
HAL Id: hal-03981874
https://hal.science/hal-03981874

Submitted on 10 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

2D/3D Deep Registration Along Trajectories With
Spatiotemporal Context: Application To Prostate

Biopsy Navigation
Tamara Dupuy, Clément Beitone, Jocelyne Troccaz, Sandrine Voros

To cite this version:
Tamara Dupuy, Clément Beitone, Jocelyne Troccaz, Sandrine Voros. 2D/3D Deep Registration Along
Trajectories With Spatiotemporal Context: Application To Prostate Biopsy Navigation. IEEE Trans-
actions on Biomedical Engineering, 2023, 70 (8), pp.2338-2349. �10.1109/TBME.2023.3243436�. �hal-
03981874�

https://hal.science/hal-03981874
https://hal.archives-ouvertes.fr


GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017 1

2D/3D Deep Registration Along Trajectories
With Spatiotemporal Context: Application To

Prostate Biopsy Navigation
Tamara Dupuy, Clément Beitone, Jocelyne Troccaz Fellow, IEEE and Sandrine Voros

Abstract— Objective: The accuracy of biopsy targeting
is a major issue for prostate cancer diagnosis and therapy.
However, navigation to biopsy targets remains challenging
due to the limitations of transrectal ultrasound (TRUS)
guidance added to prostate motion issues. This article
describes a rigid 2D/3D deep registration method, which
provides a continuous tracking of the biopsy location w.r.t
the prostate for enhanced navigation. Methods: A spa-
tiotemporal registration network (SpT-Net) is proposed to
localize the live 2D US image relatively to a previously
aquired US reference volume. The temporal context relies
on prior trajectory information based on previous registra-
tion results and probe tracking. Different forms of spatial
context were compared through inputs (local, partial or
global) or using an additional spatial penalty term. The
proposed 3D CNN architecture with all combinations of
spatial and temporal context was evaluated in an ablation
study. For providing a realistic clinical validation, a cumu-
lative error was computed through series of registrations
along trajectories, simulating a complete clinical naviga-
tion procedure. We also proposed two dataset generation
processes with increasing levels of registration complexity
and clinical realism. Results: The experiments show that a
model using local spatial information combined with tem-
poral information performs better than more complex spa-
tiotemporal combination. Conclusion: The best proposed
model demonstrates robust real-time 2D/3D US cumulated
registration performance on trajectories. Those results re-
spect clinical requirements, application feasibility, and they
outperform similar state-of-the-art methods. Significance:
Our approach seems promising for clinical prostate biopsy
navigation assistance or other US image-guided proce-
dure.1

Index Terms— 2D/3D registration, prostate biopsy, spa-
tiotemporal context, ultrasound-guided interventions

I. INTRODUCTION

A. Clinical context and motivations
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THE accurate localization of anatomical targets and nav-
igation towards them is critical to many clinical tasks,

especially for image-guided interventions on soft-tissue. A
typical case is prostate biopsy, which is the confirmatory
examination to diagnose prostate cancer, one of the most
frequent male cancers worldwide. A biopsy session consists
in collecting several tissue samples in the prostate, most
often under transrectal ultrasound (TRUS) guidance. Most
standard protocols consist of 6 or 12 sampling positions spread
regularly in the prostate. Additional samples can be taken in
specific regions appearing suspicious on a pre-operative MRI.
During this TRUS-guided procedure, the navigation to biopsy
targets faces several challenges coming from poor image qual-
ity and limited 2D anatomical information. The difficulty of
mentally representing the 3D impact of US probe motions and
prostate motion and deformation makes sample targeting very
uncertain. This leads to a low correlation between theoretical
biopsy samplings and histological results. Inaccurate sample
targeting may thus produce biased diagnosis (about 30% of
false negatives [1], [2]), inappropriate therapeutic decision and
inaccurate focal therapy application, in addition to a longer
and uncomfortable examination procedure for the patient. The
smallest significant treatable tumor is mutually agreed among
the urology community to a value of 0.5 cm3 [3]. This
corresponds approximately to the volume of a sphere of radius
5mm. Therefore, 5 mm can be considered as the maximum
acceptable error between expected and real positions of biopsy
cores.

In a context where prostate cancer diagnosis and therapy
are at stakes, several developments have been made over the
past two decades to improve biopsy cores targeting. A first
kind of approaches focused on improving biopsy localization
by using multimodal 3D/3D registration to map preoperative
information [3], [4] to the intraoperative context. These meth-
ods generally register a preoperative 3D MR reference image
to a reference 3D TRUS image, acquired at the beginning of
the procedure. This is increasingly done using deep-learning
based methods [5]–[9]. However, these approaches do not take
into account intra-operative changes (due to probe pressure,
patient breathing, etc.), which results in limited accuracy.
To include updated information to this fusion process, other
studies [10] proposed additional registrations made all along
the intra-operative procedure: they register the initial 3D TRUS
image to 3D TRUS images acquired prior to each biopsy gun
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firing. Despite their accuracy and robustness, these approaches
require 3D acquisition time (generally a few seconds) with
a static position of the US probe. This makes real-time
navigation assistance impossible.

This has motivated other approaches focused on computing
the current localization of the organ and targets from real-time
(a.k.a.”live”) 2D US images. This can be done by registering
the live 2D US image either directly to the preoperative 3D
MRI by using multimodal 2D/3D registration [11]–[13], or
to a reference 3D TRUS image by using mono-modal 2D/3D
registration [1], [14]–[19]. Nevertheless, real-time 2D/3D reg-
istration is still a challenging task due to image dimension
mismatch, the lack of out-of-plane information from the 2D
image, in addition to the spherical and symmetric shape of the
prostate. For now, traditional (i.e. non deep-learning) methods
[1], [11], [15]–[18] still have limited performances especially
in terms of computational efficiency. Considering the 2D
US image acquisition frequency (10-20 Hz), a computational
time below 50 ms is needed to allow real-time navigation.
Recent advances in deep learning-based strategies [12], [14],
[19] provided a new opportunity to develop robust real-time
guidance. Nevertheless, published studies still present limited
evaluation strategies in terms of clinical realism. Indeed, most
evaluations involved: data from small databases [12], artifi-
cially simulated data (resampled from TRUS volume without
real-time deformation [14], [19], with a single slice orientation
[14]), strongly preprocessed data (segmented [12], centered
[14], manually initialized [12], [14]), or with limited ground-
truth annotations (2D landmarks [14]). Moreover, these meth-
ods do not consider the overall dynamic of prostate biopsy
samplings which rely on complete trajectory gestures. Most
often, registration is evaluated for standalone and standard
slices, without cumulative error consideration over time [14],
[19]. Finally, even with poor validation strategies, these studies
do not meet clinical accuracy requirements.

