Non-invasive Retrieval of the Transmission Matrix for Optical Imaging Deep Inside a Multiple Scattering Medium

Ulysse Najar, Victor Barolle, Paul Balondrade, Mathias Fink, A Claude
Boccara, Alexandre Aubry

To cite this version:

Ulysse Najar, Victor Barolle, Paul Balondrade, Mathias Fink, A Claude Boccara, et al.. Non-invasive Retrieval of the Transmission Matrix for Optical Imaging Deep Inside a Multiple Scattering Medium. 2023. hal-03981863v1

HAL Id: hal-03981863

https://hal.science/hal-03981863v1

Preprint submitted on 10 Feb 2023 (v1), last revised 17 Oct 2023 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Public Domain

Non-invasive Retrieval of the Transmission Matrix for Optical Imaging Deep Inside a Multiple Scattering Medium

Ulysse Najar, Victor Barolle, Paul Balondrade, Mathias Fink, A. Claude Boccara, and Alexandre Aubry Institut Langevin, ESPCI Paris, PSL University, CNRS, Paris, France
(Dated: February 10, 2023)

Abstract
As light travels through a disordered medium such as biological tissues, it undergoes multiple scattering events. This phenomenon is detrimental to in-depth optical microscopy, as it causes a drastic degradation of contrast, resolution and brightness of the resulting image beyond a few scattering mean free paths. However, the information about the inner reflectivity of the sample is not lost; only scrambled. To recover this information, a matrix approach of optical imaging can be fruitful. Here we report on the compressed measurement of a high-dimension reflection matrix \mathbf{R} via low coherence interferometry. Then, we show how the inner transmission matrix linking each camera sensor and each medium voxel can be extracted through an iterative multiscale analysis of wave distortions contained in R. This transmission matrix is the Holy Grail for volumetric imaging since it enables an optimal compensation of forward multiple scattering paths and provides a three-dimensional confocal image of the sample as the latter one had become digitally transparent. The proof-of-concept experiment is performed on a human opaque cornea and an extension of the penetration depth by a factor five is demonstrated compared to the state-of-the-art. ${ }_{9}$ inhomogeneous medium where the refractive index n depends on the spatial coordinates \mathbf{r}, several physical parameters are relevant to characterize wave propagation: (i) the scattering ${ }_{11}$ mean free path ℓ_{s}, which is the average distance between two successive scattering events; ${ }_{12}$ (ii) the transport mean free path ℓ_{t}, which is the distance after which the wave has lost the ${ }_{3}$ memory of its initial direction. For a penetration depth z smaller than ℓ_{s}, ballistic light is ${ }_{14}$ predominant and standard focusing methods can be employed; for $z>\ell_{s}$, multiple scattering 15 events result in a gradual randomization of the propagation direction before reaching the 16 diffusive regime for $z>\ell_{t}$. Although it gives rise to fascinating interference phenomena such ${ }_{17}$ as perfect transmission ${ }^{[12]}$ or Anderson localization ${ }^{[344}$, multiple scattering still represents a ${ }_{18}$ major obstacle to deep imaging and focusing of light inside complex media ${ }^{[566}$. ${ }_{20}$ complex media. With the emergence of multi-element technology, wave-fields can be tamed ${ }_{21}$ in order to take advantage of the complexity of propagation media to focus waves through 26 elements.

While a subsequent amount of work has considered the transmission matrix \mathbf{T} for op28 timizing wave control and focusing through complex media ${ }^{12 / 17}$, this configuration is not 29 the most relevant for imaging purposes since only one side of the medium is accessible зо for most in-vivo applications. Moreover, in all the aforementioned works, the scattering ${ }_{31}$ medium is usually considered as a black box, while imaging requires to open it. To that ${ }_{32}$ aim, a reflection matrix approach of wave imaging (RMI) has been developed for the last ${ }_{33}$ few years ${ }^{[18][2]}$. The objective is to determine, from the reflection matrix \mathbf{R}, the \mathbf{T}-matrix ${ }_{34}$ between sensors outside the medium and voxels mapping the sample ${ }^{[22]}$ (Fig. 1). Previous ${ }_{35}$ works have mainly considered the imaging of highly reflecting structures (e.g myelin fibers) 36 through an aberrating layer (e.g mouse skull) ${ }^{20}$, in a wavelength range that limits scattering ${ }_{37}$ and aberration from tissues ${ }^{23]}$. On the contrary, here, we want to address the extremely ${ }_{38}$ challenging case ${ }^{[24]}$ of three-dimensional imaging of biological tissues themselves (cells, collagen, ${ }_{42}$ wave basis ${ }^{[25]}$, point-to-point basis ${ }^{[20]}$, or between those dual bases ${ }^{[26127]}$. In this paper, a ${ }_{43}$ low coherence interferometry set up, derived from full-field optical coherence tomography ${ }_{4}(\mathrm{FFOCT})^{\sqrt{2829}}$, is used to record the \mathbf{R}-matrix in a de-scanned basis. Interestingly, this frame drastically reduces the number of input wave-fronts required for a full measurement of \mathbf{R}.

Another advantage of this basis is the direct access to the distortion matrix \mathbf{D} through a Fourier transform. This matrix basically connects any focusing point with the distorted ${ }_{48}$ part of the associated reflected wavefront ${ }^{1921]}$. A multi-scale analysis of \mathbf{D} is here proposed to estimate the forward scattering component of the \mathbf{T}-matrix at an unprecedented spatial resolution $(\sim 6 \mu \mathrm{~m})$. Once the latter matrix is known, one can actually unscramble, in post-processing, all wave distortions and multiple scattering events undergone by the incident and reflected waves for each voxel. A three-dimensional confocal image of the medium can ${ }_{53}$ then be retrieved as if the medium had been made digitally transparent. 58 and a penetration depth enhanced by, at least, a factor five.

Focused Reflection Matrix in De-Scanned Basis

 ${ }_{63}$ (camera pixels) and an illumination basis, that corresponds to the set of incident waves ${ }_{64}$ used to probe the sample (Fig. 11). Once recorded, R can be easily projected by simple ${ }_{65}$ matrix products in: (i) the pupil plane ($\mathbf{u}_{\text {in } / \text { out }}$) where input-output correlations can be ${ }_{66}$ exploited for full-field aberration compensation ${ }^{20130}$; (ii) the focused basis $\left(\boldsymbol{\rho}_{\text {in } / \text { out }}\right)$ where 67 an image of the sample can be formed. Compared to confocal imaging where focusing is ${ }_{68}$ performed at input and output on the same point ($\boldsymbol{\rho}_{\text {in }}=\boldsymbol{\rho}_{\text {out }}$), RMI enables the decoupling 69 of input and output focal spots. Interestingly, the off-diagonal elements of the focused \mathbf{R}-matrix, $\mathbf{R}_{\boldsymbol{\rho} \boldsymbol{\rho}}=\left[R\left(\boldsymbol{\rho}_{\text {in }}, \boldsymbol{\rho}_{\text {out }}\right)\right]$, enable to probe locally the impact of aberrations and

FIG. 1. Principle of Matrix Imaging. a. A set of focused wave-fronts is used to illuminate the sample. They can be generated by an array of point-like sources ρ_{in} conjugated with the focal plane of the microscope objective or by a set of plane waves in the pupil plane $\left(\mathbf{u}_{\mathrm{in}}\right)$. The reflected wave-fronts are recorded by the pixels $\boldsymbol{\rho}_{\text {out }}$ of a camera also conjugated with the focal plane. The set of impulse responses $R\left(\boldsymbol{\rho}_{\text {in }}, \boldsymbol{\rho}_{\text {out }}\right)$ between each source $\boldsymbol{\rho}_{\text {in }}$ and detector $\boldsymbol{\rho}_{\text {out }}$ form the focused reflection matrix $\mathbf{R}_{\rho \rho}=\left[R\left(\boldsymbol{\rho}_{\text {in }}, \boldsymbol{\rho}_{\text {out }}\right)\right]$. b. The reflected wave-fields can be de-scanned as if they were generated by virtual sources all shifted at the origin thereby forming the de-scanned matrix $\mathbf{D}_{\Delta \rho}$ (Eq. 22). In the output pupil plane $\left(\mathbf{u}_{\text {out }}\right)$, this operation is equivalent to a realignment of wave-fronts, thereby forming the so-called distortion matrix $\mathbf{D}_{\mathbf{u r}}$. \mathbf{c}. The correlation matrix $\mathbf{C}_{\text {out }}$ between those wave-fronts mimics the time-reversal operator associated with a virtual guide star that results from a coherent average of all the de-scanned focal spots (see Supplementary Section S4). d. An iterative phase reversal algorithm is then applied (see Methods). It first consists in a phase conjugation of the wave-front induced by the virtual guide star. The impinging wave-front compensates for aberrations and scattering inside the medium to produce a sharper guide star. The process is iterated and ultimately provides an estimation of $\mathbf{T}_{\text {out }}\left(\mathbf{r}_{\mathrm{p}}\right)$, the column of $\mathbf{T}_{\text {out }}$ corresponding to the common mid-point \mathbf{r}_{p} of the input focal spots considered in panel \mathbf{a}.

71 multiple scattering.
In that perspective, a de-scan operation is of particular interest (Fig. (1p). Mathematically, ${ }_{73}$ it only consists in the following change of coordinates: $\left(\boldsymbol{\rho}_{\text {in }}, \boldsymbol{\rho}_{\text {out }}\right) \rightarrow\left(\boldsymbol{\rho}_{\text {in }}-\boldsymbol{\rho}_{\text {out }}, \boldsymbol{\rho}_{\text {out }}\right)$. The

74 interest of a de-scanned reflection matrix \mathbf{D} is twofold. First, it constitutes a flexible starting 75 block for a local compensation of wave distortions through a simple change of basis. Second, ${ }_{76}$ the dimension of \mathbf{D} is much smaller than the size of \mathbf{R}. In the following, we show how low ${ }_{77}$ coherence interferometry enables a compressed measurement of $\mathbf{R}^{[3132}$.

