique solution of (6.12) with u = um. From the definition of um, we deduce
that

supp y ⊂ [0,m]× [0, L],

since, by Lemma 6.1,

ŷxx(z, 0) =
ûm(z)G(z)

H(z)

is an entire function with modulus is bounded by Ce(m+ε)|z| for all ε > 0, and ŷxx(·, 0) ∈ L2(R). It
follows that

supp yxx(·, 0) ⊂ [0,m].

Since y(m,x) ∈ M⊥
D, applying Lemma 5.3, we derive that

y(t, x) = 0 for (t, x) ∈ [m,+∞)× [0, L].

We thus can apply Proposition 7.1 to y.
Since, by Proposition 7.1,∫ ∞

0

∫ +∞

0
|y(t, x)|2Φx(t, x) dx dt =

∫
R

|ûm(z + iq/2)|2

|H(z + iq/2)|2
Ω(z + iq/2) dz,

it follows from (9.6) that

(9.7)

∫ ∞

0

∫ +∞

0
|y(t, x)|2Φx(t, x) dx dt = e−mq

∫
R
|σ̂m(z − z0)|2|Ξ(z + iq/2)|2Ω(z + iq/2) dz.

We have, by (9.5)

(9.8) |σ̂m(z)| ≤ c1e
−c2

√
m|z| for z ∈ R.

(9.9) |σ̂m(z)| ≥ c3 for z ∈ R with |z| < c4/m,

(9.10) inf
z∈R

|Ξ(z + iq/2)| > 0, |Ξ(z + iq/2)| ≤ C(|z|+ 1) for z ∈ R,

(9.11) |Ω(z + iq/2)| ≤ c5e
c6|z|1/3 ,

for some positive constants c1, . . . , c6, independent of m.
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Using (9.8), (9.9), (9.10), (9.11), and the fact Ω(z0 + iq/2) = ω < 0, it follows from (9.7) that∫ ∞

0

∫ +∞

0
|y(t, x)|2Φx(t, x) dx dt < 0,

for large m. Fix such an m and set

T = 2m.

We thus have just proved, after considering the real and/or imaginary parts of um and scaling,

that there exists U1 ∈ H1/3(0, T ) real such that

(9.12) Y1(T, ·) = 0 and projMD
Y2(T, ·) = −ϕ,

where Y1, Y2 ∈ XT are the unique solution of the systems

(9.13)


Y1,t + Y1,x + Y1,xxx = 0 in (0, T )× (0, L),

Y1(·, 0) = Y1,x(·, L) = 0 in (0, T ),

Y1(·, L) = U1 in (0, T ),

Y1(0, ·) = 0 in (0, L),

(9.14)


Y2,t + Y2,x + Y2,xxx + Y1Y1,x = 0 in (0, T )× (0, L),

Y2(·, 0) = Y2,x(·, L) = 0 in (0, T ),

Y2(·, L) = 0 in (0, T ).

We now establish the local controllability for the time T which is 2m. In what follows, we consider
T = 2m. Fix y0, yT ∈ L2(0, L) with small L2(0, L)-norms. We first consider the case

ρ = ∥y0∥L2(0,L) > 0,

(9.15)

∫ L

0
y0ϕ1 dx ≥ c1ρ

∫ L

0
ϕ2 dx,

and

(9.16) ∥yT ∥L2(0,L) ≤
c1e

qTρ

10
.

for some fixed constant c1 independent of ρ.
For r > 0 and y0 ∈ L2(0, L), denote Br(y0) the open ball centered at 0 and of radius r in L2(0, L).

We also denote Br(y0) its closure in L2(0, L).

Let c be a small positive constant determined later. For φ ∈ Bcρ(y0), let u1 and u2 be controls

in H1/3(0, T ) for which the solutions y1 and y2 in XT of the systems

(9.17)


y1,t + y1,x + y1,xxx = 0 in (0, T )× (0, L),

y1(·, 0) = y1(·, L) = 0 in (0, T ),

y1,x(·, L) = u1 in (0, T ),

y1(0, ·) = 0 in (0, L),

(9.18)


y2,t + y2,x + y2,xxx + y1y1,x = 0 in (0, T )× (0, L),

y2(·, 0) = y2(·, L) = 0 in (0, T ),

y2,x(·, L) = u2 in (0, T ),

y2(0, ·) = projMD
φ/ρ in (0, L),
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satisfy
y1(T, ·) = 0 and y2(T, ·) = yT /ρ.

