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LOCAL CONTROLLABILITY OF THE KORTEWEG-DE VRIES EQUATION

WITH THE RIGHT DIRICHLET CONTROL

HOAI-MINH NGUYEN

Abstract. The Korteweg-de Vries (KdV) equation with the right Dirichlet control was initially
investigated by Glass and Guerrero. They showed that this system is small time locally exactly
controllable for all non critical lengths and its linearized system is not controllable for all critical
lengths. Even the controllability of the KdV system has been studied extensively in the last two
decades, the local controllability of this system for critical lengths remains an open question. In
this paper, we give a definitive answer to this question. More precisely, we show that the KdV
equation with the right Dirichlet control is finite time locally exactly controllable but not small
time locally null controllable for all critical lengths.

Key words: Controllability, KdV equations, critical lengths, unreachable space, power series
expansion, Hilbert uniqueness method

AMS subject classification: 35C20, 35Q53, 93B05, 93B07, 93C20.
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1. Introduction and the statement of the main results

This paper is devoted to the local controllability of the Korteweg-de Vries (KdV) system using
the right Dirichlet control. More precisely, we consider the following control problem, for T > 0,

(1.1)


yt + yx + yxxx + yyx = 0 in (0, T )× (0, L),

y(·, 0) = yx(·, L) = 0 in (0, T ),

y(·, L) = u in (0, T ),

y(0, ·) = y0 in (0, L).

Here y is the state, y0 ∈ L2(0, L) is an initial datum, and u is a control, which belongs to an
appropriate functional space. The KdV equation has been introduced by Boussinesq [11] and
Korteweg and de Vries [27] as a model for propagation of surface water waves along a channel. This
equation also furnishes a very useful nonlinear approximation model including a balance between
a weak nonlinearity and weak dispersive effects, see e.g. [45, 33, 25]. The KdV equation has been
investigated from various aspects of mathematics, including the well-posedness, the existence and
stability of solitary waves, the integrability, the long-time behavior, etc., see e.g. [45, 33, 25, 43, 29].

1.1. State of the art. The local controllability for the KdV equation has been studied extensively
in the literature, see, e.g., the surveys [40, 14] and the references therein. We briefly review here
some results concerning boundary controls. When the controls are y(·, 0), y(·, L), yx(·, L), Russell
and Zhang [42] proved that the KdV equation is small time locally controllable. The case of left
boundary control (y(·, L) = yx(·, L) = 0) was investigated by Rosier [39] (see also [22]). The
local null controllability holds for small time in this case. The exact controllability does not holds
for initial and final data in the L2(0, L) due to the regularizing effect but holds for a subclass of
infinitely smooth initial and final data [31].

A very close setting with the one considered here is the setting in which one controls the right
Neumann boundary, i.e., y(·, 0) = y(·, L) = 0 and yx(·, L) is a control. For initial and final data in
L2(0, L), and controls in L2(0, T ), Rosier [38] proved that the KdV system with the right Neumann
control is small time locally exactly controllable provided that the length L is not critical, i.e.,
L /∈ NN 1, where 2

(1.2) NN :=

{
2π

√
k2 + kl + l2

3
; k, l ∈ N∗

}
.

To this end, Rosier studied the controllability of the corresponding linearized system and showed
that the linearized system is exactly controllable if L 6∈ NN . He as well established that when
L ∈ NN , the linearized system is not controllable. More precisely, Rosier showed that there exists a
non-trivial finite-dimensional subspaceMN of L2(0, L) such that its orthogonal space is reachable
from 0 for small time whereasMN is not for any time. To tackle the control problem for a critical
length L ∈ NN with initial and final data in L2(0, L) and controls in L2(0, T ), Coron and Crépeau
introduced the power series expansion method [19]. The idea is to take into account the effect of
the nonlinear term yyx absent in the corresponding linearized system. Using this method, Coron
and Crépeau showed [19] (see also [18, section 8.2]) that the KdV system is small-time locally
exactly controllable when dimMN = 1. Cerpa [13] developed the analysis in [19] to prove that the
KdV system is finite time locally exactly controllable in the case dimMN = 2. Later, Crépeau and
Cerpa [15] succeeded to extend the ideas in [13] to obtain the local exact controllability in finite time
for all other critical lengths. Recently, with Coron and Koenig [21], we prove that such a system
is not small time locally controllable for a class of critical lengths. This fact is surprising when

1The letter N stands for the Neumann boundary control.
2N∗ = N \ {0}.
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compared with known results on internal controls for the KdV system. It is known, see [12, 32, 37],
that the KdV system (1.1) with u = 0 is small time locally controllable using internal controls
whenever the control region contains an arbitrary open subset of (0, L). The power expansion
method is also a starting point of the analysis in [21]. Part of the of the analysis there is to
characterize all controls which brings 0 at 0 to 0 at time T for the corresponding linearized system.
This idea is then used in the study of water tank problem [20]. It is interesting to note that there
are other types of boundary controls for the KdV equation for which there is no critical length,
see [38, 39, 23, 14]. There are also results on internal controllability for the KdV equation, see
[42, 28, 12] and the references therein. A minimal time of the null-controllability is also required
for some linear partial differential equations. This is obviously the case for equations with a finite
speed of propagation, such as the transport equation, the wave equation, or hyperbolic systems,
see, e.g., [18] and the references therein. But this can also happen for equations with infinite
speed of propagation, such as some parabolic systems [7], Grushin-type equations [2, 6, 26, 3],
Kolmogorov-type equations [4], and the references therein.

We now turn back to the control problem (1.1). This control problem was first investigated
by Glass and Guerrero [23]. To this end, in the spirit of Rosier’s work mentioned above, they
introduced the corresponding set of critical lengths 3

(1.3) ND =
{
L ∈ R+; ∃z1, z2 ∈ C : (1.4) holds

}
,

where

(1.4) z1e
z1 = z2e

z2 = −(z1 + z2)e
−(z1+z2) and L2 = −(z21 + z1z2 + z22).

They proved that the setND is infinite and has no accumulation point. Concerning (1.1), Glass and
Guerrero proved that the corresponding linearized KdV system is small time exactly controllable
with initial and final data in H−1(0, L) using controls in L2(0, T ) if L 6∈ ND. Developing this
result, they also established that the KdV system (1.1) is small time locally controllable for initial

and final data in L2(0, L) and controls in H1/6− 4 for non-critical lengths, i.e., L 6∈ ND.
Even the local controllability of the KdV system using boundary controls has been investigated

extensively in the last two decades, to our knowledge, there is no result on the local controllability
of the system (1.1) for critical lengths. In particular, the answer to the question whether or not
the KdV system (1.1) is locally controllable for a critical length L ∈ ND raised from the work of
Glass and Guerrero is open (see, e.g., [14, Open question 4]). In comparison with the set of critical
lengths NN , the set ND is less explicit. Moreover, the unreachable space for the linearized system
related to (1.1) has not been determined due to the lack of an appropriate observability inequality
for the linearized system in a suitable functional setting.

1.2. Statement of the main results. The main goal of this paper is to give a rather complete
picture of the local controllability of the control KdV system (1.1).

Set

(1.5) XT := C
(
[0, T ];L2(0, L)

)
∩ L2

(
(0, T );H1([0, L])

)
equipped with the corresponding norm:

‖y‖XT = ‖y‖
C
(
[0,T ];L2(0,L)

) + ‖y‖
L2
(
(0,T );H1([0,L])

).
The first main result is on the finite time local controllability property of (1.1).

3The letter D stands for the Dirichlet boundary control.
4Controls in H1/6− means controls in H1/6−ε for all ε > 0
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Theorem 1.1. Let L ∈ ND. There exist two constants TL > 0 and CL > 0 depending only
on L such that for every T > TL, there exists ε0 = ε0(L, T ) > 0 such that for all y0, y1 ∈
L2(0, L) with ‖y0‖L2(0,L) ≤ ε0 and ‖y1‖L2(0,L) ≤ ε0, there exists u ∈ H1/3(0, T ) with ‖u‖H1/3(0,T ) ≤
CL,T (‖y0‖L2(0,L) + ‖y1‖L2(0,L)) such that

y(T, ·) = y1,

where y ∈ XT is the unique solution of (1.1).

Recall that ND is defined in (1.3).

The second main result is on the local controllability property of (1.1) in small time.

Theorem 1.2. Let L ∈ ND. There exist T∗ > 0, ε0 > 0, and ψ ∈ H1
0 (0, L)∩C∞([0, L]) such that

for all 0 < T < T∗ and for all solutions y ∈ XT of

(1.6)


yt + yx + yxxx + yyx = 0 in (0, T )× (0, L),

y(·, 0) = yx(·, L) = 0 in (0, T ),

y(·, L) = u in (0, T ),

y(0, ·) = y0 := εψ in (0, L),

with 0 < ε < ε0 and ‖u‖H1/3(0,T ) < ε0, we have

y(T, ·) 6= 0.

Remark 1.1. Taking controls in H1/3(0, T ) is very natural for the control system (1.1) with initial
and final data in L2(0, L). In fact, this is the right functional space if one considers the solutions
in the (energy) space XT .

As a consequence of Theorem 1.1 and Theorem 1.2, the KdV system (1.1) is finite time locally
exactly controllable but not small time locally controllable for initial and final data in L2(0, L)

using controls in H1/3(0, T ) for all critical lengths. We thus give a complete answer to [14, Open
question 4]. These results are surprising when compared with known results on internal controls
for the KdV system. The system (1.1) with u = 0 is locally controllable using internal controls
whenever the control region contains an arbitrary open subset of (0, L) as mentioned previously.
These results are also distinct with the control properties of the KdV system with the Neumann
control on the right for which the system is small time locally controllable when dimMN = 1, see
[19]. Nevertheless, these facts are consistent in the sense that the dimension of the unreachable
space for the linearized system of (1.1) is always even (a fact proved later in this paper, see (6.4)).

In comparison the results given in this paper with the ones in [21], both works deal with the
local controllability of the KdV equation using boundary controls. The right Dirichlet boundary
control is considered in this paper. We prove here that the local null controllability in small time
does not hold for solutions with small norms in the functional energy space XT and for all critical
lengths. In [21], with Coron and Koenig, we considered the right Neumann boundary control.
We established there that the small time local null controllability does not hold in a more regular
space than XT and for a class of critical lengths whose unreachable space is of dimension 2. The
local controllability in finite time with the right Neumann control holds for small solutions in XT

for all critical lengths [19, 13, 15]. Nevertheless, whether or not the small time local controllability
of the KdV system with the right Neumann control hold either for small solutions in XT or (and)
for all corresponding critical lengths whose dimension of the unreachable space is strictly greater
than 1 is still open (see the list of open questions in [21]).

Finally, in the case L 6∈ ND, we can prove the following result, which sharpens the results in
[23] mentioned previously.
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Theorem 1.3. Let L 6∈ ND and T > 0. There exist C > 0 and ε0 > 0 depending only on L
and T such that for all y0, y1 ∈ L2(0, L) with ‖y0‖L2(0,L) ≤ ε0 and ‖y1‖L2(0,L) ≤ ε0, there exists

u ∈ H1/3(0, T ) with ‖u‖H1/3(0,T ) ≤ C(‖y0‖L2(0,L) + ‖y1‖L2(0,L)) such that

y(T, ·) = y1,

where y ∈ XT is the unique solution of (1.1).

1.3. Ideas of the proofs. Our approach is inspired by the power series expansion method intro-
duced by Coron and Crépeau [19]. The idea of this method is to search/understand a control u of
the form

u = εu1 + ε2u2 + · · · .
The corresponding solution then formally has the form

y = εy1 + ε2y2 + · · · ,
and the non-linear term yyx can be written as

yyx = ε2y1y1,x + · · · .
One then obtains the following systems for y1 and y2:

(1.7)


y1,t + y1,x + y1,xxx = 0 in (0, T )× (0, L),

y1(·, 0) = y1,x(·, L) = 0 in (0, T ),

y1(·, L) = u1 in (0, T ),

(1.8)


y2,t + y2,x + y2,xxx + y1y1,x = 0 in (0, T )× (0, L),

y2(·, 0) = y2,x(·, L) = 0 in (0, T ),

y2(·, L) = u2 in (0, T ).

The idea is then to find the corresponding controls u1 and u2 such that, if y1(0) = y2(0) = 0,
then y1(T ) = 0 and the L2-orthogonal projection of y2(T ) on MD is a given (non-zero) element
in MD. To this end, in [19, 13, 15], the authors used delicate contradiction arguments to capture
the structure of the KdV systems.

We here follow and extend the analysis in [21]. The starting point of the analysis is also the
power series expansion method. The strategy is to characterize all possible u1 which steers 0 at
time 0 to 0 at time T (see Proposition 4.1). This is done by taking the Fourier transform with
respect to time of the solution y1 and applying Paley-Wiener’s theorem. We then investigate the
projection of y2 into the unreachable space MD (in Section 4). As a result, for all critical lengths
L ∈ ND, if the control time is sufficiently large, then one can reach all directions inMD via y2 and
if the control time is sufficiently small, then there are directions in MD which cannot be reached
via y2. Using these facts, we then implement arguments to prove the local exact controllability in
finite time and disprove the local exact controllability in small time.

Here are some other comments on the analysis. First, the arguments used to establish the fact
that one can reach all directions inMD via y2 for time large enough is as in [13] when dimMD = 2
using the rotation idea. When dimMD > 2, the arguments are more involved and different since
the phases might be complex. Second, the arguments used in this paper to disprove the small
time local controllability improve the ones in [21] and yield the result in the energy space XT .
The proof also relies on the positivity of a scalar product which comes naturally in the study of
the controllability of the KdV system for small time. The positivity of a scalar product for small
time was also the crucial point of several lack of small time local controllability results for systems
with infinite propagation speed, nevertheless the previous ways to derive it are different, see, e.g.,
[17, 30, 5]. Finally, the analysis for the well-posedness of (1.1) is in the spirit of the work of Coron,
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Koenig, and Nguyen [21]. This partly involves a connection between the linear KdV equation and
the linear KdV-Burgers equation as previously used by Bona et al. [9] and inspired by the work of
Bourgain [10], and Molinet and Ribaud [34]. Nevertheless, new estimates requiring new insights
are derived in order to allow us to get the observability inequality for the critical lengths, which
are useful in determining the unreachable space for the linearized KdV system (see Remark 2.3).

1.4. Organisation of the paper. The paper is organized as follows. In Section 2, we establish
several properties for the linearized KdV equations equipped with various boundary conditions.
The main results there are Proposition 2.1 and Proposition 2.2. In Section 3, we present the
unreachable space and establish the corresponding observability inequality (Lemma 3.1). The
main result of this section is Proposition 3.1. In Section 4, we study properties of the controls
which steer 0 at time 0 to 0 at time T. Using results in Section 4, we study attainable directions for
small time in Section 5. The main result of this section is Proposition 5.1, which is one of the most
important ingredients of the proof of Theorem 1.1 and Theorem 1.2. Theorem 1.1, Theorem 1.2,
and Theorem 1.3 are given in Section 6, Section 7, and Section 8, respectively. Several technical
results are given and proved in the appendix.

2. On the linearized KdV equations

In this section, we establish two well-posedness results (Proposition 2.1 and Proposition 2.2)
for the linearized KdV equation equipped with two different types of boundary conditions in the
energy space XT defined in (1.5). These results are the starting point of our analysis and play a
role in deriving the unreachable space and establishing the corresponding observability inequality
in Section 3 (Proposition 3.1).

Here is the first main result of this section.

Proposition 2.1. Let T > 0, (h1, h2, h3) ∈ H1/3(0, T )×H1/3(0, T )×L2(0, T ), f ∈ L1
(
(0, T );L2(0, L)

)
,

and y0 ∈ L2(0, L). There exists a unique solution y ∈ XT of the system

(2.1)


yt + yx + yxxx = f in (0, T )× (0, L),

y(·, 0) = h1, y(·, L) = h2, yx(·, L) = h3 in (0, T ),

y(0, ·) = y0 in (0, L).

Moreover, for x ∈ [0, L],

(2.2) ‖y‖XT + ‖y(·, x)‖H1/3(0,T ) + ‖yx(·, x)‖L2(0,T ) + ‖yxx(·, x)‖[H1/3(0,T )]∗

≤ CT,L
(
‖y0‖L2(0,L) + ‖f‖

L1
(
(0,T );L2(0,L)

) + ‖(h1, h2)‖H1/3(0,T ) + ‖h3‖L2(0,T )

)
,

where CT,L denotes a positive constant independent of x, y0, f , and h1, h2, h3.

Remark 2.1. In Proposition 2.1, we implicitly admit that

y ∈ C([0, L];H1/3(0, T )), yx ∈ C([0, L];L2(0, T )), and yxx ∈ C([0, L];H−1/3(0, T )).