B. 2D/3D deep registration strategies for real-time
navigation assistance

As only few studies refer to registration for prostate navi-
gation applications, we have extended our literature analysis
to any general application involving “2D/3D image registra-
tion”. This includes both 2D image (referred also as slice)
localization inside a volume and volume reconstruction from
slices. We exclude registration involving 2D projective images
(typically X-ray projections) as they do not share the same
properties as our targeted application. The different studies
can be organized into 4 categories, described below.

Methods considering only slices inputs: Unlike traditional
methods, 2D/3D deep registration is often treated as a problem
where only the slice to be registered is provided to the network,
without having any information about the volume, even if
it exists. Most of the literature [19]–[25] proposes an end-
to-end supervised regression task, with convolutional neural
networks (CNN) architectures, to predict rigid transformation
parameters (rotations and translations) which locate the slice
in a common 3D reference frame.

Methods considering spatial context inputs: Adding
spatial context information can facilitate network learning

especially for 2D/3D registration problems. Providing both
slice and volume as inputs is used in few studies [12],
[14], [26]. However, the correct combination of these two
types of information is made complex due to their different
dimensions, the different nature of the features involved, as
well as their unequal and unbalanced representation. Most of
these studies ultimately transform the problem into a same-
dimensional task: (i) either by projecting the 2D features in the
3D space using external tracking (3D/3D problem [12]), (ii) by
reslicing the wrapped volume (2D/2D problem [12]), or (iii) by
manipulating the dimensions of the convolutions to extend the
feature maps (by duplication [26] or transformation [14]) into
a volume of the same dimensions as the input volume. One
study [14] proposed a dual-branch balanced feature extraction
network to make the model equally sensitive to both the frame
and volume information. For volume reconstruction problems
[27], [28], the addition of very local spatial context is often
used through the addition of the previous slice as input.
It contributes to the relative localization between successive
slices.

Methods considering spatial context penalization: An-
other way of adding spatial context information consists in
introducing loss-penalization terms during the training phase.
Many studies [5], [6], [14], [29] use Normalized Cross Cor-
relation (NCC) or Structural Similarity Index Measurement
(SSIM) to estimate the similarity between the predicted lo-
calized image and the input slice. Such penalization allows
preserving the anatomical structures coherence and realism
based on global image content and allows a more relevant
registration optimization. This is also referred as ”self-context
learning”, as it relies on weak supervision using internal
context, inspired by the iterative optimization of traditional
studies. These loss-penalization computations rely on the
implementation of differentiable re-sampler modules (Spatial
Transform Network [30]), and also require the availability of
this 3D space context: either by preoperative acquisition [14]
or by immediate predicted reconstruction [29].

Methods with spatiotemporal context: Finally, spatiotem-
poral context can be given through the input of sequence of
images. The predicted localization of each slice is weighted
and conditioned by the general context of all other slices. Such
slices are usually handled by using 3D convolution on several
stacked neighboring slices [31], through dynamical structures
like recurrent networks [29], [32] or attention networks [33].
We also consider as spatiotemporal context, any forms of
additional information about prior localization. It can be
represented either through previous results information [19]
or relative probe tracking information [27].

C. Objectives and contributions

To allow navigation assistance during biopsy procedures, the
main objective of this work is to present a real-time 2D/3D
registration able to localize at each instant the “live” 2D US
image relatively to a TRUS reference volume, acquired just
before starting the navigation. This registration must satisfy
clinical requirements, both in terms of accuracy (≤ 5mm) and
computational efficiency (≤ 50ms), as previously mentionned.
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Strongly motivated by the intrinsic spatiotemporal nature
of prostate biopsy procedures, we developed in a preliminary
work [19] a real-time 2D/3D registration with prior trajectory
information using a 2D CNN architecture. The temporal part
was based on previous registration results and probe tracking,
and the spatial part was based on stacked pairs of successive
images. We demonstrated that the addition of temporal infor-
mation significantly improved the registration quality.

A more recent work [14], with the same clinical objec-
tives, proposed to incorporate other forms of spatial context
using both spatial input (a sub-volume) and spatial penalty
(image similarity loss term). The given sub-volume inputs
were centered and oriented using an initialization close to the
ground-truth orientation. They proposed a dual-branch features
extraction network, using a 3D CNN architecture for both 2D
and 3D input. They showed that incorporating such balanced
network and similarity loss reduced the registration error.

Given the potential of using other possible forms of spatial
context demonstrated in [14], a first objective reported in this
paper was to investigate the combination of our preliminary
temporal context approach with new possible spatial context
informations. For that, we propose a 3D CNN architecture with
flexible configurations to conduct a complete ablation study
and compare three different forms of spatial context inputs: (i)
a neighbor slice, (ii) the reference volume, or (iii) a subpart of
this volume. To further reinforce the impact of spatial context
information, we also evaluated the benefit of adding a spatial
loss penalization.

The second objective of the work was to establish a new
protocol to validate an intra-operative navigation assistance
for biopsy in a more clinically realistic way. To better reflect
the impact that registration errors would have on an overall
biopsy gesture, we first propose a cumulative evaluation based
on successive registrations over a complete trajectory. Similar
to drift quantification in volume reconstruction problems [27],
this meaningful evaluation is, however, not provided in most
similar previous studies ( [14], [19]) despite their ineluctive
temporal bias to drifted results. Secondly, while the same
simplified data simulation is mostly used in the literature
(2D reslicing and registration toward the same volume), we
developed a new data generation process with an increased
level of difficulty and realism. This new data simulation
level permits to evaluate the generalization capabilities of the
models while the first level of data simulation allows a fair
comparison with published methods.

