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Modeling difficulty, time-varying model, and uncertain external inputs are the main challenges for energy management of fuel cell hybrid electric vehicles. In the paper, a fuzzy reinforcement learning-based energy management strategy for fuel cell hybrid electric vehicles is proposed to reduce fuel consumption, maintain the batteries' long-term operation, and extend the lifetime of the fuel cells system. Fuzzy Q-learning is a model-free reinforcement learning that can learn itself by interacting with the environment, so there is no need for modeling the fuel cells system. In addition, frequent startup of the fuel cells will reduce the remaining useful life of the fuel cells system. The proposed method suppresses frequent fuel cells startup by considering the penalty for the times of fuel cell startups in the reward of reinforcement learning. Moreover, applying fuzzy logic to approximate the value function in Q-Learning can solve continuous state and action space problems. Finally, a python-based training and testing platform verify the effectiveness and self-learning improvement of the proposed method under conditions of initial state change, model change and driving condition change.

I. INTRODUCTION

Nowadays, fossil energy anxiety and climate problems by vehicle pollution are increasingly diverting more public's attention from internal combustion engine (ICE) vehicles to renewable energy vehicles. Fuel cell hybrid electric vehicles (FCHEV) have the advantages of no pollution, fast charging and high efficiency. The proton exchange membrane fuel cell (PEMFC) is an electrochemical device that only produces water with highpurity hydrogen and air, and has the characteristics of high energy density and high efficiency. The fuel cells (FCs) usually have slow dynamic performance, so an auxiliary energy storage system is needed to absorb the shock when the load power changes rapidly.

Energy management strategy (EMS) is the power allocation strategy between different energy sources for the hybrid energy system. For the FCHEV, a well-designed EMS can help to reduce fuel consumption and maintain the batteries' long time operation. Nevertheless, the difficulty for accurate modeling of FCs, time-varying model due to the degradation, and uncertain external driving conditions are challenging difficulties for the EMS problem of FCHEV. Rule-based EMS, such as traditional fuzzy logicbased EMS [START_REF] Phan | Interval Type 2 Fuzzy Logic Control for Energy Management of Hybrid Electric Autonomous Vehicles[END_REF], is highly dependent on experience, hardly adapts to unknown future operating conditions or model changes, and cannot reach optimal results. The optimalbased EMS can obtain the optimal solution, such as Pontryagin's minimum principle (PMP) [START_REF] Nguyen | Real-time energy management of battery/supercapacitor electric vehicles based on an adaptation of pontryagin's minimum principle[END_REF]. However, optimal-based methods are highly sensitive to modeling accuracy, so it is difficult to adapt to the model changes caused by degradation, and also needs prior knowledge of future operating conditions Reinforcement learning (RL), a kind of machine learning, is increasingly applied to solve the optimal problem of energy management [START_REF] Perera | Applications of reinforcement learning in energy systems[END_REF] because of its selflearning and model-free characteristics. RL-based EMS can learn itself from the interaction with the environment, so there is no need to detail the model of the controlled system or know the prior information on driving conditions. A Q-Learning-based EMS for fuel cell hybrid electric vehicles is proposed in [START_REF] Guo | Reinforcement Learning based Energy Management for Fuel Cell Hybrid Electric Vehicles[END_REF], but is hard to deal with continuous space problems for high-dimensional computation. Deep Qnetwork (DQN) is proposed via deep neural networks (DNNs) to approximate the value function [START_REF] Mnih | Playing Atari with Deep Reinforcement Learning[END_REF], so that the continuous state space problems can be solved. Deep deterministic policy gradient (DDPG) [START_REF] Lillicrap | Continuous control with deep reinforcement learning[END_REF] approximates both the value function and policy function by DNNs, so that it can deal with continuous state and action.

For the fuel cells system, [START_REF] Chen | Lifetime prediction and the economic lifetime of proton exchange membrane fuel cells[END_REF] shows that start/stop, idling, load changing, and high power load those factors are the main causes of fuel cell degradation. Among them, frequent startup has a major impact on reducing the lifespan of fuel cells [START_REF] Fletcher | An Energy Management Strategy to concurrently optimise fuel consumption & PEM fuel cell lifetime in a hybrid vehicle[END_REF]. Consider the degradation influence factor in the reward function of RL, so that RL-based EMS can learn to avoid behaviors that major cause FCs degradation. A DQN-based EMS with prioritized experience replay is proposed in [START_REF] Tang | Longevityconscious energy management strategy of fuel cell hybrid electric Vehicle Based on deep reinforcement learning[END_REF], to extend the fuel cells lifetime of the FCHEV. However, the difficulty of tuning parameters and the computation burden of those deep reinforcement learning methods limit their applications for real-time online learning.