These facts are derived from the proof. Results and their analysis which are related to Proposi-
tion 2.1 will be discussed in Remark 2.3. The estimates for ‖yx(·, x)‖L2(0,T ) and ‖yxx(·, x)‖[H1/3(0,T )]∗

are used in establishing the observability inequality.

The next result is on the well-posedness of the linearized KdV system for which the Dirichlet
condition and the second derivative in x on the right are described.
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Proposition 2.2. Let T > 0, (h1, h2, h3) ∈ H1/3(0, T )×H1/3(0, T )× [H1/3(0, T )]∗,
f ∈ L1

(
(0, T );L2(0, L)

)
, and y0 ∈ L2(0, L). Then there exists a unique solution y ∈ XT of the

system

(2.3)


yt + yx + yxxx = f in (0, T )× (0, L),

y(·, 0) = h1, y(·, L) = h2, yxx(·, L) = h3 in (0, T ),

y(0, ·) = y0 in (0, L).

Moreover, for 0 ≤ x ≤ L,

(2.4) ‖y‖XT + ‖y(·, x)‖H1/3(0,T ) + ‖yx(·, x)‖L2(0,T ) + ‖yxx(·, x)‖[H1/3(0,T )]∗

≤ CT,L
(
‖y0‖L2(0,T ) + ‖f‖

L1
(
(0,T );L2(0,L)

) + ‖(h1, h2)‖H1/3(0,T ) + ‖h3‖[H1/3(0,T )]∗

)
,

for some positive constant CT,L independent of x, y0, f , and (h1, h2, h3).

As a consequence of Proposition 2.1, we obtain the following well-posedness result for (1.1).

Proposition 2.3. Let L > 0 and T > 0. There exists ε0 > 0 such that for y0 ∈ L2(0, L), u ∈
H1/3(0, T ), and f ∈ L1

(
(0, T );L2(0, L)

)
with ‖y0‖L2(0,L) + ‖f‖

L1
(
(0,T );L2(0,L)

)+ ‖u‖H1/3(0,T ) < ε0,

there exists a unique solution y ∈ XT of the system

(2.5)


yt + yx + yxxx + yyx = f in (0, T )× (0, L),

y(·, 0) = yx(·, L) = 0 in (0, T ),

y(·, L) = u in (0, T ),

y(0, ·) = y0 in (0, L).

Moreover, we have

(2.6) ‖y‖XT + ‖y(·, x)‖H1/3(0,T ) + ‖yx(·, x)‖L2(0,T ) + ‖yxx(·, x)‖[H1/3(0,T )]∗

≤ CT,L
(
‖y0‖L2(0,L) + ‖f‖L1((0,T );L2(0,L)) + ‖u‖H1/3(0,T )

)
.

The rest of this section consisting of four subsections is organized as follows. In the first sub-
section, we present several results on the KdV-Burgers equations, which are used in the proof of
Proposition 2.1 and Proposition 2.2. The proof of Proposition 2.1, Proposition 2.2, and Proposi-
tion 2.3 are given in the last three subsections, respectively.

2.1. On the linear KdV-Burgers equations. This section is devoted to the study of the linear
KdV-Burgers equations with the periodic boundary condition. Here is the main result of this
section.

Proposition 2.4. Let g ∈ L1
(
R+;L2(0, L)

)
with

∫ L
0 g(t, x) dx = 0 for a.e. t > 0, and let y0 ∈

L2(0, L) be such that
∫ L
0 y0(x) dx = 0. There exists a unique solution y ∈ C

(
[0,+∞);L2(0, L)

)
∩

L2
(
[0,+∞);H1([0, L])

)
which is periodic in space of the system

(2.7)

{
yt + 4yx + yxxx − 3yxx = g in R+ × (0, L),

y(0, ·) = y0 in (0, L).
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Moreover, for t ∈ R+ and x ∈ [0, L],

(2.8) ‖y(t, ·)‖L2(0,L) + ‖y(·, x)‖H1/3(R+) + ‖yx(·, x)‖L2(R+) + ‖yxx(·, x)‖[H1/3(R)]∗

≤ C
(
‖y0‖L2(0,L) + ‖g‖

L1
(
R+;L2(0,L)

)),
for some positive constant C depending only on L.

Proof. We only derive the estimates. The uniqueness follows from the estimates and the existence
follows the proof of these estimates as well.

Multiplying the equation by y and integrating by parts, we have

1

2

d

dt

∫ L

0
|y(t, x)|2 dx+ 3

∫ L

0
|yx(t, x)|2 dx =

∫ L

0
g(t, x)y(t, x) dx.

This yields

1

2

d

dt

∫ L

0
|y(t, x)|2 dx ≤ ‖g(t, ·)‖L2(0,L)‖y(t, ·)‖L2(0,L).

Applying the Grönwall lemma, we obtain the desired estimate for ‖y(t, ·)‖L2(0,L).
We next establish the estimates for ‖y(·, x)‖H1/3(R+), ‖yx(·, x)‖L2(R+), and ‖yxx(·, x)‖[H1/3(R)]∗ .

For notational ease, we assume that L = 2π. It suffices to consider the case g ≡ 0 and the case
y0 ≡ 0 separately.

We first consider the case g ≡ 0. Write the solution under the form

y(t, x) =
∑
n∈Z

an(t)einx in R+ × (0, L) = R+ × (0, 2π).

We then derive that

y0(x) =
∑
n∈Z

an(0)einx for x ∈ [0, 2π]

and

a′n(t) =
(
− 3n2 − i(4n− n3)

)
an(t) for t ∈ R+.

We thus have

an(t) = e

(
−3n2−i(4n−n3)

)
tan(0) for t ∈ R+, n ∈ Z.

Since
∫ L
0 y0 = 0, it follows that a0 = 0. This in turn implies that a0(t) = 0 for t ∈ R+. We thus

obtain

y(t, x) =
∑

n∈Z\{0}

einxe

(
−3n2−i(4n−n3)

)
tan(0) in R+ × (0, 2π).

Extend y(t, x) for t < 0 by

(2.9) y(t, x) =
∑

n∈Z\{0}

einxe

(
3n2−i(4n−n3)

)
tan(0) in R− × (0, 2π),

and still denote this extension by y(t, x). We have, for z ∈ R,

(2.10)

∫
R
y(t, x)e−itz dt =

∫ ∞
0

e

(
−3n2−i(4n−n3)

)
te−itz dt+

∫ 0

−∞
e

(
3n2−i(4n−n3)

)
te−itz dt

=
1

3n2 + i(4n− n3 + z)
+

1

3n2 − i(4n− n3 + z)
=

6n2

9n4 + (4n− n3 + z)2
.
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This implies

(2.11) ‖y(·, x)‖2
H1/3(R+)

≤ C
∫
z∈R

(1 + |z|)2/3
 ∑
n∈Z\{0}

n2|an(0)|
n4 + (z + 4n− n3)2

2

.

Applying Lemma 2.1 below with s = 1, we obtain

(2.12) ‖y(·, x)‖2
H1/3(R+)

≤ C‖y0‖2L2(0,2π).

Similarly, we have

(2.13) ‖yx(·, x)‖2L2(R+) ≤ C
∫
z∈R

 ∑
n∈Z\{0}

|n|3|an(0)|
(z + 4n− n3)2 + n4

2

and

(2.14) ‖yxx(·, x)‖2
H−1/3(R+)

≤ C
∫
z∈R

(1 + |z|)−2/3
 ∑
n∈Z\{0}

n4|an(0)|
(z + 4n− n3)2 + n4

2

.

Applying Lemma 2.1 below with s = 0 and s = −1, we get

(2.15) ‖yx(·, x)‖2L2(R+) ≤ C‖y0‖
2
L2(0,2π).

and

(2.16) ‖yxx(·, x)‖2
H−1/3(R+)

≤ C‖y0‖2L2(0,2π).

The proof in the case g ≡ 0 is complete.
We next deal with the case y0 ≡ 0. The proof in this case can be derived from the previous case

as follows. For t > 0, let W (t) be the mapping which maps y0 to y(t, ·) with g ≡ 0. We then have

(2.17) y(t, x) =

∫ t

0
W (t− s)g(s, x) ds.

This implies

(2.18) yx(t, x) =

∫ t

0
∂x

(
W (t− s)g(s, x)

)
ds =

∫ ∞
0

1(0,t)(s)∂x

(
W (t− s)g(s, x)

)
ds.

Hence

‖yx(·, x)‖L2
t (R+) ≤

∫ +∞

0
‖1(0,t)(s)∂x

(
W (t− s)g(s, x)

)
‖L2

t (R+) ds

=

∫ +∞

0

(∫ ∞
0
|1(0,t)(s)∂x

(
W (t− s)g(s, x)

)
|2 dt

)1/2

ds

=

∫ +∞

0

(∫ ∞
s
|∂x
(
W (t− s)g(s, x)

)
|2 dt

)1/2

ds.

By the previous case, we have(∫ ∞
s
|∂x
(
W (t− s)g(s, x)

)
|2 dt

)1/2

≤ C‖g(s, x)‖L2
x(0,L)

.

We thus obtain

(2.19) ‖yx(·, x)‖L2
t (R+) ≤ C

∫ +∞

0
‖g(s, x)‖L2

x
ds.
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By the same arguments, we have

(2.20) ‖yxx(·, x)‖
H
−1/3
t (R+)

≤
∫ +∞

0
‖1(0,t)(s)∂xx

(
W (t− s)g(s, x)

)
‖
H
−1/3
t (R+)

ds

=

∫ +∞

0
‖∂xx

(
W (t− s)g(s, x)

)
|‖
H
−1/3
t (s,+∞)

ds ≤ C
∫ +∞

0
‖g(s, x)‖L2

x(0,L)
ds.

Similarly, we obtain

(2.21) ‖y(·, x)‖
H

1/3
t (R+)

≤
∫ +∞

0
‖1(0,t)(s)W (t− s)g(s, x)‖

H
1/3
t (R+)

ds

=

∫ +∞

0
‖W (t− s)g(s, x)|‖

H
1/3
t (s,+∞)

ds ≤ C
∫ +∞

0
‖g(s, x)‖L2

x(0,L)
ds.

The conclusion in the case y0 ≡ 0 now follows from (2.19), (2.20), and (2.21).

The proof is complete. �

Remark 2.2. The proof gives as well that

y ∈ C([0, L];H1/3(0,+∞)), yx ∈ C([0, L];L2(0,+∞)), and yxx ∈ C([0, L];H−1/3(0,+∞)).

In the proof of Proposition 2.4, we used the following result in the spirit of Bourgain’s.

Lemma 2.1. Let (an)n∈Z\{0} ⊂ R be such that
∑

n∈Z\{0} a
2
n < +∞. For −5/2 < s ≤ 3, there

exists a positive constant C = Cs such that

(2.22)

∫
z∈R

(1 + |z|)2s/3
 ∑
n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

2

dz ≤ C
∑

n∈Z\{0}

a2n.

Proof. For s > −5/2 and for −1 ≤ z ≤ 1, one has

∑
n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4
≤ C

 ∑
n∈Z\{0}

a2n

1/2

.

It hence suffices to prove that, for −5/2 < s ≤ 3,

(2.23)

∫
z∈R;|z|>1

(1 + |z|)2s/3
 ∑
n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

2

dz ≤ C
∑

n∈Z\{0}

a2n.

We have

(2.24)

∫
z>1

(1 + |z|)2s/3
 ∑
n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

2

dz

≤ C
∑
m∈N∗

∫ (m+1)3

m3

m2s

 ∑
n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

2

dz.
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For m3 ≤ z ≤ (m+ 1)3, one gets

(2.25)
∑

n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

=
∑

k;m+k∈Z\{0}

|m+ k|3−s|am+k|
(z + 4(m+ k)− (m+ k)3)2 + (m+ k)4

≤ C
∑

k;|k|≤2m
m+k∈Z\{0}

|m+ k|3−s|am+k|
m4(|k|+ 1)2

+ C
∑

k; |k|≥2m+1

m+k∈Z\{0}

|k|3−s|am+k|
k4(|k|+ 1)2

,

Combining (2.24) and (2.25) yields

(2.26)

∫
z>1

(1 + |z|)2s/3
 ∑
n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

2

dz

≤ C
∑
m∈N∗

 ∑
k;|k|≤2m

m+k∈Z\{0}

|m+ k|3−s|am+k|
m3−s(|k|+ 1)2

+ C
∑

k; |k|≥2m+1

m+k∈Z\{0}

|m|1+s|am+k|
|k|1+s(|k|+ 1)2


2

≤ C
∑
m∈N∗

 ∑
k

m+k∈Z\{0}

|am+k|2

(|k|+ 1)1+ε


 ∑

k;|k|≤2m
m+k∈Z\{0}

|m+ k|6−2s

m6−2s(|k|+ 1)3−ε
+

∑
k;|k|≥2m+1

m+k∈Z\{0}

m2+2s

|k|2+2s(|k|+ 1)3−ε

 .

Here 0 < ε ≤ 1 is fixed such that s > (ε−5)/2. We have, for m ∈ N∗, |k| ≤ 2m, and m+k ∈ Z\{0},
|m+ k|6−2s

m6−2s ≤ C for s ≤ 3,

and, for m ∈ N∗,∑
k;|k|≥2m+1

m+k∈Z\{0}

m2+2s

|k|2+2s(|k|+ 1)3−ε
= m2+2s

∑
k;|k|≥2m+1

m+k∈Z\{0}

1

k2+2s(|k|+ 1)3−ε
≤ C

m2−ε ≤ C for s > (ε− 5)/2.

Using the fact, for m ∈ N∗, ∑
k;m+k∈Z\{0}

1

(|k|+ 1)2
< +∞,

we derive from (2.26) that

(2.27)

∫
z>1

(1 + |z|)2s/3
 ∑
n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

2

dz

≤ C
∑
m∈N∗

∑
k;m+k∈Z\{0}

|am+k|2

(|k|+ 1)2
≤ C

∑
k∈Z

1

(|k|+ 1)2

∑
m;m+k∈Z\{0}

|am+k|2,
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which yields

(2.28)

∫
z>1

(1 + |z|)2s/3
 ∑
n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

2

dz ≤ C
∑

n∈Z\{0}

|an|2.

Similarly, we have

(2.29)

∫
z<−1

(1 + |z|)2s/3
 ∑
n∈Z\{0}

|an||n|3−s

(z + 4n− n3)2 + n4

2

dz ≤ C
∑

n∈Z\{0}

|an|2.

Estimate (2.23) now follows from (2.28) and (2.29). The proof is complete. �

2.2. Proof of Proposition 2.1. The uniqueness is standard. The existence follows from the
construction of a solution given below.

We next deal with the estimates. Extend f and h1, h2, and h3 by 0 for t > T and still denote
y the corresponding solution. The proof of (2.2) is given into two steps.

Step 1: We first consider the case where y0 = 0 and f = 0. By the linearity and the uniqueness of
the system, it suffices to consider the three cases (h1, h2, h3) = (0, 0, h3), (h1, h2, h3) = (h1, 0, 0),
and (h1, h2, h3) = (0, h2, 0) separately.

In what follows, for an appropriate function v defined on R+ × (0, L), we extend v by 0 on
R− × (0, L) and we denote by v̂ its Fourier transform with respect to t, i.e., for z ∈ C,

v̂(z, x) =
1√
2π

∫ +∞

0
v(t, x)e−izt dt.

Extend y and f by 0 for t < 0 and still denote these extension by y and f . Then

(2.30) yt + yx + yxxx = 0 in R× (0, L).

Taking the Fourier transform with respect to t, we obtain, for z ∈ R,

(2.31) izŷ + ŷx + ŷxxx = 0 in (0, L).

For z ∈ C, let λ1, λ2, λ3 be the three solutions of the equation λ3 + λ+ iz = 0. Set

P = P (z) =
3∑
j=1

λj(e
λj+2L − eλj+1L) = detQD(z), where QD(z) :=

 1 1 1
eλ1L eλ2L eλ3L

λ1 λ2 λ3

 ,

and

(2.32) Ξ = Ξ(z) := −(λ2 − λ1)(λ3 − λ2)(λ1 − λ3) = det

 1 1 1
λ1 λ2 λ3
λ21 λ22 λ23

 ,

with the convention λj+3 = λj for j ≥ 1. It is useful to note that P (z)Ξ(z) is an analytic function
in z. Denote

(2.33) H(z) =
P (z)

Ξ(z)
in C.

Then H is an analytic function and H only has a finite number of zeros on the real line, see [21,
Lemma B1].

We first consider the case (h1, h2, h3) = (0, 0, h3). We extend h3 by 0 for t > T and still
denote this extension by h3. By Lemma C.1 in the appendix, there exists g3 ∈ C∞(R) with
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supp g3 ⊂ [T, 3T ] such that if z is a real solution of the equation H(z) = 0 of order m then z is

also a real solution of order m of ĥ3(z)− ĝ3(z), and, for k ≥ 1,

(2.34) ‖g3‖Hk(R) ≤ Ck‖h3‖L2(R).