78
${ }_{\text {so }}$ Compressed Sensing of the Reflection Matrix

81

82
Inspired by FFOCT ${ }^{28}$, the experimental set up consists in a Linnik interferometer (Fig. 2 a). ${ }_{84}$ (MO). The second arm contains the scattering sample to be imaged. In FFOCT, the same ${ }_{85}$ broadband incoherent light source is used to illuminate the entire field of the microscope ${ }_{86}$ objectives. Because of the broad spectrum of the incident light, interferences occur between ${ }_{87}$ the two arms provided that the optical path difference through the interferometer is close to ${ }_{88}$ zero. The length of the reference arm determines the slice of the sample (coherence volume) to be imaged and is adjusted in order to match with the focal plane of the MO in the sample arm. The backscattered light from each voxel of the coherence volume can only interfere with the light coming from the conjugated point of a reference mirror. The spatial incoherence of 2 the light source actually acts as a physical confocal pinhole (Fig. 2k). All these interference signals are recorded in parallel by the pixels of the camera in the imaging plane. The FFOCT 4 signal is thus equivalent to a time-gated confocal image of the sample but without any ${ }_{95}$ lateral raster scanning ${ }^{[33]}$. It yields the diagonal coefficients, $R\left(\boldsymbol{\rho}_{\text {out }}, \boldsymbol{\rho}_{\text {out }}, z\right)$, of $\mathbf{R}_{\boldsymbol{\rho} \boldsymbol{\rho}}(z)$, where z denotes the depth of the coherence volume. Figures 3b and c show en-face and axial FFOCT images of the opaque cornea at different depths. A dramatic loss in contrast is ${ }_{98}$ found beyond the epithelium ($z>70 \mu \mathrm{~m}$, see Fig. 35). It highlights the detrimental effect of

To overcome the multiple scattering phenomenon, the illumination scheme is slightly 102 modified compared with FFOCT (Fig. 2a). The incident wave-fields are still identical in ${ }_{103}$ each arm but are laterally shifted with respect to each other by a transverse position $\Delta \rho$. ${ }_{04}$ Their spatial incoherence now acts as a de-scanned pinhole that gives access to the cross105 talk between distinct focusing points (Fig. 2b). The interferogram recorded by the camera

FIG. 2. Compressed Sensing of the Reflection Matrix. a Experimental setup (L: lenses, MO: microscope objectives, and M: reference mirror.). Light from an incoherent source is split into two replica laterally shifted with respect to each other by a relative position $\Delta \rho$ (see Supplementary Section S1). By a game of polarization, each replica illuminates one arm of a Linnik interferometer. The sample beam (in red) illuminates the scattering sample through a microscope objective ($N A=$ 1.0). The reference beam (in blue) is focused on a dielectric mirror through an identical microscope objective. Both reflected beams interfere on a CMOS camera whose surface is conjugated with focal planes of the MO. The amplitude and phase of the interference term are retrieved by phaseshifting interferometry. b Each pixel of the camera, depicted by its position $\rho_{\text {out }}$, measures the reflection coefficient $R\left(\boldsymbol{\rho}_{\text {in }}, \boldsymbol{\rho}_{\text {out }}, z\right)$ between de-scanned focusing points, $\mathbf{r}_{\text {out }}=\left(\boldsymbol{\rho}_{\text {out }}, z\right)$ and $\mathbf{r}_{\text {in }}=\left(\boldsymbol{\rho}_{\text {out }}+\Delta \boldsymbol{\rho}, z\right)$, at depth z of the sample. \mathbf{c} For $\Delta \boldsymbol{\rho}=\mathbf{0}$, the experimental set up is equivalent to a FFOCT apparatus and the interferogram directly provides a time-gated confocal image of the sample. \mathbf{d} The set of interferograms are stored in the de-scanned reflection matrix $\mathbf{D}_{\Delta \boldsymbol{\rho}}(z)=\left[D\left(\Delta \boldsymbol{\rho}, \boldsymbol{\rho}_{\text {out }}, z\right)\right]$ displayed in panel e. f Each column of this matrix yields a reflection point-spread function (RPSF) associated with the focusing quality at point $\boldsymbol{\rho}_{\text {out }}$ (scale bar: $2 \mu \mathrm{~m}$). g The Fourier transform of each de-scanned wave-field provides the distortion matrix $\mathbf{D}_{\mathbf{u r}}(z)=\left[D\left(\mathbf{u}_{\text {in }}, \boldsymbol{\rho}_{\text {out }}, z\right)\right]$. h Each column of this matrix displays the distorted wave-front associated with each point $\boldsymbol{\rho}_{\text {out }}$ in the field-of-view. The optical data shown in panels d-h correspond to the acquisition performed at depth $z=150 \mu \mathrm{~m}$.

106 (Fig. 2 d) directly provides one line of the de-scanned matrix \mathbf{D}, such that

$$
\begin{equation*}
D\left(\Delta \boldsymbol{\rho}, \boldsymbol{\rho}_{\mathrm{out}}, z\right)=R\left(\boldsymbol{\rho}_{\mathrm{in}}+\Delta \boldsymbol{\rho}, \boldsymbol{\rho}_{\mathrm{out}}, z\right) . \tag{1}
\end{equation*}
$$

FIG. 3. Volumetric matrix imaging of an opaque cornea. a. Schematic of the imaging planes in the cornea. \mathbf{b}. En-face confocal images before $\left(\mathbf{b}_{1}, \mathbf{b}_{3}\right)$ and after $\left(\mathbf{b}_{2}, \mathbf{b}_{4}\right)$ the matrix imaging process for $z=50 \mu \mathrm{~m}$ and $250 \mu \mathrm{~m}$, respectively (scale bar: $50 \mu \mathrm{~m}$). c. Longitudinal (x, z) section of the initial confocal image. d. Original RSPFs from $z=50$ to $250 \mu \mathrm{~m}$ (scale bar: $1 \mu \mathrm{~m}$). e. Corresponding RPSFs after the matrix imaging process. f. Longitudinal (x, z) section of the volumetric image at the end of the matrix imaging process. g. Schematic of a healthy human cornea.
${ }_{107}$ Scanning the relative position $\Delta \boldsymbol{\rho}$ is equivalent to recording the \mathbf{R}-matrix diagonal-by-diagonal 108 when expressed in a canonical basis (Fig. 11). However, while a canonical (column-by-column) 109 acquisition of \mathbf{R} requires to illuminate the sample over a field-of-view Ω with $N=\left(\Omega / \delta_{0}\right)^{2}$ 110 input wave-fronts, the de-scanned basis implies a much smaller number of illuminations. 111 This sparsity can be understood by expressing theoretically the D-matrix (Supplementary 112 Section S2):

$$
\begin{equation*}
D\left(\Delta \boldsymbol{\rho}, \boldsymbol{\rho}_{\text {out }}, z\right)=\int_{\Omega} d \boldsymbol{\rho} H_{\text {in }}\left(\boldsymbol{\rho}+\Delta \boldsymbol{\rho}, \mathbf{r}_{\text {in }}\right) \gamma\left(\boldsymbol{\rho}+\boldsymbol{\rho}_{\text {out }}, z\right) H_{\text {out }}\left(\boldsymbol{\rho}, \mathbf{r}_{\text {out }}\right) \tag{2}
\end{equation*}
$$

${ }_{113}$ where γ is the sample reflectivity. $H_{\text {in }}\left(\boldsymbol{\rho}, \mathbf{r}_{\text {in }}\right)$ and $H_{\text {out }}\left(\boldsymbol{\rho}, \mathbf{r}_{\text {out }}\right)$ are the local input and output ${ }_{114}$ point spread functions (PSFs) at points $\mathbf{r}_{\text {in }}=\left(\boldsymbol{\rho}_{\text {in }}, z\right)$ and $\mathbf{r}_{\text {out }}=\left(\boldsymbol{\rho}_{\text {out }}, z\right)$, respectively. This 115 last equation confirms that the central line of $\mathbf{D}_{\Delta \rho}(\Delta \rho=\mathbf{0})$, i.e. the FFOCT image, results 116 from a convolution between the sample reflectivity γ and the local confocal PSF, $H_{\text {in }} \times H_{\text {out }}$. ${ }_{117}$ The de-scanned elements allow us to go far beyond standard imaging. In particular, they

118 will be exploited to unscramble the local input and output PSFs in the vicinity of each focal ${ }_{119}$ point. As a preliminary step, they can also be used to quantify the level of aberrations and ${ }_{120}$ multiple scattering. In average, the de-scanned intensity, $I\left(\Delta \boldsymbol{\rho}, \mathbf{r}_{\text {out }}\right)=\left|D\left(\Delta \boldsymbol{\rho}, \boldsymbol{\rho}_{\text {out }}, z\right)\right|^{2}$, can 121 actually be expressed as the convolution between the incoherent input and output PSFs ${ }^{34}$:

$$
\begin{equation*}
\left\langle I\left(\Delta \boldsymbol{\rho}, \mathbf{r}_{\text {out }}\right)\right\rangle \propto\left|H_{\text {in }}\right|^{2} \stackrel{\Delta \boldsymbol{\rho}}{\circledast}\left|H_{\text {out }}\right|^{2}\left(\Delta \boldsymbol{\rho}, \mathbf{r}_{\text {out }}\right) \tag{3}
\end{equation*}
$$

${ }_{122}$ where the symbol \circledast stands for correlation product and $\langle\cdots\rangle$ for ensemble average. This ${ }_{123}$ quantity will be referred to as RPSF in the following (acronym for reflection PSF). Figure 2 e 124 displays examples of RSPF extracted in depth of the opaque cornea. Their spatial extension ${ }_{125} \delta_{\mathrm{R}}$ of the RPSF indicates the focusing quality and dictates the number M of central lines of ${ }_{126} \mathbf{D}_{\Delta \rho}(z)$ that contain the relevant information for imaging:

$$
\begin{equation*}
M \sim\left(\delta_{R} / \delta_{0}\right)^{2} \tag{4}
\end{equation*}
$$

${ }_{127}$ with $\delta_{0} \sim \lambda /(4 N A)$, the confocal maximal resolution of the imaging system. For a field-of128 view much larger than the spatial extension of the $\operatorname{RPSF}\left(\Omega \gg \delta_{R}\right)$, the de-scanned basis is 129 thus particularly relevant for the acquisition of $\mathbf{R}(M \ll N)$.

