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Abstract
As light travels through a disordered medium such as biological tissues, it under-

goes multiple scattering events. This phenomenon is detrimental to in-depth optical

microscopy, as it causes a drastic degradation of contrast, resolution and brightness of

the resulting image beyond a few scattering mean free paths. However, the informa-

tion about the inner reflectivity of the sample is not lost; only scrambled. To recover

this information, a matrix approach of optical imaging can be fruitful. Here we report

on the compressed measurement of a high-dimension reflection matrix R via low coher-

ence interferometry. Then, we show how the inner transmission matrix linking each

camera sensor and each medium voxel can be extracted through an iterative multi-

scale analysis of wave distortions contained in R. This transmission matrix is the Holy

Grail for volumetric imaging since it enables an optimal compensation of forward mul-

tiple scattering paths and provides a three-dimensional confocal image of the sample

as the latter one had become digitally transparent. The proof-of-concept experiment

is performed on a human opaque cornea and an extension of the penetration depth by

a factor five is demonstrated compared to the state-of-the-art.
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Multiple scattering of waves concerns many domains of physics, ranging from optics or7

acoustics to solid-state physics, seismology, medical imaging, or telecommunications. In an8

inhomogeneous medium where the refractive index n depends on the spatial coordinates r,9

several physical parameters are relevant to characterize wave propagation: (i) the scattering10

mean free path `s, which is the average distance between two successive scattering events;11

(ii) the transport mean free path `t, which is the distance after which the wave has lost the12

memory of its initial direction. For a penetration depth z smaller than `s, ballistic light is13

predominant and standard focusing methods can be employed; for z > `s, multiple scattering14

events result in a gradual randomization of the propagation direction before reaching the15

diffusive regime for z > `t. Although it gives rise to fascinating interference phenomena such16

as perfect transmission1,2 or Anderson localization3,4, multiple scattering still represents a17

major obstacle to deep imaging and focusing of light inside complex media5,6.18

In the past decades, there have been many proposals for the harnessing of waves through19

complex media. With the emergence of multi-element technology, wave-fields can be tamed20

in order to take advantage of the complexity of propagation media to focus waves through21

them or image objects hidden behind them. This has been be realized in acoustics using22

the concept of the time reversal mirror or in optics using wave-front shaping techniques7.23

More fundamentally, a matrix formalism is particularly appropriate in wave physics8,9 when24

the wave field can be controlled by transmission10 and/or reception11 arrays of independent25

elements.26

While a subsequent amount of work has considered the transmission matrix T for op-27

timizing wave control and focusing through complex media12–17, this configuration is not28

the most relevant for imaging purposes since only one side of the medium is accessible29

for most in-vivo applications. Moreover, in all the aforementioned works, the scattering30

medium is usually considered as a black box, while imaging requires to open it. To that31

aim, a reflection matrix approach of wave imaging (RMI) has been developed for the last32

few years18–21. The objective is to determine, from the reflection matrix R, the T-matrix33

between sensors outside the medium and voxels mapping the sample22 (Fig. 1). Previous34

works have mainly considered the imaging of highly reflecting structures (e.g myelin fibers)35

through an aberrating layer (e.g mouse skull)20, in a wavelength range that limits scattering36

and aberration from tissues23. On the contrary, here, we want to address the extremely37

challenging case24 of three-dimensional imaging of biological tissues themselves (cells, collagen,38

2



extracellular matrix etc.) at large penetration depth (z ∼ 5`s), regime in which aberration39

and scattering effects are spatially-distributed over multiple length-scales.40

In previous studies, coherent measurements of R have been performed either in a plane41

wave basis25, point-to-point basis20, or between those dual bases26,27. In this paper, a42

low coherence interferometry set up, derived from full-field optical coherence tomography43

(FFOCT)28,29, is used to record the R−matrix in a de-scanned basis. Interestingly, this frame44

drastically reduces the number of input wave-fronts required for a full measurement of R.45

Another advantage of this basis is the direct access to the distortion matrix D through46

a Fourier transform. This matrix basically connects any focusing point with the distorted47

part of the associated reflected wavefront19,21. A multi-scale analysis of D is here proposed48

to estimate the forward scattering component of the T-matrix at an unprecedented spatial49

resolution (∼6 µm). Once the latter matrix is known, one can actually unscramble, in50

post-processing, all wave distortions and multiple scattering events undergone by the incident51

and reflected waves for each voxel. A three-dimensional confocal image of the medium can52

then be retrieved as if the medium had been made digitally transparent.53

The experimental proof-of-concept presented in this paper is performed on a human54

ex-vivo cornea that we chose deliberately to be extremely opaque. Its overall thickness is of 555

`s. FFOCT shows an imaging depth limit of 1`s due to aberration and scattering. Strikingly,56

RMI enables to recover a full 3D image of the cornea at a resolution close to λ/4 (∼ 230nm)57

and a penetration depth enhanced by, at least, a factor five.58

59

Focused Reflection Matrix in De-Scanned Basis60

61

The R-matrix is generally defined as containing responses between a recording basis62

(camera pixels) and an illumination basis, that corresponds to the set of incident waves63

used to probe the sample (Fig. 1a). Once recorded, R can be easily projected by simple64

matrix products in: (i) the pupil plane (uin/out) where input-output correlations can be65

exploited for full-field aberration compensation20,30; (ii) the focused basis (ρin/out) where66

an image of the sample can be formed. Compared to confocal imaging where focusing is67

performed at input and output on the same point (ρin = ρout), RMI enables the decoupling68

of input and output focal spots. Interestingly, the off-diagonal elements of the focused69

R−matrix, Rρρ = [R(ρin,ρout)], enable to probe locally the impact of aberrations and70
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FIG. 1. Principle of Matrix Imaging. a. A set of focused wave-fronts is used to illuminate

the sample. They can be generated by an array of point-like sources ρin conjugated with the focal

plane of the microscope objective or by a set of plane waves in the pupil plane (uin). The reflected

wave-fronts are recorded by the pixels ρout of a camera also conjugated with the focal plane. The

set of impulse responses R(ρin,ρout) between each source ρin and detector ρout form the focused

reflection matrix Rρρ = [R(ρin,ρout)]. b. The reflected wave-fields can be de-scanned as if they were

generated by virtual sources all shifted at the origin thereby forming the de-scanned matrix D∆ρ

(Eq. 2). In the output pupil plane (uout), this operation is equivalent to a realignment of wave-fronts,

thereby forming the so-called distortion matrix Dur. c. The correlation matrix Cout between those

wave-fronts mimics the time-reversal operator associated with a virtual guide star that results from

a coherent average of all the de-scanned focal spots (see Supplementary Section S4). d. An iterative

phase reversal algorithm is then applied (see Methods). It first consists in a phase conjugation of the

wave-front induced by the virtual guide star. The impinging wave-front compensates for aberrations

and scattering inside the medium to produce a sharper guide star. The process is iterated and

ultimately provides an estimation of Tout(rp), the column of Tout corresponding to the common

mid-point rp of the input focal spots considered in panel a.