We now establish (2.2). Let y3 be the solution of (2.44) where (h1, h2, h3) are (0, 0, h3 − g3),
and f = 0, and y0 = 0. We have, by taking into account the boundary conditions,

(2.35) ŷ3(z, x) =
ĥ3(z)− ĝ3(z)

detQD(z)

3∑
j=1

(
eλj+2L − eλj+1L

)
eλjx for a.e. x ∈ (0, L).

We have, by the choice of g3, for z ∈ R and |z| ≤ γ,

(2.36)

∣∣∣∣∣ ĥ3(z)− ĝ3(z)H(z)

∣∣∣∣∣
∣∣∣∣∣∣ 1

Ξ(z)

3∑
j=1

(
eλj+2L − eλj+1L

)
eλjx

∣∣∣∣∣∣ ≤ CT,γ‖h3 − g3‖L2(R),

and, by Lemma 2.2 below, for z ∈ R, |z| ≥ γ with sufficiently large γ,

(2.37)

∣∣∣∣∣∣ 1

detQD

3∑
j=1

(
eλj+2L − eλj+1L

)
eλjx

∣∣∣∣∣∣ ≤ C

(1 + |z|)1/3
.

Combining (2.36) and (2.37) yields

‖y3(·, x)‖H1/3(R) ≤ CT,L‖h3 − g3‖L2(R).

Similarly, we have

‖y3,x(·, x)‖L2(R) + ‖y3,xx(·, x)‖H−1/3(R) ≤ CT,L‖h3 − g3‖L2(R).

The estimates for ‖y(·, x)‖H1/3(0,T ), ‖y3,x(·, x)‖L2(0,T ), and ‖y3,xx(·, x)‖[H1/3(0,T )]∗ follow by noting

that y = y3 in (0, T )× (0, L).
We also have, by an integration by parts, for 0 ≤ τ1 < τ2 ≤ T ,

1

2

∫ L

0
|y(τ2, x)|2 dx− 1

2

∫ L

0
|y(τ1, x)|2 dx+

1

2

∫ τ2

τ1

(
|y(t, L)|2 − |y(t, 0)|2

)
dt

+

∫ τ2

τ1

(
yxx(t, L)y(t, L)− yxx(t, 0)y(t, 0)

)
dt− 1

2

∫ τ2

τ1

(
|yx(t, L)|2 − |yx(t, 0)|2

)
dt = 0.

Using the estimates for ‖y(·, x)‖H1/3(0,T ), ‖y3,x(·, x)‖L2(0,T ), and ‖y3,xx(·, x)‖[H1/3(0,T )]∗ , we obtain

the one for ‖y‖XT .

The proof in the case (h1, h2, h3) = (h1, 0, 0) or in the case (h1, h2, h3) = (0, h2, 0) is similar
after noting Lemma A.1 in the appendix. We mention here that the solution corresponding to the
triple (h1, 0, 0) is given by

ŷ(z, x) =
ĥ1(z)

detQD

3∑
j=1

(λj+2 − λj+1)e
λj(x−L) for a.e. x ∈ (0, L),

and the solution corresponding to the triple (0, h2, 0) is given by

ŷ(z, x) =
ĥ2(z)

detQD

3∑
j=1

(λj+1e
λj+1L − λj+2e

λj+2L)eλjx for a.e. x ∈ (0, L).

The details are left to the reader.
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Step 2: We now deal with the general case. The starting point of the proof is a connection between
the linearized KdV equation and the linear KdV-Burgers equation. Set v(t, x) = e−2t+xy(t, x),
which is equivalent to y(t, x) = e2t−xv(t, x). One can check that if y satisfies the equation

yt + yx + yxxx = f in R+ × (0, L),

then it holds

vt + 4vx + vxxx − 3vxx = fe−2t+x in R+ × (0, L).

Set, in R+ × (0, L),

(2.38) ψ(t, x) = ψ(t) :=
1

L

∫ L

0
f(t, ξ)e−2t+ξ dξ and g(t, x) := f(t, x)e−2t+x − ψ(t, x).

Then ∫ L

0
g(t, x) dx = 0.

Let y1 ∈ C
(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
be the unique solution which is periodic

in space of the system

(2.39) y1,t + 4y1,x + y1,xxx − 3y1,xx = g in (0,+∞)× (0, L),

and

(2.40) y1(0, ·) = y0e
x in (0, L).

Set

α =
1

L

∫ L

0
y1(0, x) dx

By Proposition 2.4, we have, for x ∈ [0, L],

(2.41) ‖y1(·, x)− α‖H1/3(R+) + ‖y1,x(·, x)‖L2(R+) + ‖y1,xx(·, x)‖H−1/3(R) ≤ C‖f‖L1(R+;L2(0,L)).

Let y2 ∈ XT be the unique solution of

y2,t + y2,x + y2,xxx = 0 in (0, T )× (0, L),

y2(t, 0) = h1(t)− e2t
(
y1(t, 0) +

∫ t
0 ψ(s) ds

)
in (0, T ),

y2(t, L) = h2(t)− e2t−L
(
y1(t, L) +

∫ t
0 ψ(s) ds

)
in (0, T ),

y2,x(t, L) = h3(t)−
(
e2t−·(y1(t, ·) +

∫ t
0 ψ(s) ds)

)
x
(t, L) in (0, T ),

and

y2(t = 0, ·) = 0 in (0, L).

Applying the results of Step 1 to y2, and using (2.41), we derive that, for x ∈ [0, L],

‖y2‖XT + ‖y2(·, x)‖H1/3(0,T ) + ‖y2,x(·, x)‖L2(0,T ) + ‖y2,xx(·, x)‖[H1/3(0,T )]∗

≤ CT
(
‖(h1, h2)‖H1/3(R+) + ‖h3‖L2(R+) + ‖f‖L1(R+;L2(0,L))

)
.

The conclusion follows by noting that y = e2t−x
(
y1 +

∫ t
0 ψ(s) ds

)
+ y2 in (0, T )× (0, L).

The proof is complete. �

In the proof of Proposition 2.1, we used the following elementary result, see, e.g., [21].
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Lemma 2.2. For p ∈ C and z in a sufficiently small conic neighborhood of R+, let λj and λ̃j
with j = 1, 2, 3 be the three solutions of the equation λ3 + λ + iz = 0 and λ3 + λ + i(p − z) = 0,

respectively. Consider the convention <(λ1) < <(λ2) < <(λ3) and similarly for λ̃j. We have, in
the limit |z| → ∞,

(2.42) λj = µjz
1/3 − 1

3µj
z−1/3 +O(z−2/3) with µj = e−iπ/6−2jiπ/3,

(2.43) λ̃j = µ̃jz
1/3 − 1

3µ̃j
z−1/3 +O(z−2/3) with µ̃j = eiπ/6+2ijπ/3

Here z1/3 denotes the cube root of z with the real part positive.

Here and in what follows, for s ∈ R, O(zs) denotes a quantity bounded by Czs for large positive
z. Similar convention is used for O(|z|s) for z ∈ C.

µ1

µ̃1

µ2

µ̃2

µ3

µ̃3 Figure 1. The roots λj of λ3 + λ+ iz = 0

satisfy, when z > 0 is large, λj ∼ µjz
1/3

where µ3j = −i. When z < 0 and |z| is large,

then the corresponding roots λ̂j satisfy λ̂j ∼
µ̃j |z|1/3 with µ̃j = µj . We also have λ̃j ∼ λ̂j .

The same proof as in Step 1 of the proof of Proposition 2.1 gives the following result.

Lemma 2.3. Let T > 0 and (h1, h2, h3) ∈ H1/3(0, T ) ×H1/3(0, T ) × L2(0, T ). Then the unique
solution y ∈ XT of the system

(2.44)


yt + yx + yxxx = 0 in (0, T )× (0, L),

y(·, 0) = h1, y(·, L) = h2, yx(·, L) = h3 in (0, T ),

y(0, ·) = 0 in (0, L).

satisfy, for x ∈ [0, L],

(2.45) ‖y(·, x)‖H−2/3(0,T ) ≤ CT,L
(
‖(h1, h2)‖H−2/3(0,T ) + ‖h3‖H−1(0,T )

)
,

where CT,L denotes a positive constant independent of x, y0, and h1, h2, h3.

Remark 2.3. We end this section with some comments on Proposition 2.1 and its proof.

i) The well-posedness of (2.44) in XT is proved in [8, Theorem 2.10 and Proposition 2.16] for
L = 1 when (0, T ) = R+ and the estimate for ‖yx(·, x)‖L2(0,T ) in this case is a consequence
of their results. For L = 1, their results imply that, when (h1, h2, h3) ≡ (0, 0, 0),

(2.46) ‖yx(·, x)‖L2(R+) ≤ C‖y0‖L2(0,1) for x ∈ [0, 1].

Note that L = 1 is smaller than the smallest critical length in NN which is 2π. The
estimate as (2.46) cannot hold for arbitrary L. In fact, such an estimate is not valid for
any critical length by considering a non-zero initial datum in MN .
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ii) Similar estimates for ‖y(·, x)‖H1/3(0,T ) and ‖yx(·, x)‖L2(0,T ) as in (2.2) in the real line

space setting can be found in [16, 24]. To our knowledge, variants of the estimate for
‖yxx(·, x)‖[H1/3(0,T )]∗ in (2.2) are not known even in the real line space setting. Our proof

of Proposition 2.1 is in the spirit of [21], which involves the Fourier transform with re-
spect to time of the solution, as in [8], and a connection between the linearized KdV and
the linear KdV-Burger equations. However, in the study of the the linear KdV-Burger
equation with periodic boundary conditions, the singularity of the kernel is appropriately
compensated (see the proof of Proposition 2.4), which is the novelty of the analysis. The
proof given here is self-contained and is different from the ones in [16, 24] which are based
on the Riemann-Liouville fractional integrals and the theory of Airy functions.

2.3. Proof of Proposition 2.2. Using Proposition 2.1, without loss of generality, one might
assume that y0 = 0, h1 = 0, h2 = 0, and f = 0. This will be assumed from later on.

Extend h3 by 0 for t 6∈ [0, T ] and still denote this extension by h3. Then h3 ∈ H−1/3(R). Denote
y be the corresponding solution for t ≥ 0 and extend y by 0 for t < 0. Still denote this extension
by y. One then has

(2.47)

{
yt + yx + yxxx = 0 in R× (0, L),

y(·, 0) = 0, y(·, L) = 0, yxx(·, L) = h3 in R.
Taking the Fourier transform with respect to t, from the system of y, we have

(2.48)


izŷ(z, x) + ŷx(z, x) + ŷxxx(z, x) = 0 in R× (0, L),

ŷ(z, 0) = ŷ(z, L) = 0 in R,

ŷxx(z, L) = ĥ3(z) in R.
Taking into account the equation of ŷ, we search the solution of the form

(2.49) ŷ(z, ·) =

3∑
j=1

aje
λjx,

where λj = λj(z) with j = 1, 2, 3 are defined in Definition 4.1, and aj = aj(z) for j = 1, 2, 3.
We then have ∑3

j=1 aj = 0,∑3
j=1 aje

λjL = 0,∑3
j=1 ajλ

2
je
λjL = ĥ3,

This implies, with the convention λj+3 = λj ,

(2.50) aj =
eλj+2L − eλj+1L∑3

k=1 e
−λkL(λ2k+2 − λ2k+1)

ĥ3 for j = 1, 2, 3.

Modifying the value of h3 in the interval (T, 2T ) if necessary, as in the proof Proposition 2.1, one

can assume that if z is a real solution of the equation (λ1−λ2)(λ2−λ3)(λ3−λ1)
∑3

k=1 e
−λkL(λ2k+2−

λ2k+1) = 0 of order m then z is also a real solution of order at least m of ĥ3(z). Using the behavior
of λj for large real z, see e.g. Lemma 2.2, one obtains, for m ≥ 1 and z ∈ R with |z| ≤ m,

(2.51) |aj | ≤ Cm‖h3‖H−1/3(R),

and, for z ∈ R with large |z|,

(2.52) |aj | ≤
C

|z|2/3
|ĥ3(z)|
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The conclusions now follows from (2.49)-(2.52). �

2.4. Proof of Proposition 2.3. We only derive the estimates. We have, by Proposition 2.1, we
have

‖y‖XT ≤ CT,L
(
‖y0‖L2(0,L) + ‖u‖H1/3(0,T ) + ‖g‖L1((0,T );L2(0,L))

)
,

where

g(t, x) = f(t, x)− y(t, x)∂xy(t, x).

On the other hand, one has

‖yyx‖L1
(
(0,T );L2(0,L)

) ≤ C‖y‖2XT .
By choosing ε0 sufficiently small, the conclusion follows. �

3. Properties of the unreachable space

In this section, we first describe the unreachable space for the linearized KdV system:

(3.1)


yt + yx + yxxx = 0 in (0, T )× (0, L),

y(·, 0) = yx(·, L) = 0 in (0, T ),

y(·, L) = u in (0, T ).

This reveals more structures behind (1.4). The main result of this section is Proposition 3.1 which
is based on an observability on the controllability with initial data inM⊥D. In comparison with the
right Neumann boundary control system, this part for the Neumann setting is much simpler. The
proof of Proposition 3.1 involves the well-posedness and the estimates for solutions in XT given in
Proposition 2.1 and Proposition 2.2.

As in [35] (see also [14, 21]), we first describe the unreachable space MD. Let L ∈ ND be
defined by (1.3). Denote

(3.2) PD = PL,D :=
{
iz1z2z3/L

3; z1, z2, z3 ∈ C : (1.4) holds, z3 = −(z1 + z2), =(z1z2z3) ≤ 0
}
.

Here and in what follows, for z ∈ C, <z and =z denote the real part and the imaginary part of z,
respectively.

One can rewrite the definition of PD under the form

(3.3) PD =
{
p ∈ C;<(p) ≥ 0 and (3.4) holds

}
,

where, with z1, z2, z3 being three solutions of the equation z3 + L2z + ipL3 = 0,

(3.4) z1e
z1 = z2e

z2 = z3e
z3 .

Thus PD is bounded in C since for large p the three solutions of the equations z3 +L2z+ ipL3 = 0
are close to the three solutions of the equation z3 + ipL3 = 0, and one can show that (3.4) does
not hold then. Condition (3.4) also implies that

χ(p) = 0,

where, with z1, z2, z3 being three solutions of the equation z3 + L2z + ipL3 = 0,

χ(p) = (z1 − z2)(z1 − z3)(z2 − z3)(z1ez1 − z2ez2)(z1e
z1 − z3ez3)(z2e

z2 − z3ez3).

Since χ is analytic in C, the set of the solutions of the equation χ(p) = 0 has no accumulation
point. We thus derive that PD is a finite set.

Set

(3.5) nD := #PD.
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Denote

(3.6) PD =
{
p` ∈ C; 1 ≤ ` ≤ n

}
.

Thus, by (3.3),

<p` ≥ 0.

For 1 ≤ ` ≤ nD, let z1,`, z2,` and z3,` be three solutions of the equation z3 + L2z + ip`L
3 = 0.

Denote

ηj,` = −zj,`/L and ηj+3,` = ηj,` for j ≥ 1.

Then

(3.7) η1,` + η2,` + η3,` = 0, η1,`η2,` + η1,`η3,` + η2,`η3,` = 1, and η1,`η2,`η3,` = ip`.

It follows that

(3.8) η1,`, η2,`, and η3,` are the three solutions of the equation η3 + η − ip` = 0.

From (3.4), one derives that

(3.9) η1,`e
−η1,`L = η2,`e

−η2,`L = η3,`e
−η3,`L.

Define, for 1 ≤ ` ≤ nD,

(3.10) ϕ`(x) =
3∑
j=1

(ηj+2,` − ηj+1,`)e
ηj,`x for x ∈ [0, L],

and

(3.11) Ψ`(t, x) = e−ip`tϕ`(x) for t ∈ R, x ∈ [0, L].

Using (3.7), (3.8), and (3.9), one can check that

(3.12) Ψ`(t, 0) = Ψ`,x(t, 0) = Ψ`(t, L) = Ψ`,xx(t, L) = 0 for t ∈ R

and

(3.13) Ψ`,t + Ψ`,x + Ψ`,xxx = 0 inR× (0, L).

Remark 3.1. We later prove that =p` ≥ 0 for 1 ≤ ` ≤ nD (see Corollary B.1 in the appendix).

We are ready to state the main result of this section on the unreachable space for the linearized
KdV system (3.1).

Proposition 3.1. Let L ∈ ND be defined in (1.3) and set

(3.14) MD := span
{
<ϕ`,=ϕ`;ϕ` is given in (3.10) with 1 ≤ ` ≤ nD

}
.