Quantifying the Focusing Quality

Figure 3 d shows the depth evolution of the RPSF. It exhibits the following characteristic ${ }_{134}$ shape: a distorted and enlarged confocal spot on top of an incoherent background ${ }^{34}$. The ${ }_{135}$ former component is a manifestation of aberrations; the latter contribution is due to multiple ${ }_{136}$ scattering. Figure 3d clearly highlights two regimes. In the epithelium ($z<70 \mu \mathrm{~m}$), the ${ }^{137}$ confocal component is predominant and the image of the cornea is reliable although its ${ }_{138}$ resolution is affected by aberrations (Fig. $3 \mathrm{~b}_{1}$). Beyond this depth, the multiple scattering ${ }_{139}$ background is predominant and drastically blurs the image (Fig. $3 \mathrm{~b}_{3}$). The axial evolution 140 of the confocal-to-multiple scattering ratio enables the measurement of the scattering mean 141 free path $\ell_{s}{ }^{355}$ (Supplementary Section S3). We find $\ell_{s} \sim 70 \mu \mathrm{~m}$ in the stroma (Fig. 3b), 142 which confirms the strong opacity of the cornea. The penetration depth limit thus scales as ${ }_{143} \ell_{S}$. This value is modest compared with theoretical predictions ${ }^{[24}\left(\sim 3 \ell_{S}\right)$ but is explained by 144 the occurrence of strong aberrations at shallow depths, partially due to the index mismatch 145 at the cornea surface (Fig. 3d).

The RSPF also fluctuates in the transverse direction. To that aim, a map of local RPSFs ${ }_{148}$ (Fig. 4 :) can be built by considering the back-scattered intensity over limited spatial windows ${ }_{149}$ (Methods). This map shows important fluctuations of aberrations and multiple scattering 150 across the field-of-view due to the lateral variations of the optical index upstream of the 151 focal plane. Such complexity implies that any point in the medium will be associated with ${ }_{152}$ its own distinct focusing law. Nevertheless, spatial correlations subsist between RSPFs in 153 adjacent windows (Fig. 4c). Such correlations can be explained by a physical phenomenon 154 often referred to as isoplanatism in adaptive optics ${ }^{36}$ and that results in a locally-invariant ${ }_{55} \mathrm{PSF}{ }^{[37}$. We will now see how this local isoplanicity can be exploited for the estimation of the 156 T -matrices.

Iterative Phase Reversal of Wave Distortions

161 Beyond a direct quantification of aberration and scattering problems, the \mathbf{D}-matrix can 162 be leveraged for their compensation. Indeed, a Fourier transform over the coordinate $\Delta \boldsymbol{\rho}$ of ${ }_{163}$ each de-scanned wave-field, $D\left(\Delta \boldsymbol{\rho}, \mathbf{r}_{\text {out }}\right)$, directly yields the wave distortions seen from the 164 input pupil plane :

$$
\begin{equation*}
\mathbf{D}_{\mathrm{ur}}=\mathbf{F} \times \mathbf{D}_{\Delta \mathrm{r}} \tag{5}
\end{equation*}
$$

165 where \mathbf{F} denotes the Fourier transform operator, $F(\mathbf{u}, \Delta \boldsymbol{\rho})=\exp (-i 2 \pi \mathbf{u} . \Delta \boldsymbol{\rho} / \lambda f), \lambda$ the 166 central wavelength and f the MO focal length. $\mathbf{D}_{\mathbf{u r}}=\mathbf{D}_{\mathbf{u} \rho}(z)=\left[D\left(\mathbf{u}_{\mathrm{in}}, \boldsymbol{\rho}_{\text {out }}, z\right)\right]$ is the ${ }_{167}$ distortion matrix that connects any voxel ($\mathbf{r}_{\text {out }}$) in the field-of-view to wave-distortions in 168 the input pupil plane ($\mathbf{u}_{\text {in }}$).

169 As the RPSF displayed in Fig. 48, this matrix exhibits local correlations that can be 170 also understood in light of the optical memory effect ${ }^{[3839}$. Waves produced by nearby points 171 inside a complex medium generate highly correlated random speckle patterns in the far ${ }_{172}$ field ${ }^{3740141}$. Figure 2 illustrates this fact by displaying an example of distortion matrix ${ }_{173}$ (Fig. 2 g) and reshaped distorted wave-fields for different points $\mathbf{r}_{\text {out }}$ (Fig. 2h). A strong 174 similarity can be observed between distorted wave-fronts associated with neighboring points 175 but this correlation tends to vanish when the two points are too far away.

The next step is to extract and exploit the local memory effect in \mathbf{D} for imaging. To that 177 aim, a set of correlation matrices $\mathbf{C}_{\mathrm{in}}\left(\mathbf{r}_{\mathrm{p}}\right)$ shall be considered between distorted wave-fronts ${ }_{178}$ in the vicinity of each point \mathbf{r}_{p} in the field-of-view (Methods). Under the hypothesis of

FIG. 4. Inner Transmission matrix for Local Compensation of Forward Multiple Scattering. a,b. Confocal field of view before and after the correction process at $200 \mu \mathrm{~m}$-depth, respectively (scale bar: $50 \mu \mathrm{~m}$). c,d. Maps of the local reflection point-spread functions (RPSFs) (de-scan field-of-view: $7 \times 7 \mu \mathrm{~m}^{2}$) over the field of view, before and after the correction process, respectively. e,f. Sub-part of matrices, $\hat{\mathbf{T}}_{\text {in }}$ and $\hat{\mathbf{T}}_{\text {out }}$, respectively, for the area delimited by the square box in panels a-d.

179 local isoplanicity, each matrix $\mathbf{C}_{\mathrm{in}}\left(\mathbf{r}_{\mathrm{p}}\right)$ is analogous to a \mathbf{R}-matrix associated with a virtual 180 reflector synthesized from the set of output focal spots ${ }^{21]}$ (see Fig. 1. and Supplementary 181 Section S4). In this fictitious experimental configuration, an iterative phase-reversal process 182 can be performed to converge towards the incident wave front that focuses perfectly through ${ }_{183}$ the heterogeneities of the medium onto this virtual scatterer (see Fig. 1 d and Methods).

This iterative phase reversal algorithm, repeated for each point \mathbf{r}_{p}, yields an estimator ${ }_{185} \hat{\mathbf{T}}_{\text {in }}$ of the transmission matrix, $\mathbf{T}_{\text {in }}=\mathbf{F} \times \mathbf{H}_{\text {in }}$. Its digital phase conjugation enables a local 186 compensation of aberration and multiple scattering. An updated de-scanned matrix can then

187 be built:

$$
\begin{equation*}
\mathbf{D}_{\Delta \mathbf{r}}=\mathbf{F}^{\dagger} \times\left[\hat{\mathbf{T}}_{\mathrm{in}}^{*} \circ \mathbf{D}_{u \mathbf{r}}\right] \tag{6}
\end{equation*}
$$

188 where the symbol \dagger stands for transpose conjugate and \circ for the Hadamard product. The 189 same process can be repeated by exchanging input and output to estimate the output 190 transmission matrix $\mathbf{T}_{\text {out }}$ (Methods).

191
${ }_{192}$ Multi-Scale analysis of the Distortion Matrix

193
194 A critical aspect of RMI is the choice of the spatial window over which wave distortions shall 195 be analyzed. On the one hand, the isoplanatic assumption is valid for low-order aberrations 196 that are associated with extended isoplanatic patches. Forward multiple scattering, on 197 the other hand, gives rise to high-order aberration that exhibits a coherence length that ${ }_{198}$ decreases with depth until reaching the size of a speckle grain beyond $\ell_{t}{ }^{37}$. However, the 199 spatial windows should be large enough to encompass a sufficient number of independent 200 realizations of disorder ${ }^{[42]}$. Indeed, this number should be one order of magnitude larger than 201 the size M of the aberrated focal spot in terms of resolution cells. If the latter condition is 202 not fulfilled, the iterative phase reversal process indeed cannot converge towards a correct 203 estimator (Supplementary Section S5).

To satisfy these two contradictory conditions, an iterative multi-scale strategy is proposed ${ }_{205}$ for the analysis of the \mathbf{D}-matrix. It consists in iterating the RMI process while dividing by 206 two the size of overlapping spatial windows at each iterative step (Fig. a). At each iteration, ${ }_{207}$ the RPSF extension decreases (Fig. b) and the spatial window can be reduced accordingly at 208 the next step. It enables the capture of finer angular and spatial details of the \mathbf{T}-matrix at ${ }_{209}$ each step (Fig. c) while ensuring the convergence of the iterative phase reversal algorithm. 210 At the end of the process (Supplementary Section S5), each individual patch covers an area ${ }_{211}$ of $6 \times 6 \mu \mathrm{~m}^{2}$ which provides the spatial resolution of the \mathbf{T}-matrix estimator.
${ }_{213}$ Transmission Matrix and Memory Effect

Figures 4 p and f show a sub-part of the T-matrices measured at depth $z=200 \mu \mathrm{~m}$. Spatial 16 reciprocity should imply equivalent input and output aberration phase laws. This property is ${ }_{217}$ not checked by our estimators. Indeed, the input aberration phase law accumulates not only

FIG. 5. Multi-scale analysis of wave distortions. a. The entire field-of-view is $138 \times 138 \mu \mathrm{~m}^{2}$. At each step, it is divided into a set of spatial windows whose dimension gradually decreases: from 138, 100, 50, 25, 13 to $6 \mu \mathrm{~m} \mathbf{b}$. Evolution of the transmitted wave-front $\hat{T}\left(\mathbf{u}_{\mathrm{out}}, \mathbf{r}_{p}\right)$ for one point \mathbf{r}_{p} of the field-of-view at each iteration step. \mathbf{c}. Corresponding local RPSF at \mathbf{r}_{p} before and after compensation of aberration and scattering using digital phase-conjugation of the optical transfer function displayed in panel b (scale bar: $2 \mu \mathrm{~m}$). Data are from the cross-section at $200 \mu \mathrm{~m}$ depth within the sample.

218 the input aberrations of the sample-arm but also those of the reference arm (Supplementary 219 Section S2). Therefore, the sample-induced aberrations can be investigated independently ${ }_{220}$ from the imperfections of the experimental set up by considering the output matrix $\hat{\mathbf{T}}_{\text {out }}$.

An analysis of its spatial correlations clearly shows that wave distortions induced by the 222 cornea are made of two contributions (Methods): (i) a spatially-invariant aberrated component ${ }_{223}$ (Fig. 6a) associated with long-scale fluctuations of the refractive index (Fig. 6c) ; (ii) a ${ }_{224}$ forward multiple scattering component (Fig. 6d) associated with isoplanatic patches whose ${ }_{225}$ size drastically decreases in depth (Fig. 6a,e).