multiple scattering.71

In that perspective, a de-scan operation is of particular interest (Fig. 1b). Mathematically,72

it only consists in the following change of coordinates: (ρin,ρout)→ (ρin − ρout,ρout). The73
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interest of a de-scanned reflection matrix D is twofold. First, it constitutes a flexible starting74

block for a local compensation of wave distortions through a simple change of basis. Second,75

the dimension of D is much smaller than the size of R. In the following, we show how low76

coherence interferometry enables a compressed measurement of R31,32.77

7879

Compressed Sensing of the Reflection Matrix80

81

Inspired by FFOCT28, the experimental set up consists in a Linnik interferometer (Fig. 2a).82

In the first arm, a reference mirror is placed in the focal plane of a microscope objective83

(MO). The second arm contains the scattering sample to be imaged. In FFOCT, the same84

broadband incoherent light source is used to illuminate the entire field of the microscope85

objectives. Because of the broad spectrum of the incident light, interferences occur between86

the two arms provided that the optical path difference through the interferometer is close to87

zero. The length of the reference arm determines the slice of the sample (coherence volume)88

to be imaged and is adjusted in order to match with the focal plane of the MO in the sample89

arm. The backscattered light from each voxel of the coherence volume can only interfere with90

the light coming from the conjugated point of a reference mirror. The spatial incoherence of91

the light source actually acts as a physical confocal pinhole (Fig. 2c). All these interference92

signals are recorded in parallel by the pixels of the camera in the imaging plane. The FFOCT93

signal is thus equivalent to a time-gated confocal image of the sample but without any94

lateral raster scanning33. It yields the diagonal coefficients, R(ρout,ρout, z), of Rρρ(z), where95

z denotes the depth of the coherence volume. Figures 3b and c show en-face and axial96

FFOCT images of the opaque cornea at different depths. A dramatic loss in contrast is97

found beyond the epithelium (z>70 µm, see Fig. 3g). It highlights the detrimental effect of98

multiple scattering for deep optical imaging.99100

To overcome the multiple scattering phenomenon, the illumination scheme is slightly101

modified compared with FFOCT (Fig. 2a). The incident wave-fields are still identical in102

each arm but are laterally shifted with respect to each other by a transverse position ∆ρ.103

Their spatial incoherence now acts as a de-scanned pinhole that gives access to the cross-104

talk between distinct focusing points (Fig. 2b). The interferogram recorded by the camera105
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FIG. 2. Compressed Sensing of the Reflection Matrix. a Experimental setup (L: lenses, MO:

microscope objectives, and M: reference mirror.). Light from an incoherent source is split into two

replica laterally shifted with respect to each other by a relative position ∆ρ (see Supplementary

Section S1). By a game of polarization, each replica illuminates one arm of a Linnik interferometer.

The sample beam (in red) illuminates the scattering sample through a microscope objective (NA =

1.0). The reference beam (in blue) is focused on a dielectric mirror through an identical microscope

objective. Both reflected beams interfere on a CMOS camera whose surface is conjugated with

focal planes of the MO. The amplitude and phase of the interference term are retrieved by phase-

shifting interferometry. b Each pixel of the camera, depicted by its position ρout, measures

the reflection coefficient R(ρin,ρout, z) between de-scanned focusing points, rout = (ρout, z) and

rin = (ρout+∆ρ, z), at depth z of the sample. c For ∆ρ = 0, the experimental set up is equivalent to a

FFOCT apparatus and the interferogram directly provides a time-gated confocal image of the sample.

d The set of interferograms are stored in the de-scanned reflection matrix D∆ρ(z) = [D(∆ρ,ρout, z)]

displayed in panel e. f Each column of this matrix yields a reflection point-spread function (RPSF)

associated with the focusing quality at point ρout (scale bar: 2 µm). g The Fourier transform of

each de-scanned wave-field provides the distortion matrix Dur(z) = [D(uin,ρout, z)]. h Each column

of this matrix displays the distorted wave-front associated with each point ρout in the field-of-view.

The optical data shown in panels d-h correspond to the acquisition performed at depth z = 150 µm.

(Fig. 2d) directly provides one line of the de-scanned matrix D, such that106

D(∆ρ,ρout, z) = R(ρin + ∆ρ,ρout, z). (1)
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FIG. 3. Volumetric matrix imaging of an opaque cornea. a. Schematic of the imaging

planes in the cornea. b. En-face confocal images before (b1,b3) and after (b2,b4) the matrix

imaging process for z = 50 µm and 250 µm, respectively (scale bar: 50 µm). c. Longitudinal (x,z )

section of the initial confocal image. d. Original RSPFs from z = 50 to 250 µm (scale bar: 1 µm).

e. Corresponding RPSFs after the matrix imaging process. f. Longitudinal (x,z ) section of the

volumetric image at the end of the matrix imaging process. g. Schematic of a healthy human cornea.

Scanning the relative position ∆ρ is equivalent to recording theR-matrix diagonal-by-diagonal107

when expressed in a canonical basis (Fig. 1a). However, while a canonical (column-by-column)108

acquisition of R requires to illuminate the sample over a field-of-view Ω with N = (Ω/δ0)2
109

input wave-fronts, the de-scanned basis implies a much smaller number of illuminations.110

This sparsity can be understood by expressing theoretically the D-matrix (Supplementary111

Section S2):112

D(∆ρ,ρout, z) =

∫
Ω

dρHin(ρ + ∆ρ, rin)γ(ρ + ρout, z)Hout(ρ, rout) (2)

where γ is the sample reflectivity. Hin(ρ, rin) and Hout(ρ, rout) are the local input and output113

point spread functions (PSFs) at points rin = (ρin, z) and rout = (ρout, z) , respectively. This114

last equation confirms that the central line of D∆ρ (∆ρ = 0), i.e. the FFOCT image, results115

from a convolution between the sample reflectivity γ and the local confocal PSF, Hin ×Hout.116

The de-scanned elements allow us to go far beyond standard imaging. In particular, they117
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will be exploited to unscramble the local input and output PSFs in the vicinity of each focal118

point. As a preliminary step, they can also be used to quantify the level of aberrations and119

multiple scattering. In average, the de-scanned intensity, I(∆ρ, rout) = |D(∆ρ,ρout, z)|2, can120

actually be expressed as the convolution between the incoherent input and output PSFs34:121

〈I(∆ρ, rout)〉 ∝ |Hin|2
∆ρ
~ |Hout|2(∆ρ, rout) (3)

where the symbol ~ stands for correlation product and 〈· · · 〉 for ensemble average. This122

quantity will be referred to as RPSF in the following (acronym for reflection PSF). Figure 2e123

displays examples of RSPF extracted in depth of the opaque cornea. Their spatial extension124

δR of the RPSF indicates the focusing quality and dictates the number M of central lines of125

D∆ρ(z) that contain the relevant information for imaging:126

M ∼ (δR/δ0)2 (4)

with δ0 ∼ λ/(4NA), the confocal maximal resolution of the imaging system. For a field-of-127

view much larger than the spatial extension of the RPSF (Ω >> δR), the de-scanned basis is128

thus particularly relevant for the acquisition of R (M << N).129

130

Quantifying the Focusing Quality131

132

Figure 3d shows the depth evolution of the RPSF. It exhibits the following characteristic133

shape: a distorted and enlarged confocal spot on top of an incoherent background34. The134

former component is a manifestation of aberrations; the latter contribution is due to multiple135

scattering. Figure 3d clearly highlights two regimes. In the epithelium (z < 70 µm), the136

confocal component is predominant and the image of the cornea is reliable although its137

resolution is affected by aberrations (Fig. 3b1). Beyond this depth, the multiple scattering138

background is predominant and drastically blurs the image (Fig. 3b3). The axial evolution139

of the confocal-to-multiple scattering ratio enables the measurement of the scattering mean140

free path `s
35 (Supplementary Section S3). We find `s ∼ 70 µm in the stroma (Fig. 3g),141

which confirms the strong opacity of the cornea. The penetration depth limit thus scales as142

