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Chapter 1

Combining deterministic compressed sensing
and machine learning for data reduction in

connected health
Hassan RABAH1 Slavisa JOVANOVIC2 and

Naeem RAMZAN3

Connected health is continuously developing, particularly with the advent of the In-
ternet of Things (IoT) interconnecting various sensing nodes to measure a person’s
vital signs such as electrocardiogram (ECG). Moreover, it is expected an increase in
device demand among a currently underserved but significant population. Most of
existing devices performing measurement and data transmission require significant
effort to integrate more intelligent processing or even decision making at least for
data reduction and more autonomy. In this chapter, we propose the combination of a
simple compressed sensing measurement technique with a machine learning classi-
fication both for data reduction and for low power consumption. The classification is
performed on compressed data and the transmission is achieved for warnings only,
by sending classification information, in case of a probable pathology detection, and
if necessary the compressed data for further analysis. For data acquisition, we utilize
a simple deterministic measurement matrix, which facilitates the hardware imple-
mentation. The performance of the proposed approach is demonstrated using ECG
recordings from three PhysioNet databases: MIT-BIH Arrhythmia Database, MIT-
BIH Normal Sinus Rhythm Database, and The BIDMC Congestive Heart Failure
Database.

1.1 Introduction

The early and rapid detection of heart disorders is a very important act of surveillance
and more critical than treatment. These disorders can be diagnosed by real time anal-
ysis of electrocardiogram (ECG) signal. Continuous monitoring of cardiac health
is possible and well approved thanks to the wireless body sensor network devices
(WBSN) connected to the monitoring center via wireless links [1]. The challenges
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2Institut Jean Lamour, Université de Lorraine
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in such network are mainly : limited available bandwidth, low memory capability,
reduced computational power, and limited energy due to the use of small battery [2].
Research has shown that most of the power in a wireless biosensor is consumed by
the radio transceiver during the data transmission [3]. Therefore, compressing data
can reduces the power consumption of the wireless biosensors during transmission
but requires sufficient computation power to perform compression.

Compressed sensing (CS) is a technique suitable for compressing and recovering
signals having sparse representations in certain bases [4]. CS has been widely used to
compress the data while sensing the signal in the wireless bio-sensors because most
of the bio-signals such as ECG have sparse representation in time of a transform
domain [5]. The main advantage with CS is that its acquisition process requires
less computational power and addresses the constraints of the wireless biosensors.
The complexity of the CS encoder depends on the description of the measurement
matrix. Initially, random matrices were commonly used. However, they are difficult
to implement in hardware. Recently, deterministic measurement matrices have been
proposed to facilitate the hardware implementation [6, 7]. On the other hand, the
recovery process of CS is computationally complex; and it is generally performed
on a distant computer or on the cloud. Thus, even if there exist efficient algorithms
and acceleration techniques, it is not suitable for the real time diagnosis.

From the detection point of view, machine learning algorithms for automatic
classification of ECG signal has become an increasingly significant topic[8]. In this
area, the focus is done on feature selection and extraction [9], and robustness of the
machine learning classifiers [10]. In this paper we exploit the combination of com-
pressed sensing and machine learning for data reduction, power consumption and
real time detection with respect to some features, instead of a full signal reconstruc-
tion. For the CS part we propose the utilization of an encoder based on deterministic
measurement matrix of our previous work in association with machine learning to
increase the capacity of a WBSN and to reduce the energy consumption of the wire-
less biosensors. The remainder of this paper is organized as follows. Section 1.2
introduces the basics of CS, the proposed measurement matrix and the principle of
classification in compressed domain. Detailed method for compresive sensing, fea-
ture extraction and classification in the compressed domain are given in section 1.3.
The obtained results are provided in section 1.4 and conclusions are given in sec-
tion 1.5.