The next section introduces our proposed method with the
different spatiotemporal context addition strategies as well as
their related implementation details. Then, data generation and
evaluation protocols are described. Finally, we present the
experimental results, followed by a discussion.

II. MATERIALS AND METHODS

A. Spatiotemporal framework for registration

The proposed network estimates the 2D/3D rigid transform
to localize continuously the current US slice St with respect to
the reference volume Vref . This volume is acquired just before
starting the navigation towards the next sampling position. The

predicted transform is denoted as T̂t = (tx, ty, tz, θx, θy, θz)
and is composed of translation and rotation parameters along
the three axes. Fig.1 illustrates the proposed spatiotemporal
framework which includes several blocks: a main backbone
branch (block 1), temporal inputs (block 2), a parallel branch
with different forms of spatial inputs (block 3) and an addi-
tional spatial penalization module (block 4).

1) Main backbone branch: The main input of this network
is the US slice St which goes through the main branch where
a 3D-conv backbone is used. It relies on a 2D convolution
layer where the features channel number is chosen using a
defined extension parameter E. This parameter has a different
role depending on the additional spatial input (see section II-
B). Then, successive 3D convolutional blocks are applied to
better combine multiple low-level features.

2) Temporal context input: Temporal information consists
in prior registration results and relative motion information.
Prior trajectory information (Tprior) comes from the previous
predicted registration result T̂t−1 computed for the localization
of St−1. Probe tracking information (TPT ) is related to the
relative displacement between St−1 and St, e.g. measured by
inertial probe sensor attached to the US probe. These optional
inputs are concatenated separately as two 6 × 1 vectors to
the 512-vector layer of the network. Section II-C describes in
more details how these input are computed or simulated.

3) Different spatial context input forms: We evaluate the
benefit of adding 3 different forms of spatial context inputs:
local, global, and partial. Each of these spatial inputs will be
added separately through different experiments.

Local spatial input: The previous slice St−1 is directly
concatenated to St in a 2-channel image input. It allows to
couple the spatial context in the two slices and explore their 3D
dependencies using convolutional layers of the main backbone
branch.

Global spatial input: The reference volume is provided as
input to the network through an additional and parallel branch
(block 3 “Full-volume”). This branch is composed of the same
successive 3D-conv blocks as the main branch to obtain a
balanced number of features during the later concatenation.

Partial spatial input: The last tested spatial form consists
in using a subpart of the reference volume as input through
an additional and parallel branch (block 3 “Sub-volume”).
This sub-volume is computed and initially oriented using the
previous predicted transform T̂t−1. This restricts the search
space, centered around the previous slice. In this case, some
changes are needed in the rest of the network: as temporal
information is already used to extract the new oriented sub-
volume input, the additional Tprior and probe tracking inputs
are removed from block 2.

4) Spatial context penalization: Finally, spatial context infor-
mation can be strenghened using an additional and differen-
tiable spatial penalization module (block 4). This module con-
sists of a rigid resampler, which first transforms the reference
volume (fed as input or not) to the predicted transformation,
before reslicing the corresponding image S(V ref , T̂t) (see [30]
for technical details). Finally, a similarity measure is computed
between the predicted resliced image pixels and the input St

pixels. This SSIM-loss term is then weighted and added as
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Fig. 1: Proposed method with spatiotemporal context. The framework can be separated in several blocks: a main backbone
branch (block 1), a parallel branch with different forms of spatial context inputs (block 3), a spatial context penalization module
(block 4), and temporal context inputs (block 2).

loss term, only for experiments adding this SSIM module (see
section II-B).

B. Network architecture and training
This section aims at detailing how the network architecture

visualized in Fig.1 has been implemented. The main branch
is composed of a first extended 2D-convolutional layer (out-
put:250x250xEx1), where the defined ”extension parameter”
E corresponds to the features channel number. To match the
spatial context size of the parallel branch, in partial and global
experiments, E must adapted to the input depth size: E = 128
for full-volume input or E = 32 for sub-volume input. For
capturing 3D dependencies between neighbor slices in the
local experiment, we chose a default extension parameter
E = 128 for which we achieved good performance. Then, two
3D-convolutional blocks with increased number of filters are
applied. Each one contains two successive 3D-convolutional
layers (kernel=5, strides=2, activation=ReLu), followed by
max pooling layers (kernel=2, strides=1). Finally, the network
consists in 6 fully connected layers, with a decreasing number
of neurons to connect with the final output layer.

Two loss functions can be combined for training. A su-
pervised mean squared error (MSE) loss (eq. 1) is com-
puted directly between the network predictions T̂t and the
ground-truth transform parameters Tt. A weakly supervised
image similarity metric (SSIM) is computed between predicted
resliced image from the input reference volume S(V ref , T̂t)
and the input slice St, as defined in eq. 2. For the linear
combination of these two terms, we conducted comparison
experiments and we finally favored a fixed weighting. (eq.
3). Contrary to adaptive weighting along the training, this
fixed ratio allows focusing on the image similarity term only
after several iterations, once MSE has penalized over huge

errors, allowing getting two close images, where the similarity
comparison is much more meaningful. For all experiments
including the SSIM-penalization block, we achieved good
performance using α = 1 and β = 50, while for the others,
we used α = 1 and β = 0.

LMSE =
1

n

n∑
t=1

||(Tt − T̂t)||2 (1)

LSSIM =
1

n

n∑
t=1

||(St − S(Vref , T̂t)||2 (2)

Ltot = α ∗ LMSE + β ∗ LSSIM (3)

C. Data generation process
1) Available clinical data: All the data were collected during

routine prostate biopsy exams, assisted by a US-based guid-
ance platform (Urostation® and Trinity® from Koelis SAS),
performed by urologists from the Grenoble University Hospital
(agreement MR2711140520 from CNIL, French Authority for
Data Management). Several elements are available for each
examination as illustrated in Fig. 2: (i) The ”panorama” US
volume (Vpano) taken at the beginning of the examination with
its associated prostate surface mesh, (ii) intra-operative biopsy
US volumes (Vi) taken at each biopsy site i = (1, j, ...N) all
along the procedure, and (iii) the rigid transform (TVi→Vpano

)
obtained through 3D/3D organ-based rigid registration be-
tween each Vi and the Vpano [10]. Finally, rigid registration
between any pair of 3D biopsy volumes (TVi→Vj

) can thus be
deduced from these available global localizations toward the
panorama volume, as described in Fig. 2.