Moreover, one can choose u1 and u2 as Lipschitz functions of projMD
φ/ρ with the Lipschitz con-

stants bounded by positive constants independent of ρ. For example, using Lemma 5.1 and (9.12),
one can take 9

u1 = (e−qTα0 − αT )U1,

where α0ϕ = projMD
φ/ρ and αTϕ = projMD

yT /ρ, and

u2 = L
(
− projM⊥

D
y3(T, ·) + projM⊥

D
yT /ρ

)
+ L̂(projMD

φ/ρ),

where y3 ∈ XT is the unique solution of the system

(9.19)


y3,t + y3,x + y3,xxx + y1y1,x = 0 in (0, T )× (0, L),

y3(·, 0) = y3(·, L) = y3,x(·, L) = 0 in (0, T ),

y3(0, ·) = projM⊥
D
φ/ρ in (0, T ).

Here L and L̂ are the operators given in Proposition 5.1.
For φ ∈ Bcρ(y0), let y ∈ XT be the unique solution of the backward linear KdV system

(9.20)


yt + yx + yxxx + yyx = 0 in (0, T )× (0, L),

y(·, 0) = yx(·, L) = 0 in (0, T ),

yx(·, 0) = v in (0, T ),

y(T, ·) = yT in (0, L).

where v(t) = ρ1/2y1,x(t, 0) + ρy2,x(t, 0) with y1 and y2 being defined by (9.17) and (9.18).
Note that y ∈ XT is well-defined if ρ is sufficiently small by Proposition 3.5. We will denote

(9.21) H0(φ) = y(0, ·) in (0, L) and H(φ) = y in (0, T )× (0, L).

Consider the map
Λ: Bcρ(y0) → L2(0, L)

φ 7→ φ−H0(φ) + y0.

We will prove that

(9.22) Λ(φ) ∈ Bcρ(y0),

and

(9.23) ∥Λ(φ)− Λ(φ̃)∥L2(0,L) ≤ λ∥φ− φ̃∥L2(0,L),

for some λ ∈ (0, 1). Assuming this, one derives from the contraction mapping theorem that there

exists a unique φ0 ∈ Bcρ(yT ) such that Λ(φ0) = φ0. As a consequence, with y = H(φ0),

y(0, ·) = y0,

and y(·, L) is hence a required control.
We next establish (9.22) and (9.23). Indeed, assertion (9.22) follows from the fact

∥φ−H0(φ)∥L2(0,L) ≤ C∥φ∥3/2
L2(0,L)

for φ ∈ Bcρ(y0).

This can be proved using the approximation via the power series method as follows. Applying
Proposition 3.3 to y, we derive from (9.20) that

(9.24) ∥y∥XT
≤ Cρ1/2.

9It is useful to note that e−qTα0 − αT > 0 by (9.15) and (9.16) if c is sufficiently small.
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Set 10

(9.25) ya = ρ1/2y1 + ρy2 in (0, T )× (0, L).

We have

(9.26) (y − ya)t + (y − ya)x + (y − ya)xxx + (y − ya)yx + ya(y − ya)x = h(t, x),

where
h(t, x) = −yaya,x + ρy1y1,x = −ρ3/2(y1y2)x − ρ2y2y2,x.

Applying Proposition 3.3 to y − ya, for small ρ, one can ignore (absorb) the contribution from
the last two terms in the LHS of (9.26), to obtain

(9.27) ∥y − ya∥XT
≤ C∥h∥

L1
(
(0,T );L2(0,L)

) ≤ Cρ3/2.

Assertion (9.22) follows since H0(φ) = y(0, ·) and φ = ya(0, ·).
We next establish (9.23). To this end, we estimate(

φ−H0(φ)
)
−
(
φ̃−H0(φ̃)

)
.

For φ̃ ∈ Bcρ(y0), denote ũ1, ũ2 and ỹ1, ỹ2, ỹa, ỹ the corresponding functions which are defined in the
same way as the functions u1, u2, and y1, y2, ya, y considered for φ.

We have

(9.28) (y − ỹ)t + (y − ỹ)x + (y − ỹ)xxx + yyx − ỹỹx = 0,

(9.29) (ya − ỹa)t + (ya − ỹa)x + (ya − ỹa)xxx + yaya,x − ỹaỹa,x = g(t, x),

where

(9.30) g(t, x) = ρ3/2
(
(y1y2)x − (ỹ1ỹ2)x

)
+ ρ2

(
y2y2,x − ỹ2ỹ2,x

)
.