Deep Volumetric Imaging

Eventually, the estimated T-matrices can be used to compensate for local aberrations over 231 the whole field-of-view, by digital phase conjugation performed at input and output (Eq. 6). ${ }_{232}$ The comparison between the initial and resulting images (Figs. 4 a,b) demonstrates the benefit

FIG. 6. Revealing the memory effect exhibited by the \mathbf{T}-matrix. a. Transverse evolution of the mean correlation function of the transmitted wave-field from shallow (blue) to large (red) depths. b. The phase of each transmitted wave-field is the sum of: c. a spatially-invariant aberration phase function; d. a complex scattering law exhibiting high spatial frequencies. e. The spatial correlation of the latter component with the \mathbf{T}-matrix provides a map of the corresponding isoplanatic patch (scale bar: $50 \mu \mathrm{~m}$).

233 of a local compensation of aberration and scattering. The drastic gain in resolution and 336 a stromal stria, indicator of keratoconus ${ }^{433}$, is clearly revealed on the RMI B-scan (Fig. 3f) ${ }_{237}$ while it was hidden by the multiple scattering fog on the initial image (Fig. 38). The B-scan ${ }_{238}$ shows that RMI provides a full image of the cornea with the recovery of its different layers 239 throughout its thickness ($350 \mu \mathrm{~m} \sim 5 \ell_{\mathcal{s}}$, see also Supplementary Movies).

The gain in contrast and resolution can be quantified by investigating the RSPF after ${ }_{241}$ RMI. A close-to-ideal confocal resolution (230 nm vs. $\delta_{0} \sim 215 \mathrm{~nm}$) is reached throughout 242 the cornea thickness (Fig. 3e). The confocal-to-diffuse ratio is increased by a factor up to 15 dB in depth (Supplementary Section S6). Furthermore, the map of local RPSFs displayed in ${ }_{24}$ Fig. 4 d shows the efficiency of RMI for addressing extremely small isoplanatic patches.

Discussion

Although this experimental proof-of-concept is spectacular and promising for deep optical ${ }_{29}$ imaging of biological tissues, it suffers from several limitations that need to be addressed in
${ }_{250}$ future works. First, FFOCT is not very convenient for 3D in-vivo imaging since it requires ${ }_{251}$ an axial scan of the sample. Another possibility would be to move the reference arm and ${ }_{252}$ measure \mathbf{R} as a function of the time-of-flight.
${ }_{253}$ An access to the time (or spectral) dependence of the \mathbf{R}-matrix is actually critical to 254 reach a penetration depth larger than ℓ_{t}. Indeed, the aberration phase law extracted from 255 a time-gated \mathbf{R}-matrix is equivalent in the time domain to a simple application of time 256 delays between each angular component of the wave-field. Yet, the diffusive regime requires 257 to address independently each frequency component of the wave-field to make multiple 258 scattering paths of different lengths constructively interfere on any focusing point in depth. 259 Beyond the diffusive regime, another blind spot of this study is the medium movement ${ }_{260}$ during the experiment ${ }^{[4445}$. In that respect, the matrix formalism shall be developed to ${ }_{261}$ include the medium dynamics. Moving speckle can actually be an opportunity since it 262 can give access to a large number of speckle realizations for each voxel. A high resolution ${ }_{263} \mathrm{~T}$-matrix could be, in principle, extracted without relying on any isoplanatic assumption ${ }^{[46]}$. 264 To conclude, this study is a striking illustration of a pluri-disciplinary approach in wave ${ }_{265}$ physics. A passive measurement of the \mathbf{R}-matrix is indeed an original idea coming from 266 seismology ${ }^{[47}$. The \mathbf{D}-matrix is inspired by stellar speckle interferometry in astronomy ${ }^{48}$. The ${ }_{267}$ T-matrix is a concept that has emerged both from fundamental studies in condensed matter 268 physics ${ }^{[8}$ and more applied fields such as MIMO communications ${ }^{[10}$ and ultrasound therapy ${ }^{\sqrt{12}}$. 269 The emergence of high-speed cameras and the rapid growth of computational capabilities 270 now makes matrix imaging mature for deep in-vivo optical microscopy.

Methods

273 Experimental set up

The full experimental setup is displayed in Supplementary Figure S1. It is made of two ${ }_{275}$ parts: (i) a polarized Michelson interferometer illuminated by a broadband LED source 276 (Thorlabs M850LP1, $\lambda_{\circ}=850 \mathrm{~nm}, \Delta \lambda=35 \mathrm{~nm}$) in a pseudo-Kohler configuration, thereby ${ }_{277}$ providing at its output two identical spatially-incoherent and broadband wave-fields of 278 orthogonal polarization, the reference one being shifted by a lateral position $\Delta \rho$ by tilting 279 the mirror in the corresponding arm; (ii) a polarized Linnik interferometer with microscope 282 interferometer illuminates the reference arm of the second interferometer and is reflected by 283 the reference mirror placed in the focal plane of the MO. The other beam at the output of 284 the first interferometer illuminates the sample placed in the focal plane of the other MO. ${ }_{285}$ The CMOS camera, conjugated with the focal planes of the MO, records the interferogram 286 between the beams reflected by each arm of the Linnik interferometer. The spatial sampling ${ }_{287}$ of each recorded image is $\delta_{0}=230 \mathrm{~nm}$ and the field-of-view is $275 \times 275 \mu \mathrm{~m}^{2}$

288 Experimental procedure

The experiment consists in the acquisition of the de-scanned reflection matrix $\mathbf{D}_{\Delta \mathbf{r}}$. To 291 sampling of $2 \mu \mathrm{~m}$ (i.e 185 axial positions). For each depth, a transverse scan of the de-scanned ${ }_{292}$ position $\Delta \rho$ is performed over a $2.9 \times 2.9 \mu \mathrm{~m}^{2}$ area with a spatial sampling $\delta_{0}=230 \mathrm{~nm}$ 293 (that is to say 169 input wave-fronts instead of 10^{6} input wave-fronts in a canonical basis). 294 For each scan position $(\Delta \rho, z)$, a complex-reflected wave field is extracted by phase shifting 295 interferometry from four intensity measurements. This measured field is averaged over 5 296 successive realisations (for denoising). The integration time of the camera is set to 5 ms . ${ }_{297}$ Each wave-field is stored in the de-scanned reflection matrix $\mathbf{D}_{\Delta \mathbf{r}}=\left[D\left(\Delta \boldsymbol{\rho}, \boldsymbol{\rho}_{\text {out }}\right)\right]$ (Fig. 22). 298 The duration time for the recording of $\mathbf{D}_{\Delta \rho}$ is of $\sim 30 \mathrm{~s}$ at each depth. The post-processing 299 of the reflection matrix (iterative phase reversal and multi-scale analysis) to get the final 300 image took only a few minutes on Matlab. The experimental results displayed in Fig. 4 and 301 at a single depth $z=200 \mu \mathrm{~m}$ have been obtained by performing a de-scan over a $7 \times 7 \mu \mathrm{~m}^{2}$ 302 area with a spatial sampling $\delta_{0}=230 \mathrm{~nm}$ (961 input wave-fronts).

Local RPSF

To probe the local RPSF, the field-of-view is divided into regions that are defined by ${ }_{306}$ their central midpoint \mathbf{r}_{p} and their spatial extension L. A local average of the back-scattered ${ }_{307}$ intensity can then be performed in each region:

$$
\begin{equation*}
\left.I\left(\Delta \boldsymbol{\rho}, \mathbf{r}_{p}\right)=\left.\langle | D\left(\Delta \boldsymbol{\rho}, \mathbf{r}_{\mathrm{out}}\right)\right|^{2} W_{L}\left(\mathbf{r}_{\mathrm{out}}-\mathbf{r}_{p}\right)\right\rangle_{\mathbf{r}_{\mathrm{out}}} \tag{7}
\end{equation*}
$$

308 where $W_{L}\left(\mathbf{r}_{\text {out }}-\mathbf{r}_{p}\right)=1$ for $\left|\boldsymbol{\rho}_{\text {out }}-\boldsymbol{\rho}_{p}\right|<L$, and zero otherwise.
309
${ }_{10}$ Local correlation matrix

311
A set of correlation matrices shall be considered between distorted wave-fronts associated 312 with different regions of the field-of-view:

$$
\begin{equation*}
C_{\mathrm{in}}\left(\mathbf{u}_{\mathrm{in}}, \mathbf{u}_{\mathrm{in}}^{\prime}, \mathbf{r}_{p}\right)=\left\langle D\left(\mathbf{u}_{\mathrm{in}}, \mathbf{r}_{\mathrm{out}}\right) D^{*}\left(\mathbf{u}_{\mathrm{in}}^{\prime}, \mathbf{r}_{\mathrm{out}}\right) W_{L}\left(\mathbf{r}_{\mathrm{p}}-\mathbf{r}_{\mathrm{out}}\right)\right\rangle_{\mathbf{r}_{\mathrm{out}}} \tag{8}
\end{equation*}
$$

${ }_{313}$ Iterative phase reversal algorithm.

The iterative phase reversal algorithm is a computational process that provides an ${ }_{315}$ estimator of the transmit wave-field $T\left(\mathbf{u}, \mathbf{r}_{p}\right)$ that links each point \mathbf{u} of the pupil plane with ${ }_{316}$ each voxel \mathbf{r}_{p} of the cornea volume. To that aim, the correlation matrix \mathbf{C} computed over ${ }_{317}$ the spatial window W_{L} centered around each point \mathbf{r}_{p} is considered (Eq. 8). Mathematically, 318 the algorithm is based on the following recursive relation:

$$
\begin{equation*}
\hat{\mathbf{T}}^{(n)}\left(\mathbf{r}_{p}\right)=\exp \left[i \arg \left\{\mathbf{C}\left(\mathbf{r}_{p}\right) \times \hat{\mathbf{T}}^{(n-1)}\left(\mathbf{r}_{p}\right)\right\}\right] \tag{9}
\end{equation*}
$$

${ }_{319}$ where $\hat{\mathbf{T}}^{(n)}$ is the estimator of \mathbf{T} at the $n^{\text {th }}$ iteration of the phase reversal process. $\hat{\mathbf{T}}^{(0)}$ is an ${ }_{320}$ arbitrary wave-front that initiates the iterative phase reversal process (typically a flat phase ${ }_{321}$ law) and $\hat{\mathbf{T}}=\lim _{n \rightarrow \infty} \hat{\mathbf{T}}^{(n)}$ is the result of this iterative phase reversal process.
${ }_{323}$ Aberration and Scattering compensation at output.
324 The output de-scanned matrix $\mathbf{D}_{\Delta \rho}(z)$ is deduced from the input de-scanned matrix ${ }_{325} \mathbf{D}_{\Delta \rho}(z)$ using the following change of variable:

$$
\begin{equation*}
D\left(\boldsymbol{\rho}_{\text {in }}, \Delta \boldsymbol{\rho}^{\prime}, z\right)=D\left(-\Delta \boldsymbol{\rho}^{\prime}, \boldsymbol{\rho}_{\text {in }}+\Delta \boldsymbol{\rho}^{\prime}, z\right) \tag{10}
\end{equation*}
$$

326 with $\Delta \rho^{\prime}=\rho_{\text {out }}-\rho_{\text {in }}=-\Delta \rho$.