Applied fuzzy logic to approximate the value function of RL, fuzzy Q-learning (FQL) is proposed in [START_REF] Glorennec | Fuzzy Q-learning[END_REF], which is the first fuzzy reinforcement learning (FRL). An FQLbased EMS for a hybrid electric vehicle is proposed in [START_REF] Hu | An online learning control strategy for hybrid electric vehicle based on fuzzy Q-learning[END_REF], in which actions are obtained by the fuzzy logic controller, and Q-function is approximated with BP neural network to tune the parameters, which does not take advantage of the function approximation and generalization of fuzzy logic. A fuzzy inference system (FIS) for reinforcement learning was proposed in [START_REF] Jouffe | Fuzzy inference system learning by reinforcement methods[END_REF], which elaborated the architecture of the approximation method for the value function and policy function to solve continuous space problems. A fuzzy rule value reinforcement learning (FQL) based EMS is proposed for fuel cell hybrid electric vehicles [START_REF] Guo | Fuzzy Rule Value Reinforcement Learning based Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles[END_REF], which approximates the rule value with FIS by RL.

In the paper, an FQL-based EMS for the FCHEV is proposed to extend the lifetime of the fuel cell system by involving the degradation of the objective function. By combining with the FIS of fuzzy logic, the state-action value function is approximated, and the operation of continuous states and actions is realized. The agent of the proposed method performs model-free self-learning by interacting with the environment, so that the proposed EMS controller does not need the controlled system model, and can also adapt to the time-varying model and uncertain working conditions.

II. MODELING OF THE ENERGY SYSTEM

For the energy system of FCHEV, to absorb the power fluctuation of the load, a battery system needs to be added, which is due to the slow dynamic response of the fuel cells, and can make the fuel cells work in high-efficiency points. The studied energy system of the FCHEV is as shown in Fig. 1. The fuel cell system and the battery system are connected to the DC bus through DC/DC converters to supply power to the load motor system or recover braking or deceleration energy from the motor system. The control system is composed of high-level and low-level controllers, and the EMS studied in the paper is the high-level controller. The specific models of the energy system will be analyzed in this section. 

A. Vehicle dynamics model

The mechanics and power model of the vehicle are shown as [START_REF] Phan | Interval Type 2 Fuzzy Logic Control for Energy Management of Hybrid Electric Autonomous Vehicles[END_REF] with the velocity 𝑣𝑣 and the road slope 𝜃𝜃. 
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where 𝐹𝐹 𝑚𝑚 represents the driving force provided by the motor, which equals the sum of the air resistance, the rolling resistance, the slope resistance and the acceleration force. 𝜌𝜌 and 𝐶𝐶 𝐷𝐷 represent air density and air resistance coefficient respectively. 𝐴𝐴 represents the windward surface volume of the vehicle body, and 𝑣𝑣 represents the vehicle velocity. 𝑚𝑚 represents the vehicle mass. 𝐺𝐺 = 𝑚𝑚𝑚𝑚 represents the gravity of the vehicle, and 𝑓𝑓 represents the sliding resistance coefficient. 𝑃𝑃 𝑣𝑣𝑣𝑣ℎ represents the required power of the motor, 𝜂𝜂 𝑚𝑚 represents the transmission efficiency of the motor.

For the studied vehicle, the vehicle weight is 2500 𝑘𝑘𝑚𝑚, the windward area is 1.8 𝑚𝑚 2 , the air density is 1.25 𝑘𝑘𝑚𝑚/𝑚𝑚 2 , the air resistance coefficient is 0.3, the rolling friction coefficient is 0.01, and the total mechanical transmission efficiency is set as 90%, the gravity acceleration is 9.8 𝑚𝑚/𝑠𝑠 2 .

B. Fuel cells system model

The voltage model of a single cell of the fuel cell can be expressed as follows: 
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where 𝐸𝐸 0 = 1.23 𝑉𝑉is the open-circuit voltage of fuel cell reaction at standard atmospheric pressure, 𝑅𝑅 = 8.3145 is the gas constant, 𝑇𝑇 = 333.15 𝐾𝐾 is the fuel cell temperature, ∆𝑇𝑇 = 𝑇𝑇 -273.15 , 𝑛𝑛 = 2 , 𝐹𝐹 = 96485 is Faraday constant, 𝛼𝛼 = 1 is the transfer coefficient, 𝑃𝑃 is the local pressure of the reactants and products at this atmospheric pressure. 𝑖𝑖 𝑓𝑓𝑓𝑓 is the current density. 𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 2𝑚𝑚𝐴𝐴/𝑐𝑐𝑚𝑚 2 is the current loss, 𝑖𝑖 0 = 0.003𝑚𝑚𝐴𝐴/𝑐𝑐𝑚𝑚 2 is the exchange current density. 𝐼𝐼 𝑙𝑙𝑙𝑙𝑚𝑚 = 1.6𝐴𝐴/𝑐𝑐𝑚𝑚 2 is the limiting current density. 𝑅𝑅 𝑙𝑙ℎ𝑚𝑚 is the fuel cell resistance.