2) Data simulation: To simulate the 2D US flow used to
navigate during a clinical procedure, series of successive 2D
US images are resliced from these biopsy volumes. For that,
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sweep trajectories (TSweep,t), corresponding to several back-
and-forth base-to-apex sweeps (from upper to lower prostate
extremities), are mimicked to generate the successive slices
(St=1, St=2, ... St=n). These trajectories are obtained by vir-
tually rotating the image plane around the probe head (±40◦

range around x − axis) and the transforms are computed
relatively to the US volume’s referential origin, as illustrated
in Fig. 3. Finally, obtained slices are cropped into 250× 250
pixels (with isotropic pixels spacing of 0.306 mm), and we
guarantee a realistic acquisition frequency around 20 Hz (50
ms) between two successive slices. During this process, the
associated reference prostate mesh is transformed in the same
way, and saved at each new time step t, for further use during
the evaluation process (see section II-D.2).

The ground-truth slice localization (Tt = TSt→Vref
) is then

computed relatively to our defined ”reference volume” Vref .
This reference volume is a concept corresponding to the
volume acquired just before starting the navigation, and to
which we want to localize. For simplicity, slices are always
referred to be extracted from Vi during data generation, while
the choice of Vref depends on the desired level of complexity
we want to simulate: either Vref = Vi (as often performed
in the literature) or Vref = Vj ̸=i. These two different data

generation processes are referred respectively as ”Si to Vi”
or ”Si to Vj” datasets (see Fig. 3). While the former dataset
presents image dependencies and bias that do not represent the
full complexity of real cases, the latter one includes input slices
that are now independent and anatomically different from the
reference volume to which we want to register them. The slice
ground-truth localization is computed through the composition
of several rigid transforms, as described in eq.4.

Tt = TSt→Vref
= TV i→Vref

∗ T−1
sweep,t with: (4)

TV i→Vref
=

{
Tidentity, if Vref = Vi

T−1
V j→Vpano

∗ TV i→Vpano
, if Vref = Vj

In particular, for experiments using partial spatial input,
as the given input volume for each time t is now a subpart
of the reference volume (defined as Vsub,t), the ground-truth
slice localization is adapted. Further description of Vsub,t

computation and ground-truth localizations are described in
supplementary materials.

Temporal inputs must also be simulated. We use previous
slice ground-truth localization Tt−1 to simulate prior trajectory
information (Tprior), during training only. For inference, how-
ever, previous predictions (T̂t−1) of the network are directly
used (see section II-D.1). Relative displacements between two
successive images (TPT ) are computed using two succes-
sive global displacements (Tt

−1 ∗ Tt−1) to which we add
a maximum random noise of 1°. This simulates an inertial
measurement unit with a realistic average sensor noise [34].

Finally, the given input reference volumes are cropped into
different sizes according to the experimented spatial context
condition: 250× 250× 128 voxels for full-volumes, or 250×
250× 32 for sub-volumes.

D. Evaluation protocol

1) Cumulative evaluation on trajectory: Because the effect
of error accumulation might be detrimental to any navigation
assistance, especially when using temporal inputs based on
previous predictions (Tprior), series of registrations along
trajectories must be evaluated. To provide a realistic drift eval-
uation, we simulated a complete navigation timeline, where
predictions are made one by one, iteratively, using previous
predictions results (Tprior = T̂t−1).

Moreover, we mimicked a clinical navigation assistance by
portion, between each biopsy site, using the clinically available
3D/3D registration (integrated in clinical workstations [10]) as
drift re-alignments. We divided our simulated and simplified
base-to-apex sweep trajectories into 12 subparts to reproduce
pseudo 12-biopsy samplings scheme. The start of this series
of previous predictions relies on simulated noisy ground-truth
(T̂0 ≈ T0 ± 1°). Then, at each new pseudo biopsy along
the trajectory, Tprior is reset using the ground-truth transform
towards the reference volume or sub-volume (eq.4).

2) Evaluation metrics: We evaluated the registration quality
from different points of views: feature-based analysis using
anatomic and geometric correspondence; image-based anal-
ysis using similarity of image content; and regression-based
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analysis using statistical comparison of results to the ground-
truth.

Regarding geometric error, Target Registration Error (TRE)
is a frequently used metric in image registration to measure
the impact of the registration quality directly on the organ
of interest in which clinical targets are located [35]. The
metric is also particularly useful because of its simplicity,
fast computation, and ability to compare to the literature
[36]. This measure is computed by comparing point pairs,
most often fiducial landmarks, manually defined and localized
by experts, and independently chosen from the registration
process. In the presented study, we use prostate surface mesh
points, provided by the clinical database for each patient (see
section II-C). Such mesh-based evaluation allows computing
a robust TRE, first due to the thousands of points available
(far more numerous than internal fiducials), and secondly
due to their 3D nature enabling to consider the registration
impact on the whole prostate gland (rather than on few local
fiducials). Being given prostate mesh points pk=(1,..., N), we
compute the TRE (averaged for all time steps t) between
the point set transformed by the estimated transform T̂t(pk)
and the point set transformed by the ground-truth transform
Tt (pk) (eq.5). It is important noticing that TRE gives an
estimate of the standard deviation of the normal distribution
of predicted biopsy position around the real one. According
to clinical requirements, let us remind that this error must
not exceed 5 mm (see section I-A). To obtain about 95% of
the predicted position conveniently located within the 5 mm
limit (2 standard deviations), the desired TRE value to meet
registration accuracy requirements is 2.5 mm.

TRE(mm) =

√∑N
k=1 ||(Tt(pk)− T̂t(pk))||2

N
(5)

Normalized cross-correlation (NCC) is a metric commonly
used to estimate pixel similarity score between two images. It
enables to have quality assessment of the registration results
different from the SSIM, already used during the training
optimization. This measure is computed between predicted
resliced image and the corresponding input image.

Regression analysis requires quantitatively and statistically
comparing predictions to labels. For that, we use the coefficient
of determination (R²) which captures how well predictions
match their expectations without having interpretability lim-
itation or bias [37].

Finally, all these metrics are computed during the proposed
cumulative evaluation, over a complete trajectory.