`S. This value is modest compared with theoretical predictions24 (∼ 3`S) but is explained by143

the occurrence of strong aberrations at shallow depths, partially due to the index mismatch144

at the cornea surface (Fig. 3d).145

146
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The RSPF also fluctuates in the transverse direction. To that aim, a map of local RPSFs147

(Fig. 4c) can be built by considering the back-scattered intensity over limited spatial windows148

(Methods). This map shows important fluctuations of aberrations and multiple scattering149

across the field-of-view due to the lateral variations of the optical index upstream of the150

focal plane. Such complexity implies that any point in the medium will be associated with151

its own distinct focusing law. Nevertheless, spatial correlations subsist between RSPFs in152

adjacent windows (Fig. 4c). Such correlations can be explained by a physical phenomenon153

often referred to as isoplanatism in adaptive optics36 and that results in a locally-invariant154

PSF37. We will now see how this local isoplanicity can be exploited for the estimation of the155

T-matrices.156

157158

Iterative Phase Reversal of Wave Distortions159

160

Beyond a direct quantification of aberration and scattering problems, the D-matrix can161

be leveraged for their compensation. Indeed, a Fourier transform over the coordinate ∆ρ of162

each de-scanned wave-field, D(∆ρ, rout), directly yields the wave distortions seen from the163

input pupil plane :164

Dur = F×D∆r (5)

where F denotes the Fourier transform operator, F (u,∆ρ) = exp (−i2πu.∆ρ/λf), λ the165

central wavelength and f the MO focal length. Dur = Duρ(z) = [D(uin,ρout,, z)] is the166

distortion matrix that connects any voxel (rout) in the field-of-view to wave-distortions in167

the input pupil plane (uin).168

As the RPSF displayed in Fig. 4c, this matrix exhibits local correlations that can be169

also understood in light of the optical memory effect38,39. Waves produced by nearby points170

inside a complex medium generate highly correlated random speckle patterns in the far171

field37,40,41. Figure 2 illustrates this fact by displaying an example of distortion matrix172

(Fig. 2g) and reshaped distorted wave-fields for different points rout (Fig. 2h). A strong173

similarity can be observed between distorted wave-fronts associated with neighboring points174

but this correlation tends to vanish when the two points are too far away.175

The next step is to extract and exploit the local memory effect in D for imaging. To that176

aim, a set of correlation matrices Cin(rp) shall be considered between distorted wave-fronts177

in the vicinity of each point rp in the field-of-view (Methods). Under the hypothesis of178
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FIG. 4. Inner Transmission matrix for Local Compensation of Forward Multiple Scat-

tering. a,b. Confocal field of view before and after the correction process at 200 µm-depth,

respectively (scale bar: 50 µm). c,d. Maps of the local reflection point-spread functions (RPSFs)

(de-scan field-of-view: 7 × 7 µm2) over the field of view, before and after the correction process,

respectively. e,f. Sub-part of matrices, T̂in and T̂out, respectively, for the area delimited by the

square box in panels a-d.

local isoplanicity, each matrix Cin(rp) is analogous to a R-matrix associated with a virtual179

reflector synthesized from the set of output focal spots21 (see Fig. 1c and Supplementary180

Section S4). In this fictitious experimental configuration, an iterative phase-reversal process181

can be performed to converge towards the incident wave front that focuses perfectly through182

the heterogeneities of the medium onto this virtual scatterer (see Fig. 1d and Methods).183

This iterative phase reversal algorithm, repeated for each point rp, yields an estimator184

T̂in of the transmission matrix, Tin = F×Hin. Its digital phase conjugation enables a local185

compensation of aberration and multiple scattering. An updated de-scanned matrix can then186
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be built:187

D∆r = F† ×
[
T̂∗in ◦Dur

]
(6)

where the symbol † stands for transpose conjugate and ◦ for the Hadamard product. The188

same process can be repeated by exchanging input and output to estimate the output189

transmission matrix Tout (Methods).190

191

Multi-Scale analysis of the Distortion Matrix192

193

A critical aspect of RMI is the choice of the spatial window over which wave distortions shall194

be analyzed. On the one hand, the isoplanatic assumption is valid for low-order aberrations195

that are associated with extended isoplanatic patches. Forward multiple scattering, on196

the other hand, gives rise to high-order aberration that exhibits a coherence length that197

decreases with depth until reaching the size of a speckle grain beyond `t37. However, the198

spatial windows should be large enough to encompass a sufficient number of independent199

realizations of disorder42. Indeed, this number should be one order of magnitude larger than200

the size M of the aberrated focal spot in terms of resolution cells. If the latter condition is201

not fulfilled, the iterative phase reversal process indeed cannot converge towards a correct202

estimator (Supplementary Section S5).203

To satisfy these two contradictory conditions, an iterative multi-scale strategy is proposed204

for the analysis of the D−matrix. It consists in iterating the RMI process while dividing by205

two the size of overlapping spatial windows at each iterative step (Fig. a). At each iteration,206

the RPSF extension decreases (Fig. b) and the spatial window can be reduced accordingly at207

the next step. It enables the capture of finer angular and spatial details of the T−matrix at208

each step ( Fig. c) while ensuring the convergence of the iterative phase reversal algorithm.209

At the end of the process (Supplementary Section S5), each individual patch covers an area210

of 6× 6 µm2 which provides the spatial resolution of the T−matrix estimator.211

212

Transmission Matrix and Memory Effect213

214

Figures 4e and f show a sub-part of the T-matrices measured at depth z = 200 µm. Spatial215

reciprocity should imply equivalent input and output aberration phase laws. This property is216

not checked by our estimators. Indeed, the input aberration phase law accumulates not only217
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function displayed in panel b (scale bar: 2 µm). Data are from the cross-section at 200µm depth

within the sample.

the input aberrations of the sample-arm but also those of the reference arm (Supplementary218

Section S2). Therefore, the sample-induced aberrations can be investigated independently219

from the imperfections of the experimental set up by considering the output matrix T̂out.220

An analysis of its spatial correlations clearly shows that wave distortions induced by the221

cornea are made of two contributions (Methods):(i) a spatially-invariant aberrated component222

(Fig. 6a) associated with long-scale fluctuations of the refractive index (Fig. 6c) ; (ii) a223

forward multiple scattering component (Fig. 6d) associated with isoplanatic patches whose224

size drastically decreases in depth (Fig. 6a,e).225

226227

Deep Volumetric Imaging228

229

Eventually, the estimated T-matrices can be used to compensate for local aberrations over230

the whole field-of-view, by digital phase conjugation performed at input and output (Eq. 6).231