1.2 Background and related work

1.2.1 Compressive sensing
Compressive sensing is a sensing procedure which compresses a signal at the time of
acquisition. This technique relies on the sparsity of the signal of interest in the time
domain or in a transform basis or in a learned basis. A signal x ∈ RN is said to be
K-sparse or compressible in a basis Ψ ∈ RN×N if its transform α ∈ RN (x = Ψα)
contains at most K non-zero or significant elements such that the remaining (N−K)
elements can be discarded without perceptible loss.
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The K-sparse signal x ∈RN is compressively sensed by multiplying it by a rect-
angular matrix Φ ∈ RM×N during the acquisition process, where K < M < N. The
resulting vector y ∈ RM is called the measurement vector and Φ is called the mea-
surement or sensing matrix. Since x is sparse in a basis Ψ, y is expressed as follows:

y = Φx = ΦΨα (1.1)

The recovery process reconstructs the original signal x from the measurement
vector y by solving equation (1.1). Since Φ ∈ RM×N is a rectangular matrix (M <
N), the problem formulated in equation (1.1) is ill-posed and has infinite solutions.
However, based on the knowledge that x is sparse in a basis Ψ, the recovery process
can be performed in two steps.

The first step finds the sparse vector α̃ by solving the following minimization
problem:

min
α̃
‖α̃‖0 such that ΦΨα̃ = y (1.2)

Once the vector α̃ has been obtained, the second step reconstructs the original
signal as follows:

x̃ = Ψα̃ (1.3)

The appropriate solution to equation (1.2) is generally computed by using con-
vex relaxation (CR) and greedy pursuits (GP) based algorithms such as the orthog-
onal matching pursuit (OMP). In order to find the unique solution of equation (1.2),
the measurement matrix Φ must satisfy the restricted isometry property (RIP) condi-
tion [11]. Φ is said to satisfy the K-RIP if there exists a restricted isometry constant
(RIC) δK , 0 < δK < 1 such that

(1−δK)‖α‖2
2 ≤ ‖ΦΨα‖2

2 ≤ (1+δK)‖α‖2
2 (1.4)

for all K-sparse vectors α . In general, it is difficult to evaluate the RIP of a given ma-
trix [12, 13]. A sufficient condition used in CS literature is the incoherence between
the measurement matrix Φ and the sparsity basis Ψ [14]. The coherence µ between
the two matrices is expressed as follows:

µ(Φ,Ψ) = max
i, j

∣∣∣〈φ i,ψ j

〉∣∣∣
‖φ i‖2‖ψ j‖2

(1.5)

where φ i∈{1,...,M} and ψ j∈{1,...,N} respectively represent the row vectors of Φ and the
column vectors of Ψ. The matrices Φ and Ψ are incoherent if µ is small enough.

Initially random matrices, where the entries are generated by an independent and
identically distributed (i.i.d) Gaussian or Bernoulli process, are commonly used since
they satisfy the RIP and low coherence with high probability [15]. Recently, more
attention has been paid to deterministic measurement matrices [6, 16, 7]. Indeed, the
hardware implementation of deterministic measurement matrix is simple. However,
the reconstruction of signal x̃ can be very costly especial the case of IoT with limited
computational resources and energy, computing in compressed domain can achieve
good results, very reduced data communication, and thus low power.
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1.2.2 Classification in compressed domain
The last decade had witnessed an important activity in the area of processing in the
compressed domain. The first research addressed the problem of efficient feature
extraction from compressed video and audio data bases [17]. In the particular case
of compressed sensing, where the measurement are obtained by projecting signal in
random vectors, it was mathematically proven that CS measurement can be effec-
tively used in signal classification [18]. In [19] Davenport et al.demonstrated that
small numbers of non-adaptive compressive measurements can suffice to capture the
relevant information required for accurate classification. They proposed a smashed
filter based on matched filter while stressing its compressive nature. Learning di-
rectly in the compressed domain has been also demonstrated in [20]. In [21] the
authors exploited the discriminative nature of sparse representation to perform clas-
sification. Compressed sensing has been combined with support vector machines
in [20, 22] and least squares regression [23]; it was shown that training based on
the compressed data performs almost as well as the best possible SVM classifier
in the data domain. In [24] the authors presented novel approaches that can deal
with complex machine learning problems. In particular, they show how to reduce
the time needed to train feed-forward neural networks, considering only multilayer
perceptrons (MLPs). CS was also associated with deep learning in [25] for images
classification. Random Gaussian measurement matrix and discrete cosine transform
(DCT) matrix were applied to images and a block-wise histograms used as a feature
extractor. A convolutional CS framework was proposed in [26] by associating CS
and CNN along with convolutional filters for image classification. Signal process-
ing operations are applied directly to compressively sensed signal for classification
by using discrete wavelet transform (DWT) for features extraction and K-means for
clustering [27]. In [28] a end-to-end deep learning approach for CL is presented, in
which a network composed of fully-connected layers followed by convolutional lay-
ers perform the linear sensing and non-linear inference stages. During the training
phase, the sensing matrix and the nonlinear inference operator are jointly optimized,
and the proposed approach outperforms state-of-the-art for the task of image clas-
sification. In [29] the authors investigated the application of compressed sensing in
planar tactile arrays. For the measurement matrix, the Scrambled Block Hadamard
Ensemble (SBHE) is used. SBHE is a partial block Hadamard transform with ran-
domly permuted columns. The full signal is compressed using the SBHE matrix
to generate the compressed signal of a single time instance of contact with an ob-
ject. Soft-margin SVM is used for classification. Most of the existing works have
focused on the image classification applications, and, in the best of our knowledge
most of the measurment matrices utilized for CS are random Gaussian. In this work,
we propose the association of a simple deterministic measurement matrix associated
to SVM classifier for ECG classification in the compressed domain. The following
section gives the details of the proposed method.
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1.3 Method