Applying Proposition 3.5 to y − ỹ, for ρ small, one can ignore (absorb) the contribution of the
last two terms in the LHS of (9.28), to obtain

(9.31) ∥y − ỹ∥XT
≤ C∥ya,x(·, 0)− ỹa,x(·, 0)∥H1/3(0,T ) ≤ Cρ−1/2∥φ− φ̃∥L2(0,L).

Using (9.27) for y − ya and similar fact for ỹ − ỹa, we obtain

(9.32) ∥(y − ya, ỹ − ỹa)∥XT
≤ Cρ3/2.

From the definition of g in (9.30), we deduce that

(9.33) ∥g∥
L1
(
(0,T );L2(0,L)

) ≤ Cρ1/2∥φ− φ̃∥L2(0,L).

Applying Proposition 3.1 to ya − ỹa after ignoring (absorbing) the contribution of yaya,x − ỹaỹa,x,
we derive from (9.29) that

(9.34) ∥ya − ỹa∥XT
≤ Cρ−1/2∥φ− φ̃∥L2(0,L) ≤ Cρ1/2.

Set
Y = y − ya − (ỹ − ỹa) in (0, T )× (0, L).

Using (9.28) and (9.29), we have

(9.35) ∂tY + ∂xY + ∂xxxY = f(t, x) in (0, T )× (0, L),

where

f(t, x) = −g(t, x)−
(
yyx − ỹỹx − (yaya,x − ỹaỹa,x)

)
.

10The index a stands the approximation.



KDV 57

From (9.31), (9.32), (9.34), and (9.33), we obtain

(9.36) ∥yyx − ỹỹx − (yaya,x − ỹaỹa,x)∥L1
(
(0,T );L2(0,L)

) ≤ Cρ1/2∥φ− φ̃∥L2(0,L).

Using (9.33) and (9.36), and applying Proposition 3.5 to Y , we derive from (9.35) that

∥(y − ya − ỹ + ỹa)(T, ·)∥L2(0,L) ≤ Cρ1/2∥φ− ϕ∥L2(0,L).

Assertion (9.23) follows.
We next consider the general case. One can bring this case to the previous case as follows. Set

ρ = ∥y0∥L2(0,L) + ∥yT ∥L2(0,L).

Without loss of generality, one might assume that ρ > 0 since otherwise, one just takes zero as a
control.

Fix ε > 0 small. By Proposition 7.1, there exists v1 ∈ H1/3(0, ε) such that if y1 ∈ Xε is the
solution of (9.17) with y1(·, L) = v1 and y2 ∈ Xε is the solution of (9.18) with y2(·, L) = 0 then

y1(ε, ·) = 0, and

∫ L

0
y2(ε, ·)ϕ ≥ c.

Set

(9.37) u = ρ1/2γ1/2v1 in (0, ε).

Then the unique solution y ∈ Xε of the KdV system (1.1) verifies the properties of the previous
case, for large positive γ. We are now in the position to apply the previous case with the initial
datum y(ε, ·). The proof is complete. □

Remark 9.1. This paper gives a complete picture of the local controllability properties of the KdV
equation with the right Dirichlet controls. The question of whether or not a large control might
suffice for small-time controllability, even in the small data case, is a very interesting open question.

Appendix A. Hardy type inequalities

This section is devoted to the following result related to the Hardy inequality.

Lemma A.1. Let −∞ < a < b < c ≤ +∞, and 0 < s < 1/2 and let u ∈ Hs(a, b). Set

v =

{
u in (a, b),

0 in (b, c).

Then v ∈ Hs(a, c) and

∥v∥Hs(a,c) ≤ C∥u∥Hs(a,b),

for some positive constant C depending only on a, b, c, and s.

Proof. For notational ease, we assume that a = −1 and b = 0. Without loss of generality, we then
can assume that c = +∞. Let V ∈ Hs(R) be an extension of u such that

∥V ∥Hs(R) ≤ C∥u∥Hs(−1,0).

Applying [40, Theorem 1.1] with γ = −s, τ = 2, p = 2 to V , one obtains

∥|x|−sV ∥L2(R) ≤ C∥V ∥Hs(R).

The condition s < 1/2 is required here. This yields

(A.1) ∥|x|−su∥L2(−1,0) ≤ C∥u∥Hs(−1,0).
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Using the equivalent Gagliardo-Nirenberg definition of the semi-norm Hs, we have

∥v∥2Hs(−1,+∞) ∼
∫ ∞

−1

∫ ∞

−1

|v(x)− v(y)|2

|x− y|1+2s
dx dy +

∫ ∞

−1
|v|2 dx.