The comparison between the initial and resulting images (Figs. 4a,b) demonstrates the benefit232
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of a local compensation of aberration and scattering. The drastic gain in resolution and233

contrast provided by RMI enables to reveal a rich arrangement of biological structures (cells,234

striae, etc.) that were completely blurred by scattering in the initial image. For instance,235

a stromal stria, indicator of keratoconus43, is clearly revealed on the RMI B-scan (Fig. 3f)236

while it was hidden by the multiple scattering fog on the initial image (Fig. 3c). The B-scan237

shows that RMI provides a full image of the cornea with the recovery of its different layers238

throughout its thickness (350 µm ∼ 5`s, see also Supplementary Movies).239

The gain in contrast and resolution can be quantified by investigating the RSPF after240

RMI. A close-to-ideal confocal resolution (230 nm vs. δ0 ∼ 215 nm) is reached throughout241

the cornea thickness (Fig. 3e). The confocal-to-diffuse ratio is increased by a factor up to 15242

dB in depth (Supplementary Section S6). Furthermore, the map of local RPSFs displayed in243

Fig. 4d shows the efficiency of RMI for addressing extremely small isoplanatic patches.244

245

Discussion246

247

Although this experimental proof-of-concept is spectacular and promising for deep optical248

imaging of biological tissues, it suffers from several limitations that need to be addressed in249
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future works. First, FFOCT is not very convenient for 3D in-vivo imaging since it requires250

an axial scan of the sample. Another possibility would be to move the reference arm and251

measure R as a function of the time-of-flight.252

An access to the time (or spectral) dependence of the R−matrix is actually critical to253

reach a penetration depth larger than `t. Indeed, the aberration phase law extracted from254

a time-gated R-matrix is equivalent in the time domain to a simple application of time255

delays between each angular component of the wave-field. Yet, the diffusive regime requires256

to address independently each frequency component of the wave-field to make multiple257

scattering paths of different lengths constructively interfere on any focusing point in depth.258

Beyond the diffusive regime, another blind spot of this study is the medium movement259

during the experiment44,45. In that respect, the matrix formalism shall be developed to260

include the medium dynamics. Moving speckle can actually be an opportunity since it261

can give access to a large number of speckle realizations for each voxel. A high resolution262

T−matrix could be, in principle, extracted without relying on any isoplanatic assumption46.263

To conclude, this study is a striking illustration of a pluri-disciplinary approach in wave264

physics. A passive measurement of the R-matrix is indeed an original idea coming from265

seismology47. The D-matrix is inspired by stellar speckle interferometry in astronomy48. The266

T-matrix is a concept that has emerged both from fundamental studies in condensed matter267

physics8 and more applied fields such as MIMO communications10 and ultrasound therapy12.268

The emergence of high-speed cameras and the rapid growth of computational capabilities269

now makes matrix imaging mature for deep in-vivo optical microscopy.270
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Methods271

272

Experimental set up273

The full experimental setup is displayed in Supplementary Figure S1. It is made of two274

parts: (i) a polarized Michelson interferometer illuminated by a broadband LED source275

(Thorlabs M850LP1, λ◦ = 850 nm, ∆λ = 35 nm) in a pseudo-Kohler configuration, thereby276

providing at its output two identical spatially-incoherent and broadband wave-fields of277

orthogonal polarization, the reference one being shifted by a lateral position ∆ρ by tilting278

the mirror in the corresponding arm; (ii) a polarized Linnik interferometer with microscope279

objectives (Nikon N60X-NIR, M = 60×, NA = 1.0) in the two arms and a CMOS camera280

(Adimec Quartz 2A-750, 2Mpx) at its output. The de-scanned beam at the output the first281

interferometer illuminates the reference arm of the second interferometer and is reflected by282

the reference mirror placed in the focal plane of the MO. The other beam at the output of283

the first interferometer illuminates the sample placed in the focal plane of the other MO.284

The CMOS camera, conjugated with the focal planes of the MO, records the interferogram285

between the beams reflected by each arm of the Linnik interferometer. The spatial sampling286

of each recorded image is δ0 = 230 nm and the field-of-view is 275×275 µm2
287

Experimental procedure288

The experiment consists in the acquisition of the de-scanned reflection matrix D∆r. To289

that aim, an axial scan of the sample is performed over the cornea thickness (350 µm) with a290

sampling of 2 µm (i.e 185 axial positions). For each depth, a transverse scan of the de-scanned291

position ∆ρ is performed over a 2.9 × 2.9 µm2 area with a spatial sampling δ0 = 230 nm292

(that is to say 169 input wave-fronts instead of 106 input wave-fronts in a canonical basis).293

For each scan position (∆ρ, z), a complex-reflected wave field is extracted by phase shifting294

interferometry from four intensity measurements. This measured field is averaged over 5295

successive realisations (for denoising). The integration time of the camera is set to 5 ms.296

Each wave-field is stored in the de-scanned reflection matrix D∆r = [D(∆ρ,ρout)] (Fig. 2).297

The duration time for the recording of D∆ρ is of ∼ 30 s at each depth. The post-processing298

of the reflection matrix (iterative phase reversal and multi-scale analysis) to get the final299

image took only a few minutes on Matlab. The experimental results displayed in Fig. 4 and300

at a single depth z = 200 µm have been obtained by performing a de-scan over a 7× 7 µm2
301

area with a spatial sampling δ0 = 230 nm (961 input wave-fronts).302
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303

Local RPSF304

To probe the local RPSF, the field-of-view is divided into regions that are defined by305

their central midpoint rp and their spatial extension L. A local average of the back-scattered306

intensity can then be performed in each region:307

I(∆ρ, rp) = 〈|D(∆ρ, rout)|2WL(rout − rp)〉rout (7)

where WL(rout − rp) = 1 for |ρout − ρp| < L, and zero otherwise.308

309

Local correlation matrix310

A set of correlation matrices shall be considered between distorted wave-fronts associated311

with different regions of the field-of-view:312

Cin(uin,u
′
in, rp) = 〈D(uin, rout)D

∗(u′in, rout)WL(rp − rout)〉rout
(8)

Iterative phase reversal algorithm.313

The iterative phase reversal algorithm is a computational process that provides an314

estimator of the transmit wave-field T (u, rp) that links each point u of the pupil plane with315

each voxel rp of the cornea volume. To that aim, the correlation matrix C computed over316

the spatial window WL centered around each point rp is considered (Eq. 8). Mathematically,317

the algorithm is based on the following recursive relation:318

T̂(n)(rp) = exp
[
i arg

{
C(rp)× T̂(n−1)(rp)

}]
(9)

where T̂(n) is the estimator of T at the nth iteration of the phase reversal process. T̂(0) is an319

arbitrary wave-front that initiates the iterative phase reversal process (typically a flat phase320

law) and T̂ = limn→∞ T̂(n) is the result of this iterative phase reversal process.321

322

Aberration and Scattering compensation at output.323

The output de-scanned matrix D∆ρ(z) is deduced from the input de-scanned matrix324

D∆ρ(z) using the following change of variable:325

D(ρin,∆ρ′, z) = D(−∆ρ′,ρin + ∆ρ′, z) (10)

with ∆ρ′ = ρout − ρin = −∆ρ.326
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An output distortion matrix is then built by applying a Fourier transform over the327

de-scanned coordinate:328

Dru = D∆r × FT (11)

where the superscript T stands for matrix transpose. From Dru, one can build a correlation329

matrix Cout for each point rp:330

Cout(uout,u
′
out, rp) = 〈D(rin,uout)D

∗(rin,u
′
out)WL(rp − rout)〉rout

(12)