The proposed structure for real time ECG monitoring is shown in Figure 1.1. This
structure consists of three main operations: Compressive sensing acquisition, fea-
tures extraction, and classification. In the first operation, the signal X = {x ∈ RN}
is compressively sensed and provides the measurement data Y = {y ∈ RM}. The
second operation generates the features F from the measurements vector. The final
operation, after training, classify the features into different classes C. The details of
different operation are given in the following.
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Figure 1.1 General structure of the proposed framework.

1.3.1 Compressive sensing acquisition
In most published papers on classification in compressively sensed domain, the uti-
lized matrices are randomly generated. The complexity of the CS acquisition de-
pends on the description of the measurement matrix Φ. To facilitate the implemen-
tation of CS acquisition, particularly for low resources nodes, we utilize a determin-
istic binary block diagonal (DBBD) matrix developed in our previous work [7], and
which is described as follows:

ΦDBBD =


[1 . . .1] 0 0 0

0 [1 . . .1] 0 0

0 0
. . . 0

0 0 0 [1 . . .1]

 (1.6)

• ΦDBBD is binary since its elements belong to {0, 1} set.
• ΦDBBD is block diagonal.

• Each block, which composes the diagonal of ΦDBBD, has a fixed length m =
N
M

and can be viewed as a vector B ∈Rm. We set all elements of B to ’1’ as shown
in equation (1.6).

In order to compare the performance of DBBD matrix and the generally used
matrix (random matrix), we evaluated the coherence between the inverse DCT (IDCT)
matrix and these two matrices versus compression ratio (CR) defined as :

CR[%] =
N−M

N
×100;
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where N and M are respectively the lengths of the vectors x⊂X and y⊂Y. The
results ar shown in Figure 1.2.
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Figure 1.2 Coherence between measurement matrices and transform domain
ΨIDCT as a function of CR.

Regardless the measurement matrix, we obtain a lower coherence µ by increas-
ing the value of N. Notice that if CR is less than or equal to 80 %, µ(ΦDBBD,ΨIDCT)
is lower than µ(ΦGaussian,ΨIDCT). For a CR of 90 %, we obtain a slightly higher
coherence µ with ΦDBBD. However, there is no significant difference between them
since the deviation is 0.06, which is much less than the upper boundary of µ .

1.3.2 Features extraction
Feature extraction is an important part of the classification chain. The role of this
part is not only reduce data but also to extract relevant information for the classifier.
For ECG signal, there is various features that are used to characterise the signal. In
this work we will utilise three kernels : auto regressive model, Shannon entropy, and
fractal estimates. The feature extraction operation will generate the features vector
F = { f1, f2, ..., fL} consisting of concatenation of the output of the bellow detailed
kernels.

Auto-regressive model (AR):
The AR model is applied to obtain the temporal structures of ECG wave-forms. The
auto-regressive model of order p consists of representing the signal ym at a time in-
stant m as a linear combination of p previous values of the same signal. Specifically,
the process is modeled as ym = ∑

p
i=1 aiym−i+em, where ai is the ith coefficient of the

model and em is a white noise with mean zero, and p the AR order. In our study, we
will choose p = 4 as in [30] where the authors used model order selection methods
to determine that a 4th order model provided the best fit for ECG wave-forms; the
features are noted {ar1,ar2,ar3,ar4}.
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Shannon entropy (SE:)
In [31], the authors considered the separation of training and testing samples from
the same set of patients. To this end, they proposed a method to classify ECG signals
using the Shannon entropy computed on the terminal nodes of a wavelet packet.
Shannon wavelet packet entropy is powerful tools for transient signal analysis, which
gives information on stroke evaluation. The wavelets are computed down to level 4
using maximal overlap discrete wavelet packet transform, which gives 16 features
{se1,se2, ...,se16}.