III. EXPERIMENTAL SETUP

A. Experiments

1) Ablation study: To determine independently whether a
module improves the registration results or not, we performed
an ablation study with several combinations of modules.
The different compared forms of spatial context input are:
local (slice St−1), partial (sub-volume), global (full-volume),
respectively referred as “local”, ”part”, “glob”. Finally, the

SSIM-penalization module is added to each previous experi-
ment to have a complete ablation study. We refer to them as
“local+SSIM”, ”part+SSIM” and “glob+SSIM”.

Besides, as our preliminary approach [19] already justified
the benefit of Tprior in temporal context, such input is kept
intact for the complete ablation study. However, as probe
tracking requires an inertial sensor to measure the probe
motions that may not be available in some clinical set-ups or
in other state-of-the-art methods, we simulated two scenarii:
with or without such input. They are respectively referred as
(Scenario Im+PT) and (Scenario Im).

Finally, as such temporal inputs (either previous localization
results Tprior or probe tracking TPT ) can be strong additional
information, a baseline assessment “without network” is
also reported by computing the image position using only
the geometric transformation Tprior or Tprior ∗ TPT . Such
comparison allows demonstrating the network contribution
based on all combined inputs and not only temporal inputs.

2) Comparison study : In the literature, two methods are
close to ours regarding their (i) objectives: navigation assis-
tance, (ii) clinical application: prostate biopsy, (iii) method-
ology: deep rigid mono-modal (US) 2D/3D registration. The
following section described how we properly compare to them.

The “FVR-Net” refers to Guo’s work [14]. A comparison
with their work required a re-implementation of their code
(available on GitHub), as well as a complete re-evaluation
using the database and experimental conditions described in
sections II-C and II-D.1. Indeed, contrary to the original work,
we did not compute the inputed sub-volumes using the noisy
ground-truth transform, but using the previous estimation
(T̂t−1) for a more realistic cumulative evaluation on complete
trajectory. Moreover, experiments are tested over both Si to Vi

and Si to Vj dataset levels, while the original paper presented
only results for the first case.

Another study to compare with, is our preliminary work
[19], referred as “Pre-Net”. In this former work, the database
was constructed using a biopsy simulator [38] where no trans-
lation parameters could be simulated, and without any cumu-
lative evaluation. However, the data generation involved slices
in complex arbitrary orientations based of biopsy trajectories
which is not easily comparable to the rest of the literature.
The proposed comparison has required testing this former
version of the network with the new data generation process
and using the new cumulative evaluation on trajectory. This
allows evaluating our previous method in a more realistic way
and by having 3 more transformation parameters to predict.
Moreover, among several proposed scenarii described [19],
we selected the most successful (including prior registration
results, probe tracking, and local spatial context) to compare
with. From a methodological point of view, this scenario is
mainly similar to our proposed local experiment, except this
fomer work used 2D CNN architecture. Thus, the comparison
allows evaluating the benefit of using our new proposed 3D
convolutional structure.

B. Datasets
We simulated sweep trajectories (as described in section

II-C.2) that we applied to a large database composed of
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600 TRUS volumes, coming from biopsy sessions of 100
different patients. The datasets for the two different studies
(III-A.1 and III-A.2) are structured in two different ways.
For the ablation study, each tested experiment is trained,
validated and tested on the same dataset splits, summarized in
supplementary materials (Table 1). For the comparison study
(with a more manageable number of experiences), we used a 5-
fold validation strategy to increase the reliability of the results.
The different folds are divided according to the number of
patients (and not samples), and are described in supplementary
materials (Table 2).

C. Settings
All the experiments were performed using the Nadam opti-

mizer with an initial learning rate of 1e-4, allowing to obtain
robust and rapid convergence. The weights of the network
were all initialized with a Gaussian distribution (mean=0,
std=0.01). The network was trained for 30 epochs (between
13000 and 42000 iterations) with batch size of K=50, 30, or 16
depending on the experiment input size (local, partial, global
spatial context respectively). For higher performance training
on the Si to Vj dataset, we applied transfer learning by reusing
pre-trained model from Si to Vi experiments. The model was
trained on A100 GPU from NVIDIA and using TensorFlow.

IV. RESULTS

A. Ablation study
Table I provides the values of cumulative TRE, before

and after registration over all the experiments, for the two
scenarii considered, and for the two datasets (”Si to Vi” and
”Si to Vj”). Non-parametric Wilcoxon test (alpha = 0.05)
was performed on each paired experiments (column) and
demonstrated significatively different distributions.

Both ”Si to Vi” or ”Si to Vj” datasets result in the same
trends and conclusion. The best-case scenario is obtained
through the local experiment, with probe tracking information
(Sc. Im+PT). For ”Si to Vi”, the TRE is corrected from an
initial mean error of 9.52 ± 6.49 mm to a final error of 0.21
± 0.28 mm. Whereas for ”Si to Vj”, the final TRE is larger
(about 2.68 ± 1.49), because of the higher difficulty level of
the task including prostate deformations between images.

Both global or partial spatial information do not allow
satisfactory improvements on the registration results, for any
of the scenarii. Besides, the partial experiment results in even
poorer registration quality compared to the global one.

Adding a spatial penalty does not seem to improve regis-
tration quality (similar range of results than the configuration
without it), regardless of the spatial input being tested. Those
results are still less accurate than the local experiment.

Finally, all experiments demonstrate better results compared
to the baseline assessment (”without network”), suggesting a
good network contribution and a good processing between all
kinds of inputs.

Both Fig. 4-A and 4-C illustrate parameters evolution over
a trajectory. Base-to-apex motions (around x − axis) are
well illustrated in the graph of ”Si to Vi” dataset (Fig.4-A).

Let us note that the variations of the translation parameters
come from the offset between the probe head rotation center
and the volume’s referential origin (see section II-C). For
”Si to Vj” graph (Fig.4-C), parameter motions come from
composition of base-to-apex motions and transform toward
another volume (see eq. 4). Fig. 4-B and 4-D display the
associated TRE evolution over the same trajectory, before and
after registration, demonstrating an efficient error correction.