We have
i) for ϕ ∈MD \ {0} and T > 0, there does not exist u ∈ H1/3(0, T ) such that y(T, ·) = ϕ where

y ∈ XT is the unique solution of the linearized KdV equation (3.1) with y(0, ·) = 0.

ii) there exists a linear continuous operator L :M⊥D → H1/3(0, T ) such that y(T, ·) = ϕ where
y ∈ XT is the unique solution of (3.1) with y(0, ·) = 0 and u = L(ϕ).

iii) There exists a linear continuous operator L̂ :M⊥D → H1/3(0, T ) such that y(T, ·) = 0 where

y ∈ XT is the unique solution of (3.1) with y(0, ·) = ϕ and u = L̂(ϕ).
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Proof. The proof of i) is standard as in [23]. For the convenience of the reader, we give the proof.
Let ϕ ∈ MD \ {0}. By the definition of MD (see also (3.12) and (3.13)), there exists a smooth
(real) solution Ψ of the system

Ψt + Ψx + Ψxx = 0 for (t, x) ∈ R× (0, L),

and

Ψ(t, 0) = Ψx(t, 0) = Ψ(t, L) = Ψxx(t, L) = 0 for t ∈ R,
with Ψ(0, ·) = ϕ in (0, L).

Multiplying the equation of y by Ψ and integrating by parts, after using the boundary conditions
of y and Ψ, one has

1

2

d

dt

∫ L

0
y(t, x)Ψ(t, x) dx = 0.

This yields assertion i).
We next deal with assertion ii) and iii). Let ψ ∈ M⊥D. Let y∗ ∈ XT be the unique solution of

the backward linear KdV system

(3.15)


y∗t + y∗x + y∗xxx = 0 in (0, T )× (0, L),

y∗(·, 0) = y∗x(·, 0) = y∗(·, L) = 0 in (0, T ),

y∗(T, ·) = ψ in (0, L).

Applying the observability inequality in Lemma 3.1 below to y∗(T − ·, L− ·), we obtain

(3.16) λ−1‖ϕ‖L2(0,L) ≤ ‖y∗xx(·, L)‖[H1/3(0,T )]∗ ≤ λ‖ϕ‖L2(0,L)

for some constant λ ≥ 1. Fix a continuous linear mapping

(3.17) L1 : [H1/3(0, T )]∗ → H1/3(0, T )

such that

(3.18) 〈L1(h), h〉H1/3(0,T );[H1/3(0,T )]∗ ≥ C‖h‖[H1/3(0,T )]∗ for all h ∈ [H1/3(0, T )]∗,

for some positive constant C. This can be done using the Fourier series or the Fourier transform
appropriately.

We first prove assertion ii). Equipped M⊥D with the L2(0, L)-scalar product. Define

A :M⊥D →M⊥D
by

A(ψ) = y(T, ·),
where y ∈ XT is the unique solution of the following system

(3.19)


yt + yx + yxxx = 0 in (0, T )× (0, L),

y(·, 0) = yx(·, L) = 0 in (0, T ),

y(·, L) = h in (0, T ),

y(0, ·) = 0 in (0, L),

with h = L1(y∗xx(·, L)) where y∗ is determined by (3.15) (y(T, ·) ∈ M⊥D since y(0, ·) = 0). An
integration by part yields

(3.20)

∫ L

0
y(T, x)z∗(T, x) dx = −

∫ T

0
y(t, L)z∗xx(t, L) dt,

for all solutions z∗ ∈ XT of (3.15) with z∗(T, ·) ∈M⊥D.
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Using (3.16) and applying the Lax-Milgram theory, we derive that A is linear continuous and
its inverse is also linear continuous. The conclusion of ii) follows by taking L(ψ) = L1(h) with
h = L1(y∗xx(·, L)) and y∗ is the solution of (3.15) with ψ being replaced by A−1(ψ).

We now deal with assertion iii). Set

H =
{
y∗xx(·, L) ∈ [H1/3(0, T )]∗; where y∗ is determined by (3.15) with ψ ∈M⊥D

}
.

It follows from (3.16) that H is a closed subspace of [H1/3(0, T )]∗ so is a Hilbert space. We next
consider the following bilinear form on H:

â(u, v) = 〈L1(u), v〉H1/3(0,T );[H1/3(0,T )]∗ .

Using (3.16), we derive from the Lax-Milgram theorem that there exists a continous linear appli-

cation Â :M⊥D → H such that

(3.21)

∫ L

0
ϕ(x)y∗(0, x) dx = â(Âϕ, y∗xx(·, L))

for all solution y∗ ∈ XT of (3.15) with ψ ∈M⊥D.
Set

L̂ = L1 ◦ Â.
The conclusion of iii) then follows after noting that if y(0, ·) ∈M⊥D then y(T, ·) ∈M⊥D, and

(3.22)

∫ L

0
y(T, x)y∗(T, x) dx−

∫ L

0
y(0, x)y∗(0, x) dx = −

∫ T

0
y(t, L)y∗xx(t, L) dt.

The proof is complete. �

Here is the observability inequality used in the proof of Proposition 3.1.

Lemma 3.1. Let L ∈ ND and y ∈ XT be a solution of the linearized KdV equation with y(0, ·) ∈
M⊥D with y(·, 0) = y(·, L) = yx(·, L) = 0. Then there exists Λ ≥ 1 depending only on L and T such
that

(3.23) Λ−1‖y(0, ·)‖L2(0,L) ≤ ‖yxx(·, 0)‖[H1/3(0,T )]∗ ≤ Λ‖y(0, ·)‖L2(0,L).

Proof. By Proposition 2.1, we have

(3.24) ‖yxx(·, 0)‖[H1/3(0,T )]∗ ≤ C‖y(0, ·)‖L2(0,L).

We next prove

(3.25) ‖y(0, ·)‖L2(0,L) ≤ C‖yxx(·, 0)‖[H1/3(0,T )]∗

by contradiction. Assume that there exists a sequence (ϕn) ⊂M⊥D such that

(3.26) ‖yn,xx(·, 0)‖[H1/3(0,T )]∗ ≤
1

n
‖yn(0, ·)‖L2(0,L) =

1

n
,

where yn ∈ XT is the solution of the linearized KdV system with yn(0, ·) = ϕn and yn(·, 0) =
yn(·, L) = yn,x(·, L) = 0. Set

yn(t, x) = yn(T − t, L− x).

Then yn ∈ XT is a solution of the equation yn,t + yn,x + yn,xxx = 0 in (0, T ) × (0, L). By the
regularizing effect of the linearized KdV equation, without loss of generality, one might assume
that yn(0, ·) = yn(T, L−·) converges in L2(0, L). Applying Proposition 2.2 to yn, one derives that
yn(0, L− ·) = yn(T, ·) is a Cauchy sequence in L2(0, L). In other words, ϕn = yn(0, ·) is a Cauchy
sequence in L2(0, L). Let ϕ be the limit of ϕn in L2(0, L) and denote y ∈ XT be the corresponding
solution of the linearized KdV system. Then ‖ϕ‖L2(0,L) = 1.
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Set y(t, x) = y(T − t, L− x). Then y ∈ XT is a solution of the system

(3.27) yt + yx + yxxx = 0 in (0, T )× (0, L),

(3.28) y(·, 0) = yx(·, 0) = y(·, L) = yxx(·, L) = 0 in (0, T ).

and

y(0, ·) ∈M⊥D and ‖y(0, ·)‖L2(0,L)

Proposition 2.2
≥ C‖ϕ‖L2(0,L) = C.

Moreover, y(0, ·) ∈ C∞([0, L]).
Set

V =
{
ϕ ∈M⊥D ∩ C∞([0, L]); ∃y ∈ XT satisfying (3.27), (3.28), and y(0, ·) = ϕ

}
⊂ L2(0, L).

Then V 6= {0}. Using the same argument as above, one can show that any bounded sequence in V
(equipped L2(0, L)-norm) has a subsequence converging in V. Thus V is of finite dimension.

We can now involve the arguments via spectral theory in the spirit of [23] or even simpler (see
also [1, 38]) to show that there exists ϕ ∈ V \ {0} and λ ∈ C such that

(3.29) λϕ+ ϕx + ϕxxx = 0 in (0, L),

(3.30) ϕ(·, 0) = ϕ(·, 0) = ϕx(·, L) = ϕxx(·, L) = 0.

Indeed, this can be done by considering

(3.31)
A : V → V

ψ 7→ −(ψx + ψxxx)

and taking λ ∈ C and ϕ ∈ V \ {0} such that Aϕ = λϕ. The only point required to check is the
fact that ψx +ψxxx ∈ V for ψ ∈ V . To this end, one just notes that −(ψx +ψxxx) = yt(0, ·) where
y ∈ XT is the corresponding solution (thus y(0, ·) = ψ). One now can involve the same arguments
in [23] (or apply [23, Propositions 1 and 2]), to derive that ϕ ∈MD. Hence ϕ = 0 since ϕ ∈M⊥D.
We obtain a contradiction. The proof is complete. �

By the same arguments used in the proof of Lemma 3.1, we also have the following observability
inequality in the case L 6∈ ND, which is the key point of the proof of Theorem 1.3.

Lemma 3.2. Let L 6∈ ND and let y ∈ XT be a solution of the linearized KdV equation with
y(t = 0, ·) ∈ L2(0, L) and y(·, 0) = y(·, L) = yx(·, 0) = 0. Then, for some Λ ≥ 1,

(3.32) Λ−1‖y(0, ·)‖L2(0,L) ≤ ‖yxx(·, 0)‖[H1/3(0,T )]∗ ≤ Λ‖y(0, ·)‖L2(0,L).

Here is a variant of Proposition 3.1 in the case L 6∈ ND.

Proposition 3.2. Let L 6∈ ND. Then
a) There exists a linear continuous operator L : L2(0, L) → H1/3(0, T ) such that y(T, ·) = ϕ

where y ∈ XT is the unique solution of (3.1) with y(0, ·) = 0 and u = L(ϕ).

b) There exists a linear continuous operator L̂ : L2(0, L) → H1/3(0, T ) such that y(T, ·) = 0

where y ∈ XT is the unique solution of (3.1) with y(0, ·) = ϕ and u = L̂(ϕ).
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4. Properties of controls which steer 0 at time 0 to 0 at time T

In this section, we study controls which steer 0 at time 0 to 0 at time T for the linearized KdV
system of (1.1). To this end, it is convenient to introduce

Definition 4.1. For z ∈ C, let (λj)1≤j≤3 =
(
λj(z)

)
1≤j≤3 be the three solutions of

(4.1) λ3 + λ+ iz = 0.

Set

(4.2) Q = Q(z) :=

 1 1 1
eλ1L eλ2L eλ3L

λ1e
λ1L λ2e

λ2L λ3e
λ3L

 ,

(4.3) PD = PD(z) :=
3∑
j=1

λ2j
(
λj+1e

λj+1L − λj+2e
λj+2L

)
,

and

(4.4) Ξ = Ξ(z) := (λ2 − λ1)(λ3 − λ2)(λ1 − λ3),

with the convention λj+3 = λj for j ≥ 1.

Given u ∈ H1/3(0,+∞), let y ∈ C([0,+∞);L2(0, L)) ∩ L2
loc([0,+∞);H1(0, L)) be the unique

solution of the system

(4.5)


yt + yx + yxxx = 0 in (0,+∞)× (0, L),

y(·, 0) = yx(·, L) = 0 in (0,+∞),

y(·, L) = u in (0,+∞),

and

y(t = 0, ·) = 0 in (0, L).

In what follows in this section, we extend y and u by 0 for t < 0 and still denote these extensions
by y and u, respectively. For an appropriate function v defined on R × (0, L), let v̂ denote its
Fourier transform with respect to t, i.e.,

v̂(z, x) =
1√
2π

∫
R
v(t, x)e−izt dt.

From the system of y, we have

(4.6)


izŷ(z, x) + ŷx(z, x) + ŷxxx(z, x) = 0 in R× (0, L),

ŷ(z, 0) = ŷx(z, L) = 0 in R,

ŷ(z, L) = û(z) in R.

This system has a unique solution outside a discrete set of z in C, see [21, Lemma 2.1].
Taking into account the equation of ŷ, we search the solution of the form

ŷ(z, ·) =
3∑
j=1

aje
λjx,

where λ1, λ2, λ3 are the solutions of the equation

(4.7) λ3 + λ+ iz = 0.
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Using the boundary conditions for ŷ, we require that
∑3

j=1 aj = 0,∑3
j=1 e

λjLaj = û,∑3
j=1 λje

λjLaj = 0.

This implies

Q(a1, a2, a3)
T = (0, û, 0)T,

where Q = Q(z) is given in Definition 4.1.
We have

(4.8) detQ =
3∑
j=1

(λj+1 − λj)eλjL+λj+1L =
3∑
j=1

(λj+1 − λj)e−λj+2L,

since
∑3

j=1 λj = 0. We then obtain

aj =
û

detQ

(
λj+1e

λj+1L − λj+2e
λj+2L

)
.

This yields

(4.9) ŷ(z, x) =
û

detQ

3∑
j=1

(
λj+1e

λj+1L − λj+2e
λj+2L

)
eλjx.

From (4.9), we derive that

(4.10) ∂xxŷ(z, 0) =
û(z)PD(z)

detQ(z)
,

where PD(z) is given in Definition 4.1.
Set

(4.11) G(z) = PD(z)/Ξ(z) and H(z) = detQ(z)/Ξ(z),

where Ξ(z) is given in Definition 4.1. It is convenient to consider ∂xxŷ(z, 0) under the form

(4.12) ∂xxŷ(z, 0) =
û(z)G(z)

H(z)
,

By [21, Lemmas A1 and B1], ∂xxŷ(z, 0) is a meromorphic function, and

(4.13) G(z) and H(z) are entire functions.

We thus have just established the following result.

Lemma 4.1. Let u ∈ H1/3(R+) and let y ∈ C
(
[0,+∞);L2(0, L)

)
∩L2

loc

(
[0,+∞);H1(0, L)

)
be the

unique solution of

(4.14)


yt + yx + yxxx = 0 in (0,+∞)× (0, L),

y(·, 0) = yx(·, L) = 0 in (0,+∞),

y(·, L) = u in (0,+∞),

with

(4.15) y(0, ·) = 0 in (0, L).
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Outside a discrete set z ∈ R, we have

(4.16) ŷ(z, x) =
û

detQ

3∑
j=1

(
λj+1e

λj+1L − λj+2e
λj+2L

)
eλjx for a.e. x ∈ (0, L).

Remark 4.1. Assume that û(z, ·) is well-defined for z ∈ C (e.g. when u has a compact support).
Then the conclusions of Lemma 4.1 hold outside of a discrete set z ∈ C.

We end this section with the following result, which is the starting point of our approach.

Proposition 4.1. Let L > 0, T > 0, and u ∈ H1/3(R+). Assume that u has a compact support
in [0, T ], and u steers 0 at the time 0 to 0 at the time T , i.e., the unique solution y of (4.14) and
(4.15) satisfies y(T, ·) = 0 in (0, L). Then û and ûG/H satisfy the assumption of Paley-Wiener’s
theorem concerning the support in [−T, T ], i.e.,

(4.17) û and ûG/H are entire functions,

and

(4.18) |û(z)|+
∣∣∣∣ ûG(z)

H(z)

∣∣∣∣ ≤ CeT |z|,
for some positive constant C.

Remark 4.2. The computations in this section are similar to the ones [21]. Nevertheless, in the
conclusions of Proposition 4.1, we have/require that

ŷ(z, L) and ∂xxŷ(z, 0) are entire functions satisfying (4.18).

This is different with the one used in [21, Proposition 3.1] where one obtains that

∂xŷ(z, L) and ∂xŷ(z, 0) are entire functions satisfying a variant of (4.18).

These differences are important to take into account different boundary conditions.

5. Attainable directions in MD in small time

In this section, we investigate directions inMD, defined in (3.14), which can be reached in small
time. The starting point comes from the power series expansion approach. Let y1 and y2 be the
solutions of

(5.1)


y1,t + y1,x + y1,xxx = 0 in (0, T )× (0, L),

y1(·, 0) = y1,x(·, L) = 0 in (0, T ),

y1(·, L) = u1 in (0, T ),

y1(0, ·) = 0 in (0, L),

(5.2)


y2,t + y2,x + y2,xxx + y1y1,x = 0 in (0, T )× (0, L),

y2(·, 0) = y2,x(·, L) = 0 in (0, T ),

y2(·, L) = 0 in (0, T ).

for some control u1. The key point of this approach is to first understand how one can choose u1
so that

y1(T, ·) = 0

and then analyse what the behavior of projMD
y2(T, ·) is. To this end, we compute the quantity

(5.3)

∫ L

0
y2(T, x)Ψ`(t, x) dx
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where Ψ` is defined in (3.11). Multiplying the equation of y2 by Ψ`, integrating by parts in
[0, T ]× [0, L], we obtain, after using the boundary conditions and the initial conditions,

(5.4)

∫ L

0
y2(T, x)Ψ`(t, x) dx =

1

2

∫ T

0

∫ L

0
y21(t, x)Ψ`,x(t, x) dx.