The iterative phase reversal algorithm described above is then applied to each matrix Cout(rp)331

to derive an estimator T̂out of the output T-matrix.332

333

Aberration and Scattering Components of the T-matrix.334

The spatial correlation of transmitted wave-fields are investigated at each depth z by335

computing the correlation matrix of Tout: CT = Tout ×T†out. A mean correlation function Γ336

can be computed by performing the following average:337

Γ(∆ρ, z) = 〈CT (ρin,ρin + ∆ρ, z)〉ρin
(13)

The correlation function Γ displayed in Fig. 6a shows that the matrix Tout can be decomposed338

as a spatially-invariant component T(a)
out and a short-range correlated component T(m)

out . Each339

component can be separated by performing a singular value decomposition of Tout, such that340

341

Tout =
N∑
p=1

spUpV
†
p (14)

where sp are the positive and real singular values of Tout ranged in decreasing order, Up342

and Vp are unitary matrices whose columns correspond to the input and output singular343

vectors of Tout. The first eigenspace of Tout provides its spatially-invariant component:344

T
(a)
out = s1U1V

†
1. The higher rank eigenstates provide the multiple scattering component T(m)

out .345

Lines or columns of the associated correlation matrix C
(m)
T = T

(m)
out ×T

(m)†
out provides the map346

of isoplanatic patches displayed in Fig. 6e.347

348
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Abstract
This document provides further information on: (i) the experimental set up; (ii) the theoretical

expression of the de-scanned matrix; (iii) the measurement of the scattering mean free path; (iv)

the theoretical expression of the correlation matrix; (v) the estimation of the transmission matrix;

(vi) the contrast enhancement provided by reflection matrix imaging.
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S1. DETAILED EXPERIMENTAL SET-UP7
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FIG. S1. Passive measurement of the de-scanned reflection matrix. P: polarizer, L: lens,

QWP: quarter-wave plate, M: mirror, PZT: piezo-electric actuator, PBS: polarisation beam splitter,

MO: microscope objective. The apparatus is made up of two parts. a. Michelson interferometer

illuminated by incoherent light source at its input and generating two twin incoherent beams of

orthogonal polarization and laterally shifted from each other at its output. The polarised beam

splitters (PBS1) separates the impinging light into a reference path (in blue) and a sample path

(in red). The tilt δθ of mirror M2 controls the shift ∆ρ between the twin beams in the secondary

source plane. b. Michelson interferometer with microscope objectives (MO) in both arms (Linnik

configuration). Both beams have orthogonal polarizations and each interferometer arm includes

a quarter-wave plate (QWP). The output beams are collected by the L4 lens and interfere on the

camera after having been projected on a 45◦-rotated polarizer (P2). c. Equivalent layout in the case

of a coherent measurement. The source plane, the focal plane, and the camera planes are conjugated.

Displacing a point source ρin in the source plane discretely scans the focal plane inside the sample.

The illuminated area is imaged in the camera plane; in an epi-detection configuration.
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The full experimental set up is displayed in Fig. S1. The setup is divided into two building8

blocks, labelled (a) and (b). The first component is a Michelson interferometer [Fig. S1a].9

The light source is a broadband LED (Thorlabs M850LP1, λ◦ = 850 nm, ∆λ = 35 nm),10

which, under a pseudo-Kohler configuration, ensures a spatially-incoherent, yet uniform,11

illumination of the field-of-view. The incident light is collimated using a convergent lens (L1)12

with a focal length f1 = 150 mm. The beam transmitted through this lens (L1) is linearly13

polarized at 45◦ by a polarizer (P1) so that it is then equally reflected (sample arm) and14

transmitted (reference arm) by the polarized beam splitter (PBS1).15

The sample beam reflected by PBS1 is horizontally polarized. It propagates through a16

quarter-wave plate (QWP1), is reflected by a plane mirror (M1), whose normal lies along17

the optical axis and that is mounted on a piezoelectric actuator (PZT). The reflected beam18

passes again through the quarter-wave plate (QWP1). This sequence induces a polarization19

rotation by 90◦ of the reflected beam with respect to the incident beam in the sample arm.20

The reflected wave can be then transmitted through the beam splitter (PBS1) with a vertical21

polarization and finally focused in a secondary source plane conjugated with the source plane22

by means of the lens (L2) of focal length f2 = 125 mm.23

The reference beam, vertically polarized at the exit of the polarizer (P1), is transmitted by24

the beam splitter (PBS1), propagates through a quarter-wave plate (QWP2), is reflected by25

a set of galvanometric scan mirrors (M2) that enables a 2D rotation of the incident wave-field26

by angles θ = (θx, θy) with respect to the optical axis. The reflected beam then propagates27

again through the quarter wave plate (QWP2). This round trip through (QWP2) enables a28

90◦ rotation of the light polarization. The reflected beam is therefore reflected by the beam29

splitter (PBS1) before being focused by the lens (L2) in the secondary source plane.30

Finally, in the secondary source plane, the wave-field is made of two images of the incident31

light orthogonally polarized and translated with respect each other by a relative position ∆ρ.32

This lateral shift is dictated by the tilt θ = (θx, θy) of the reference beam: ∆x = f2 tan θx33

and ∆y = f2 tan θy. Note also that the optical path difference between the two arms is set to34

zero by equalizing the length of sample and reference arms for ∆θ = 0.35

After the Michelson interferometer, these two orthogonally polarized beams enter a Michel-36

son interferometer with two identical microscope objectives in both arms (a configuration37

known as a Linnik interferometer) [Fig. S1b]. They are again collimated by a lens (L3)38

of focal length f3=200 mm. The two lenses (L2) and (L3) thus constitute a 4f system39

3



which compensates the effects of diffraction between the two interferometers. The vertically40

polarized light (sample beam) is transmitted by a polarized beam splitter cube (PBS2),41

propagates through a quarter-wave plate (QWP4) before being focused in the focal plane42

of an immersion microscope objective (MO2, Nikon, 60×, NA=1.0). The light reflected43

by the sample is then collected by (MO2) and propagates again through the quarter-wave44

plate (QWP4). Because single scattering tends to preserve polarization, the corresponding45

wave-field undergoes a 90◦ polarization rotation and gets reflected by the beam splitter46

(PBS2) before being focused in the plane of the camera using the convergent lens (L4) of47

focal length f4 =200 mm. The combination of this lens (L4) with the microscope objective48

(MO1) entails a magnification M4 of 60.49

Regarding the horizontally-polarized beam at the exit of the lens (L3), it is reflected50

by the beam splitter (PBS2), passes through the quarter-wave plate (QWP3) before being51

focused by the microscope objective (MO1) identical to (MO2). The light is then reflected by52

the reference mirror (M3) placed in the focal plane of MO2 before being collected again by53

the same microscope objective (MO2). The reflected light comes through the quarter-wave54

plate (QWP3). As in the other arm, the polarization of the reflected beam exhibits a 90◦55

rotation of its polarization. The beam is now vertically polarized and transmitted by the56

beam splitter (PBS2), before being focused on the camera with the lens (L4).57

The CMOS camera (Adimec Quartz 2A-750, 2Mpx) records the interferogram with a58

spatial sampling equal to δ0 =230 nm given the magnification M4. The volume of the sample59

from which photons can interfere with the reference beam is called the “coherence volume".60