An output distortion matrix is then built by applying a Fourier transform over the 328 de-scanned coordinate:

$$
\begin{equation*}
\mathbf{D}_{\mathbf{r u}}=\mathbf{D}_{\Delta \mathbf{r}} \times \mathbf{F}^{T} \tag{11}
\end{equation*}
$$

${ }_{329}$ where the superscript ${ }^{T}$ stands for matrix transpose. From $\mathbf{D}_{\mathbf{r u}}$, one can build a correlation ${ }_{330}$ matrix $\mathbf{C}_{\text {out }}$ for each point \mathbf{r}_{p} :

$$
\begin{equation*}
C_{\text {out }}\left(\mathbf{u}_{\text {out }}, \mathbf{u}_{\text {out }}^{\prime}, \mathbf{r}_{p}\right)=\left\langle D\left(\mathbf{r}_{\mathrm{in}}, \mathbf{u}_{\mathrm{out}}\right) D^{*}\left(\mathbf{r}_{\mathrm{in}}, \mathbf{u}_{\mathrm{out}}^{\prime}\right) W_{L}\left(\mathbf{r}_{\mathrm{p}}-\mathbf{r}_{\text {out }}\right)\right\rangle_{\mathbf{r}_{\text {out }}} \tag{12}
\end{equation*}
$$

${ }_{331}$ The iterative phase reversal algorithm described above is then applied to each matrix $\mathbf{C}_{\text {out }}\left(\mathbf{r}_{p}\right)$ 332 to derive an estimator $\hat{\mathbf{T}}_{\text {out }}$ of the output T-matrix.

333
${ }_{334}$ Aberration and Scattering Components of the T-matrix.
335
The spatial correlation of transmitted wave-fields are investigated at each depth z by ${ }_{336}$ computing the correlation matrix of $\mathbf{T}_{\text {out }}: \mathbf{C}_{\mathbf{T}}=\mathbf{T}_{\text {out }} \times \mathbf{T}_{\text {out }}^{\dagger}$. A mean correlation function Γ 337 can be computed by performing the following average:

$$
\begin{equation*}
\Gamma(\Delta \boldsymbol{\rho}, z)=\left\langle C_{T}\left(\boldsymbol{\rho}_{\mathrm{in}}, \boldsymbol{\rho}_{\mathrm{in}}+\Delta \boldsymbol{\rho}, z\right)\right\rangle_{\boldsymbol{\rho}_{\mathrm{in}}} \tag{13}
\end{equation*}
$$

${ }_{338}$ The correlation function Γ displayed in Fig. 6 a shows that the matrix $\mathbf{T}_{\text {out }}$ can be decomposed ${ }_{339}$ as a spatially-invariant component $\mathbf{T}_{\text {out }}^{(a)}$ and a short-range correlated component $\mathbf{T}_{\text {out }}^{(m)}$. Each ${ }_{340}$ component can be separated by performing a singular value decomposition of $\mathbf{T}_{\text {out }}$, such that 341

$$
\begin{equation*}
\mathbf{T}_{\text {out }}=\sum_{p=1}^{N} s_{p} \mathbf{U}_{p} \mathbf{V}_{p}^{\dagger} \tag{14}
\end{equation*}
$$

${ }_{342}$ where s_{p} are the positive and real singular values of $\mathbf{T}_{\text {out }}$ ranged in decreasing order, \mathbf{U}_{p} ${ }_{343}$ and \mathbf{V}_{p} are unitary matrices whose columns correspond to the input and output singular ${ }_{344}$ vectors of $\mathbf{T}_{\text {out }}$. The first eigenspace of $\mathbf{T}_{\text {out }}$ provides its spatially-invariant component: ${ }_{345} \mathbf{T}_{\text {out }}^{(a)}=s_{1} \mathbf{U}_{1} \mathbf{V}_{1}^{\dagger}$. The higher rank eigenstates provide the multiple scattering component $\mathbf{T}_{\text {out }}^{(m)}$. ${ }_{346}$ Lines or columns of the associated correlation matrix $\mathbf{C}_{T}^{(m)}=\mathbf{T}_{\text {out }}^{(m)} \times \mathbf{T}_{\text {out }}^{(m) \dagger}$ provides the map 347 of isoplanatic patches displayed in Fig. 6e.

348
${ }_{349}$ Acknowledgments. The authors wish to thank A. Badon for initial discussions about the ${ }_{350}$ experimental set up, K. Irsch for providing the corneal sample and A. Le Ber for providing 351 the iterative phase reversal algorithm. ${ }_{355}$ program (grant agreement nos. 610110 and 819261, HELMHOLTZ* and REMINISCENCE ${ }_{356}$ projects, respectively). This project has also received funding from Labex WIFI (Laboratory 357 of Excellence within the French Program Investments for the Future; ANR-10-LABX-24 and 358 ANR-10-IDEX-0001-02 PSL*).

Funding Information. The authors are grateful for the funding provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation

Author Contributions. A.A. initiated and supervised the project. A.C.B., V.B. and A.A. designed the experimental setup. U.N., V.B. and P.B. built the experimental set up. U.N. and V.B. developed the post-processing tools. U.N. performed the corneal imaging experiment. U.N. and A.A. analyzed the experimental results. V.B.and A.A. performed the theoretical study. A.A. and U.N. prepared the manuscript. U.N., V.B., P.B., M.F., A.C.B., and A.A. discussed the results and contributed to finalizing the manuscript.

Competing interests. A.A., M.F., A.C.B. and V.B. are inventors on a patent related to this work held by CNRS (no. US11408723B2, published August 2022). All authors declare that they have no other competing interests.

[^0]382 [10] G. Foschini and M. Gans, Wireless Personal Communications 6, 311 (1998).
383 [11] A. Aubry and A. Derode, Phys. Rev. Lett. 102, 084301 (2009).
${ }_{384}$ [12] M. Tanter, J.-F. Aubry, J. Gerber, J.-L. Thomas, and M. Fink, J. Acoust. Soc. Am. 110, 37
$385 \quad(2001)$
${ }_{386}$ [13] A. Derode, A. Tourin, J. de Rosny, M. Tanter, S. Yon, and M. Fink, Phys. Rev. Lett. 90,
387014301 (2003)
${ }_{388}[14]$ S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev.
389 Lett. 104, 100601 (2010).
390 [15] C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. D. Stone, Nat. Phys. 13, 497 (2017).
391 [16] D. Bouchet, S. Rotter, and A. P. Mosk, Nat. Phys. 17, 564 (2021).
392 [17] N. Bender, A. Yamilov, A. Goetschy, H. Yılmaz, C. W. Hsu, and H. Cao, Nat. Phys. 18, 309
393 (2022).
394 [18] S. Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, and W. Choi, Nat. Rev. Phys. 2, 141
$395 \quad(2020)$.
396 [19] A. Badon, V. Barolle, K. Irsch, A. C. Boccara, M. Fink, and A. Aubry, Sci. Adv. 6, eaay7170
397 (2020).
398 [20] S. Yoon, H. Lee, J. H. Hong, Y.-S. Lim, and W. Choi, Nat. Commun. 11, 5721 (2020).
399 [21] W. Lambert, L. A. Cobus, T. Frappart, M. Fink, and A. Aubry, Proc. Natl. Acad. Sci. U. S. A.
$400 \quad 117,14645(2020)$
401 [22] S. Gigan and et al., J. Phys. Photon. 4, 042501 (2022), chapter 10.
402 [23] Y. Kwon, J. H. Hong, S. Kang, H. Lee, Y. Jo, K. H. Kim, S. Yoon, and W. Choi, Nat. Commun.
$403 \quad 14,105(2023)$.
404 [24] A. Badon, A. C. Boccara, G. Lerosey, M. Fink, and A. Aubry, Opt. Express 25, 28914 (2017).
405 [25] M. Kim, Y. Jo, J. H. Hong, S. Kim, S. Yoon, K.-D. Song, S. Kang, B. Lee, G. H. Kim, H.-C.
406 Park, and W. Choi, Nat. Commun. 10, 1 (2019).
${ }_{407}[26]$ S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.-S. Lee, Y.-S. Lim, Q.-H. Park,
408 and W. Choi, Nat. Photonics 9, 253 (2015).
409 [27] A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, Sci. Adv. 2, e1600370
410 (2016).
${ }_{411}$ [28] E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, Opt. Lett. 23, 244
412 (1998)