For the FC stack, the model is as follows:

fc cell cell fc fc fc V n V I A i = ⋅ = ⋅ (3)
where 𝑛𝑛 𝑓𝑓𝑣𝑣𝑙𝑙𝑙𝑙 is the number of single FCs, and 𝐴𝐴 𝑓𝑓𝑓𝑓 is the active area of the FC electrode plate. Then the hydrogen consumption model of the FC stack can be derived as follows:
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where 𝑚𝑚̇𝐻𝐻 2 is the rate at which hydrogen is consumed, and 𝑀𝑀 𝐻𝐻 2 is the molar mass of hydrogen. 𝑃𝑃 𝑓𝑓𝑓𝑓 is the output power of FCs. The converter model will only be concerned about its power characteristics. The DC/DC converter power efficiency model for FCs is as follows:
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where 𝑃𝑃 𝑓𝑓𝑓𝑓 ′ is the output power of the FC system. It is considered that 𝑃𝑃 𝑓𝑓𝑓𝑓 ′ is equal to the power command from the control strategy. 𝜂𝜂 𝑑𝑑𝑓𝑓 is the efficiency of DC/DC converter for fuel cells. 𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎 is the auxiliary system, and it can be considered as a constant current load 𝐼𝐼 𝑎𝑎𝑎𝑎𝑎𝑎 = 2.0 𝐴𝐴.

The fuel cells parameters are 𝑛𝑛 𝑓𝑓𝑣𝑣𝑙𝑙𝑙𝑙 = 200, the effective area of the electrode is 𝐴𝐴 𝑓𝑓𝑓𝑓 = 324 𝑐𝑐𝑚𝑚 2 , the pressure of anode hydrogen is 50 kPa over atmosphere pressure, and cathode oxygen is obtained from the air by natural aspiration. As shown in Fig. 2, when the current is 437 A, the FC power reaches the max power of 104 kW and the efficiency is 43.19 %; When the current is 63.2 A, the FC efficiency reaches the max efficiency of 54.49 %, and the power is 15.7 kW. 

C. Batteries system model

The battery is modeled using a simple one-order circuit model [START_REF] Lian | Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle[END_REF]. The output current of the battery and the evolution of the battery SOC are characterized by the following:
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where 𝐼𝐼 𝑏𝑏𝑎𝑎𝑏𝑏 is the output current of the batteries. When 𝐼𝐼 𝑏𝑏𝑎𝑎𝑏𝑏 > 0, the battery is discharged, and when 𝐼𝐼 𝑏𝑏𝑎𝑎𝑏𝑏 < 0, the battery is charged. 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 is the state of charge (SOC) of batteries. 𝑄𝑄 𝑏𝑏𝑎𝑎𝑏𝑏 is the battery capacity. Especially, the opencircuit voltage 𝑉𝑉 𝑙𝑙𝑓𝑓 and the internal resistance 𝑅𝑅 𝑏𝑏𝑎𝑎𝑏𝑏 are dependent on 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 , which are shown in Fig. 3. 
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where 𝑃𝑃 𝑏𝑏𝑎𝑎𝑏𝑏 ′ is the output power of the power converter whose efficiency is 𝜂𝜂 𝑎𝑎𝑏𝑏𝑓𝑓 . According to the power balance, the power of the batteries system is determined by the power balance: bat veh fc
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In the paper, the total capacity of the studied batteries is set as 6.6 Ah, and the standard voltage is 244.8V.

III. FUZZY Q-LEARNING PRINCIPLE

A. EMS problem formulation

The main task of the EMS in the paper is to maximize the objective function by adjusting the power distribution among different energy sources. The objective function consists of two parts. The first part is the instantaneous reward, which takes into account the fuel consumption rate and the deviation of the SOC of the battery from the reference value. The second part is the episode reward, which considers the number of fuel cells starts when in the terminal state. The objective function 𝐽𝐽 of one episode is formulated mathematically as follows:

2 0 2 max ( ) ( ) ( ) ( ( ) ) T start start H bat bat ref J r t dt k N r t m t k SOC t SOC = + = - - - ∫  (9) 
where 𝑟𝑟(𝑡𝑡) is the instantaneous reward, 𝑚𝑚̇𝐻𝐻 2 is the hydrogen consumption rate, 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 is the SOC of batteries, 𝑆𝑆𝑆𝑆𝐶𝐶 𝑟𝑟𝑣𝑣𝑓𝑓 is the preset reference of SOC corresponding to the battery characteristics, 𝑁𝑁 𝑙𝑙𝑏𝑏𝑎𝑎𝑟𝑟𝑏𝑏 is the number of fuel cell starts. In the paper, the EMS is dedicated to determining 𝑃𝑃 𝑓𝑓𝑓𝑓 (𝑡𝑡), 𝑡𝑡 ∈ [0, 𝑇𝑇] using the observables [𝑃𝑃 𝑣𝑣𝑣𝑣ℎ (𝑡𝑡), 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 (𝑡𝑡)] to achieve the maximization of the objective function 𝐽𝐽.