The results on ”Si to Vi” dataset show a good trajectory
reconstruction without any drift and a good TRE decrease
thanks to registration. The range of each parameter value is
well respected, even for out-of-plane parameters (θx, θy, tz)
and for parameters without expected variation. On ”Si to Vj”
dataset, however, a drift is more visible between predicted and
ground-truth evolution. The 12 Tprior resettings are clearly
observed over the trajectory and illustrate a drift control
between two successive biopsy sites.

B. Comparison study
Table II summarizes the comparison against other meth-

ods: FVR-Net and Pre-Net. “SpT-Net” refers to our best
proposed spatiotemporal network (local, Scenario Im+PT).
The presented results come from a complete re-evaluation
on our two datasets, using a 5-fold validation strategy, and
with the proposed cumulative evaluation (see II-D.1). We also
reported the average running time per input slice, as well as
the networks’ number of parameters.

Both studies benefitting from Tprior and relative probe
tracking, Pre-Net (preliminary work) and SpT-Net (current
work), seem more accurate than FVR-Net which relies only
on sub-volume input and SSIM-penalization. Moreover, even
our scenario without probe tracking (Sc.Im, local, Table I)
performs similarly to FVR-Net (Table II), which demonstrates
competitive results of our method. Compared to Pre-Net, our
new model benefitted from a new 3D convolution and achieved
better results in both datasets, suggesting a more appropriate
network architecture.

To conclude, our best selected scenario of SpT-Net outper-
forms by far the rest of the literature methods, on the two
datasets evaluated. For both datasets, FVR-Net results are far
from the clinical requirements expected in terms of accuracy
and computational time. This may be due to their sub-volume
generation (with an orientated initialization) and due to costly
operations involved in their complex network architecture.
Finally, our SpT-Net meets clinical conditions for the simple
dataset and is close to them in the more complex one.

C. Qualitative results
Fig. 5 illustrates the registration quality directly on US

images, by comparing the obtained images (after predicted
registration) to the ground-truth image, through pixels dif-
ference. The ground-truth image S(Vref , Tt) is obtained af-
ter reslicing Vref using ground-truth registration Tt. This
computation is needed for the simulated ”Si to Vj” dataset,
as the input image St (simulated from Vi) may present
different anatomical prostate shapes compared to ground-truth
image. The following rows show the resliced image from
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TABLE I: Performances of the proposed SpT-Net with ablation studies: over several forms of spatial context, across the different
scenarii, and for the two tested datasets. The different spatial context forms are: local slice, partial sub-volume, or global full-
volume (respectively referred as “local/part/glob”). ”+SSIM” referred to the addition of SSIM-penalization module.”without
network” referred to the baseline assessment computing registration with only temporal input. The two tested scenarii are
Scenario Im+PT and Scenario Im, respectively with/without probe tracking.

Cumulative evaluation on Si to Vi
TRE

before
TRE after

local glob part local+SSIM glob+SSIM part+SSIM
Scenario Im
SpT-Net (with Tprior = T̂t−1) 9.52 ± 6.49 2.74 ± 6.04 3.83 ± 7.11 4.57 ± 6.42 2.91 ± 6.00 3.43 ± 6.71 4.69 ± 6.43
Without network (only Tprior) 5.30 ± 6.32 6.17 ± 7.23 5.43 ± 5.89 5.37 ± 6.28 5.88 ± 6.88 5.55 ± 5.75
Scenario Im+PT
SpT-Net (with Tprior = T̂t−1) 9.52 ± 6.49 0.21 ± 0.28 0.21 ± 0.19 6.43 ± 6.30 0.62 ± 0.95 0.52 ± 0.55 7.13 ± 7.19
Without network (only Tprior ∗ TPT ) 1.01 ± 2.23 1.00 ± 2.24 6.42 ± 6.32 1.33 ± 2.30 1.24 ± 2.23 7.09 ± 7.22

Cumulative evaluation on Si to Vj
TRE

before
TRE after

local glob part local+SSIM glob+SSIM part+SSIM
Scenario Im
SpT-Net (with Tprior = T̂t−1) 11.72 ± 6.28 5.06 ± 5.70 8.87 ± 5.82 5.01 ± 7.82 5.80 ± 7.00 7.30 ± 7.25 7.28 ± 8.50
Without network (only Tprior) 7.70 ± 6.24 9.65 ± 6.11 6.35 ± 6.88 5.91 ± 6.77 9.39 ± 7.65 7.63 ± 7.67
Scenario Im+PT
SpT-Net (with Tprior = T̂t−1) 11.72 ± 6.28 2.68 ± 1.49 2.81 ± 2.00 5.28 ± 6.30 3.97 ± 2.03 3.15 ± 2.17 5.91 ± 7.19
Without network (only Tprior ∗ TPT ) 3.11 ± 2.67 3.15 ± 2.94 5.23 ± 6.32 4.28 ± 2.93 3.53 ± 3.10 5.84 ± 7.22

Slice index along a trajectory

Slice index along a trajectory
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Fig. 4: Temporal analysis over a complete trajectory example: for local experiment, on both datasets. Results on ”Si to Vi”
dataset are illustrated on A-B, whereas ”Si to Vj” results are illustrated on C-D. (A, C) Angle and translation parameters
evolution over trajectory: ground-truth (black) and predicted (color) evolution according to the different scenarii. (B, D) TRE
evolution over trajectory: before any registration (black), and after registration with different scenarii (color).
N.B: (x,y) is the US probe plane and z the out-of-plane axis.

Vref before any registration S(Vref , Id), and after predicted
registration S(Vref , T̂t) depending on the selected method:
respectively SpT-Net (best), FVR-Net, or Pre-Net. The last
column illustrates the overlapping between the two compared
prostate mesh: the ground-truth prostate (green), and the
predicted prostate after registration (in red dotted line). This

allows to better visualize the registration error directly on
prostate anatomy, and better interpret its impact for the clinical
application. Finally, the associated TRE and NCC measures,
for each experiment, are also reported.

The chosen example illustrates a typical case with TRE
value close to our obtained mean results (Table II). We observe
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TABLE II: Performance comparison with state-of-the art methods after complete re-evaluation of the method with the proposed
cumulative evaluation and on our datasets (re-evaluated). A 5-fold cross validation strategy was used. The average initial error
before any registration are similar for each experiment and are reported at the top. p-values between state-of-the-art methods
and SpT-Net (on both NCC and TRE values) are also reported.
N.B: R² score can not be computed for non varying parameters (namely tx, θy, θz in the ”Si to Vi” dataset).

