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Abstract—This paper introduces a new reservoir computing approach,
called Conceptor-Driven Network (ConDN), for the detection of chaos
in time-series. Two known parametrizable systems exhibiting chaotic
and non-chaotic behaviours have been analysed. By only observing the
selected output results (trace matrix) after training the ConDN, the
systems can be classified as chaotic or non-chaotic. In addition, the
robustness of this method against white noise is also investigated.

Index Terms—reservoir computing (RC), Conceptor-Driven RC, com-
plex dynamics, detection of chaos, noise robustness.

I. INTRODUCTION

Chaos was first introduced by Poincaré in the later 19th cen-
tury. A chaotic system is a nonlinear system whose behaviour is
unpredictable due to its high sensitivity to initial conditions. Indeed,
a chaotic system with nearby initial conditions will end up with
extensive divergence of their trajectories [1]. The rate of divergence
is specified by the largest Lyapunov exponent, whose positiveness
probably signifies the presence of chaos. Another method for chaos
detection is the 0-1 Test [2], that is more decisive (binary outcome),
performs well on short data lengths, and works directly on time-
series without the need to reconstruct the original dynamics. However,
both methods merely quantifies the degree of ”sensitivity to initial
conditions” (i.e. local instability in a state space), that can arise from
measurement noise, system noise, or other reasons.

Reservoir Computing (RC) is a relatively novel paradigm for
training Recurrent Neural Networks (RNNs), first introduced with
Liquid State Machines (LSMs) and Echo State Networks (ESNs) [3].
These RC approaches have been used in differenet scienetific domains
such as: robust image recognition, modeling of spintronic devices
[4], and non-linear time series analysis. In this paper, we propose a
Reservoir Computing approach for the detection of chaos in time-
series. By only introducing an input time-series to the network, the
conclusions about its chaocity can be given. Moreover, the robustness
of the proposed method against stochastic noise is also considered.

The rest of the paper is organized as follows: in Section II, the
Conceptor-driven Network (ConDN) approach is demonstrated in
details. In Section III, the approach is applied on two conventional
systems exhibiting chaotic and non-chaotic behaviours. In this sec-
tion, the results of the conceptors’ analysis for the chaos detection as
well as the robustness of such analysis against noise are demonstrated.
Finally, Section IV shortly summarizes the whole content.

II. CONCEPTORS-DRIVEN NETWORK

The Conceptor-Driven network (ConDN), is a relatively new Reser-
voir Computing Approach [5], that has a Long-term memory (LTM)
[6] capable of storing large number of time series and re-extracting
them. Consequently, a ConDN undergoes two phases sequentially:
Loading phase in which the time series pj(n) are uploaded into the
network, and Recall phase in which any time-series is regained using
its key, called Conceptor Cj (j denotes the index of an input). Each
input pattern pj is assigned by a conceptor matrix Cj . Thus, by

studying the characteristics of matrices Cj , the natural behaviour of
the corresponding patterns pj can be revealed.
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Figure 1: General structure of Conceptor-driven Network.

To begin with, an N -neurons RNN is built by randomly creating
an N ×N internal connection matrix W ∗, an N ×K input weights
matrix W in, and an N random bias vector b. The readout layer is
represented by the readout weight matrix W out which is trained using
any random signal. Taking a white noise input ν(n), the states are
collected (Eq. 1a) and the optimization problem (Eq. 1b) is solved:

xν(n+ 1) = f(W ∗xν(n) +W inν(n) + b) (1a)

min
Wout

∑
n

(W outxν(n)− ν(n))2 (1b)

In the loading phase, the scalar patterns pj(n) always drive the
network by the state-update equation shown in 2a, where pj enter
the reservoir separately to compute their corresponding xj . After a
washout period n0, the quadratic loss of Eq. 2b is minimized:

xj(n+ 1) = tanh(W ∗xj(n) +W inpj(n) + b) (2a)∑
j=1,..K

∑
n=n0,..L

‖W ∗xj(n) +W inpj(n)−Wxj(n)‖2 (2b)

Accordingly, the characteristics of the input patterns are transmitted
to the input internalization weights matrix W . In recall phase, the
network is driven by the ”conceptors” (Eq. 3a). At this stage, the
ConDN is ready for use. It is able to predict any of the registered
patterns, by running the state-update equation (Eq. 3a) followed by
the output equation shown in 3b:

xj(n+ 1) = Cjf(Wxj(n) + b) (3a)

y(n) = W outx(n) ≈ p(n) (3b)

A. Conceptors Analysis

In the recall phase, the input patterns pj(n) are no more in use.
However, the ConDN is driven by the ”conceptors” to avoid any
unpredictable dynamics at the output. Each registered pattern pj(n)
is represented in the recall phase by an N ×N conceptor matrix Cj

as shown in Eq. 3a. Cj can be seen as a filter, that allows the passage



of the state dynamics xj related to the pattern pj(n) (identity matrix),
while trying to ban all other dynamics associated to different patterns
(null matrix). Accordingly, the following quadratic loss is set:

L(Cj) = E‖Cjxj(n)− xj(n)‖2 + (γj)−2‖Cj‖2fro (4)

where the expectation E‖.‖2 covers all the states xj(n) collected
in the testing phase (Eq. 2a), and ‖.‖2fro is the squared Frobenius
matrix norm. The first term of Eq. 4 converges to its minimum if
Cj is an identity matrix, whereas the second term takes its minimal
value if Cj is a null matrix. The aperture parameters γj should be
carefully hand tuned as they affect the convergence speed of Cj .
After minimizing L(Cj), the following solution of Cj is obtained:

Cj = Rj(Rj + (γj)−2I)−1 (5)

where Rj = E[xj(n)xj(n)T ] are the correlation matrices.
To study a given time-series, we firstly sample it by factor 2. Then

we introduce both, the raw and the sampled signals, into one ConDN.
Knowing C1 and C2, we apply the Singular-Value Decomposition
(SVD) to compute the diagonal matrices S1 and S2:

Cj = U jSjU j
T
, (6)

After that, we calculate the quantities Trace(S1) and Trace(S2).
Trace(Sj) represents the summation of all the eigenvalues of Cj ,
being arranged by convention on the diagonal of Sj in the descending
order. Thus, the trace value varies inversely proportional to the
level of stability of the studied signal. Moreover by taking into
consideration the effect of sampling on stability [7], the values of
Trace(S1) and Trace(S2) are expected to be distinct if the input
pattern p1 is chaotic, otherwise Trace(S1) ≈ Trace(S2). For a
better vision, we compute the Variation Percentage (∆) as follows:

∆(%) = 100× ‖Trace(S
2)− Trace(S1)

Trace(S1)
‖ (7)

III. RESULTS AND DISCUSSION

In this part, we consider two systems for study: Rossler and Chen.
For each system, two different behaviours corresponding to different
input parameters are generated: chaotic and non-chaotic. Figure 2
shows the variation of Trace(S1) and Trace(S2) corresponding
respectively to the raw and sampled inputs, versus Data-Length T ,
for the two studied systems. As predicted, the values of Trace(Sj)
in the chaotic case are relatively high compared to those of the
non-chaotic case, for any value of T . This is mainly because
chaotic systems have rich dynamics compared to non-chaotic systems.
However, it is still difficult to generalize this finding by setting a fixed
border between chaotic and non-chaotic systems.
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Figure 2: Trace(Sj) versus data length, for chaotic (M,O) and
regular (?, ∗) behaviours of (a) Rossler and (b) Chen systems.

Another important difference that can be noticed between the two
behaviours is the effect of SF . Two distinct graphs of Trace(S1) and
Trace(S2) are obtained in the chaotic case, separated by a noticable
gap. On the other side, varying SF does not make significant changes

System Ch.Rossler Ch.Chen NonCh.Rossler NonCh.Chen
∆(%) 27.97 28.69 −0.84 1.48

Table I: Percentage difference (∆ in %) for chaotic and non-chaotic
behaviours of Rossler and Chen systems.

between the two plots of Trace(Sj). The values of the variation
percentage (∆) are all summarized in Table I. As noticed, the
percentage difference is large between the sampled and non-sampled
chaotic plots, while it is much smaller between the non-chaotic
plots (around 0). We attribute this disparity to the nature of the two
behaviours and their vulnerability to the sampling, where sampling
a time-varying signal could help to better prominent its natural
behaviour. Consequently, by combining the two features discussed
above, it becomes more applicable to use the ConDNs to determine
the nature of input time-varying signals.

We also investigate the robustness of the proposed method against
white noise and its ability to differentiate between chaos and noise.
A white noise of a percentage up to 30% is gradually added to all
raw time-varying signals, before introducing them to the ConDNs.
The corresponding results are all shown in Figure 3. In the chaotic
case of Rossler system, the trace method can handle up only to 5%
of noise where Trace(S1)0% > Trace(S1)30%. On the other hand,
Chen system is more robust and can handle up to 10% of noise.
These findings confirms the capability of using the ConDN approach
to detect chaos in noisy systems to a given limit.
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Figure 3: Trace(Sj) versus noise percentage (%) for chaotic (green)
and regular (yellow) behaviours of (a) Rossler and (b) Chen systems.

IV. CONCLUSION

In this work, a RC method based on ConDN is proposed for the
detection of chaos in time-varying signals. Two systems, Rossler and
Chen, are considered to illustrate the findings of such method. The
robustness of the proposed approach to white noise is also addressed.
This study can be considered as a first milestone in this research, to
be further elaborated.
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