Multi-fractal wavelet (MF:)
Alterations to the control system of the heart by myocardial ischaemia are reflected in
changes in the complex and irregular fluctuations of the signal. Multifractal analysis
is a tool suited for the analysis of this kind of fluctuations, since it gives a descrip-
tion of the singular behavior of a signal. Recently, a new approach for multifrac-
tal analysis was proposed, the wavelet leaders, which shows remarkable improve-
ments over previous methods. In [32], the authors propose the application of wavelet
leader based multifractal analysis in short-time windows with the aim to characterize
and detect ischaemic episodes. Two fractal measures computed by multifractal 1-D
wavelet leader estimates are used as features. This features are singularity spectrum,
which is as a measure of the multifractal nature of the ECG signal; and the holder
exponent describing power-law behavior in the signal at different resolutions. These
two features are denoted {m f1,m f2}.

Feature vector:
Compressive sensing is applied to ECG data (x ∈ RN). The compressively sensed
data (y ∈ RM) is fed to the feature extraction operation. The ration R = N/M is uti-
lized to define the size of time window for feature extraction. We define T as the
total size of non compressed data X = {x} and TW time window for features extrac-
tion from non compressed data. In this case, the number of features extracted for
each window TW is 22 (4 auto-regressive features, 16 Shannon entropy features and
2 multi-fractal wavelet features). The total number of features for non compressed
data is L= 22 T/TW . All this features are concatenated to construct the feature vector
F = {ar1, ...,ar4,se1, ...se16,m f1,m f2}.

When the feature extraction is applied to the compressively sensed data Y the
size of the processing window is reduced with the same factor R as the total data.
Thus the number of features remain the same while processing a reduced number of
data.

1.3.3 Classification
For the classification of ECG signal in the compressed domain, we make use of Sup-
port Vector Machine (SVM), more details can be found for example in [33]. SVM
were originally developed for binary classification. For a binary problem, given a set
of l data elements xi and their corresponding class yi: {(x1,y1),(x2,y2), ...,(xl ,yl)}
where xi ∈ Rn and yi = ±1 the training step consists of resolving the following
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quadratic programming problem with linear restrictions (note that here, x and y are
note the same as in the previous sections).

maximaze :
l

∑
i=1

α i−
1
2

n

∑
i, j=1

α iα jyiy jK(xi,x j), (1.7)

sub ject to : 0≤ α i ≤C (i = 1, ..., l),
l

∑
i=1

α iyi = 0 (1.8)

where α > 0 are Lagrange multipliers. When the optimization problem is solved,
many α i will be equal to 0, and the others will be Support Vectors. C is positive con-
stant which is chosen empirically by the user. This parameter expresses degree of
loosing constraint. A large C can classify training examples more correctly. K(xi,x j)
is the kernel function. In our case, a multi-class SVM with a quadratic kernel is used.

1.4 Experimental results and discussion

In this section, we present the experimental results for performing the features ex-
traction and classification in the compressively sensed data. We compare obtained
results for random measurement matrix and proposed deterministic matrix. We also
compare the obtained results for different compressing rates with no compression
case.

1.4.1 Datasets
In the numerical experiments, we have used the ECG data from the MIT-BIH Ar-
rhythmia Database corresponding to the normal heartbeat and 2 types of arrhythmia
[34, 35]. Each type of heartbeat was extracted from the record which contained most
beats of this type. In this work, we utilised the available datatset in [36] where there
are 96 recordings from persons with arrhythmia, 30 recordings from persons with
congestive heart failure, and 36 recordings from persons with normal sinus rhythms.