B. Fuzzy Interrace System for the Energy Management Problem of FCHEV

Fuzzy logic is a mathematical language that imitates the human brain's uncertain concept judgment and reasoning thinking. A basic fuzzy inference system (FIS) consists of four parts: fuzzifier, defuzzifier, inference engine, and knowledge base. The control based on FIS is an effective and widely used method to deal with energy management problems. In our application, the EMS deals with a multi-input single-output FIS control system. As shown in Fig. 4, the crisp input is the system state 𝑠𝑠 = [𝑃𝑃 𝑣𝑣𝑣𝑣ℎ , 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 ], and the crisp output is the action of the control system 𝑎𝑎 = �𝑃𝑃 𝑓𝑓𝑓𝑓 �.

With the fuzzifier, the fuzzy state 𝜙𝜙(𝑠𝑠) = [𝜙𝜙 1 , 𝜙𝜙 2 , … , 𝜙𝜙 𝑚𝑚 ] of the energy system can be derived by predefined membership functions, and 𝜙𝜙 𝑙𝑙 (𝑠𝑠) represents the fired strength of the 𝑖𝑖 𝑏𝑏ℎ rule. The meaning of the fuzzy sets ["NH", "NM", "NL", "ZO", "PL", "PM", "PH"] for 𝑃𝑃 𝑣𝑣𝑣𝑣ℎ are "Negative High", "Negative Middle", "Negative Low", "Zero", "Positive Low", "Positive Middle", and "Positive High". For another state 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 , the meaning of ["VL", "L", "M", "H", "VH"] are "Very Low", "Low", "Middle", "High", and "Very High". The fuzzy sets of the two input states are shown in Table I and Table II. Then the membership functions are chosen as shown in Fig. 5. The membership functions of the two crisp input states can then be transformed into fuzzy states 𝜙𝜙(𝑠𝑠) with fuzzy logic operation "AND". The number of states in 𝜙𝜙(𝑠𝑠) is identical to the number of rules. In our case, the rule is set for each combination of the two fuzzy sets. Hence, the dimensional number of fuzzy state 𝜙𝜙(𝑠𝑠) is 𝑀𝑀 = 35.

Traditionally, fuzzy rules can be constructed using experienced data and/or engineering experience. The logic rules are formed like: IF 𝑃𝑃 𝑣𝑣𝑣𝑣ℎ is " Positive High" (PH), AND 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 is "Very Low"(VL), THEN 𝑃𝑃 𝑓𝑓𝑓𝑓 is "Super High" (SH).

The inference engine deduces, then the fuzzy output based on each rule. The control action is calculated by deffuzier combining all fuzzy outputs. For instance, the calculation can be realized using the weighted average defuzzification method as:
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where 𝑦𝑦 𝑙𝑙 is the 𝑖𝑖 𝑏𝑏ℎ fuzzy output, and 𝑦𝑦 is the defuzzied value of 𝑦𝑦 𝑙𝑙 by the weighted average method. The output action and the function approximator in the paper can be cauletd by this method. For the action of 𝑃𝑃 𝑓𝑓𝑓𝑓 , the typical values of the fuzzy output sets are assembled as 𝑼𝑼 = {𝑈𝑈 1 , 𝑈𝑈 2 , … , 𝑈𝑈 𝑁𝑁 } in this study are shown in 0 The dimension of output fuzzy sets is set as 𝑁𝑁 = 8. Here, a non-equidistant method is used for the division of fuzzy sets, and the state with lower power is divided more finely.

C. Reinforcement learning principles

Reinforcement learning realizes continuous selflearning by interacting with the environment, so it is possible to break the upper limit of human experience, or correct the error between the model and reality, to obtain a better optimal solution. Meanwhile, the environment is required to have Markov properties, which is the transition probability of the next state can be only determined by the current state 𝑠𝑠(𝑡𝑡) and the action 𝑎𝑎 (t). Thus, a sequence [𝑠𝑠(0), 𝑎𝑎(0), 𝑟𝑟(0), 𝑠𝑠(1), 𝑎𝑎(1), 𝑟𝑟 [START_REF] Phan | Interval Type 2 Fuzzy Logic Control for Energy Management of Hybrid Electric Autonomous Vehicles[END_REF], … ] can be obtained during the learning process until the terminal state. This process is a Markov decision process. The goal of the RL agent is to maximize the cumulative rewards 𝐽𝐽 from the initial state 𝑠𝑠 0 to the terminal state 𝑠𝑠 𝑇𝑇 at time 𝑡𝑡 = 𝑇𝑇 by optimizing the policy. 0 ( ) ( )
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Where 𝜋𝜋 is the policy to obtain the action, and 𝛾𝛾 is a discount factor, 0 ≤ 𝛾𝛾 < 1 . 𝛾𝛾 = 0 means immediate return, γ tends to 1 means future return. The cumulative discounted reward is used to evaluate the performance of the policy. However, the cumulative reward is difficult to calculate directly at each step. In Q-learning, timedifference method with a Q-function 𝑄𝑄(𝑠𝑠, 𝑎𝑎) is used to replace the cumulative reward. The Q-value represents the state-action value at the time 𝑡𝑡, and it is shown in follows:
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where 𝑠𝑠′ is the next state, and 𝜋𝜋(𝑠𝑠′) means all possible actions of the next state 𝑠𝑠′. 𝑃𝑃(𝑠𝑠′|𝑠𝑠, 𝑎𝑎) means the probability of reaching the next state 𝑠𝑠′, under the conditions of state 𝑠𝑠 and action 𝑎𝑎. Therefore, how to estimate the expectation of the value function of the next state 𝑠𝑠′ is a key element of implementing Q-Learning. To achieve fast reinforcement, Q-learning adopts the maximization estimation method, to maximize the next Q-value 𝑄𝑄(𝑠𝑠', 𝑎𝑎'). Then the optimal Q function 𝑄𝑄 * (𝑠𝑠, 𝑎𝑎) is shown in [START_REF] Bo | A Q-learning fuzzy inference system based online energy management strategy for offroad hybrid electric vehicles[END_REF] with action 𝑎𝑎 when the state is 𝑠𝑠, which is also the well known Bellman equation.
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where 𝑉𝑉(𝑠𝑠′) is the value function of the next state 𝑠𝑠′. Then the optimal policy 𝜋𝜋 * can be specified as follows:

~( ) ( ) arg max ( ( , ))
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The update law of Q-Learning can be expressed as [START_REF] Sutton | Reinforcement Learning: An Introduction second edition[END_REF]:

~( ) ( , ) ( , ) [ max ( , ) ( , )] a s Q s a Q s a r Q s a Q s a π α γ ′ ′ ′ ′ = + + - ( 15 
)
where 𝛼𝛼 ∈ (0,1) is the learning rate of Q-learning. When the learning rate is close to 1, it will be difficult to retain the past effective experience. When the learning rate is close to 0, the number of iterations will increase, which will bring a computational burden. According to general experience, 𝛼𝛼 is set close to 0, and 𝛾𝛾 is close to 1.

D. Fuzzy Q-learning based EMS

Since Q-Learning needs to be discretized when dealing with continuous states and actions space, and utilizes a large table to store state-action values Q-value, it will bring a serious computational burden with high-dimension. Using fuzzy membership functions as state approximators in Qlearning is an effective and faster way to solve continuousstate problems [START_REF] Watkins | Q-Learning[END_REF]. In FQL, 𝒔𝒔 is the crisp set of the input states which are converted into fuzzy states 𝜙𝜙(𝒔𝒔) with the membership functions of the FIS fuzzifier. Then the Qvalue can be estimated by a fuzzy Q-function ( 16):
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where 𝑄𝑄(𝜙𝜙(𝑠𝑠), 𝑎𝑎) is the evaluated Q-function with defuzzifier, and 𝒒𝒒 = [𝑞𝑞 1,1 , 𝑞𝑞 1,2 , … , 𝑞𝑞 𝑀𝑀,𝑁𝑁 ] is a [𝑀𝑀 × 𝑁𝑁] qarray. 𝑞𝑞 𝑙𝑙 is the 𝑖𝑖 𝑏𝑏ℎ q-array of the 𝑖𝑖 𝑏𝑏ℎ rule with the size of [1 × 𝑁𝑁], which contains the fuzzy values of each fuzzy action sets. Similarly, the value function of the next state can also be obtained by defuzzification:
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)
where 𝒗𝒗 = [𝑣𝑣 1 , 𝑣𝑣 2 , … , 𝑣𝑣 𝑀𝑀 ] is the fuzzy state value of each rule at the next state 𝑠𝑠′, which evaluate by the maximization method.

( ( )) max ( ( ), )

i i i i i a U v s q s a φ φ * * ∈ ′ ′ = (18) 
where 𝑎𝑎 𝑙𝑙 * is the optimal fuzzy action of the 𝑖𝑖 𝑏𝑏ℎ fuzzy next state 𝜙𝜙 𝑙𝑙 (𝑠𝑠′), which is chosen from N fuzzy action of the set 𝑈𝑈.

( ) arg max ( ( ), )

i i i i i a U a s q s a φ * * * ∈ ′ ′ = (19) 
For 𝑖𝑖 th rule ( i ∈ {1, … , 𝑀𝑀} ), the fuzzy rule can be expressed as: IF fuzzy state 𝜙𝜙 𝑙𝑙 (𝑠𝑠), THEN take 𝑎𝑎 𝑙𝑙 * with 𝑞𝑞 𝑙𝑙 to update 𝑣𝑣 𝑙𝑙 And there will be 𝑀𝑀 fuzzy rules. The fuzzy Q-Learning will also be updated with the time-difference learning, and the target Q-function is set as: 𝑄𝑄 𝑏𝑏𝑎𝑎𝑟𝑟𝑡𝑡𝑣𝑣𝑏𝑏 (𝑠𝑠, 𝑎𝑎) = 𝑟𝑟 + 𝛾𝛾𝑉𝑉(𝑠𝑠 ′ ).