Methods
(Si to Vi)

TRE (mm)
before at 9.07 ± 6.55

NCC
before at 0.84 ± 0.12

Coef. of Determination R²
(tx, ty, tz, θx, θy, θz)

RunTime
(s)

Hyperparameters
(M)

p-value
(vs SpT)

Our SpT-Net (best) 0.19 ± 0.77 0.99 ± 0.04 (∅, 0.99, 0.99, 0.99, ∅, ∅) 0.06 ± 0.02 71
FVR-Net (re-evaluated) 2.28 ± 8.52 0.95 ± 0.11 (∅, 0.84, 0.80, 0.81, ∅, ∅) 0.17 ± 0.06 68 p ⩽ 0.001
Pre-Net (re-evaluated) 0.26 ± 0.76 0.98 ± 0.03 (∅, 0.99, 0.99, 0.99, ∅, ∅) 0.03 ± 0.01 141 p ⩽ 0.001

Methods
(Si to Vj )

TRE (mm)
before at 11.14 ± 6.13

NCC
before at 0.81 ± 0.11

Coef. of Determination R²
(tx, ty, tz, θx, θy, θz)

RunTime
(s)

Hyperparameters
(M)

p-value
(vs SpT)

Our SpT-Net (best) 2.21 ± 2.42 0.93 ± 0.09 (0.98, 0.98, 0.99, 0.99, 0.98, 0.94) 0.06 ± 0.02 71
FVR-Net (re-evaluated) 4.36 ± 12.18 0.85 ± 0.16 (0.83, -0.78, 0.59, 0.50, -2.99, -10) 0.17 ± 0.06 68 p ⩽ 0.001
Pre-Net (re-evaluated) 2.26 ± 3.16 0.81 ± 0.12 (0.94, 0.98, 0.99, 0.99, 0.97, 0.89) 0.03 ± 0.01 141 p ⩽ 0.001

very similar image results for SpT-Net compared to other
methods, with a global mesh overlapping. The errors on the
”Si to Vj” dataset are larger due to the difficulty of including
prostate deformations between images.

V. DISCUSSION

A. Methodological contribution

1) Adding spatial context through inputs and/or penalization:
It seems that adding spatial context information through input
volumes does not benefit the registration task, indicating that
the network learns little information from these additional
inputs. Although the features balance is guaranteed by the
network architecture, other challenges may hinder the perfor-
mances, such as: a bigger searched space, more parameters to
optimize (compared to a single branch network), as well as
a different nature of features dimension (2D or 3D). Indeed,
despite the extension parameter used to transform 2D-features
maps into 3D space, they are still 2D-related while the other
branch directly deals with 3D-features.

The addition of partial spatial context (sub-volume) seems
even more penalizing to the network, suggesting that Tprior

information is less contributing when used for sub-volume
initialization than when directly fed as vector input to the
network, as in other experiments.

Adding the SSIM-penalization loss term resulted in a poor
improvement of registration quality compared to MSE loss
alone. This might be explained by the unstable convergence
involved by the SSIM, also reported by [14]. Besides, SSIM
penalization is computationally greedy.

Finally, the best tested form of spatial context is the local
context input, through the addition of the previous slice St−1.
This local input is better processed using the new proposed 3D
CNN, which demonstrates a better capture of the concatenated
2D inputs channel dependencies.

2) Adding temporal information through prior information and
probe tracking: Compared to the study without prior navigation
information (FVR-Net), we observed a significant improve-
ment of registration quality with the addition of Tprior. Indeed,
giving directly information about the previous localization in
the reference 3D space seems to facilitate learning. It can be
compared, more or less, to the idea of an initialization during

traditional registration. Moreover, such information directly
added in a form similar to the output vector Tt, can be easily
used and interpreted by the network.

The scenario with probe tracking information (Im + PT)
outperforms the other (only Im), both in terms of accuracy
and in terms of reliability, over all experiments. Indeed, this
input gives information about the relative motion that has
been applied since the previous registration (Tprior for St−1)
and can thus be easily combined with the relative in-plane
motion between the two successive slices context, in the local
experiment. Furthermore, additional tests (not described in
this study) suggested that relative probe tracking information
is better processed when inputted separately from Tprior.
Indeed, relative and global temporal information have their
own independent benefit and must be kept dissociated.

However, Tprior input can be really close to the current Tt to
estimate, especially when combined with probe tracking input.
To confirm that such strong temporal context contribution
neither biases the network capacity nor mislead conclusion
about spatial contribution, additional tests were done.

First, we compared each experiment results to a baseline
assessment “without network” (using only the geometric trans-
formation, see sec.IV-A) and we observed improved results
using the network indicating that other inputs are well pro-
cessed.

Secondly, we conducted the same comparison between
spatial forms, for all experiments but without Tprior (not
presented in this study). Indeed, as spatial context and
previous transform input can share a lot of common and
redundant information about global localization within the
3D environment, such experiment evaluated the spatial
contribution independently and without any interference.
The results of this experiment (not presented in this study)
illustrate the same trends as in Table I, which demonstrate
that additional complex spatial forms do not seem well
adapted for help. However, we obtained lower registration
quality, suggesting temporal context seems critical.

In conclusion, it seems that the superiority of the proposed
method lies in the simplest possible combination between tem-
poral and spatial context: prior position (vector input), probe
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Si to Vi Si to Vj

Images Pixels
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mesh overlap

Images Pixels
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Before
registration
TRE = 10.1
NCC = 0.85

Before
registration
TRE = 9.88
NCC = 0.83

SpT-Net
(ours, best)
TRE = 0.19
NCC = 0.99

SpT-Net
(ours, best)
TRE = 2.25
NCC = 0.84

FVR-Net
re-evaluated
TRE = 11.5
NCC = 0.89

FVR-Net
re-evaluated
TRE = 3.67
NCC = 0.88

Pre-Net
re-evaluated
TRE = 0.90
NCC = 0.98

Pre-Net
re-evaluated
TRE = 4.89
NCC = 0.82

Fig. 5: Illustrative examples of registration quality on US images on Si to Vi (left) and Si to Vj (right) datasets. Obtained
resampled images are compared to the ground-truth images through pixels difference. Prostate mesh superposition (ground-
truth in green, predicted in red dotted-line) is illustrated in the last column as well as the related TRE and NCC measures.

tracking (vector input), and local spatial context (previous
image input).