Since ∫ ∞

−1

∫ ∞

−1

|v(x)− v(y)|2

|x− y|1+2s
dx dy ≤

∫ 0

−1

∫ 0

−1

|u(x)− u(y)|2

|x− y|1+2s
dx dy + Cs

∫ 0

−1

|u(x)|2

|x|2s
dx,

and ∫ ∞

−1
|v|2 dx =

∫ 0

−1
|u|2 dx,

we derive from (A.1) that
∥v∥Hs(−1,+∞) ≤ C∥u∥Hs(−1,0).

The proof is complete. □

Appendix B. On the zeros of detQ

We begin this section with

Lemma B.1. Let L > 0, z ∈ C, and φ ∈ C∞([0, L]) be such that

φxxx + φx + izφ = 0 in [0, L],

and
φ(0) = φ(L) = φx(L) = 0.

Then
ℑ(z) ≥ 0.

Proof. Set

Ψ(t, x) = ℜ
{
eiztφ(x)

}
in R+ × [0, L].

Then Ψ is a solution of the linearized KdV system

(B.1)

{
Ψt +Ψx +Ψxxx = 0 in R+ × [0, L],

Ψ(·, 0) = Ψ(·, L) = Ψx(·, L) = 0 in R+.

We then derive that
d

dt

∫ L

0
|Ψ(t, x)|2 dx ≤ 0.

This implies
ℑ(z) ≥ 0.

The proof is complete. □

The following result is useful.

Lemma B.2. Let L ∈ ND. Then detQ(z + iq/2) ̸= 0 for z ∈ R.
Proof. We prove the assertion by contradiction. Assume that detQ(z + iq/2) = 0 for some z ∈ R.
Then there exists φ ∈ C∞[0, L] such that

φxxx + φx + i(z + iq/2)φ = 0 in [0, L],

and
φ(0) = φ(L) = φx(L) = 0.

Applying Lemma B.1, we have
ℑ(z + iq/2) = q/2 ≤ 0.

We have a contradiction. □
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Appendix C. A lemma related to the moment method

The following lemma from [24] is used in the proof of Proposition 3.1.

Lemma C.1. Let φ be an analytic function in C such that φ has a finite number of zeros on the
real line, and

(C.1) |φ(z)| ≤ c1e
c2|z|α in C,

for some 0 < α < 1, and c1, c2 > 0. Let T1, T2 > 0, and h ∈ Hs(R) for some s ≤ 0 with support in
(0, T1). There exists g ∈ C∞(R) with support in [T1, T1+T2] such that if z is a real solution of order

m of the equation φ(z) = 0, then z is a also a real solution of order m of the equation ĥ − ĝ = 0,
and

(C.2) ∥g∥Hk(R) ≤ Ck∥h∥Hs(R) for k ∈ N,

for some positive constant Ck depending only on k, T1, T2, s, and real zeros and their multiplicity
of φ.

Proof. The proof of Lemma C.1 is as in [24], where a special case is considered. The construc-
tion of g, inspired by the moment method, see e.g. [49], can be done as follows. Set η(t) =

e−1/(t2−(T2/2)2)1|t|<T2
for t ∈ R. Assume that z1, . . . , zk are real, distinct solutions of the equation

φ(z) = 0, and m1, . . . , mk are the corresponding orders. Set, for z ∈ C,

ζ(z) =
k∑

i=1

η̂(z − zi)
k∏

j=1

j ̸=i

(z − zj)
mj

( mi∑
l=0

ci,l(z − zi)
l
) ,

where ci,l ∈ C is chosen such that

dl

dzl

(
ei(T1+T2/2)zζ(z)

)
z=zi

=
dl

dzl
ĥ3(zi) for 0 ≤ l ≤ mi, 1 ≤ i ≤ k.

This can be done since η̂(0) ̸= 0. Since

|η̂(z)| ≤ CeT2|ℑ(z)|/2,

and, by [49, Lemma 4.3],

|η̂(z)| ≤ C1e
−C2|z|1/2 for z ∈ R,

using (C.1), and applying Paley-Wiener’s theorem, one can prove that ζ is the Fourier transform of
a function ψ of class C1; moreover, ψ has the support in [−T2/2, T2/2]. Set, for z ∈ C,

g(t) = ψ(t+ T1 + T2/2).