Its position is dictated by the optical path difference between the reference and sample arms.61

Its thickness is inversely proportional to the light spectrum bandwidth [1]:62

δzt =
2 ln 2

nπ

(
λ2

∆λ

)
(S1)

with λ the central wavelength of the light source and ∆λ its spectral bandwidth. In the63

present case, δzt ∼ 10 µm. A critical tuning of the experimental set up consists in adjusting64

the coherence volume with the focal plane of the microscope objective. In a volumetric65

sample, whose refractive index differs from that of water, the coherence volume no longer66

coincides with the focusing plane. This focusing defect accumulates with the transverse67

aberrations generated by the heterogeneities of the medium. However, it is possible to68

compensate for it by a fine tuning of the length of the reference arm.69
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The experimental procedure then consists in recording the de-scanned reflection matrix70

D∆ρ(z) at each depth z of the sample. This latter parameter is swept by means of a motorized71

axial displacement of the sample carrier. The scan of the relative position ∆ρ between the72

incident wave-fields in the sample and reference arms is controlled by the tilt imposed by73

the galvanometer (M2). For each couple (∆ρ, z), the CCD camera conjugated with the MO74

focal plane records the output intensity:75

Iα(∆ρ,ρout, z) =

∫ T

0

|eiαEout(ρout, t) + E
(ref)∗
out (∆ρ,ρout, t)|2dt (S2)

with t the absolute time, r the position vector on the CCD screen, Eout(r, τ) the scattered wave76

field associated with the sample arm, E(ref)
out (r, τ) the reference wave field; T the integration77

time of the CCD camera, and α an additional phase term controlled with a piezoelectric78

actuator placed on mirror (M1) of the first interferometer [Fig. S1a]. The interference term79

is extracted from the four intensity patterns (Eq. S2) recorded at α = 0, π/2, 3π/2 and π80

(“four phase method” [2]):81

D(∆ρ,ρout, z) =
1

T

∫ T

0

Eout(ρout, t)E
(ref)∗
out (∆ρ,ρout, t)dt (S3)

As we will see in the next section, under certain conditions, this interference term tends82

towards the coefficients of the focused reflection matrix Rrr that would be recorded by the83

coherent set up displayed in Fig. S1c [Eq.1 of the accompanying article].84

In particular, for ∆ρ = 0 (FFOCT set up), the de-scanned wave-field is equivalent to a85

time-gated confocal image [3]. On the one hand, the confocal nature of the recorded wave-field86

implies a transverse resolution δρ0 ∼ λ/4NA. On the other hand, the axial resolution is87

either controlled by the thickness δzt of the coherence volume or the depth-of-field δz0 of the88

microscope objective: δz0 = nλ/NA2. In the present case, δz0 ∼ 1 µm< δzt ∼ 10 µm. The89

axial resolution is thus given by the depth-of-field. δρ0 and δz0 thus dictate the values of the90

transverse and axial sampling of matrix D in our experiment.91
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S2. THEORETICAL EXPRESSION OF THE DE-SCANNED MATRIX92

In this section, we investigate to which extent the de-scanned matrix recorded by the93

experimental set up in Figs. S1a,b can be considered equivalent to the focused reflection94

matrix that would be recorded by the fictitious coherent set up displayed in Fig. S1c.95

To that aim, we will rely on the simple Fourier optics model proposed in a recent paper [3]96

to describe the manifestation of aberrations in FFOCT. For the sake of simplicity, this model97

is scalar. The large numerical aperture imposes that the recorded wave-field is associated98

with single scattering events taking place in the focal plane of the MO.99

The wave field Eout(ρout, z) reflected by the sample arm in the camera plane can then be100

expressed as follows [3]:101

Eout(ρout, z, ω) =

∫
Σ0

∫
Σρ

Hout(ρout,ρ, z)γ(ρ, z)Hin(ρ,ρ0, z)Es(ρ0, ω)drdρ0. (S4)

Ein(ρ0, ω) is the incident wave-field in the secondary source plane Σ0 at frequency ω. Light102

propagation between Σ0 and the focal plane Σρ is described by the impulse response H(ρ0,ρ)103

between a point in the secondary source plane at transverse coordinate ρ0 and a point in the104

focal plane at coordinate ρ. It accounts for sample-induced aberrations. γ(ρ, z) represents105

the sample reflectivity at depth z. By spatial reciprocity, the propagation of the reflected106

wave-field from the sample to the detector plane is also modelled by the impulse response107

H(ρ,ρout). The relatively narrow bandwidth (∆λ << λ) of the light source and the use of108

achromatic optical elements (lens, beam splitter, quarter wave plate) allows us to neglect the109

dependence of H on frequency ω.110

Replacing γ(ρ, z) by a uniform reflectivity in Eq. S4 and taking into account the lateral111

shift of the reference wave-field induced by the galvanometer M2 [Fig. S1] leads to the112

following previous expression for E(ref)
out (ρout, z) [3]:113

E
(ref)
out (ρout,∆ρ, z) =

∫
Σ0

Href(ρout − ρ0)E0(ρ0 + ∆ρ)drdρ0. (S5)

where Href is the impulse response associated with the reference arm (way and return path)114

that we assume as spatially-invariant [Href(ρout,ρ0) = Href(ρout − ρ0)].115

The de-scanned wave-field is obtained by extracting the interference term between the116

reflected wave-fields coming from the sample and reference arms:117

D(ρout,∆ρ, z) = 〈Eout(ρout, ω)E
(ref)∗
out (ρout, ω)〉 (S6)
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Assuming a spatially-incoherent incident wave-field [〈E0(r0)E
∗
0(r′0)〉 = I0δ(r0 − r′0)] and118

injecting Eqs. S4 and S5 into the last equation leads to the following expression for D−matrix119

coefficients:120

D(ρout,∆ρ, z) = I0

∫∫∫
H(ρout,ρ, z)γ(ρ, z) [H �H∗ref] (ρ,ρout + ∆ρ, z)dρ (S7)

where the symbol � stands for the convolution product over the variable ρout + ∆ρ.121

The coefficients of a focused reflection matrix recorded by the fictitious coherent set up122

displayed in Fig. S1 can be expressed as:123

R(ρout,ρin, z) = I0

∫∫∫
H(ρout,ρ, z)γ(ρ, z)H(ρ,ρin, z)dρ (S8)

Only, a perfect reference arm would imply Tref ≡ 1k<NA and H �H∗ref ≡ H. Equations S7124

and S8 are then strictly identical in this ideal case: The incoherent set up of Fig. S1a is125

equivalent to the fictitious coherent set up of Fig. S1b. In reality, the reference arm can126

exhibit aberrations such as a slight defocus of the reference mirror M3 in Fig. S1b or a127

slight defocus of the reference beam in the secondary source plane at the output of first128

interferometer.129

The comparison between Eq. S7 and Eq.2 of the accompanying paper leads to the130

following identification: Hout ≡ H and Hin ≡ H �H∗ref. In other words, while the output131

transmission matrices (Hout, or equivalently, Tout) only grasp the sample-induced aberrations,132

the input transmission matrices (Hin and Tin) also contain the aberrations undergone by133

the incident and reflected reference beams. This feature explains the difference between the134

transmission matrices T̂in and T̂in shown in Fig.4 of the accompanying paper in which the135

input transmission matrix T̂in (Fig. 4e) shows an additional spherical aberration on top of136

the sample-induced aberrations exhibited by T̂out (Fig. 4f).137
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S3. MEASURING THE SCATTERING MEAN FREE PATH138

100 150 200 250 300 350
-3

-2.5
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-1.5
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0

ln
 β

depth z [µm]

FIG. S2. Confocal scattering ratio lnβ versus depth (blue dots) fitted with Eq. S9 (red line).