The goal is then to understand the value of RHS of (5.4).
We will study the value of RHS of (5.4) in a more general setting. Motivated by the definition

of y1, we consider the unique solution y ∈ XT of the system, for u ∈ H1/3(0, T ),

(5.5)


yt + yx + yxxx = 0 in (0, T )× (0, L),

y(·, 0) = yx(·, L) = 0 in (0, T ),

y(·, L) = u in (0, T ),

y(0, ·) = y(T, ·) = 0 in (0, L).

Guided by the definition of ϕ`, which appears in the definition of Ψ` (see (3.10) and (3.11)), for
η1, η2, η3 ∈ C \ {0}, we set

(5.6) ϕ(x) =
3∑
j=1

(ηj+1 − ηj)eηj+2x for x ∈ [0, L],

with the convention ηj+3 = ηj for j ≥ 1. The following assumptions on ηj are used repeatedly
throughout this section:

(5.7) η1 + η2 + η3 = 0, η1η2 + η1η3 + η2η3 = 1,

and

(5.8) η1e
−η1L = η2e

−η2L = η3e
−η3L.

Extend y and u by 0 for t > T and still denote these extensions by y and u, respectively. Then,
by Lemma A.1 in the appendix,

‖u‖H1/3(R+) ≤ C‖u‖H1/3(0,T ).

Assume that y(T, ·) = 0. Then the extension y ∈ C([0,+∞);L2(0, L)) ∩ L2((0,+∞);H1(0, L))
is also a solution of the linearized KdV system in [0,+∞) × (0, L) using the control which is the
extension of u (by 0 outside (0, T )), i.e.,

(5.9)


yt + yx + yxxx = 0 in (0,+∞)× (0, L),

y(·, 0) = yx(·, L) = 0 in (0,+∞),

y(·, L) = u in (0,+∞),

y(0, ·) = 0 in (0, L).

In what follows in this section, we study this quantity:

(5.10)

∫ T

0

∫ L

0
y2(t, x)ϕx(x)e−ipt dt dx

(
=

∫ +∞

0

∫ L

0
y2(t, x)ϕx(x)e−ipt dt dx

)
.

We have, by Lemma 4.1 (see also Remark 4.1), for z ∈ C outside a discrete set,

(5.11) ŷ(z, x) = û(z)

∑3
j=1

(
λje

λjL − λj+1e
λj+1L

)
eλj+2x∑3

j=1(λj+1 − λj)e−λj+2L
.

Recall that λj = λj(z) for j = 1, 2, 3 are the three solutions of the equation

(5.12) x3 + x+ iz = 0 for z ∈ C.
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We begin with

Lemma 5.1. Let p ∈ C, η1, η2, η3 ∈ C \ {0}, and let ϕ be defined by (5.6). Set, for (x, z) ∈
(0, L)× R,

BD(x, z) =

∑3
j=1

(
λje

λjL − λj+1e
λj+1L

)
eλj+2x∑3

j=1(λj+1 − λj)e−λj+2L
·
∑3

j=1(λ̃je
λ̃jL − λ̃j+1e

λ̃j+1L)eλ̃j+2x∑3
j=1(λ̃j+1 − λ̃j)e−λ̃j+2L

· ϕx(x),

where λ1 = λ1(z), λ2 = λ2(z), λ3 = λ3(z) are three solutions of λ3 + λ + iz = 0, and λ̃j = λ̃j(z)

denotes the conjugate of the roots corresponding to z − p. Let u ∈ H1/3(0,+∞) with compact
support in [0,+∞) and let y ∈ C

(
[0,+∞);L2(0, L)

)
∩L2

loc

(
[0,+∞);H1(0, L)

)
be the unique solution

of (5.9). Assume that y(t, ·) = 0 for large t. We have

(5.13)

∫ L

0

∫ +∞

0
|y(t, x)|2ϕx(x)e−ipt dt dx =

∫
R
û(z)û(z − p)

∫ L

0
BD(x, z) dx dz.

Proof. We have∫ L

0

∫ ∞
0
|y(t, x)|2ϕx(x)e−ipt dt dx =

∫ L

0
ϕx(x)|̂y|2(p, x) dx =

∫ L

0
ϕx(x)ŷ ∗ ̂̄y(p, x) dx

=

∫ L

0
ϕx(x)

∫
R
ŷ(z, x)̂̄y(p− z, x) dz dx

=

∫ L

0
ϕx(x)

∫
R
ŷ(z, x)ŷ(z − p, x) dz dx.

Using Fubini’s theorem, we derive from (5.11) that∫ L

0

∫ ∞
0
|y(t, x)|2ϕx(x)e−ipt dt dx =

∫
R
dzû(z)û(z − p)

∫ L

0
BD(x, z) dx,

which is (5.13). �

We next investigate the behavior of ∫ L

0
BD(x, z) dx

for z ∈ R with large |z|. We have

Lemma 5.2. Let p ∈ C and η1, η2, η3 ∈ C \ {0}. Assume (5.8). We have

(5.14)

∫ L

0
BD(x, z) dx = ED|z|−1/3 +O(|z|−2/3) for z ∈ R with large |z|,

where ED is defined by

(5.15) ED =
1√
3A

3∑
j=1

η2j+2(ηj+1 − ηj),

where 5

A = A(η1, η2, η3) := ηje
−ηjL.

Here and in what follows, for s ∈ R, O(zs) denotes a quantity bounded by Czs for large positive
z. Similar convention is used for O(|z|s) for z ∈ C.

5A does not depend on j by (5.8).
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Proof. We first consider the case where z is positive and large. We use the following convention

<(λ1) < <(λ2) < <(λ3) and similarly for λ̃j for large positive z.
We first look at the denominator of BD(x, z). We have, by Lemma 2.2,

(5.16)
1∑3

j=1(λj+1 − λj)e−λj+2L
· 1∑3

j=1(λ̃j+1 − λ̃j)e−λ̃j+2L

=
eλ1Leλ̃1L

(λ3 − λ2)(λ̃3 − λ̃2)

(
1 +O

(
e−C|z|

1/3))
.

We next deal with the numerator of BD(x, z). Set, for (z, x) ∈ R× (0, L),

(5.17) f(z, x) =
3∑
j=1

(λje
λjL − λj+1e

λj+1L)eλj+2x, g(z, x) =
3∑
j=1

(λ̃je
λ̃jL − λ̃j+1e

λ̃j+1L)eλ̃j+2x,

and 6

fm(z, x) = λ3e
λ3Leλ2x−λ2eλ2Leλ3x−λ3eλ3Leλ1x, gm(z, x) = λ̃3e

λ̃3Leλ̃2x−λ̃2eλ̃2Leλ̃3x−λ̃3eλ̃3Leλ̃1x.
We have∫ L

0
f(z, x)g(z, x)ϕx(x) dx =

∫ L

0
fm(z, x)gm(z, x)ϕx(x) dx+

∫ L

0
(f − fm)(z, x)gm(z, x)ϕx(x) dx

+

∫ L

0
fm(z, x)(g − gm)(z, x)ϕx(x) dx+

∫ L

0
(f − fm)(z, x)(g − gm)(z, x)ϕx(x) dx.

By Lemma 2.2, we have

(5.18)

∫ L

0
|(f − fm)(z, x)gm(z, x)ϕx(x)| dx+

∫ L

0
|(f − fm)(z, x)(g − gm)(z, x)ϕx(x)| dx

+

∫ L

0
|fm(z, x)(g − gm)(z, x)ϕx(x)| dx ≤ C|e(λ3+λ̃3)L|e−C|z|1/3 .

We next estimate

(5.19)

∫ L

0
fm(x, z)gm(x, z)ϕx(x) =

∫ L

0
fm(x, z)gm(x, z)

 3∑
j=1

ηj+2(ηj+1 − ηj)eηj+2x

 dx.

We first have, by Lemma 2.2,

(5.20)

∫ L

0

(
− λ3eλ3Leλ2xλ̃2eλ̃2Leλ̃3x − λ2eλ2Leλ3xλ̃3eλ̃3Leλ̃2x + λ2e

λ2Leλ3xλ̃2e
λ̃2Leλ̃3x

)

×

 3∑
j=1

ηj+2(ηj+1 − ηj)eηj+2x

 dx
(5.8)
= A−1e(λ3+λ̃3+λ2+λ̃2)L

(
S1(z) +O

(
e−C|z|

1/3))
,

where

(5.21) S1(z) :=

3∑
j=1

η2j+2(ηj+1 − ηj)

(
λ2λ̃2

λ3 + λ̃3 + ηj+2

− λ2λ̃3

λ3 + λ̃2 + ηj+2

− λ3λ̃2

λ2 + λ̃3 + ηj+2

)
.

6The index m stands the main part.
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We next obtain, by Lemma 2.2,

(5.22)

∫ L

0

(
λ3e

λ3Leλ1xλ̃3e
λ̃3Leλ̃1x − λ3eλ3Leλ1xλ̃3eλ̃3Leλ̃2x − λ3eλ3Leλ2xλ̃3eλ̃3Leλ̃1x

)

×

 3∑
j=1

ηj+2(ηj+1 − ηj)eηj+2x

 dx = e(λ3+λ̃3)L
(
S2(z) +O(e−C|z|

1/3
)
)
,

where

(5.23) S2(z) :=
3∑
j=1

ηj+2(ηj+1 − ηj)

(
− λ3λ̃3

λ1 + λ̃1 + ηj+2

+
λ3λ̃3

λ1 + λ̃2 + ηj+2

+
λ3λ̃3

λ2 + λ̃1 + ηj+2

)
.

We have

(5.24)

∫ L

0
λ3e

λ3Leλ2xλ̃3e
λ̃3Leλ̃2x

 3∑
j=1

ηj+2(ηj+1 − ηj)eηj+2x

 dx = e(λ3+λ̃3)LS3(z),

where

(5.25) S3(z) :=
3∑
j=1

ηj+2(ηj+1 − ηj)λ3λ̃3
(
eλ2L+λ̃2L+ηj+2L − 1

)
λ2 + λ̃2 + ηj+2

.

We finally get, by Lemma 2.2,

(5.26)

∣∣∣∣∣∣
∫ L

0

(
λ3e

λ3Leλ1xλ̃2e
λ̃2Leλ̃3x + λ2e

λ2Leλ3xλ̃3e
λ̃3Leλ̃1x

)( 3∑
j=1

ηj+2(ηj+1 − ηj)eηj+2x
)
dx

∣∣∣∣∣∣
= |e(λ3+λ̃3)L|O(e−Cz

1/3
).

By Lemma 2.2, we have

(5.27)


λ1 + λ̃1 + λ2 + λ̃2 + λ3 + λ̃3 = O(z−1/3),

λ1 + λ̃1 + λ3 + λ̃3 = O(z−1/3),

(λ3 − λ2)(λ̃3 − λ̃2) = 3z2/3(1 +O(z−1/3)).

We claim that

(5.28) |z|−1/3|S1(z)|+ |S2(z)|+ |S3(z)| = O(1) for large positive z.

Admitting this, by combining (5.16), (5.20), (5.22), (5.24), (5.26), and (5.27), and using (5.28), we
obtain

(5.29)

∫ L

0
BD(x, z) dx =

A−1S1(z)

3z2/3
+O(|z|−2/3).

We first derive the the asymptotic behavior of S1(z). We have, by Lemma 2.2,

(5.30) λ2λ̃2 = z2/3 +O(1), λ2λ̃3 = z2/3eiπ/3 +O(1), λ3λ̃2 = z2/3e−iπ/3 +O(1),
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and

(5.31)
1

λ3 + λ̃3 + ηj+2

=
1 +O(z−1/3)√

3z1/3
,

1

λ2 + λ̃3 + ηj+2

=
1 +O(z−1/3)

(eiπ/6 + i)z1/3
,

1

λ3 + λ̃2 + ηj+2

=
1 +O(z−1/3)

(e−iπ/6 − i)z1/3
,

It follows that

(5.32) S1(z) =

(
1√
3

+ 2< eiπ/3

eiπ/6 + i

)
3∑
j=1

η2j+2(ηj+1 − ηj)|z|1/3 +O(1)

=
√

3
3∑
j=1

η2j+2(ηj+1 − ηj)|z|1/3 +O(1).

We next deal with S2(z). Since

3∑
j=1

ηj+2(ηj+1 − ηj) = 0,

it follows that

S2(z) =
3∑
j=1

ηj+2(ηj+1 − ηj)

(
− λ3λ̃3

λ1 + λ̃1 + ηj+2

+
λ3λ̃3

λ1 + λ̃1

)

+
3∑
j=1

ηj+2(ηj+1 − ηj)

(
λ3λ̃3

λ1 + λ̃2 + ηj+2

− λ3λ̃3

λ1 + λ̃2

)

+
3∑
j=1

ηj+2(ηj+1 − ηj)

(
λ3λ̃3

λ2 + λ̃1 + ηj+2

− λ3λ̃3

λ2 + λ̃1

)
.

Using Lemma 2.2, we derive that

(5.33) S2(z) = O(1).

We next derive the asymptotic behavior of S3(z). From Lemma 2.2, we have

(5.34) λ2 + λ̃2 = O(z−2/3).

Using (3.9), we derive from (5.25) that

S3(z) = λ3λ̃3

3∑
j=1

(ηj+1 − ηj)ηj+2

ηj+2

(
A−1ηj+2 − 1

)
+O(1)

= λ3λ̃3

3∑
j=1

(ηj+1 − ηj)
(
A−1ηj+2 − 1

)
+O(1).

Since
∑3

j=1(ηj+1 − ηj) = 0 and
∑3

j=1(ηj+1 − ηj)ηj+2 = 0, it follows from (5.34) that

(5.35) S3 = O(1).
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Combing (5.29) and (5.32) yields∫ L

0
BD(x, z) dz = ED|z|−1/3 +O(z−2/3),

where

(5.36) ED =
1√
3A

3∑
j=1

η2j+2(ηj+1 − ηj).

The conclusion in the case where z is large and negative can be derived from the case where z
is positive and large as follows. Define, for (z, x) ∈ R× (0, L), with large |z|,

MD(z, x) =

∑3
j=1(λje

λjL − λj+1e
λj+1L)eλj+2x∑3

j=1(λj+1 − λj)e−λj+2L
.

Then

BD(z, x) = MD(z, x)MD(z − p, x)ϕx(x).

It is clear from the definition of MD that

MD(−z, x) = MD(z, x).

We then have

BD(−z, x) = MD(−z, x)MD(−z − p, x)ϕx(x) = MD(z, x)MD(z + p, x)ϕx(x).

We thus obtain the result in the case where z is negative and large by taking the conjugate of the
corresponding expression for large positive z in which ηj and p are replaced by η̄j , and −p. The
conclusion follows. �

As a consequence of Lemmas 5.1 and 5.2, we obtain

Lemma 5.3. Let p ∈ C, η1, η2, η3 ∈ C \ {0}, and let ϕ be defined by (5.6). Assume (5.8). Let u ∈
H1/3(0,+∞) with compact support in [0,+∞), and let y ∈ C([0,+∞);L2(0, L))∩L2

loc

(
[0,+∞);H1(0, L)

)
be the unique solution of (5.9). Assume that y(t, ·) = 0 for large t. We have

(5.37)

∫ +∞

0

∫ L

0
|y(t, x)|2ϕx(x)e−ipt dx dt =

∫
R
û(z)û(z − p)

(
ED|z|−1/3 +O(|z|−2/3)

)
dz.

Recall that ED is defined in (5.15).

In the next lemma, we show that ED 6= 0 under the assumptions (5.7) and (5.8).

Lemma 5.4. Let η1, η2, η3 ∈ C \ {0} and L > 0. Assume (5.7) and (5.8). Then

3∑
j=1

η2j+2(ηj+1 − ηj) 6= 0,

with the convention ηj+3 = ηj.

Proof. We prove Lemma 5.4 by contradiction. Assume that

(5.38)
3∑
j=1

η2j+2(ηj+1 − ηj) = 0.

We have

0 = (η3 − η2)η21 + (η1 − η3)η22 + (η2 − η1)η23 = η3(η
2
1 − η22) + η1η2(η2 − η1) + (η2 − η1)η23.
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Since η3 = −(η1 + η2) by (5.7), it follows that

(5.39) 0 = −(η1+η2)(η
2
1−η22)+η1η2(η2−η1)+(η2−η1)(η1+η2)

2 = (η2−η1)
(

2(η1+η2)
2+η1η2

)
.

Set

c = η21 + η1η2 + η22 and d = η1η2.