Then Δ𝑞𝑞 i the increments of the fuzzy q-array corresponding to the 𝑖𝑖 𝑏𝑏ℎ rule are shown as:

1 ( ) [ ( ( )) ( ( ), )] ( ) i i M i i s q r V s Q s a s φ γ φ φ φ = ′ ∆ = + - ∑ (20) 
where ∆𝒒𝒒 = [𝑞𝑞 1 , 𝑞𝑞 2 , … , 𝑞𝑞 𝑀𝑀 ] is based on the fuzzifier with fuzzy state 𝜙𝜙(𝑠𝑠). And they are used in (21) to update the fuzzy q-arrays: 𝒒𝒒 1 and 𝒒𝒒 2 which are corresponding to each rule update:

( ( ), ) : ( ( ), )

i i i i i i i q s a q s a q φ φ α = + ∆ (21)
where 𝑎𝑎 𝑙𝑙 is the 𝑖𝑖 𝑏𝑏ℎ fuzzy action determined by the 𝜀𝜀 -𝐺𝐺𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦 (22) to balance the exploration and exploitation of the FQL.

arg max ( ( ), ) (

i i i i a U i i q s a a random a U φ ε ε ∈ ′ ≥   =  ∈ <     (22) 0,1) (0,1) 
where 𝜀𝜀 ∈ [0,1] is the exploration rate of the FQL agent, and 𝒩𝒩(0,1) is a random value in the range of [0,1). Finally, the actual action can be defuzzied with fuzzy action 𝑎𝑎 𝑙𝑙 and fuzzy state 𝜙𝜙(𝑠𝑠′).

M i i i M i i a s a s s φ φ = = = ∑ ∑ 1 1 ( ) ( ) ( ) 
With FQL, the continuous action and state space problems are solved with a fuzzy inference system, which can achieve a faster and smoother training, and it can adapt to the complex time-varying model through interaction with the environment. The pseudocode of the proposed FQL is shown in TABLE IV. 

IV. TRAINING AND TEST RESULTS ANALYSIS

A Python-based training and testing platform have been established for the proposed FQL-based EMS and the studied FCHEV. The processor is Intel(R) Core (TM) i5-9400H CPU @ 2.50GHz. The environment model of FCHEV is referred to the report of Toyota's Mirai FCHEV given by the Argonne National Laboratory. In this section, the training process and the test results of the proposed EMS are analyzed and discussed.

A. Test driving cycles

The proposed EMS is tested using 2 standard driving cycles Urban Dynamometer Driving Schedule (UDDS) and New European Driving Cycle (NEDC). The velocity and power of the specific FCHEV under those 2 driving conditions are shown in Fig. 7. The proposed FQL-based EMS is trained only with "UDDS" and tested with both driving cycles. Due to the tendency to random strategies in the early stage of training, there will be cases where the agent cannot fully go through a driving cycle and exits the current episode because the SOC reaches the boundary value. The average reward eventually tends to the highest value, and the average hydrogen consumption tends to the lowest value. Both EMS strategies achieve stable convergence.

In the test where the initial SOC value is 50% and the driving condition is "UDDS", the FQL-based EMS and the proposed FQL-based EMS with degradation are applied for testing. The SOC trajectories are shown in Fig. 9, and the actual 𝑃𝑃 𝑓𝑓𝑓𝑓 output of the EMS strategy are shown in Fig. 10. The SOC of the terminal state of the proposed FQL-based EMS with degradation is 48.95%, and the FQL's is 48.05%. For the control action of the EMS in the 2nd zoon figure of Fig. 10, the number of fuel cell starts is significantly reduced by the proposed method considering the degradation factor, which is better for prolonging the lifetime of the fuel cells. To verify the adaptability of the proposed method to the initial state, several tasks are being tested with the initial state of SOC 25%, 50% and 75%. To further verify the adaptability of the proposed method to the unknown driving condition, the tests with driving cycle "NEDC" are also carried out with the different initial states of SOC. Since the "UDDS" is the only driving condition used during the training process, "NEDC" is completely unknown to the well-trained agent. The SOC trajectories of the FQL-based EMS with degradation under driving cycles "UDDS" and "NEDC" are shown in Fig. 11. The test results verify the adaptability of the proposed method to changes in the initial state and driving conditions. Those are also the advantages of the model-free method, which is insensitive to model changes and does not require modeling for complex models. And the power allocation strategies of the proposed method with different initial SOC values are shown in Fig. 12. See detailed test results in TABLE V. V. CONCLUSIONS An FQL-based EMS with a degradation factor is proposed for the FCHEV, which combines the advantages of fuzzy logic and reinforcement learning. The FQL is a model-free RL method that can learn itself through interaction with the environment even the model of the environment is unknown. Also, a fuzzy inference system is used to approximate the Q-function for reinforcement learning to solve the continuous space problems and reduce computation significantly. The effectiveness of the proposed method is verified by python based training and test platform. While achieving the requirements of reducing fuel consumption and maintaining battery operation, the proposed method can also extend the lifetime of fuel cells by reducing the number of fuel cell starts. In addition, by changing the initial state and driving conditions in the test, the proposed EMS can still maintain good adaptability. Combining fuzzy reinforcement learning with the fuel cell degradation process helps to further enhance the potential of EMS for FCHEV.
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 1 Fig. 1. Energy system for fuel cell hybrid electric vehicle.
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 2 Fig. 2. The output voltage and efficiency of fuel cells

Fig. 3 .