In a previous work [4], the scattering mean free path `s in the cornea has been measured139

by investigating the depth evolution of the confocal intensity. Indeed, in the single scattering140

regime, under the paraxial approximation and for an homogeneous reflectivity, the time-gated141

confocal intensity is supposed to decrease as exp(−2z/`s) if we neglect absorption losses [5, 6].142

Unfortunately, here, the cornea is not healthy but oedematous. The depth evolution of143

the confocal intensity in the stroma is thus strongly impacted by multiple scattering and144

cannot be used for a measurement of `s. Moreover, in the epithelium, the different layers of145

cell make the cornea reflectivity too heterogeneous to provide an exponential decrease of the146

confocal intensity.147

Recently, an alternative strategy has been proposed in presence of multiple scattering. It148

consists in investigating the depth evolution of the ratio β between the confocal surintensity149

and the total intensity [7]. For a medium statistically homogeneous in terms of disorder,150

numerical simulations have shown empirically that this quantity scales as [8]:151

β(z) ∼ exp(−4z/(3`s) (S9)
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In the present case, this confocal ratio β has been measured as follows:152

β̂(z) = 1−
min
∆ρ
{I(∆ρ, z)}

max
∆ρ
{I(∆ρ, z)}

(S10)

This estimator β̂ relies on the fact that the multiple scattering component of the RPSF153

exhibits a flat background such that it can estimated with the minimum of I(∆ρ, z). This154

hypothesis is wrong at shallow depth since the diffuse halo grows as
√
Dt. Nevertheless,155

beyond `s or so (here 100 µm), the multiple scattering background can be considered as flat156

as illustrated by Fig. 3d of the accompanying paper.157

Figure S2 displays the depth evolution of the estimator β̂(z). It exhibits an exponential158

decay in the stroma beyond z = 100 µm. The decay rate decreases beyond z = 170 µm159

because our estimator of β(z) starts to be impacted by the experimental noise [see Fig. 3d of160

the accompanying paper]. Therefore, the fit of β̂(z) with Eq. S9 is performed from z = 100161

to z = 170 µm. We find `s ∼ 70 µm.162
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S4. THEORETICAL EXPRESSION OF THE CORRELATION MATRIX163

The multi-scale analysis of D allows an estimation of the T−matrix at an increasingly164

finer resolution, by iteratively reducing the area over which each aberration phase law is165

estimated. At each step, the iterative phase reversal (IPR) algorithm assumes the convergence166

of the correlation matrix C(rp) (Eq.8) towards its ensemble average 〈C〉 (rp), the so-called167

covariance matrix [9, 10]. In fact, this convergence is never fully realized and C should be168

decomposed as the sum of this covariance matrix 〈C〉 (rp) and a perturbation term δC(rp):169

C(rp) = 〈C〉 (rp) + δC(rp). (S11)

The intensity of the perturbation term scales as the inverse of the number NL = (L/δ0)2 of170

resolution cells in each sub-region [10, 11]:171

〈
|δC(u,u′, rp)|2

〉
=

〈
|C(u,u′, rp)|2

〉
NL

(S12)

This perturbation term can thus be reduced by increasing the size L of the spatial window172

WL, but at the cost of a resolution loss. In the following, we express theoretically the bias173

induced by this perturbation term on the estimation of T. In particular, we will show how174

it scales with the parameter L and the focusing quality. To that aim, we will consider the175

input correlation matrix Cin but a similar demonstration can be performed at output. For176

sake of lighter notation, the dependence over rp will be omitted in the following.177

Under assumptions of local isoplanicity and random reflectivity, the covariance matrix178

can be expressed as follows [9]:179

〈Cin〉 = Tin ×CH ×T†in, (S13)

or in terms of matrix coefficients,180

〈Cin〉 (u,u′) = Tin(u)T ∗in(u′)

∫
dρ|Hout(ρ)|2e−i2π

(u−u′).ρ
λf︸ ︷︷ ︸

=CH(u,u′)

. (S14)

CH is a reference correlation matrix associated with a virtual reflector whose scattering181

distribution corresponds to the output focal spot intensity |Hout(ρ)|2. This scatterer plays182

the role of virtual guide star in the RMI process.183

10



S5. ESTIMATION OF THE T−MATRIX184

For such an experimental configuration, an iterative time reversal process converges185

towards a wavefront that maximizes the energy back-scattered by the reflector [12, 13].186

Mathematically, this iterative time reversal process writes as follows187

U
(n+1)
in = σCin ×U

(n)
in (S15)

with U
(n)
in , the wave-front at iteration n of the iterative time reversal process and σ, the188

scatterer reflectivity. Iterative time reversal converges towards a wave front, Uin = lim
n→+∞

U
(n)
in ,189

that is none other than the first eigenvector of Cin.190

If the virtual reflector was point-like, this wave-front would be a perfect estimator of191

Tin. Its phase conjugate perfectly compensates for aberrations and focuses through the192

heterogeneous medium onto the point-like target [12, 13]. However, here the virtual guide193

star is enlarged compared to the diffraction limit. Iterative time reversal thus converges194

towards a wave-front Uin of finite angular support δuc that tends to focus on the center of195

the virtual reflector but with a resolution width δρc ∼ λf/δuc larger than the diffraction196

limit [10].197

To circumvent that issue, the iterative phase reversal algorithm has been developed. It198

consists in modifying the iterative time reversal process as follows:199

T̂
(n+1)
in = exp

[
i arg

{
Cin × T̂

(n)
in

}]
(S16)

where T̂
(n)
in is the estimator of Tin at the nth iteration of the phase reversal process. T̂(0)

in is200

an arbitrary wave-front that initiates the iterative phase reversal process (typically a flat201

phase law). T̂in = limn→∞ T̂
(n)
in is the result of this iterative phase reversal process. The202

iterative phase reversal algorithm differs from an iterative time reversal process by imposing203

the T-matrix coefficients to be of constant modulus in the pupil plane. In other words,204

unlike the iterative time reversal process, the resulting wave-front here equally addresses each205

angular component of the imaging process to reach a diffraction-limited resolution. While206

the iterative time reversal process is guided by a maximization of the back-scattered energy,207

the iterative phase reversal process is dictated by a minimization of the resolution length.208