Since, by (5.7)

1 = η1η2 + η1η3 + η2η3 = η1η2 − (η1 + η2)
2 = −(η21 + η1η2 + η22),

it follows that

(5.40) c = −1

We first consider the case η1 6= η2. From (5.39), we have

(5.41) 2c+ 3d = 2(η1 + η2)
2 + η1η2 = 0.

Combining (5.40) and (5.41) yields

d = −2c/3 = 2/3.

This yields

(η1 + η2)
2 = c+ d = −1/3 and η1η2 = 2/3.

Thus either

η1 =
2i√

3
and η2 = − i√

3
or

η1 =
i√
3

and η2 = − 2i√
3
.

One can then check that, since L ∈ R,

η1e
−η1L 6= η2e

−η2L.

We hava a contradiction with (5.8) in this case.

We next consider the case η1 = η2. Since c = −1, it follows that η1 = ±i/
√

3, which contradicts
the fact that, by (5.8),

η1e
−η1L = η3e

−η3L = −2η1e
2η1L

since L ∈ R.
The proof is complete. �

Using Lemma 5.4, we derive from Lemma 5.3 the following result which is the key ingredient
for the analysis of the locally controllability of the KdV system (1.1).

Proposition 5.1. Let 0 < T < 1, p ∈ C, η1, η2, η3 ∈ C\{0}, and let ϕ be defined by (5.6). Assume

(5.7) and (5.8). Let u ∈ H1/3(0,+∞) and let y ∈ C([0,+∞);L2(0, L)) ∩ L2
loc

(
[0,+∞);H1(0, L)

)
be the unique solution of (5.9). Assume that u 6≡ 0, u(t) = 0 for t > T , and y(t, ·) = 0 for large t.
Then, there exists a real number ND(u) ≥ 0 such that

C−1‖u‖H−1/6(R+) ≤ ND(u) ≤ C‖u‖H−1/6(R+)

for some constant C ≥ 1 depending only on L, and

(5.42)

∫ ∞
0

∫ L

0
|y(t, x)|2e−iptϕx(x) dx dt = ND(u)

(
1 +O(1)T 1/5

)
.
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Proof of Proposition 5.1. After establishing Lemma 5.3 and Lemma 5.4, the proof of Proposi-
tion 5.1 is quite similar to the one of [21, Proposition 3.6] after applying several technical lemmas
in the appendix.

By Proposition 4.1,

(5.43) ûG/H is an entire function

and by (4.13), G and H are entire functions. The same holds for û since u(t) = 0 for large
t. One can show that the number of common roots of G and H in C is finite, see Lemma B.1
in the appendix. Let z1, . . . , zk be the distinct common roots of G and H in C. There exist
m1, . . . ,mk ∈ N such that, with

Γ(z) =

k∏
j=1

(z − zj)mj in C,

the following two functions are entire

(5.44) G(z) :=
G(z)

Γ(z)
and H(z) :=

H(z)

Γ(z)
,

and G and H have no common roots. Since

ûG/H = ûG/H,

it follows from (5.43) that the function v defined by

(5.45) v(z) = û(z)/H(z) in C

is also an entire function.
Using Lemma 2.2, one can show that

(5.46) |v(z)| ≤ Cεe(T+ε)|z| in C.

Since H is a non-constant entire function, there exists γ > 0 such that

(5.47) H′(z + iγ) 6= 0 for all z ∈ R.

Fix such an γ and denote Hγ(z) = H(z + iγ) for z ∈ C. Set

(5.48) ŵ(z) = v(z)H′γ(z) = û(z)H′γ(z)H(z)−1.

Thus ŵ is an entire function and satisfies Paley-Wiener’s conditions for the interval (−T − ε, T +
ε) for all ε > 0, see e.g. [41, Theorem 19.3]. Indeed, this follows from the facts |ŵ(z)| ≤
Cε|v(z)|eε|z| for z ∈ C by Lemma 2.2, |v(z)| ≤ Cεe

(T+ε)|z| for z ∈ C by (5.46), |H′γ(z)v(z)| =

|H′γ(z)H(z)−1û(z)| ≤ |û(z)| for real z with large |z|, so that
∫
R |û|

2 < +∞.
Using Lemma 2.2, we have, for some α ∈ C \ {0}, it holds, with χ(z) = z or χ(z) = z − p

(5.49) lim
z∈R,z→+∞

H(χ(z))|z|−2/3/H′γ(χ(z)) = α,

(5.50) lim
z∈R,z→−∞

H(χ(z))|z|−2/3/H′γ(χ(z)) = −ᾱ.

and, for large positive z,

(5.51)
∣∣H(χ(z))|z|−2/3 − αH′γ(χ(z))

∣∣ ≤ C|H(χ(z))||z|−1 ≤ C|H′γ(χ(z))||z|−1/3,

and, for large negative z,

(5.52)
∣∣H(χ(z))|z|−2/3 + ᾱH′γ(χ(z))

∣∣ ≤ C|H(χ(z))||z|−1 ≤ C|H′γ(χ(z))||z|−1/3.
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From the definition of w by (5.48), we derive from (5.51) and (5.52) and the fact v being an
entire function that

(5.53)

∫
R

(1 + |z|)|ŵ(z)|2 dz ∼
∫
R

|û(z)|2

1 + |z|1/3
dz,

and

(5.54)

∫
R
|ŵ(z)|2 dz ∼

∫
R

|û(z)|2

1 + |z|4/3
dz.

We have ∣∣∣û(z)û(z − p)BD(z, x)
∣∣∣ =

∣∣ϕx(x)ŷ(z, x)ŷ(z − p, x)
∣∣ ≤ C|ŷ(z, x)||ŷ(z − p, x)|.

Since supp y ⊂ [0, T ]× [0, L], applying Lemma 2.3, we have, for (z, x) ∈ R× (0, L),

|ŷ(z, x)| ≤ C(1 + |z|)‖u‖H−2/3(R) and |ŷ(z − p, x)| ≤ C(1 + |z|)‖u‖H−2/3(R) .

The real zeros of H(z) and H(z − p) are simple by Lemma B.3 in the appendix, it follows from
Lemma 5.3 that

(5.55)

∣∣∣∣û(z)û(z − p)
∫ L

0
BD(z, x) dx

∣∣∣∣ ≤ C(1 + |z|)2‖u‖2
H−2/3(0,+∞)

.

Combining (5.54) and (5.55) yields

(5.56)

∣∣∣∣û(z)û(z − p)
∫ L

0
BD(z, x) dx

∣∣∣∣ ≤ C(1 + |z|)2‖w‖2L2(0,+∞),

Applying Lemmas 5.1 and 5.2 and using (5.51), (5.52), (5.56) and the fact
∫
R dz =

∫
z∈R;|z|<m dz+∫

z∈R;|z|≥m dz, we derive that

(5.57)

∣∣∣∣∫
R
û(z)û(z − p)

∫ L

0
BD(z, x) dx dz − ED|α|2

∫
R
|z|ŵ(z)ŵ(z − p) dz

∣∣∣∣
≤ Cm3‖w‖2L2(R) + Cm−1/3

∫
|z|>m

|z||ŵ(z)||ŵ(z − p)| dz.

Using the fact∫
R
|z||ŵ(z)||ŵ(z − p)− ŵ(z)| dz ≤ ‖w‖Ḣ1/2(R)‖w(·)− w(·)e−ip·‖Ḣ1/2(R)

and, by Lemma A.2 in the appendix 7,

‖w(·)− w(·)e−ip·‖2
Ḣ1/2(R) ≤ C

(
T 2‖w‖Ḣ1/2 + T‖w‖2L2

)
,

and, since suppw ⊂ (−T, T ), 8

(5.58) ‖w‖L2(R) ≤ CT 1/2‖w‖Ḣ1/2(R),

we derive that ∣∣∣∣∫
R
|z|ŵ(z)ŵ(z − p)− ŵ(z) dz

∣∣∣∣ ≤ CT 2‖w‖2
Ḣ1/2(R).

7Here we apply with u = w and ϕ = χ(1− e−ip·) where χ is a cutoff function which is 1 on (−T, T ) and 0 outside
(−2T, 2T ) such that |∇χ| ≤ C/T for some universal constant C.

8The inequality can be proved first for T = 1 and then for 0 < T < 1 by scalling.
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It then follows from (5.57) that

(5.59)

∣∣∣∣∫
R
û(z)û(z − p)

∫ L

0
BD(z, x) dx dz − ED|α|2

∫
R
|z||ŵ(z)|2 dz

∣∣∣∣
≤ Cm3T 2‖w‖2

Ḣ1/2(R) + Cm−1/3‖w‖2
Ḣ1/2(R) + CT 2‖w‖2

Ḣ1/2(R).

By choosing m = 1/T 3/5 and using again (5.58), from (5.59), we obtain∫
R
û(z)û(z − p)

∫ L

0
BD(z, x) dx dz = ED|α|2

∫
R

(1 + |z|)|ŵ(z)|2 dz
(

1 +O(1)T 1/5
)
.

The conclusion now follows from (5.53). The proof is complete. �

We present now one of the direct consequences of Proposition 5.1. Denote ξ1(t, x) = <{ϕ(x)e−ipt}
and ξ2(t, x) = ={ϕ(x)e−ipt}. Then

(5.60) ξ1(t, x) + iξ2(t, x) = ϕ(x)e−ipt.

Denote E1,D = <(ED) and E2,D = =(ED), and set

(5.61) Ψ(t, x) = E1,Dξ1(t, x) + E2,Dξ2(t, x).

Multiplying (5.42) by ED and normalizing appropriately, we have

Corollary 5.1. Let p ∈ C, η1, η2, η3 ∈ C \ {0} and let ϕ be defined by (5.6). Assume (5.7) and

(5.8). There exists T∗ > 0 such that, for any (real) u ∈ H1/3(R+) with u(t) = 0 for t > T∗
and y(t, ·) = 0 for large t where y ∈ C([0,+∞);L2(0, L)) ∩ L2

loc

(
[0,+∞);H1(0, L)

)
is the unique

solution of (5.9), we have

(5.62)

∫ ∞
0

∫ +∞

0
y2(t, x)Ψx(t, x) dx dt ≥ C‖u‖2

H−1/6(R).

6. Finite time local exact controllability of the KdV equation for all critical
length - Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We begin with

Lemma 6.1. Let L ∈ ND and p` ∈ PD. We have

<p` > 0 for 1 ≤ ` ≤ nD.

Proof. We prove by contradiction that <p` ≤ 0. Then

<p` = 0,

since <p` ≥ 0. It follows that ip` is real.
The equation η3 + η − ip` = 0 then has one real solution and two (possibly complex) solutions

which are conjugate each other. Assume that η3 is real. With η1 = a+bi and η2 = a−bi (a, b ∈ R),
we have

−(η1η2 + η1η3 + η2η3)
η3=−(η1+η2)

= η21 + η22 + η1η2 = (a+ bi)2 + (a− bi)2 + a2 + b2 = 3a2 − b2 = −1.

This implies

(6.1) b2 = 3a2 + 1.

We also have

η1η2η3 = −2a(a2 + b2) and η1η2η3 = ip`
Corollary B.1

≤ 0.
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This yields

(6.2) a ≥ 0,

since a2 + b2 6= 0 by (6.1).
On the other hand, since η1e

η1L = η2e
η2L = η3e

η3L, it follows that

η23e
2η3L = η1η2e

(η1+η2)L.

We thus obtain
4a2e−4aL = (a2 + b2)e2aL.

This yields

4a2e−6aL = a2 + b2
(6.1)
= 4a2 + 1.

This contradicts (6.2). The conclusion follows. �

We introduce, for 1 ≤ ` ≤ nD,

(6.3) M` := span
{
<ϕ`,=ϕ`

}
.

From Lemma 6.1, we know that dimM` = 2. It follows that

(6.4) dimMD = 2nD.

In what follows, for ξ ∈M` with
ξ = a<ϕ` + b=ϕ`,

we denote

(6.5) ‖ξ‖M`
= (a2 + b2)1/2.

For c > 0 and ϕ ∈ L2(0, L), let Bc(ϕ) denote the open ball in L2(0, L) centerred at ϕ and with
radius c, i.e.,

(6.6) Bc(ϕ) =
{
φ ∈ L2(0, L); ‖φ− ϕ‖L2(0,L) < c

}
.

The following result is important for the proof of Theorem 1.1.

Lemma 6.2. For L ∈ ND. There exists T = TL such that for all 0 < c1 < c2, there exists
0 < c3 < c1 such that for ϕ ∈ MD with c1 ≤ ‖projM`

ϕ‖M`
≤ c2 for all 1 ≤ ` ≤ nD, there exist

two mappings U1 : Bc3(ϕ) → H1/3(0, T ) and U2 : Bc3(ϕ) → H1/3(0, T ) such that for ψ ∈ Bc3(ϕ),
the unique solutions y1 ∈ XT and y2 ∈ XT of the following two systems, with u1 = U1(ψ) and
u2 = U2(ψ),

(6.7)


y1,t + y1,x + y1,xxx = 0 in (0, T )× (0, L),

y1(·, 0) = y1(·, L) = 0 in (0, T ),

y1,x(·, L) = u1 in (0, T ),

y1(0, ·) = 0 in (0, L),

(6.8)


y2,t + y2,x + y2,xxx + y1y1,x = 0 in (0, T )× (0, L),

y2(·, 0) = y2(·, L) = 0 in (0, T ),

y2,x(·, L) = u2 in (0, T ),

y2(0, ·) = 0 in (0, T ),

satisfy
y1(T, ·) = 0 and y2(T, ·) = ψ.
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Moreover, for ψ, ψ̃ ∈ Bc3(ϕ),

(6.9) ‖U1(ψ)− U1(ψ̃)‖H1/3(0,T ) ≤ C‖ψ − ψ̃‖L2(0,T )

and

(6.10) ‖U2(ψ)− U2(ψ̃)‖H1/3(0,T ) ≤ C‖ψ − ψ̃‖L2(0,T ),

for some positive constant C depending only on L, T , c1, and c2.

Proof. In this proof, for notational ease, we denote nD by n. We first claim that for

(6.11) 1 ≤ k ≤ n and 1 ≤ i1, · · · , ik ≤ n distinct,

there exists T , depending only on L, and u1 ∈ H1/3(0, T ) such that

(6.12) y1(T, ·) = 0, projMi1
y2(T, ·) 6= 0 and projMij

y2(T, ·) = 0 for 2 ≤ j ≤ k,

where y1 ∈ XT is the unique solution of (6.7) and y2 ∈ XT is the unique solution of (6.8) with
u2 = 0 in (0, T ).

We prove this claim by recurrence in k. We first note that this claim holds for k = 1 by
Corollary 5.1. Assume that the claim holds for 1 ≤ k ≤ n − 1 and for all 1 ≤ i1, · · · , ik ≤ n
distinct, we prove it for k + 1 and for all 1 ≤ i1, · · · , ik+1 ≤ n distinct.

Let 1 ≤ i1, · · · , ik+1 ≤ n be distinct. For notational ease, we assume that

ij = j for j ≤ 1 ≤ k + 1.

By the recurrence we know that there exist T > 0 and u1 ∈ H1/3(0, T ) and T̂ > 0 and û1 ∈
H1/3(0, T̂ ) such that the corresponding solutions y1 and y2 in the time interval (0, T ) with y1,x(·, L) =
u1 in (0, T ) of (6.7) and y2,x(·, L) = 0 in (0, T ) of (6.8), and the corresponding solutions ŷ1 and ŷ2
in the time interval (0, T̂ ) with ŷ1,x(·, L) = û1 in (0, T̂ ) and ŷ2,x(·, L) = 0 in (0, T̂ ) satisfy

(6.13) y1(T, ·) = 0, projM1
y2(T, ·) 6= 0, and projMj

y2(T, ·) for 2 ≤ j ≤ k,

(6.14) ŷ1(T̂ , ·) = 0, projMk+1
ŷ2(T̂ , ·) 6= 0, and projMj

ŷ2(T̂ , ·) = 0 for 2 ≤ j ≤ k.

We still denote y1, y2 the solution of (6.7) and (6.8), respectively, with t ∈ R+ where we extend
u1 by 0 for t > T (y1(t, ·) = 0 for t > T then), and do similarly for ŷ1 and ŷ2.

Without loss of generality, we can assume that

(6.15) projMk+1
y2(T, ·) 6= 0

since the claim is proved in this case otherwise.
For τ1 and τ2 being two non-negative constants and α being a positive constant all determined

later, we define U1 in (0, T + T̂ + τ1 + τ2) by

(6.16) U1(t) =



u1(t) in (0, T ),

0 in (T, T + τ1),

αû1(t− T − τ1) in (T + τ1, T + τ1 + T̂ ),

0 in (T + T̂ + τ1, T + T̂ + τ1 + τ2),

Then U1 ∈ H1/3(0, T + T̂ + τ1 + τ2) and

(6.17) ‖U‖H1/3((0,T+T̂+τ1+τ2))
≤ C

(
‖u1‖H1/3(0,T ) + |α|‖û1‖H1/3(0,T̂ )

)
by Lemma A.1 in the appendix.
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Let Y1 and Y2 be the corresponding solution of (6.7) and (6.8) in the time interval (0, T + T̂ +

τ1 + τ2) with Y1,x(·, L) = U1 and Y2,x(·, L) = 0. Since y1(T, ·) = 0 and ŷ1(T̂ , ·) = 0, it follows that

Y1(T + T̂ + τ1 + τ2, ·) = 0.