 3 Fig. 3. The characteristics of the batteries Considering the power loss of the DC/DC converter, the battery output power is expressed as: / ( 0) ( 0) bat bdc bat bat bat bdc bat P P P P P η

Fig. 4 .

 4 Fig. 4. Fuzzy Interrace System scheme

  Membership of 𝑃𝑃 𝑣𝑣𝑣𝑣ℎ (b) Membership of 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 Fig. 5. Membership functions of state variables

Fig. 6 .

 6 Fig. 6. Reinforcement Learning Principle

Fig. 7 .

 7 Velocity and power of the FCHEV under different driving cyclesB. Training and Test Results AnalysisTo compare the performance of the proposed FQL with degradation and the FQL, we train the agents for both of them with the same parameters. The learning rate is set as 𝛼𝛼 = 0.005, and the decay rate is set 𝛾𝛾 = 0.999. The system states are constrained as 𝑃𝑃 𝑣𝑣𝑣𝑣ℎ (𝑡𝑡) ∈ [-50𝑘𝑘𝑘𝑘, 50𝑘𝑘𝑘𝑘] and 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 (𝑡𝑡) ∈ [0%, 100%] , and control action 𝑃𝑃 𝑓𝑓𝑓𝑓 (𝑡𝑡) ∈ [0, 100 𝑘𝑘𝑘𝑘]. The initial state of 𝑆𝑆𝑆𝑆𝐶𝐶 𝑏𝑏𝑎𝑎𝑏𝑏 (𝑡𝑡) is set as 50% during the training process. For the objective function in (9) , 𝑘𝑘 𝑆𝑆𝑆𝑆𝑆𝑆 =200, and 𝑘𝑘 𝑙𝑙𝑏𝑏𝑎𝑎𝑟𝑟𝑏𝑏 =0.2. The exploration rate 𝜀𝜀 decreases exponentially from 1 to 0.001. The total training episode is 1000, and the training time for the FQL-based EMS and the proposed FQL-based EMS with degradation is 15 and 17 minutes separately. The learning process of the proposed FQL-based EMS and the FQL-based EMS with degradation are shown in Fig. 8, which shows the average reward and the average hydrogen consumption of the proposed methods.

  (a) without degradation factor (b) with degradation factor Fig. 8. The training process of the proposed FQL-based EMS for FCHEV.

Fig. 9 .

 9 Fig. 9. The SOC trajectories of the FQL-based EMS and the of the proposed FQL-based EMS with degradation for FCHEV.

Fig. 10 .

 10 Fig. 10. The fuel cells system power of the FQL-based EMS and the of the proposed FQL-based EMS with degradation for FCHEV.

Fig. 11 .Fig. 12 .

 1112 Fig. 11. The SOC trajectories of the proposed FQL-based EMS with degradation for FCHEV under the diving cycle "UDDS" and "NEDC"

TABLE I .

 I VEHICLE REQUIRED POWER FUZZY

TABLE 𝑷𝑷 𝒗𝒗𝒗𝒗𝒗𝒗 Fuzzy sets NH NM NL ZO PL PM PH

 𝑷𝑷 

	Typical Value (kW) -50 -20 -10	0	10	20	50

TABLE II .

 II BATTERIES SYSTEM POWER FUZZY TABLE

	𝑺𝑺𝑺𝑺𝑺𝑺 𝒃𝒃𝒃𝒃𝒃𝒃 Fuzzy sets VL	L	M	H	VH
	Typical Value (%)	20 40 50 60	80

TABLE III

 III 

	. FUEL CELLS SYSTEM POWER FUZZY TABLE
	𝑷𝑷 𝒇𝒇𝒇𝒇 Fuzzy Sets	ZO SL VL L	M	H	VL	SH
	Typical Value (kW)	0	1	2	5 10 20 50 100

TABLE IV .