413 [29] A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, Appl. Opt. 41, 805 (2002).
414 [30] S. Kang, P. Kang, S. Jeong, Y. Kwon, T. D. Yang, J. H. Hong, M. Kim, K. Song, J. H. Park, J. H. Lee, M. J. Kim, K. H. Kim, and W. Choi, Nat. Commun. 8, 2157 (2017).
${ }_{416}$ [31] A. Badon, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, Phys. Rev. Lett. 114, 023901
417 (2015).
418 [32] A. Badon, D. Li, G. Lerosey, A. Claude Boccara, M. Fink, and A. Aubry, Optica 3, 1160 (2016).
419 [33] V. Barolle, J. Scholler, P. Mecê, J.-M. Chassot, K. Groux, M. Fink, A. C. Boccara, and
420 A. Aubry, Opt. Express 29, 22044 (2021).
${ }_{421}$ [34] W. Lambert, L. A. Cobus, M. Couade, M. Fink, and A. Aubry, Phys. Rev. X 10, 021048 (2020).
422 [35] C. Brütt, A. Aubry, B. Gérardin, A. Derode, and C. Prada, Phys. Rev. E 106, 025001 (2022).
423 [36] F. Roddier, ed., Adaptive Optics in Astronomy (Cambridge University Press, Cambridge, 1999).
424 [37] B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, Nat. Phys.
$425 \quad 11,684(2015)$.
${ }_{426}$ [38] J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature
$427 \quad 491,232(2012)$.
${ }_{428}$ [39] O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
${ }_{429}$ [40] G. Osnabrugge, R. Horstmeyer, I. N. Papadopoulos, B. Judkewitz, and I. M. Vellekoop, Optica
$430 \quad 4,886(2017)$.
431 [41] L. Zhu, J. B. de Monvel, P. Berto, S. Brasselet, S. Gigan, and M. Guillon, Optica 7, 338 (2020).
432 [42] W. Lambert, L. A. Cobus, J. Robin, M. Fink, and A. Aubry, IEEE Trans. Med. Imag. 41, 3921
433 (2022).
${ }_{434}$ [43] K. Grieve, D. Ghoubay, C. Georgeon, G. Latour, A. Nahas, K. Plamann, C. Crotti, R. Bocheux,
${ }^{435}$ M. Borderie, T.-M. Nguyen, F. Andreiuolo, M.-C. Schanne-Klein, and V. Borderie, Sci. Rep. 7,
$436 \quad 13584$ (2017).
437 [44] M. Jang, H. Ruan, I. M. Vellekoop, B. Judkewitz, E. Chung, and C. Yang, Biomed. Opt.
$438 \quad$ Express 6, 72 (2014).
439 [45] J. Scholler, K. Groux, O. Goureau, J.-A. Sahel, M. Fink, S. Reichman, C. Boccara, and
440 K. Grieve, Light Sci. Appl. 9, 140 (2020).
441 [46] B.-F. Osmanski, G. Montaldo, M. Tanter, and M. Fink, IEEE Trans. Ultrason. Ferroelectr.
$442 \quad$ Freq. Control 59, 1575 (2012).
${ }_{443}$ [47] M. Campillo and A. Paul, Science 299, 547 (2003).

444 [48] A. Labeyrie, Astron. Astrophys. 6, 85 (1970).

Supplementary Information for

 Non-invasive Retrieval of the Transmission Matrix for Optical Imaging Deep Inside a Multiple Scattering MediumUlysse Najar, Victor Barolle, Paul Balondrade, Mathias Fink, A. Claude Boccara, and Alexandre Aubry Institut Langevin, ESPCI Paris, PSL University, CNRS, Paris, France

Abstract

This document provides further information on: (i) the experimental set up; (ii) the theoretical expression of the de-scanned matrix; (iii) the measurement of the scattering mean free path; (iv) the theoretical expression of the correlation matrix; (v) the estimation of the transmission matrix; (vi) the contrast enhancement provided by reflection matrix imaging.

» S1. DETAILED EXPERIMENTAL SET-UP

FIG. S1. Passive measurement of the de-scanned reflection matrix. P: polarizer, L: lens, QWP: quarter-wave plate, M: mirror, PZT: piezo-electric actuator, PBS: polarisation beam splitter, MO: microscope objective. The apparatus is made up of two parts. a. Michelson interferometer illuminated by incoherent light source at its input and generating two twin incoherent beams of orthogonal polarization and laterally shifted from each other at its output. The polarised beam splitters (PBS1) separates the impinging light into a reference path (in blue) and a sample path (in red). The tilt $\delta \theta$ of mirror M2 controls the shift $\Delta \boldsymbol{\rho}$ between the twin beams in the secondary source plane. b. Michelson interferometer with microscope objectives (MO) in both arms (Linnik configuration). Both beams have orthogonal polarizations and each interferometer arm includes a quarter-wave plate (QWP). The output beams are collected by the L4 lens and interfere on the camera after having been projected on a 45°-rotated polarizer (P2). c. Equivalent layout in the case of a coherent measurement. The source plane, the focal plane, and the camera planes are conjugated. Displacing a point source $\rho_{\text {in }}$ in the source plane discretely scans the focal plane inside the sample. The illuminated area is imaged in the camera plane; in an epi-detection configuration.

8
9 blocks, labelled (a) and (b). The first component is a Michelson interferometer [Fig. S1a]. ${ }_{11}$ which, under a pseudo-Kohler configuration, ensures a spatially-incoherent, yet uniform, ${ }_{12}$ illumination of the field-of-view. The incident light is collimated using a convergent lens (L1) ${ }_{13}$ with a focal length $f_{1}=150 \mathrm{~mm}$. The beam transmitted through this lens (L1) is linearly ${ }_{14}$ polarized at 45° by a polarizer (P 1) so that it is then equally reflected (sample arm) and 15 transmitted (reference arm) by the polarized beam splitter (PBS1). 28 again through the quarter wave plate (QWP2). This round trip through (QWP2) enables a ${ }_{38}$ known as a Linnik interferometer) [Fig. S1b]. They are again collimated by a lens (L3) 39 of focal length $f_{3}=200 \mathrm{~mm}$. The two lenses (L2) and (L3) thus constitute a $4 f$ system
${ }_{40}$ which compensates the effects of diffraction between the two interferometers. The vertically ${ }_{41}$ polarized light (sample beam) is transmitted by a polarized beam splitter cube (PBS2), ${ }_{42}$ propagates through a quarter-wave plate (QWP4) before being focused in the focal plane ${ }_{43}$ of an immersion microscope objective (MO2, Nikon, $60 \times$, NA=1.0). The light reflected 44 by the sample is then collected by (MO2) and propagates again through the quarter-wave ${ }_{45}$ plate (QWP4). Because single scattering tends to preserve polarization, the corresponding 46 wave-field undergoes a 90° polarization rotation and gets reflected by the beam splitter 47 (PBS2) before being focused in the plane of the camera using the convergent lens (L4) of ${ }_{48}$ focal length $f_{4}=200 \mathrm{~mm}$. The combination of this lens (L4) with the microscope objective 49 (MO1) entails a magnification M_{4} of 60.
${ }_{50} \quad$ Regarding the horizontally-polarized beam at the exit of the lens (L3), it is reflected ${ }_{51}$ by the beam splitter (PBS2), passes through the quarter-wave plate (QWP3) before being 52 focused by the microscope objective (MO1) identical to (MO2). The light is then reflected by ${ }_{53}$ the reference mirror (M3) placed in the focal plane of MO2 before being collected again by ${ }_{54}$ the same microscope objective (MO2). The reflected light comes through the quarter-wave ${ }_{55}$ plate (QWP3). As in the other arm, the polarization of the reflected beam exhibits a 90° ${ }_{56}$ rotation of its polarization. The beam is now vertically polarized and transmitted by the ${ }_{57}$ beam splitter (PBS2), before being focused on the camera with the lens (L4).

The CMOS camera (Adimec Quartz 2A-750, 2Mpx) records the interferogram with a ${ }_{59}$ spatial sampling equal to $\delta_{0}=230 \mathrm{~nm}$ given the magnification M4. The volume of the sample ${ }_{60}$ from which photons can interfere with the reference beam is called the "coherence volume". ${ }_{61}$ Its position is dictated by the optical path difference between the reference and sample arms. ${ }_{62}$ Its thickness is inversely proportional to the light spectrum bandwidth [1]:

$$
\begin{equation*}
\delta z_{t}=\frac{2 \ln 2}{n \pi}\left(\frac{\lambda^{2}}{\Delta \lambda}\right) \tag{S1}
\end{equation*}
$$

${ }_{63}$ with λ the central wavelength of the light source and $\Delta \lambda$ its spectral bandwidth. In the ${ }_{64}$ present case, $\delta z_{t} \sim 10 \mu \mathrm{~m}$. A critical tuning of the experimental set up consists in adjusting 55 the coherence volume with the focal plane of the microscope objective. In a volumetric ${ }_{66}$ sample, whose refractive index differs from that of water, the coherence volume no longer ${ }_{67}$ coincides with the focusing plane. This focusing defect accumulates with the transverse 58 aberrations generated by the heterogeneities of the medium. However, it is possible to ${ }_{69}$ compensate for it by a fine tuning of the length of the reference arm.

The experimental procedure then consists in recording the de-scanned reflection matrix ${ }_{71} \mathbf{D}_{\Delta \rho}(z)$ at each depth z of the sample. This latter parameter is swept by means of a motorized ${ }_{72}$ axial displacement of the sample carrier. The scan of the relative position $\Delta \boldsymbol{\rho}$ between the ${ }_{73}$ incident wave-fields in the sample and reference arms is controlled by the tilt imposed by 74 the galvanometer (M2). For each couple ($\Delta \boldsymbol{\rho}, z$), the CCD camera conjugated with the MO 75 focal plane records the output intensity:

$$
\begin{equation*}
I_{\alpha}\left(\Delta \boldsymbol{\rho}, \boldsymbol{\rho}_{\text {out }}, z\right)=\int_{0}^{T}\left|e^{i \alpha} E_{\text {out }}\left(\boldsymbol{\rho}_{\text {out }}, t\right)+E_{\text {out }}^{(\mathrm{ref}) *}\left(\Delta \boldsymbol{\rho}, \boldsymbol{\rho}_{\text {out }}, t\right)\right|^{2} \mathrm{~d} t \tag{S2}
\end{equation*}
$$

${ }_{76}$ with t the absolute time, \mathbf{r} the position vector on the CCD screen, $E_{\text {out }}(\mathbf{r}, \tau)$ the scattered wave ${ }_{77}$ field associated with the sample arm, $E_{\text {out }}^{(\text {ref })}(\mathbf{r}, \tau)$ the reference wave field; T the integration ${ }_{78}$ time of the CCD camera, and α an additional phase term controlled with a piezoelectric 79 actuator placed on mirror (M1) of the first interferometer [Fig. S1]]. The interference term ${ }_{80}$ is extracted from the four intensity patterns (Eq. S2) recorded at $\alpha=0, \pi / 2,3 \pi / 2$ and π ${ }_{81}$ ("four phase method" [2]):

$$
\begin{equation*}
D\left(\Delta \boldsymbol{\rho}, \boldsymbol{\rho}_{\text {out }}, z\right)=\frac{1}{T} \int_{0}^{T} E_{\text {out }}\left(\boldsymbol{\rho}_{\text {out }}, t\right) E_{\text {out }}^{(\mathrm{ref}) *}\left(\Delta \boldsymbol{\rho}, \boldsymbol{\rho}_{\text {out }}, t\right) \mathrm{d} t \tag{S3}
\end{equation*}
$$

${ }_{82}$ As we will see in the next section, under certain conditions, this interference term tends ${ }_{83}$ towards the coefficients of the focused reflection matrix $\mathbf{R}_{\mathbf{r r}}$ that would be recorded by the ${ }_{84}$ coherent set up displayed in Fig. S1. [Eq. 1 of the accompanying article].
${ }_{85}$ In particular, for $\Delta \boldsymbol{\rho}=\mathbf{0}$ (FFOCT set up), the de-scanned wave-field is equivalent to a ${ }_{86}$ time-gated confocal image [3]. On the one hand, the confocal nature of the recorded wave-field ${ }_{87}$ implies a transverse resolution $\delta \rho_{0} \sim \lambda / 4 N A$. On the other hand, the axial resolution is ${ }_{88}$ either controlled by the thickness δz_{t} of the coherence volume or the depth-of-field δz_{0} of the ${ }_{89}$ microscope objective: $\delta z_{0}=n \lambda / N A^{2}$. In the present case, $\delta z_{0} \sim 1 \mu \mathrm{~m}<\delta z_{t} \sim 10 \mu \mathrm{~m}$. The ${ }_{90}$ axial resolution is thus given by the depth-of-field. $\delta \rho_{0}$ and δz_{0} thus dictate the values of the ${ }_{91}$ transverse and axial sampling of matrix \mathbf{D} in our experiment.