B. Validation contribution
1) Cumulative evaluation on trajectories: We experimented

temporal-based predictions that depend on the predictions at
previous steps (Tprior or initialized sub-volume). As tempo-
ral context can be really impacted by drifted results (error
accumulation phenomenon), we evaluated its impact, unlike
other works in the literature [14], [19]. Indeed, our previous
work [19] was limited to the “ideal” case where the previous
predictions (Tprior) were consistently perfect, by using directly
ground-truth registration of the previous step. Similarly, Guo’s
study [14] oriented their sub-volumes based on a range around
the current ground-truth localization. Such method is even
more biased as it relies on the current localization and not
the previous one (as in [19]).

We demonstrated that drift can have a significant impact
on the overall accuracy. Such drift can be corrected when
reaching each biopsy location, using 3D/3D registration al-
ready integrated in clinical workstations. These registrations

require a few seconds but can be performed at each biopsy
targetting, as the urologist needs to stop in order to collect the
prostate core and change the needle. The access and use of
the resetting information seem reasonable and feasible during
current clinical practice timeline.

Thus, the proposed cumulative evaluation, based on succes-
sive 2D/3D registrations over a trajectory with drift resettings,
respects both clinical procedure realism and timeline.

2) Generalization capabilities on two clinical difficulty levels:
As currently available clinical data does not provide 2D US
image flow and corresponding prostate localization, we gener-
ated two datasets with two levels of difficulty. The first dataset
(”Si to Vi”) is the most common evaluation process proposed
in the registration literature and allows for comparison. But it
does not take into account the complexity of real cases. Indeed,
the 2D images are extracted from the same volume they are
registered to, and some dependencies and correlation between
the 2D slice and volume can facilitate or even bias the learn-
ing. The developed new data generation process (”Si to Vj”
dataset) allows including additional complexity: input slices
are now independent from the reference volume in which we
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want to register them, and may present different anatomical
deformations and noise patterns. our evaluation using this data
generation process is, to the best of our knowledge, more
robust than other literature validation.

Our model outperforms by far the rest of the literature
methods, on the two datasets evaluated. It demonstrates robust
generalization capabilities even on more complex and more
realistic tasks.

3) Clinical requirements and application feasibility: Our best
results meet clinical requirements of prostate biopsy navigation
(see section I-A), with a response time about 70 ms per regis-
tration (averaged on all test samples), and with an average error
close to (respectively below) the expected 2.5 mm for complex
(respectively simple) tasks. This allows envisioning real-time
2D/3D US registration, and thus navigation assistance, from
an initial position to a biopsy site.

Our method is easily reproducible thanks to commonly used
network layers and simple inputs. However, some inputs can
be more specific such as probe tracking and registration resets.
While most studies tend to perform robust registration without
requiring hardware tracking, we conclude that the addition
of an inertial probe sensor can be important. These tracking
devices are small and cheap and could easily be integrated for
a clinical application. Moreover, our simulated prior resets rely
on 3D/3D registration, which are available on several clinical
commercial platforms or can be performed with conventional
or deep learning methods.

Finally, even if our model demonstrates robust general-
ization capabilities on more complex tasks, the simulated
database still presents some limitations. For now, only simple
base-to-apex motions are used to simulate the 2D US flow and
pseudo biopsy schemes are simulated over these sweeps. Such
sweeps allow avoiding resampling bias in US-cone orientation
but does not mimic a complete realistic biopsy procedure.
Besides, even if ”Si to Vj” dataset tends to add different
prostate volume configurations, real-time clinical deformation
of the organ in the complete 2D US flow can be more complex.
These limitations must be solved for further development
compatible with real cases scenario.

VI. CONCLUSION

This paper introduces a spatiotemporal registration network
(SpT-Net) to localize continuously a 2D US image relatively
to a previously available reference US volume, acquired at the
beginning of the procedure. Our best model is obtained using:
prior navigation trajectory information, based on previous
registration results and probe tracking, in addition to local
spatial context, through a 3D CNN architecture. The conducted
experiments suggest that adding new kinds of spatial context
(input volume/sub-volume, ssim-penalization) does not always
serve the purpose in the most effective way.

We developed an accurate clinical validation of the method
including realistic cumulative evaluation on trajectory and new
database generation process with two levels of registration dif-
ficulty. Such evaluation is, to the best of our knowledge, more
robust than any other validation approach proposed in similar
work. We obtained promising results, which respect clinical

requirements and application feasibility, and which outperform
similar state-of-the-art methods. This makes our approach a
promising tool for prostate biopsy navigation assistance and
more generally for any US image-guided procedures.

Further improvements will include the generation of new
databases from data collected during real clinical biopsy proce-
dures. Finally, as we demonstrated the profit of using temporal
context, new questions emerged about using sequence of input
images through dynamical structure to retain the global and
complete biopsy trajectory.
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ProNavIA) and by the PSPC project DIANA.

REFERENCES

[1] D. J. Gillies et al., “Real-time registration of 3d to 2d ultrasound images
for image-guided prostate biopsy,” Med. Phys., vol. 44, no. 9, pp. 4708–
4723, 2017.

[2] V. Karnik et al., “Assessment of image registration accuracy in three-
dimensional transrectal ultrasound guided prostate biopsy,” Med. Phys.,
vol. 37, pp. 802–13, feb 2010.

[3] F. Cornud et al., “Trus–mri image registration: A paradigm shift in the
diagnosis of significant prostate cancer,” Abdom. Imaging, vol. 38, no. 6,
pp. 1447–1463, dec 2013.

[4] A. M. Brown et al., “Recent advances in image-guided targeted prostate
biopsy,” Abdom. Imaging, vol. 40, no. 6, pp. 1788–1799, aug 2015.

[5] Q. Zeng et al., “Weakly non-rigid mr-trus prostate registration using
fully convolutional and recurrent neural networks,” in Med. Imaging
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