 IV THE PSEUDOCODE OF THE PROPOSED FQL Randomly initialize q-array 𝒒𝒒 with the size of [𝑀𝑀 × 𝑁𝑁] 𝑀𝑀: the number of fuzzy rules; 𝑁𝑁: the number of fuzzy outputs sets 𝑈𝑈 for 𝐺𝐺𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒𝐺𝐺𝐺𝐺 = 1 to 𝐿𝐿 do: Reset the environment with the initialized state 𝑠𝑠 0 Obtain fuzzy state 𝜙𝜙(𝑠𝑠) with membership functions of each rule for 𝑡𝑡 = 1 to 𝑇𝑇 do: Obtain fuzzy actions: 𝑎𝑎 𝑙𝑙 , with 𝜀𝜀 -𝐺𝐺𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦 according to 𝑞𝑞 𝑙𝑙 𝜙𝜙 𝑙𝑙 (𝑠𝑠), 𝑎𝑎 𝑙𝑙 ): = 𝑞𝑞 1,𝑙𝑙 (𝜙𝜙 𝑙𝑙 (𝑠𝑠), 𝑎𝑎 𝑙𝑙 ) + 𝛼𝛼𝛥𝛥𝑞𝑞 𝑙𝑙 Update state: 𝑠𝑠 ← 𝑠𝑠 ′ , 𝜙𝜙 (𝑠𝑠) ← 𝜙𝜙(𝑠𝑠′)

	Fuzzy Q-Learning (FQL)	
	𝑎𝑎 𝑙𝑙 = �	𝑎𝑎𝑟𝑟𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎 𝑎𝑎 𝑖𝑖 ∈𝑈𝑈 𝑟𝑟𝑎𝑎𝑛𝑛𝐺𝐺𝑒𝑒𝑚𝑚 𝑎𝑎 𝑙𝑙 ∈ 𝑈𝑈 𝑞𝑞 𝑙𝑙 (𝜙𝜙 𝑙𝑙 (𝑠𝑠 ′ ), 𝑎𝑎 𝑙𝑙 ) 𝜀𝜀 ≥ 𝒩𝒩(0,1) 𝜀𝜀 < 𝒩𝒩(0,1)	, 𝑖𝑖 = 1, … , 𝑀𝑀
	Take the actual action with defuzzifier :
			𝑎𝑎(𝑠𝑠) =	∑ 𝑎𝑎 𝑙𝑙 𝜙𝜙 𝑙𝑙 (𝑠𝑠) 𝑀𝑀 𝑙𝑙=1 ∑ 𝜙𝜙 𝑙𝑙 (𝑠𝑠) 𝑀𝑀 𝑙𝑙=1
	Observe the reward r and next state 𝑠𝑠′ Obtain the next fuzzy state 𝜙𝜙(𝑠𝑠 ′ ), the fired strength of each rule
	Evaluate the fuzzy value of the next fuzzy state 𝜙𝜙 𝑙𝑙 (𝑠𝑠′). 𝑣𝑣 𝑙𝑙 (𝜙𝜙 𝑙𝑙 (𝑠𝑠′)) = 𝑚𝑚𝑎𝑎𝑎𝑎 𝑎𝑎 𝑖𝑖 * ∈𝑈𝑈 𝑞𝑞 𝑙𝑙 (𝜙𝜙 𝑙𝑙 (𝑠𝑠′), 𝑎𝑎 𝑙𝑙 * )
	Get value funtion and Q-function with deffuzifier:
	𝑉𝑉(𝑠𝑠′) =	∑ 𝑣𝑣 𝑙𝑙 (𝑠𝑠′)𝜙𝜙 𝑙𝑙 (𝑠𝑠′) 𝑀𝑀 𝑙𝑙=1 ∑ 𝜙𝜙 𝑙𝑙 (𝑠𝑠′) 𝑀𝑀 𝑙𝑙=1	, 𝑄𝑄 =	∑ 𝑞𝑞 𝑙𝑙 𝜙𝜙 𝑙𝑙 (𝑠𝑠) 𝑀𝑀 𝑙𝑙=1 ∑ 𝜙𝜙 𝑙𝑙 (𝑠𝑠) 𝑀𝑀 𝑙𝑙=1
	update the fuzzy q-array.	
	𝛥𝛥𝑞𝑞 𝑙𝑙 = [𝑟𝑟 + 𝛾𝛾𝑉𝑉(𝜙𝜙(𝑠𝑠 ′ )) -𝑄𝑄(𝜙𝜙(𝑠𝑠), 𝑎𝑎)]	∑	𝜙𝜙 𝑖𝑖 (𝑙𝑙) 𝜙𝜙 𝑖𝑖 (𝑙𝑙) 𝑀𝑀 𝑖𝑖=1
	𝑞𝑞 𝑙𝑙 (end for		
	end for			

TABLE V .

 V TEST RESULTS AFTER 10 DRIVING CYCLES TIME OF THE PROPOSED FQL-BASED EMS WITH DEGRADATION

Driving Cycle Initial SOC 1st Diving Cycle 10th Driving Cycle Average Reward H2 Rate (g/100km) Final SOC Average Reward H2 Rate (g/100km) Final SOC UDDS

  25% -0.060 504.75 48.94% -0.036 348.29 48.95% 50% -0.035 339.70 48.95% -0.036 348.29 48.95% 75% -0.070 239.78 59.18% -0.036 348.29 48.95%

		25% -0.070 520.40 47.16% -0.044 361.02 47.16%
	NEDC	50% -0.042 339.71 47.16% -0.044 361.02 47.16%
		75% -0.167 233.76 58.07% -0.044 361.02 47.16%
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