Using the fact ĝ(z) = ei(T1+T2/2)zζ(z), one can check that ĝ − ĥ has zeros z1, . . . , zk with the
corresponding orders m1, . . . , mk. One can check that

∥ψ∥Hk(R) ≤ CT,L,k

k∑
i=1

mi∑
l=0

∣∣∣∣ dldzl ĥ(zi)
∣∣∣∣ ,

which yields

∥ψ∥Hk(R) ≤ CT,L,k∥h∥Hs(R).

The required properties of g follow. □
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Appendix D. Scilab program for computing Ln and checking the local
controllability property for n = 0, 1, 2, 3.

Here is the Scilab program which gives the results in Remark 1.4.

c l c

a=0;

b=0;

L=0;

q=0;

alpha=0;

beta=0;

va lue=0;

func t i on [B] = B(x )

B = (4∗xˆ2∗%eˆ(−6∗x ) − x ˆ2 )ˆ ( 1/2 ) ;

endfunct ion

func t i on [F ] = F(x )

F = B(x ) ∗ cos (B(x ) ) + x∗ s i n (B(x ) ) ;

endfunct ion

func t i on [ l ] = l ( x )

l = (B(x )∗B(x ) − 3∗x ˆ2 )ˆ ( 1/2 ) ;
endfunct ion

//k=0; j =−0.44; j 0=j ;

//Here are the outcomes f o r n=0;

// value =0.9770641; L=4.5183604; a=−0.5065520; b=4.6027563; q=0.2354919;

//k=1; j =−0.67; j 0=j ;

// // Here are the outcomes f o r n=1:

// // value =3.8760737; L=10.866906; a=−0.6903700; b=10.932497; q=0.1291104;

k=2; j =−0.78; j 0=j ;

//// Here are the outcomes f o r n=2:

//// value =−0.4687287; L=17.177525; a=−0.7947960; b=17.232599; q=0.0933315;

//k=3; j =−0.86; j 0=j ;

//// Here are the outcomes f o r n=3:

//// value =−0.4687287; L=23.476776; a=−0.8687610; b=23.524949; q=0.0744156;

whi l e j > −2

j=j − 10ˆ(−6);

i f (B( j )> %pi + 2∗k∗%pi ) & (B( j )<3∗%pi/2+ 2∗k∗%pi ) & (F( j )<0)
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then j0=j0 −10ˆ(−6);

e l s e

j=−3;

end

end

a=j0

b=B(a )

L=l ( a )

q= − 2∗a ∗( aˆ2 + bˆ2)/ Lˆ3

alpha=−a/L

beta=−b/L

func t i on [ p ] = phix (x )

p = −alpha ∗beta∗%e ˆ( alpha ∗x )∗ cos ( beta ∗x ) . .

+ betaˆ2∗%e ˆ( alpha ∗x )∗ s i n ( beta ∗x ) . .

− 2∗ alpha ∗beta∗%eˆ(−2∗ alpha ∗x ) . .

+ 3∗ alphaˆ2∗%e ˆ( alpha ∗x )∗ s i n ( beta ∗x ) . .

+ 3∗ alpha ∗beta∗%e ˆ( alpha ∗x )∗ cos ( beta ∗x ) ;
endfunct ion

func t i on [ p ] = P(x )

p = i n v c o e f f ([−q/2 + %i ∗x 1 0 1 ] ) ;

endfunct ion

func t i on [ g ] = G( z , x )

lambda= roo t s (P( z ) ) ;

g = ( lambda(1)∗%e ˆ( lambda (1)∗L) . .

− lambda(2)∗%e ˆ( lambda (2)∗L))∗%e ˆ( lambda (3)∗ x ) . .

+ ( lambda(2)∗%e ˆ( lambda (2)∗L) . .

− lambda(3)∗%e ˆ( lambda (3)∗L))∗%e ˆ( lambda (1)∗ x ) . .

+(lambda(3)∗%e ˆ( lambda (3)∗L) . .

− lambda(1)∗%e ˆ( lambda (1)∗L))∗%e ˆ( lambda (2)∗ x ) ;
endfunct ion

func t i on [ h ] = H( z , x )

h = abs (G( z , x ) )∗ abs (G( z , x ) )∗ phix (x ) ;

endfunct ion

func t i on [ omega]=Omega( z )

func t i on [ x i ] = Xi (x )

x i = abs (G( z , x ) )∗ abs (G( z , x ) )∗ phix (x ) ;

endfunct ion

omega = in tg (0 ,L , Xi ) ;

end

value=Omega(0 .1897656) //k=2
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// value=Omega(0 .1419531) //k=3
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