${ }_{92}$ S2. THEORETICAL EXPRESSION OF THE DE-SCANNED MATRIX

93
In this section, we investigate to which extent the de-scanned matrix recorded by the ${ }_{4}$ experimental set up in Figs. S1a,b can be considered equivalent to the focused reflection ${ }_{95}$ matrix that would be recorded by the fictitious coherent set up displayed in Fig. S1R.
${ }_{96}$ To that aim, we will rely on the simple Fourier optics model proposed in a recent paper [3] 97 to describe the manifestation of aberrations in FFOCT. For the sake of simplicity, this model 98 is scalar. The large numerical aperture imposes that the recorded wave-field is associated 99 with single scattering events taking place in the focal plane of the MO.

The wave field $E_{\text {out }}\left(\boldsymbol{\rho}_{\text {out }}, z\right)$ reflected by the sample arm in the camera plane can then be 101 expressed as follows [3]:

$$
\begin{equation*}
E_{\text {out }}\left(\boldsymbol{\rho}_{\text {out }}, z, \omega\right)=\int_{\Sigma_{0}} \int_{\Sigma_{\rho}} H_{\text {out }}\left(\boldsymbol{\rho}_{\text {out }}, \boldsymbol{\rho}, z\right) \gamma(\boldsymbol{\rho}, z) H_{\text {in }}\left(\boldsymbol{\rho}, \boldsymbol{\rho}_{0}, z\right) E_{s}\left(\boldsymbol{\rho}_{0}, \omega\right) d \mathbf{r} d \boldsymbol{\rho}_{0} \tag{S4}
\end{equation*}
$$

${ }_{102} E_{\text {in }}\left(\boldsymbol{\rho}_{0}, \omega\right)$ is the incident wave-field in the secondary source plane Σ_{0} at frequency ω. Light ${ }_{103}$ propagation between Σ_{0} and the focal plane Σ_{ρ} is described by the impulse response $H\left(\boldsymbol{\rho}_{0}, \boldsymbol{\rho}\right)$ 104 between a point in the secondary source plane at transverse coordinate $\boldsymbol{\rho}_{0}$ and a point in the ${ }_{105}$ focal plane at coordinate $\boldsymbol{\rho}$. It accounts for sample-induced aberrations. $\gamma(\boldsymbol{\rho}, z)$ represents 106 the sample reflectivity at depth z. By spatial reciprocity, the propagation of the reflected 107 wave-field from the sample to the detector plane is also modelled by the impulse response ${ }_{108} H\left(\boldsymbol{\rho}, \boldsymbol{\rho}_{\text {out }}\right)$. The relatively narrow bandwidth $(\Delta \lambda \ll \lambda)$ of the light source and the use of 109 achromatic optical elements (lens, beam splitter, quarter wave plate) allows us to neglect the 110 dependence of H on frequency ω.

111 Replacing $\gamma(\rho, z)$ by a uniform reflectivity in Eq. S4 and taking into account the lateral ${ }_{112}$ shift of the reference wave-field induced by the galvanometer M2 [Fig. S1] leads to the ${ }_{113}$ following previous expression for $E_{\text {out }}^{(\text {ref })}\left(\boldsymbol{\rho}_{\text {out }}, z\right)$ [3]:

$$
\begin{equation*}
E_{\text {out }}^{(\mathrm{ref})}\left(\boldsymbol{\rho}_{\text {out }}, \Delta \boldsymbol{\rho}, z\right)=\int_{\Sigma_{0}} H_{\text {ref }}\left(\boldsymbol{\rho}_{\text {out }}-\boldsymbol{\rho}_{0}\right) E_{0}\left(\boldsymbol{\rho}_{0}+\Delta \boldsymbol{\rho}\right) d \mathbf{r} d \boldsymbol{\rho}_{0} \tag{S5}
\end{equation*}
$$

114 where $H_{\text {ref }}$ is the impulse response associated with the reference arm (way and return path) 115 that we assume as spatially-invariant $\left[H_{\text {ref }}\left(\boldsymbol{\rho}_{\text {out }}, \boldsymbol{\rho}_{0}\right)=H_{\text {ref }}\left(\boldsymbol{\rho}_{\text {out }}-\boldsymbol{\rho}_{0}\right)\right]$.

The de-scanned wave-field is obtained by extracting the interference term between the ${ }_{117}$ reflected wave-fields coming from the sample and reference arms:

$$
\begin{equation*}
D\left(\boldsymbol{\rho}_{\text {out }}, \Delta \boldsymbol{\rho}, z\right)=\left\langle E_{\text {out }}\left(\boldsymbol{\rho}_{\text {out }}, \omega\right) E_{\text {out }}^{(\text {ref }) *}\left(\boldsymbol{\rho}_{\text {out }}, \omega\right)\right\rangle \tag{S6}
\end{equation*}
$$

118 Assuming a spatially-incoherent incident wave-field $\left[\left\langle E_{0}\left(\mathbf{r}_{0}\right) E_{0}^{*}\left(\mathbf{r}_{0}^{\prime}\right)\right\rangle=I_{0} \delta\left(\mathbf{r}_{0}-\mathbf{r}_{0}^{\prime}\right)\right]$ and 119 injecting Eqs. S4 and S5 into the last equation leads to the following expression for \mathbf{D}-matrix 120 coefficients:

$$
\begin{equation*}
D\left(\boldsymbol{\rho}_{\text {out }}, \Delta \boldsymbol{\rho}, z\right)=I_{0} \iiint H\left(\boldsymbol{\rho}_{\text {out }}, \boldsymbol{\rho}, z\right) \gamma(\boldsymbol{\rho}, z)\left[H \odot H_{\mathrm{ref}}^{*}\right]\left(\boldsymbol{\rho}, \boldsymbol{\rho}_{\text {out }}+\Delta \boldsymbol{\rho}, z\right) d \boldsymbol{\rho} \tag{S7}
\end{equation*}
$$

121 where the symbol \odot stands for the convolution product over the variable $\boldsymbol{\rho}_{\text {out }}+\Delta \boldsymbol{\rho}$.
122 The coefficients of a focused reflection matrix recorded by the fictitious coherent set up 123 displayed in Fig. S1 can be expressed as:

$$
\begin{equation*}
R\left(\boldsymbol{\rho}_{\text {out }}, \boldsymbol{\rho}_{\text {in }}, z\right)=I_{0} \iiint H\left(\boldsymbol{\rho}_{\text {out }}, \boldsymbol{\rho}, z\right) \gamma(\boldsymbol{\rho}, z) H\left(\boldsymbol{\rho}, \boldsymbol{\rho}_{\text {in }}, z\right) d \boldsymbol{\rho} \tag{S8}
\end{equation*}
$$

${ }^{124}$ Only, a perfect reference arm would imply $\mathbf{T}_{\text {ref }} \equiv \mathbf{1}_{k<N A}$ and $H \odot H_{\text {ref }}^{*} \equiv H$. Equations S7 125 and S8 are then strictly identical in this ideal case: The incoherent set up of Fig. S1a is 126 equivalent to the fictitious coherent set up of Fig. S1b. In reality, the reference arm can ${ }_{127}$ exhibit aberrations such as a slight defocus of the reference mirror M3 in Fig. S1b or a ${ }_{128}$ slight defocus of the reference beam in the secondary source plane at the output of first 129 interferometer.

The comparison between Eq. $\mathrm{S7} 7$ and Eq. 2 of the accompanying paper leads to the ${ }_{131}$ following identification: $H_{\text {out }} \equiv H$ and $H_{\text {in }} \equiv H \odot H_{\text {ref }}^{*}$. In other words, while the output ${ }_{132}$ transmission matrices $\left(\mathbf{H}_{\text {out }}\right.$, or equivalently, $\left.\mathbf{T}_{\text {out }}\right)$ only grasp the sample-induced aberrations, ${ }_{133}$ the input transmission matrices $\left(\mathbf{H}_{\mathrm{in}}\right.$ and $\left.\mathbf{T}_{\mathrm{in}}\right)$ also contain the aberrations undergone by ${ }_{134}$ the incident and reflected reference beams. This feature explains the difference between the 135 transmission matrices $\hat{\mathbf{T}}_{\mathrm{in}}$ and $\hat{\mathbf{T}}_{\mathrm{in}}$ shown in Fig. 4 of the accompanying paper in which the ${ }_{136}$ input transmission matrix $\hat{\mathbf{T}}_{\text {in }}$ (Fig. 4e) shows an additional spherical aberration on top of ${ }_{137}$ the sample-induced aberrations exhibited by $\hat{\mathbf{T}}_{\text {out }}$ (Fig. 4f).

FIG. S2. Confocal scattering ratio $\ln \beta$ versus depth (blue dots) fitted with Eq. S9 (red line).