In practice, however, the T−matrix estimator is still impacted by the blurring of the209

synthesized guide star and the presence of diffusive background and/or noise. Therefore the210
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whole process shall be iterated at input and output in order to gradually refine the guide211

star and reduce the bias on our T−matrix estimator. Moreover, the spatial window WL212

over which the C−matrix is computed [Eq. 8 in the accompanying paper] shall be gradually213

decreased in order to address the forward multiple scattering component, the latter one being214

associated with smaller isoplanatic patches.215

To understand the parameters controlling the bias δT̂in between T̂in and Tin, one can216

express T̂in as follows:217

T̂in = exp
(
jarg

{
Cin × T̂in

})
=

Cin × T̂in

||Cin × T̂in||
(S17)

By injecting Eq. S11 into the last expression, T̂in can be expressed, at first order, as the sum218

of its expected value Tin and a perturbation term δT̂in:219

T̂in =
〈Cin〉 ×Tin

||〈Cin〉 ×Tin||︸ ︷︷ ︸
=Tin

+
δCin ×Tin

||〈Cin〉 ×Tin||︸ ︷︷ ︸
'δT̂in

. (S18)

The bias intensity can be expressed as follows:220

||δT̂in||2 =
T†in × δC

†
in × δCin ×Tin

T†in × 〈Cin〉† × 〈Cin〉 ×Tin
(S19)

Using Eq. S12, the numerator of the previous equation can be expressed as follows:221

T†in × δC
†
in × δCin ×Tin = M2δu2

0〈|δC in(u,u′)|2〉 = M2δu2
0〈|〈Cin〉(u,u)|2〉/NL. (S20)

with δu0 ∼ λf/δR, the resolution of the T−matrix in the pupil plane and δR, the de-scan222

field-of-view. Injecting Eq. S14 into the last equation leads to the following expression for223

the numerator of Eq. S19:224

T†in × δC
†
in × δCin ×Tin = M2δu2

0

∣∣∣Tout
uout
~ Tout(0)

∣∣∣2 /NL. (S21)

The denominator of Eq. S19 can be expressed as follows:225

T†in × 〈Cin〉† × 〈Cin〉 ×Tin = M2

∣∣∣∣∣∑
u

Tout
uout
~ Tout(u)

∣∣∣∣∣
2

(S22)

The bias intensity is thus given by:226

||δT̂in||2 =
δu2

0

∣∣∣Tout
uout
~ Tout(0)

∣∣∣2∣∣∣∑u Tout
uout
~ Tout(u)

∣∣∣2 =
δ−2
R

∫
dr|Hout(r)|2

|Hout(r = 0)|2
(S23)
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The bias thus scales as the ratio between the mean incoherent input intensity and the227

coherent intensity (energy deposited exactly at focus). It is thus inversely proportional to the228

focusing quality at output. In terms of order of magnitude, we have
∣∣∣∑u Tout

uout
~ Tout(u)

∣∣∣2 ∼229

δu2
out

∣∣∣Tout
uout
~ Tout(0)

∣∣∣2, with δuout ∼ λf/δrout the coherence length of the T−matrix in the230

output pupil plane and δrout, the spatial extension of the output PSF. The bias intensity231

thus exhibits the following scaling law,232

||δT̂in||2 ∼
Dout

MNL
. (S24)

where Dout = (δrout/δ0)
2 is the characteristic size of the output focal spot in terms of233

resolution cells.234

This last expression justifies the multi-scale analysis proposed in the accompanying paper.235

A gradual decrease of the aberration level, quantified by Dout, is required to address smaller236

spatial windows that scale as NL. Following this scheme, the bias of the T−matrix can be237

minimized and the iterative phase reversal algorithm converges towards a satisfying estimator.238

However, the spatial window cannot be reduced to a speckle grain otherwise the method239

would lead to a bucket image that consists in an incoherent summation of each de-scanned240

wave-field. Figure S3c illustrates this fact by displaying the en-face image obtained when the241

spatial window reaches a size L = 3 µm. Compared with L = 6 µm [Figure S3b], the image242

has clearly lost some contrast, which is a manifestation of an incoherent compensation of243

aberrations and scattering (bucket image).244

The iteration should therefore be stopped at some point. In practice, the end of the245

process can be determined by a careful look at the image. An incoherent compensation246

of aberrations induces a loss of contrast on the final image. Figure S3 illustrates those247

detrimental effects by comparing the original image (Fig. S3a), the RMI image obtained248

with a T−matrix of optimal resolution (6× 6 µm2, see Fig. S3b) and a RMI image relying249

on too small spatial windows WL (3 × 3 µm2, see Fig. S3c). The contrast of each image250

I(ρ, z), C(z) = std [I(ρ, z)] / 〈I(ρ, z)〉, tends to gradually increase when the estimator T̂251

approaches T (see comparison between Figs. S3a and b) and decrease when the compensation252

of aberrations and scattering becomes bucket-like (see comparison between Figs. S3b and c).253

For the images displayed in Figs. S3a, b and c, we find C ∼ 1.48, C ∼ 1.61 and C ∼ 1.37,254

respectively. Nevertheless, an optimization criterion only based on the image contrast can be255

misleading since the contrast also depends on the sample reflectivity distribution.256
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A more reliable observable is the spatial correlation of the T-matrix between neighbor257

patches as displayed in Fig.6e of the accompanying paper. While a spatial window of 6× 6258

µm2 preserves a short-range correlation between neighbor windows (see inset of Fig. S3b), a259

spatial window of 3× 3 µm2 leads to a fully spatially incoherent estimator T̂ (see inset of260

Fig. S3c). This observable clearly shows whether the estimator T̂ leads to a coherent (i.e261

physical) or incoherent (i.e bucket-like) compensation of multiple scattering. The number of262

iterations in the phase reversal algorithm has thus been based on this T-matrix correlation263

criterion.264

FIG. S3. Confocal images at several steps of the multi-scale analysis. a Initial en-face

image of the cornea at depth z ∼ 100 µm. b RMI image based on a T-matrix estimator of spatial

resolution L = 6 µm. c RMI image based on a T-matrix estimator of spatial resolution L = 3 µm.

The spatial correlation of T̂ with respect to one reference location (white arrow) is displayed in

insets of panels b and c. Scale bars : 50 µm.
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S6. QUANTIFYING THE CONTRAST ENHANCEMENT265

FIG. S4. Confocal gain provided by the matrix imaging process. ab. Transverse cross-

section of the confocal gain observed for the en-face images displayed in Fig. 3b at depths 50 µm

and 250 µm within the cornea [scale bar: 50 µm]. c. Longitudinal cross-section of the confocal gain

observed by comparing the B-scan displayed in Fig.3f with its original version shown in Fig. 3c. In

each panel, the color scale is in dB.

Figure S4 shows the enhancement of the confocal peak before and after RMI. It reaches a266

maximal value of 30. This gain should scale, in amplitude, as the number Pc of independent267

coherence grains exhibited by the T−matrix in the pupil plane (see, for instance, Figs. 4e and268

f) and that RMI tends to realign in phase by means of a digital optical phase conjugation.269

Figure S4b clearly shows that the confocal gain increases with depth z. Indeed, multiple270

scattering becomes predominant in depth and the transmission phase laws become more and271

more complex. Note, however, that given the complexity of phase laws displayed in Figs. 4e272

and f, we could have expected a larger confocal intensity enhancement. This moderate gain273
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in contrast is explained by the fact that a part of the multiple scattering background is not274

addressed by RMI.275
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