Using (6.15), by choosing appropriately τ1, one has, by Lemma 6.1,

projMk+1
y2(T + T̂ + τ1, ·) = −cprojMk+1

ŷ2(T̂ , ·),

for some c > 0. We now choose α = c1/2. Then

(6.18) projMk+1
Y2(T + T̂ + τ1, ·)

= projMk+1
y2(T + T̂ + τ1, ·) + α2projMk+1

ŷ2(T̂ , ·)

= −cprojMk+1
y2(T̂ , ·) + c projMk+1

y2(T̂ , ·) = 0,

which yields

(6.19) projMk+1
Y2(T + T̂ + τ1 + τ2, ·) = 0.

We have

(6.20) projM1
Y2(T + T̂ + τ1, ·) = projM1

y2(T + T̂ + τ1, ·) + cprojM1
ŷ2(T̂ , ·).

If projM1
ŷ2(T̂ , ·) = 0, we choose τ2 = 0. Then

(6.21) projM1
Y2(T + T̂ + τ1 + τ2, ·) = projM1

y2(T + T̂ + τ1, ·) 6= 0

since projM1
y2(T, ·) 6= 0. The claim for k+1 follows with the control U1 (with τ2 = 0). Otherwise,

projM1
ŷ2(T2) 6= 0. Then if <p1 6= <pk+1, one can choose τ2 > 0 such that projM1

y2(T+T̂+τ1+τ2)

and projM1
y2(T̂ +τ2) are independent. The claim for k+1 follows with the control U1. Otherwise,

=p1 6= =pk+1 since <p1 = <pk+1 and p1 6= pk+1. Since, after recalling (6.5),

‖projM1
y2(T + T̂ + τ1 + τ2)‖M1 = ‖projM1

y2(T + T̂ + τ1)‖M1e
−=p1τ2

and
c‖projM1

ŷ2(T + T̂ + τ1 + τ2)‖M1 = c‖projM1
ŷ2(T + T̂ + τ1)‖M1e

−=pk+1τ2 .

It follows from (6.20) that

projM1
Y2(T + T̂ + τ1 + τ2, ·) 6= 0

for some τ2 > 0.
Therefore the claim is proved.
From the claim with k = n+ 1, one can derive that there exist a positive T and a Lipschitz map

from
V1 : Bc3(ϕ) ∩MD → H1/3(0, T )

such that
y1(T, ·) = 0 and projMD

y2 = ψ,

for ψ ∈ Bc3(ϕ) ∩MD. The conclusion now follows by considering

U1(ψ) = V1 ◦ projMD
(ψ) and U2 = LT (y2(T )− projMD

ψ)

where LT = L is given by Proposition 3.1 and y2 is the solution corresponding to U1(ψ).
The proof is complete. �

Remark 6.1. When dimMD = 2, the proof of Lemma 6.2 is similar to the analysis in [13] where
the rotation idea is involved. In the case, dimMD > 2, we cannot extend the analysis in [15]. Our
situation is more complicated than the one in [15] since =p` might be not zero and therefore, it
might happen that =p`1 = =p`2 for some `1 6= `2.
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We are ready to give the proof of Theorem 1.1

Proof of Theorem 1.1. Fix y0, yT ∈ L2(0, L) with small L2-norms. For simplicity of the presenta-
tion (and by Proposition 3.1), we will assume that ‖y0‖L2(0,L) ≤ ‖yT ‖L2(0,L). Set ρ = ‖yT ‖L2(0,L)

and assume that ρ > 0 otherwise, one just takes the zero control and the conclusion follows.
Let w0 be the state at the time T of the solution of the linearized KdV system with the zero

control starting from PMD
y0 at the time 0. We first consider the case where

(6.22) ‖projM`
yT ‖M`

≥ c1ρ for 1 ≤ ` ≤ n = nD,

for some small constant c1 independent of ρ and defined later.
Denote c the constant c3 in Lemma 6.2 corresponding to two constants c1 and 1 (= c2). Set

G : Bcρ(yT ) → H1/3(0, T )

ϕ 7→ ρu0 + ρ1/2u1 + ρu2.

Recall that Bc(yT ) is defined in (6.6) and the closure here is considered with the L2(0, L)-norm.
Here we decompose ϕ as

ϕ = projM⊥D
ϕ+ projMD

ϕ,

u0 ∈ H1/3(0, T ) is a control for which the corresponding solution y0 of the linearized KdV system
(3.1) starting from PM⊥D

y0/ρ at 0 and arriving PM⊥D
ϕ/ρ at the time T , and u1 and u2 are controls

for which the solutions y1 and y2 of the system (6.7) and
(
(6.8) with the initial data PMD

y0/ρ

instead of 0
)

satisfy y1(T, ·) = 0 and y2(T, ·) = PMD
ϕ/ρ. Moreover, by Proposition 3.1, one can

choose u0 in such a way that u0 = u0(ϕ) is a Lipschitz function of ϕ with the Lipschitz constant
bounded by a positive constant independent of ρ, and by Lemma 6.2 one can choose u1 = u1(ϕ)
and u2 = u2(ϕ) as Lipschitz functions of PMD

ϕ/ρ with the Lipschitz constants bounded by positive
constants independent of ρ.

Let ε0 be a small positive constant such that the conclusion of Proposition 2.3 holds if ‖u‖H1/3(0,T ) ≤
ε0 and ‖y0‖L2(0,L) < ε0. Set

P :
{
w ∈ H1/3(0, T ); ‖w‖H1/3(0,T ) ≤ ε0

}
→ L2(0, L)

w 7→ y(T, ·),

where y is the unique solution of the KdV system (1.1) with u = w starting from y0 at time 0.
Consider the map 9

Λ: Bcρ(yT ) → L2(0, L)

ϕ 7→ ϕ− P ◦G(ϕ) + yT .

We will prove that

(6.23) Λ(ϕ) ∈ Bcρ(yT ),

and

(6.24) ‖Λ(ϕ)− Λ(φ)‖L2(0,L) ≤ λ‖ϕ− φ‖L2(0,L),

for some λ ∈ (0, 1). Assuming this, one derives from the contraction mapping theorem that there

exists a unique ϕ0 ∈ Bcρ(yT ) such that Λ(ϕ0) = ϕ0. As a consequence,

yT = P ◦G(ϕ0),

and G(ϕ0) is hence a required control.

9We thus implicitly require that ρ is much smaller than ε0.
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We next establish (6.23) and (6.24) using similar ideas as in [21]. Indeed, assertion (6.23) follows
from the fact

‖ϕ− P ◦G(ϕ)‖L2(0,L) ≤ C‖ϕ‖
3/2
L2(0,L)

for ϕ ∈ Bcρ(yT ).

This can be proved using the approximation via the power series method as follows. Set 10

(6.25) u = ρu0 + ρ1/2u1 + ρu2 and ya = ρy0 + ρ1/2y1 + ρy2.

Let y be the solution of the KdV system (1.1) with y(t = 0, ·) = y0 and with u defined above.
Considering the system of y−ya, we derive that, by e.g. Proposition 2.1 with (h1, h2, h3) = (0, 0, 0)
and with the zero initial datum, for small ρ,

(6.26) ‖y − ya‖XT ≤ C‖
(
yyx, ρ

3/2(y1y2,x + y2y1,x), ρ2y2y2,x
)
‖
L1
(
(0,T );L2(0,L)

) ≤ Cρ3/2.
Assertion (6.23) follows since y(T, ·) = P ◦G(ϕ) and ya(T, ·) = ϕ.

We next establish (6.24). To this end, we estimate(
ϕ− P ◦G(ϕ)

)
−
(
ϕ̃− P ◦G(ϕ̃)

)
.

Denote ũ0, ũ1, ũ2, ũ and ỹ0, ỹ1, ỹ2, ỹa, ỹ the functions corresponding to ϕ̃ which are defined in the
same way as the functions u0, u1, u2, u and y0, y1, y2, ya, y defined for ϕ.

We have

(6.27) (y − ỹ)t + (y − ỹ)x + (y − ỹ)xxx + yyx − ỹỹx = 0,

(6.28) (ya − ỹa)t + (ya − ỹa)x + (ya − ỹa)xxx + yaya,x − ỹaỹa,x = g(t, x),

where

(6.29) g(t, x) = ρ3/2
(

(y1y2)x − (ỹ1ỹ2)x

)
+ ρ2

(
y2y2,x − ỹ2ỹ2,x

)
+ ρ2

(
y0y0,x − ỹ0ỹ0,x

)
+ ρ3/2

(
y0(y1 + ρ1/2y2)− ỹ0(ỹ1 + ρ1/2ỹ2)

)
x
.

By Proposition 2.1, we have

(6.30) ‖y − ỹ‖XT ≤ Cρ
−1/2‖ϕ− ϕ̃‖L2(0,L) ≤ Cρ1/2.

By (6.26) for y − ya and similar fact for ỹ − ỹa, we obtain

(6.31) ‖(y − ya, ỹ − ỹa)‖XT ≤ Cρ
3/2.

Using (6.25) for ya and similar one for ỹa, and applying Proposition 2.1, one gets

(6.32) ‖ya − ỹa‖XT ≤ Cρ
−1/2‖ϕ− ϕ̃‖L2(0,L) ≤ Cρ1/2.

From the definition of g (6.29), we deduce that

(6.33) ‖g‖
L1
(
(0,T );L2(0,L)

) ≤ Cρ1/2‖ϕ− ϕ̃‖L2(0,L).

Set
Y = y − ya − ỹ + ỹa in (0, T )× (0, L).

Using (6.27) and (6.28), we have

(6.34) ∂tY + ∂xY + ∂xxxY = f(t, x) in (0, T )× (0, L),

where

f(t, x) = −g(t, x)−
(
yyx − ỹỹx − (yaya,x − ỹaỹa,x)

)
10The index a stands the approximation.
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From (6.30) and (6.32), we obtain

(6.35) ‖yyx − ỹỹx − (yaya,x − ỹaỹa,x)‖
L1
(
(0,T );L2(0,L)

) ≤ Cρ1/2‖ϕ− ϕ̃‖L2(0,L).

Using (6.33) and (6.35) and applying Proposition 2.1 to Y , we derive from (6.34) that

‖(y − ya − ỹ + ỹa)(T, ·)‖L2(0,L) ≤ Cρ1/2‖ϕ− φ‖L2(0,L).

Assertion (6.24) follows.
We next consider the case ‖PM`

yT ‖M`
≤ c1‖yT ‖L2(0,L) for some 1 ≤ ` ≤ nD. One can bring

this case to the previous case as follows. Fix ε > 0 small. By Lemma 5.4 and Corollary 5.1, there
exists v1, v2 ∈ H1/3(0, ε) such that if y1 ∈ Xε (with T = ε) is the solution of (6.7) with u1 = v1
and y2 ∈ X is the solution of (6.8) with u2 = v2 then

y1(ε, ·) = 0, projM⊥D
y2 = 0, and ‖projM`

y2(ε, ·)‖L2(0,L) ∼ 1 for all 1 ≤ ` ≤ nD.

Let u0,T , u1,T , u2,T defined in (0, ε) be such that u0,T is a control for which the corresponding
solution in Xε of the linearized KdV system starting from projM⊥D

yT (L− ·)/ρ at 0 and arriving 0

at the time ε, u1,T = γv1, u2,T = γ2v2 for some γ > 0 defined later. Let y be the unique solution
of the (nonlinear) KdV system in the time interval [T, T + ε] using the control

ρu0(· − T ) + ρ1/2u1(· − T ) + ρu2(· − T ),

with y(T, ·) = yT (L− ·). By choosing γ large enough, y0 and y(T + ε, L− ·) satisfy the setting of
the previous case for the time interval [0, T + ε] (instead of [0, T]). One now considers the control
(for the nonlinear KdV system) in the time interval [0, T + 2ε] which is equal to the one which
brings y0 at the time 0 to y(T + ε, L − ·) at the time T + ε obtained in the previous case in the
time interval [0, T + ε], and is equal to −yx

(
2(T + ε) − t, 0

)
for t ∈ [T + ε, T + 2ε]. It is clear

that the solution of the nonlinear KdV system at the time T + 2ε is yT . The proof is complete by
changing T + 2ε to T . �

7. Small time local controllability properties of the KdV system - Proof of
Theorem 1.2

The main result of this section is the following, which implies in particular Theorem 1.2.

Theorem 7.1. Let L ∈ ND and 1 ≤ ` ≤ nD. Let Ψ be defined in (5.61) with ϕ = ϕ` given in
(3.10) and ED is determined by (5.15) with (η1, η2, η3) = (η1,`, η2,`, η3,`). For all 0 < T < T∗/2

11,
there exists ε0 > 0 such that for all 0 < ε < ε0, and for all solutions y ∈ XT of

(7.1)


yt + yx + yxxx + yyx = 0 in (0, T )× (0, L),

y(·, 0) = y(·, L) = 0 in (0, T ),

yx(·, L) = u in (0, T ),

y(0, ·) = y0 := εΨ(0, ·) in (0, L),

with ‖u‖H1/3(0,T ) < ε0, we have

y(T, ·) 6= 0.

Remark 7.1. Recall that, by (3.12) and (3.13), the function Ψ(t, x) satisfies

(7.2)

{
Ψt + Ψx + Ψxxx = 0 in R+ × (0, L),

Ψ(·, 0) = Ψ(·, L) = Ψx(·, 0) = Ψxx(·, L) = 0 in R+.

11T∗ is the constant in Corollary 5.1.
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Proof of Theorem 7.1. Fix 0 < T < T∗/2. Let ε0 be a small positive constant, which depends
only on L and T and is determined later. We prove Theorem 7.1 by contradiction. Assume that
there exists a solution y ∈ C

(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
of (7.1) with y(t, ·) = 0

for t ≥ T , for some u ∈ H1/3(0,+∞), for some 0 < ε < ε0, and for some 0 < T < T∗/2 with
‖u‖H1/3(R+) < ε0, and suppu ⊂ [0, T ].

Using the fact y(t, ·) = 0 for t ≥ T∗/2, from Proposition 2.1, we have, for ε0 small,

(7.3) ‖y‖
L2
(
R+;H1(0,L)

) ≤ C(‖y0‖L2(0,L) + ‖u‖H1/3(R+)

)
.

and [21, Lemma 4.6]

(7.4) ‖y‖
L2
(
R+×(0,L)

) ≤ C(‖y0‖L2(0,L) + ‖u‖H−1/3(R+)

)
.

Here and in what follows, C denotes a positive constant depending on T∗ but not on T .
Let y1 be the solution of the linearized system in the time interval (0, T ) with the control u

starting at 0 at time 0, i.e.,
y1,t + y1,x + y1,xxx = 0 in R+ × (0, L),

y1(·, 0) = y1(·, L) = 0 in R+,

y1,x(·, L) = u in R+,

y1(0, ·) = 0 in R+,

By [21, Lemma 4.6], we also have

(7.5) ‖y1‖L2
(
(0,T∗)×(0,L)

) ≤ C‖u‖H−1/3(R+).

Using (7.2), we obtain
(y − y1 − εΨ)t + (y − y1 − εΨ)x + (y − y1 − εΨ)xxx + yyx = 0 in R+ × (0, L),

(y − y1 − εΨ)(·, 0) = (y − y1 − εΨ)(·, L) = 0 in R+,

(y − y1 − εΨ)x(·, L) = 0 in R+,

(y − y1 − εΨ)(0, ·) = 0 in (0, L),

Applying [21, Lemma 5.4], we derive that

(7.6) ‖y − y1 − εΨ‖L2((0,T∗)×(0,L))

≤ C‖yyx‖L1((0,T∗)×(0,L)) ≤ C‖y‖L2((0,T∗)×(0,L))‖yx‖L2((0,T∗)×(0,L))

(7.3),(7.4)

≤ C
(
‖y0‖L2(0,L) + ‖u‖H1/3(R+)

)(
‖y0‖L2(0,L) + ‖u‖H−1/3(R+)

)
.

Since y = 0 for t ≥ T∗/2 and u = 0 for t ≥ T∗/2, after considering the projection into M⊥D, we
derive that

(7.7) ‖y1(T∗, ·)‖L2(0,L) ≤ C
(
‖y0‖L2(0,L) + ‖u‖H1/3(R+)

)(
‖y0‖L2(0,L) + ‖u‖H−1/3(R+)

)
.