1.4.2 Training and validation results
The ECG dataset is described above, it uses 162 measurements sampled at 128 Hz.
Each measurement has a size of 216 samples. The measurements are labelled: ARR
(arrhythmia), CHF (congestive heart failure), and NSR (normal sinus rhythm). The
classifier is trained to distinguish between ARR, CHF, and NSR in two cases: non
compressed data and compressively sensed data. In the two cases, 70% of dataset
is used for training and the rest for validation. Features are extracted from the two
subsets : features for training and features for validation. The feature vectors are
composed of 22 features, which are described above. In the case of non compressed
data, a time window of size 8192 is utilized to extract 22 features; which gives a
total of 176 features for each ECG signal. The same number of features is also
extracted from the compressively sensed data. However, the size of time window
is divided by the sensing rate thanks to the compression obtained by CS operation.
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The procedure is applyed to each sensing rate and for the two types of measurement
matrices: Random Gaussian matrix ΦGaussian and deterministic matrix ΦDBBD.

The performance of classifier in classifying the features extracted from original
signal as well as from compressive measurements is compared using the standard
measures i.e., accuracy, precision, recall (or sensitivity) and F1-score (weighted av-
erage of precision and recall). These are calculated from the parameters true positive
(T P), true negative (T N), false positive (FP) and false negative (FN) as follows

Accuracy =
T P+T N

T P+FP+FN +T N
Precision =

T P
T P+FP

Recall =
T P

T P+FN
F1− score = 2× Recall×Precision

Recall +Precision

Figure 1.3 and figure 1.4 show the values of these parameters in the confusion
matrices for the deterministic measurement matrix and Gaussian matrix, with sam-
pling rate varying from 1 to 16. The confusion matrices summarize the distributions
for elements belonging to a given class (one per row: ARR, CHF or NSR) being
assigned a given class label (one per column: ARR, CHF or NSR). The diagonal ele-
ments show the number of correct classification for each of the classes. The matrices
show that performance is almost stable as R increases for ΦDBBD matrix except for
CHF class for R = 16, compared to the non compressed data. However, the perfor-
mance is degrading with increase of R especialy for CHF class. This figures show
that the proposed matrix performs better than Gaussian matrix.

Table 1.1 compares the accuracies obtained using original signal and the com-
pressively sensed signal for different sensing rates and for the Gaussian and deter-
ministic measurements matrices. The CS method the proposed deterministic ma-
trix ΦDBBD is able to achieve better accuracies than the random Gaussian matrix
ΦGaussian. Precision, Recall, and F1 Score are also used for the evaluation of the
evaluation of the classifier. These metrics are shown respectively in figures 1.5, 1.6
and 1.7 demonstrating again that the proposed ΦDBBD matrix is capable of not only
preserving information on ECG classes, but also performing better than widely user
random measurement matrix.

1.5 Conclusion

Integration of more intelligent processing and decision making at least for data re-
duction and more autonomy. The Nyquist sampling technique has shown its limita-
tion due to the huge data that can be generated. Compressive sampling has demon-
strated to be very efficient in data reductions; but require expensive deported process-
ing, which is not suitable for continuous monitoring and real time decision making
in low power and low resources wireless devices. In this paper we presented method
based on a combination of deterministic compressed sensing and machine learning
for data reduction in connected health. The method is applied to ECG signal classifi-
cation in the compressed domains without reconstructing the signal. We demonstrate
that is possible to capture the difference between the normal heartbeat and 2 types
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of arrhythmia by the performance of the SVM classifier on the test set. We also
compared the performances of a simple deterministic measurement matrix with ran-
dom Gaussian measurement matrix. The obtained results, particularly precision and
accuracy, of the deterministic matrix are far superior to that of random Gaussian
matrix.

Figure 1.3 Confusion matrices of classification results by SVM classifier sensing
matrix ΦDBBD with sampling rates varying from R = 1 to 16

Figure 1.4 Confusion matrices of classification results by SVM classifier sensing
matrix ΦGaussIAN with sampling rates varying from R = 1 to 16

Table 1.1 Accuracies of SVM applyed to the original signal and compressive
measurements for Gaussian matrix and deterministic matrix for
different sampling rates R=N/M.

Sensing CS Signal ΦGaussian ΦDBBD
Rate Dimention accuracy (%) accuracy (%)

1 (no CS) 8192 95.91 95.91
2 4096 69.38 85.71
4 2048 67.34 79.59
8 1024 69.38 85.71
16 512 77.55 77.55
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Figure 1.5 Precision for ARR, CHF, and NSR as a function of CR.
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Figure 1.6 Recall for ARR, CHF, and NSR as a function of CR.
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