By Proposition 3.1, there exists u1 ∈ H1/3(0, T∗) such that

(7.8) ‖u1‖H1/3(0,T∗) ≤ C‖y1(T∗, ·)‖L2(0,L)
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and the solution ỹ1 ∈ XT∗ of the system
ỹ1,t + ỹ1,x + ỹ1,xxx = 0 in (0, T∗)× (0, L),

ỹ1(·, 0) = ỹ1(·, L) = 0 in (0, T∗),

ỹ1,x(·, L) = u1 in (0, T∗),

ỹ1(0, ·) = 0 in (0, T∗),

satisfies

ỹ1(T∗, ·) = −y1(T∗, ·)

Using (7.7), we derive from (7.8) that

(7.9) ‖u1‖H1/3(0,T∗) ≤ C
(
‖y0‖L2(0,L) + ‖u‖H1/3(R+)

)(
‖y0‖L2(0,L) + ‖u‖H−1/3(R+)

)
,

Set

ŷ = y1 + ỹ1 in (0, T∗)× (0, L).

We have
(y − ŷ − εΨ)t + (y − ŷ − εΨ)x + (y − ŷ − εΨ)xxx + yyx = 0 in (0, T∗)× (0, L),

(y − ŷ − εΨ)(·, 0) = (y − ŷ − εΨ)(·, L) = 0 in (0, T∗),

(y − ŷ − εΨ)x(·, L) = −u1 in (0, T∗),

(y − ŷ − εΨ)(0, ·) = 0 in (0, L).

We then have, by [21, Lemma 4.6] and Proposition 2.1,

(7.10) ‖y − ŷ − εΨ‖L2((0,T∗)×(0,L)) ≤ C‖yyx‖L1((0,T∗)×(0,L)) + C‖u1‖H1/3(0,T∗)

(7.3),(7.4),(7.9)

≤ C
(
‖y0‖L2(0,L) + ‖u‖H1/3(R+)

)(
‖y0‖L2(0,L) + ‖u‖H−1/3(R+)

)
.

Multiplying the equation of y with Ψ(t, x), integrating by parts on [0, L], and using (7.2), we
have

(7.11)
d

dt

∫ L

0
y(t, x)Ψ(t, x) dx− 1

2

∫ L

0
y2(t, x)Ψx(t, x) dx = 0.

Integrating (7.11) from 0 to T∗ and using the fact y(T∗, ·) = 0 yield

(7.12)

∫ L

0
y0(x)Ψ(0, x) dx+

1

2

∫ T∗

0

∫ L

0
y2(t, x)Ψx(t, x) dx dt = 0.

We have

(7.13)

∫ T∗

0

∫ L

0
|y2 − (ŷ + εΨ)2| dx dt

=

∫ T∗

0

∫ L

0
|y − (ŷ + εΨ)||y + (ŷ + εΨ)| dx dt

(7.4),(7.10)

≤ C
(
‖y0‖L2(0,L) + ‖u‖H1/3(R+)

)(
‖y0‖L2(0,L) + ‖u‖H−1/3(R+)

)2
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(7.14)

∫ T∗

0

∫ L

0
|y − (ŷ + εΨ)||ŷ + εΨ| dx dt

(7.4),(7.5),(7.10)

≤ C
(
‖y0‖L2(0,L) + ‖u‖H−1/3(R+)

)(
‖y0‖L2(0,L) + ‖u‖H−1/3(R+)

)2
and

(7.15)

∫ T∗

0

∫ L

0
(ŷ + εΨ)2Ψx dx dt =

∫ T∗

0

∫ L

0

(
ŷ2 + 2εŷΨ + ε2Ψ2

)
Ψx dx dt

=

∫ T∗

0

∫ L

0

(
ŷ2 + 2εŷΨ

)
Ψx dx dt

since Ψ(·, 0) = Ψ(·, L) = 0.
Using the fact

y2 =
(
y − (ŷ + εΨ)

)2 − 2
(
y − (ŷ + εΨ)

)
(ŷ + εΨ) + (ŷ + εΨ)2,

we derive from (7.12), (7.13), (7.14), and (7.15) that∫ L

0
y0(x)Ψ(0, x) dx+

1

2

∫ T∗

0

∫ L

0
ŷ2(t, x)Ψx(t, x) dx dt

≤ C
(
ε+ ‖u‖H1/3(R+)

)(
ε+ ‖u‖H−1/3(R+)

)2
+ Cε‖ŷ‖

L2
(
(0,T∗)×(0,L)

).
Applying Corollary 5.1 to ŷ yield, for ε0 sufficiently small,

ε+ C‖u+ u1‖2H−1/6(R+)
≤ C

(
ε+ ‖u‖H1/3(R+)

)(
ε+ ‖u‖H−1/3(R+)

)2
.

Using (7.9), it follows that, for sufficiently small ε0,

‖u‖2
H−1/6(R+)

≤ C‖u‖H1/3(R+)‖u‖
2
H−1/3(R+)

.

So, for fixed sufficiently small ε0,

u = 0.

Hence y(t, ·) = εΨ(t, ·) 6≡ 0 for all t > 0. We have a contradiction.

The proof is complete. �

Remark 7.2. The constant ε0 can be chosen independently of T if instead of assuming ‖u‖H1/3(0,T ) <

ε0, one requires that

‖U‖H1/3(R+) < ε0,

where U is the extension of u by 0 in (T,+∞).

8. Proof of Theorem 1.3

Theorem 1.3 follows from Proposition 2.3 and Lemma 3.2 as usual. The details are omitted.
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Appendix A. Hardy type inequalities

In this section, we prove two results related to the Hardy inequality. The first one is the
following.

Lemma A.1. Let −∞ < a < b < c ≤ +∞, and 0 < s < 1/2 and let u ∈ H1/3(a, b). Set

v =

{
u in (a, b),

0 in (b, c).

Then v ∈ Hs(a, c) and

‖v‖Hs(a,c) ≤ C‖u‖Hs(a,b),

for some positive constant C depending only on a, b, c, and s.

Proof. For notational ease, we assume that a = −1 and b = 0. Without loss of generality, we then
can assume that c = +∞. Let V ∈ Hs(R) be an extension of u such that

‖V ‖Hs(R) ≤ C‖u‖Hs(−1,0).

Applying [36, Theorem 1.1] with γ = −s, τ = 2, p = 2 to V , one obtains

‖|x|−sV ‖L2(R) ≤ C‖V ‖Hs(R).

The condition s < 1/2 is required here. This yields

(A.1) ‖|x|−su‖L2(−1,0) ≤ C‖u‖Hs(−1,0).

Using the equivalent Gagliardo-Nirenberg definition of the semi-norm Hs, we have

‖v‖2Hs(−1,+∞) ∼
∫ ∞
−1

∫ ∞
−1

|v(x)− v(y)|2

|x− y|1+2s
dx dy +

∫ ∞
−1
|v|2 dx.

Since ∫ ∞
−1

∫ ∞
−1

|v(x)− v(y)|2

|x− y|1+2s
dx dy ≤

∫ 0

−1

∫ 0

−1

|u(x)− u(y)|2

|x− y|1+2s
dx dy + Cs

∫ 0

−1

|u(x)|2

|x|2s
dx,

and ∫ ∞
−1
|v|2 dx =

∫ 0

−1
|u|2 dx,

we derive from (A.1) that

‖v‖Hs(−1,+∞) ≤ C‖u‖Hs(−1,0).

The proof is complete. �

We next prove the following result.

Lemma A.2. Let T > 0, u ∈ H1/2(R), and ϕ ∈ C1(R) be such that suppu ⊂ (−T, T ). There
exists a positive constant C, independent of T , u, and ϕ, such that

(A.2) ‖ϕu‖Ḣ1/2(R) ≤ C‖ϕ‖L∞(−2T,2T )‖u‖Ḣ1/2(R)

+ C
(
T−1/2‖ϕ‖L∞(−T,T ) + T 1/2‖∇ϕ‖L∞(−2T,2T )

)
‖u‖L2(R).



KDV 45

Proof. Using the equivalent Gagliardo-Nirenberg definition of the semi-norm H1/2, we have, since
suppu ⊂ [−T, T ],

(A.3) ‖ϕu‖2
Ḣ1/2(R) ∼

∫
R

∫
R

|ϕ(s)u(s)− ϕ(t)u(t)|2

|s− t|2
ds dt

≤
∫ 2T

−2T

∫ 2T

−2T

|ϕ(s)u(s)− ϕ(t)u(t)|2

|s− t|2
ds dt+ 2

∫
R\[−2T,2T ]

∫ 2T

−2T

|ϕ(s)u(s)|2

|s− t|2
ds dt.

We next estimate the RHS of (A.3). We first deal with the first term. We have∫ 2T

−2T

∫ 2T

−2T

|ϕ(s)u(s)− ϕ(t)u(t)|2

|s− t|2
ds dt

≤ 2

∫ 2T

−2T

∫ 2T

−2T

|ϕ(s)|2|u(s)− u(t)|2

|s− t|2
ds dt+ 2

∫ 2T

−2T

∫ 2T

−2T

|ϕ(s)− ϕ(t)|2|u(t)|2

|s− t|2
ds dt.

This implies

(A.4)

∫ 2T

−2T

∫ 2T

−2T

|ϕ(s)u(s)− ϕ(t)u(t)|2

|s− t|2
ds dt

≤ C‖ϕ‖2L∞(−2T,2T )‖u‖
2
Ḣ1/2(R) + CT‖∇ϕ‖2L∞(−2T,2T )‖u‖

2
L2(R).

Concerning the second term of the RHS of (A.3), we have

(A.5)

∫
R\[−2T,2T ]

∫ 2T

−2T

|ϕ(s)u(s)|2

|s− t|2
ds dt

=

∫
R\[−2T,2T ]

∫ T

−T

|ϕ(s)u(s)|2

|s− t|2
ds dt ≤ C‖ϕ‖2L∞(−T,T )

1

T

∫ T

−T
|u(s)|2 ds.

The conclusion now follows from (A.4) and (A.5). �

Appendix B. On the zeros of G and H

In this section, we establish several results concerning the zeros of G and H defined in (4.11).
We begin with

Lemma B.1. Let L > 0. Assume that G(z) = H(z) = 0 for some z ∈ C \ {±2/(3
√

3)}. Then

L ∈ ND and (−z ∈ PD or z̄ ∈ PD).

Recall that ND and PD are defined in (1.3) and (3.2), respectively.

Proof. Set

y(t, x) = eizt
3∑
j=1

(
λj+1e

λj+1L − λj+2e
λj+2L

)
eλjx,

where λj = λj(z) with j = 1, 2, 3 are the solution of the equation λ3 + λ+ iz = 0. Then

yt(t, x) + yx(t, x) + yxxx(t, x) = 0 in R× (0, L).

Note that Ξ(z) 6= 0 for z 6= ±2/(3
√

3 (recall that Ξ is defined in Definition 4.1). Hence P (z) =∑3
j=1 λ

2
j

(
λj+1e

λj+1L − λj+2e
λj+2L

)
= 0 and detQ(z) =

∑3
j=1(λj+1 − λj)e−λj+2L = 0. Using this,

one can check from the definition of y that

y(t, 0) = yxx(t, 0) = y(t, L) = yx(t, L) = 0 for t ∈ R.
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This implies that L ∈ ND and (−z ∈ PD or z̄ ∈ PD). �

Set

D(A) =
{
v ∈ H3(0, L), v(0) = v(L) = v′(L) = 0

}
and let A be the unbounded operator on L2(0, L) with domain D(A) and defined by Av = v′′′+ v′

for v ∈ D(A). It is known from [21, Lemma 2.1] that the spectrum of A is discrete. In the following
result, we prove that all eigenvalues of A has its real part non-negative.

Lemma B.2. Let L > 0, z ∈ C, and ϕ ∈ C∞([0, L]) be such that

ϕxxx + ϕx + izϕ = 0 in [0, L],

and

ϕ(0) = ϕ(L) = ϕx(L) = 0.

Then

=(z) ≥ 0.

Proof. Set

Ψ(t, x) = <
{
eiztϕ(x)

}
in R+ × [0, L].

Then Ψ is a solution of the linearized KdV system

(B.1)

{
Ψt + Ψx + Ψxxx = 0 in R+ × [0, L],

Ψ(·, 0) = Ψ(·, L) = Ψx(·, L) = 0 in R+.

We then derive that
d

dt

∫ L

0
|Ψ(t, x)|2 dx ≤ 0.

This implies

=(z) ≥ 0.

The proof is complete. �

As a consequence of Lemma B.2, we have the following result.

Corollary B.1. Let L ∈ ND and 1 ≤ ` ≤ nD. Then

=p` ≥ 0 for 1 ≤ ` ≤ nD.

The following result is useful.

Lemma B.3. Let L ∈ ND and p ∈ C be such that =p ≥ 0. Then the zero of H(z − p) is simple
for z ∈ R.

Proof. By [21, Lemma B1], we can assume that z − p 6= ±2/(3/
√

3). We now prove the assertion
by contradiction. Assume that H(z − p) = 0 for some z ∈ R with z − p 6= ±2/(3/

√
3). Thus

detQ(z − p) = 0. Then there exists ϕ ∈ C∞[0, L] such that

ϕxxx + ϕx + i(z − p)ϕ = 0 in [0, L],

and

ϕ(0) = ϕ(L) = ϕx(L) = 0.

Applying Lemma B.2, we have

=p ≤ 0.

Since =p ≥ 0, we derive that =p = 0, which is equivalent to the fact z − p ∈ R. The conclusion
now follows from [21, Lemma B1]. �
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Appendix C. A lemma related to the moment method

The following lemma from [21] is used in the proof of Proposition 2.1.

Lemma C.1. Let ϕ be an analytic function in C such that ϕ has a finite number of zeros on the
real line, and

(C.1) |ϕ(z)| ≤ c1ec2|z|
α

in C,

for some 0 < α < 1, and c1, c2 > 0. Let T1, T2 > 0, and h ∈ Hs(R) for some s ≤ 0 with support
in (0, T1). There exists g ∈ C∞(R) with support in [T1, T1 + T2] such that if z is a real solution
of order m of the equation ϕ(z) = 0, then z is a also a real solution of order m of the equation

ĥ− ĝ = 0, and

(C.2) ‖g‖Hk(R) ≤ Ck‖h‖Hs(R) for k ∈ N,

for some positive constant Ck depending only on k, T1, T2, s, and real zeros and their multiplicity
of ϕ.

Proof. The proof of Lemma C.1 is as in [21], where a special case is considered. The con-
struction of g, inspired by the moment method, see e.g. [44], can be done as follows. Set

η(t) = e−1/(t
2−(T2/2)2)1|t|<T2 for t ∈ R. Assume that z1, . . . , zk are real, distinct solutions of

the equation ϕ(z) = 0, and m1, . . . , mk are the corresponding orders. Set, for z ∈ C,

ζ(z) =
k∑
i=1

η̂(z − zi)
k∏
j=1

j 6=i

(z − zj)mj
( mi∑
l=0

ci,l(z − zi)l
) ,

where ci,l ∈ C is chosen such that

dl

dzl

(
ei(T1+T2/2)zζ(z)

)
z=zi

=
dl

dzl
ĥ3(zi) for 0 ≤ l ≤ mi, 1 ≤ i ≤ k.

This can be done since η̂(0) 6= 0. Since

|η̂(z)| ≤ CeT2|=(z)|/2,

and, by [44, Lemma 4.3],

|η̂(z)| ≤ C1e
−C2|z|1/2 for z ∈ R,

using (C.1), and applying Paley-Wiener’s theorem, one can prove that ζ is the Fourier transform
of a function ψ of class C1; moreover, ψ has the support in [−T2/2, T2/2]. Set, for z ∈ C,

g(t) = ψ(t+ T1 + T2/2).

Using the fact ĝ(z) = ei(T1+T2/2)zζ(z), one can check that ĝ − ĥ has zeros z1, . . . , zk with the
corresponding orders m1, . . . , mk. One can check that

‖ψ‖Hk(R) ≤ CT,L,k
k∑
i=1

mi∑
l=0

∣∣∣∣ dldzl ĥ(zi)

∣∣∣∣ ,
which yields

‖ψ‖Hk(R) ≤ CT,L,k‖h‖Hs(R).

The required properties of g follow. �

Acknowledgments. The author thanks Jean-Michel Coron for interesting discussions and his
encouragement.



48 H.-M. NGUYEN

References

[1] Claude Bardos, Gilles Lebeau, and Jeffrey Rauch, Sharp sufficient conditions for the observation, control, and
stabilization of waves from the boundary, SIAM J. Control Optim. 30 (1992), no. 5, 1024–1065. MR 1178650

[2] K. Beauchard, P. Cannarsa, and R. Guglielmi, Null controllability of Grushin-type operators in dimension two,
J. Eur. Math. Soc. (JEMS) 16 (2014), no. 1, 67–101. MR 3141729
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