In a previous work [4], the scattering mean free path ℓ_{s} in the cornea has been measured 140 by investigating the depth evolution of the confocal intensity. Indeed, in the single scattering ${ }_{141}$ regime, under the paraxial approximation and for an homogeneous reflectivity, the time-gated 142 confocal intensity is supposed to decrease as $\exp \left(-2 z / \ell_{s}\right)$ if we neglect absorption losses [5, 6]. ${ }_{143}$ Unfortunately, here, the cornea is not healthy but oedematous. The depth evolution of 144 the confocal intensity in the stroma is thus strongly impacted by multiple scattering and 145 cannot be used for a measurement of ℓ_{s}. Moreover, in the epithelium, the different layers of 146 cell make the cornea reflectivity too heterogeneous to provide an exponential decrease of the 147 confocal intensity.

148 Recently, an alternative strategy has been proposed in presence of multiple scattering. It 149 consists in investigating the depth evolution of the ratio β between the confocal surintensity 150 and the total intensity [7]. For a medium statistically homogeneous in terms of disorder, 151 numerical simulations have shown empirically that this quantity scales as [8]:

$$
\begin{equation*}
\beta(z) \sim \exp \left(-4 z /\left(3 \ell_{s}\right)\right. \tag{S9}
\end{equation*}
$$

In the present case, this confocal ratio β has been measured as follows:

$$
\begin{equation*}
\hat{\beta}(z)=1-\frac{\min _{\Delta \boldsymbol{\rho}}\{I(\Delta \boldsymbol{\rho}, z)\}}{\max _{\Delta \boldsymbol{\rho}}\{I(\Delta \boldsymbol{\rho}, z)\}} \tag{S10}
\end{equation*}
$$

${ }_{153}$ This estimator $\hat{\beta}$ relies on the fact that the multiple scattering component of the RPSF 154 exhibits a flat background such that it can estimated with the minimum of $I(\Delta \rho, z)$. This 155 hypothesis is wrong at shallow depth since the diffuse halo grows as $\sqrt{D t}$. Nevertheless, 156 beyond ℓ_{s} or so (here $100 \mu \mathrm{~m}$), the multiple scattering background can be considered as flat 157 as illustrated by Fig. 3d of the accompanying paper.
${ }_{158}$ Figure S2 displays the depth evolution of the estimator $\hat{\beta}(z)$. It exhibits an exponential 159 decay in the stroma beyond $z=100 \mu \mathrm{~m}$. The decay rate decreases beyond $z=170 \mu \mathrm{~m}$ 160 because our estimator of $\beta(z)$ starts to be impacted by the experimental noise [see Fig. 3d of 161 the accompanying paper]. Therefore, the fit of $\hat{\beta}(z)$ with Eq. S9 is performed from $z=100$ 162 to $z=170 \mu \mathrm{~m}$. We find $\ell_{s} \sim 70 \mu \mathrm{~m}$.

${ }_{163}$ S4. THEORETICAL EXPRESSION OF THE CORRELATION MATRIX

The multi-scale analysis of \mathbf{D} allows an estimation of the \mathbf{T}-matrix at an increasingly 165 finer resolution, by iteratively reducing the area over which each aberration phase law is 166 estimated. At each step, the iterative phase reversal (IPR) algorithm assumes the convergence 167 of the correlation matrix $\mathbf{C}\left(\mathbf{r}_{p}\right)$ (Eq.8) towards its ensemble average $\langle\mathbf{C}\rangle\left(\mathbf{r}_{p}\right)$, the so-called 168 covariance matrix [9, 10]. In fact, this convergence is never fully realized and \mathbf{C} should be 169 decomposed as the sum of this covariance matrix $\langle\mathbf{C}\rangle\left(\mathbf{r}_{p}\right)$ and a perturbation term $\delta \mathbf{C}\left(\mathbf{r}_{p}\right)$:

$$
\begin{equation*}
\mathbf{C}\left(\mathbf{r}_{p}\right)=\langle\mathbf{C}\rangle\left(\mathbf{r}_{p}\right)+\delta \mathbf{C}\left(\mathbf{r}_{p}\right) . \tag{S11}
\end{equation*}
$$

${ }_{170}$ The intensity of the perturbation term scales as the inverse of the number $N_{\mathrm{L}}=\left(L / \delta_{0}\right)^{2}$ of ${ }_{171}$ resolution cells in each sub-region [10, 11]:

$$
\begin{equation*}
\left.\left.\langle | \delta C\left(\mathbf{u}, \mathbf{u}^{\prime}, \mathbf{r}_{p}\right)\right|^{2}\right\rangle=\frac{\left.\left.\langle | C\left(\mathbf{u}, \mathbf{u}^{\prime}, \mathbf{r}_{p}\right)\right|^{2}\right\rangle}{N_{L}} \tag{S12}
\end{equation*}
$$

${ }_{172}$ This perturbation term can thus be reduced by increasing the size L of the spatial window ${ }_{173} W_{L}$, but at the cost of a resolution loss. In the following, we express theoretically the bias 174 induced by this perturbation term on the estimation of \mathbf{T}. In particular, we will show how 175 it scales with the parameter L and the focusing quality. To that aim, we will consider the 176 input correlation matrix $\mathbf{C}_{\text {in }}$ but a similar demonstration can be performed at output. For ${ }_{177}$ sake of lighter notation, the dependence over \mathbf{r}_{p} will be omitted in the following.

178 Under assumptions of local isoplanicity and random reflectivity, the covariance matrix ${ }_{179}$ can be expressed as follows [9]:

$$
\begin{equation*}
\left\langle\mathbf{C}_{\mathrm{in}}\right\rangle=\mathbf{T}_{\mathrm{in}} \times \mathbf{C}_{H} \times \mathbf{T}_{\mathrm{in}}^{\dagger}, \tag{S13}
\end{equation*}
$$

180 or in terms of matrix coefficients,

$$
\begin{equation*}
\left\langle\mathbf{C}_{\text {in }}\right\rangle\left(\mathbf{u}, \mathbf{u}^{\prime}\right)=T_{\text {in }}(\mathbf{u}) T_{\text {in }}^{*}\left(\mathbf{u}^{\prime}\right) \underbrace{\int d \boldsymbol{\rho}\left|H_{\mathrm{out}}(\boldsymbol{\rho})\right|^{2} e^{-i 2 \pi \frac{\left(\mathbf{u}-\mathbf{u}^{\prime}\right) \cdot \rho}{\lambda f}}}_{=C_{H}\left(\mathbf{u}, \mathbf{u}^{\prime}\right)} \tag{S14}
\end{equation*}
$$

${ }_{181} \mathrm{C}_{H}$ is a reference correlation matrix associated with a virtual reflector whose scattering 182 distribution corresponds to the output focal spot intensity $\left|H_{\text {out }}(\boldsymbol{\rho})\right|^{2}$. This scatterer plays 183 the role of virtual guide star in the RMI process. consists in modifying the iterative time reversal process as follows:

$$
\begin{equation*}
\hat{\mathbf{T}}_{\mathrm{in}}^{(n+1)}=\exp \left[i \arg \left\{\mathbf{C}_{\mathrm{in}} \times \hat{\mathbf{T}}_{\mathrm{in}}^{(n)}\right\}\right] \tag{S16}
\end{equation*}
$$

${ }_{200}$ where $\hat{\mathbf{T}}_{\text {in }}^{(n)}$ is the estimator of $\mathbf{T}_{\text {in }}$ at the $n^{\text {th }}$ iteration of the phase reversal process. $\hat{\mathbf{T}}_{\mathrm{in}}^{(0)}$ is 201 an arbitrary wave-front that initiates the iterative phase reversal process (typically a flat 202 phase law). $\hat{\mathbf{T}}_{\text {in }}=\lim _{n \rightarrow \infty} \hat{\mathbf{T}}_{\text {in }}^{(n)}$ is the result of this iterative phase reversal process. The ${ }_{203}$ iterative phase reversal algorithm differs from an iterative time reversal process by imposing

For such an experimental configuration, an iterative time reversal process converges towards a wavefront that maximizes the energy back-scattered by the reflector [12, 13]. Mathematically, this iterative time reversal process writes as follows

$$
\begin{equation*}
\mathbf{U}_{\mathrm{in}}^{(n+1)}=\sigma \mathbf{C}_{\mathrm{in}} \times \mathbf{U}_{\mathrm{in}}^{(n)} \tag{S15}
\end{equation*}
$$

with $\mathbf{U}_{\mathrm{in}}^{(n)}$, the wave-front at iteration n of the iterative time reversal process and σ, the scatterer reflectivity. Iterative time reversal converges towards a wave front, $\mathbf{U}_{\mathrm{in}}=\lim _{n \rightarrow+\infty} \mathbf{U}_{\mathrm{in}}^{(n)}$, that is none other than the first eigenvector of $\mathbf{C}_{\text {in }}$.

If the virtual reflector was point-like, this wave-front would be a perfect estimator of $\mathbf{T}_{\text {in }}$. Its phase conjugate perfectly compensates for aberrations and focuses through the heterogeneous medium onto the point-like target [12, 13]. However, here the virtual guide star is enlarged compared to the diffraction limit. Iterative time reversal thus converges towards a wave-front \mathbf{U}_{in} of finite angular support δu_{c} that tends to focus on the center of the virtual reflector but with a resolution width $\delta \rho_{c} \sim \lambda f / \delta u_{c}$ larger than the diffraction limit [10].

To circumvent that issue, the iterative phase reversal algorithm has been developed. It
the T-matrix coefficients to be of constant modulus in the pupil plane. In other words, unlike the iterative time reversal process, the resulting wave-front here equally addresses each angular component of the imaging process to reach a diffraction-limited resolution. While the iterative time reversal process is guided by a maximization of the back-scattered energy, the iterative phase reversal process is dictated by a minimization of the resolution length.

In practice, however, the \mathbf{T}-matrix estimator is still impacted by the blurring of the 210 synthesized guide star and the presence of diffusive background and/or noise. Therefore the

211 whole process shall be iterated at input and output in order to gradually refine the guide 212 star and reduce the bias on our \mathbf{T}-matrix estimator. Moreover, the spatial window W_{L} ${ }_{213}$ over which the \mathbf{C}-matrix is computed [Eq. 8 in the accompanying paper] shall be gradually 214 decreased in order to address the forward multiple scattering component, the latter one being 215 associated with smaller isoplanatic patches.
${ }_{216}$ To understand the parameters controlling the bias $\delta \hat{\mathbf{T}}_{\text {in }}$ between $\hat{\mathbf{T}}_{\text {in }}$ and $\mathbf{T}_{\text {in }}$, one can ${ }_{217}$ express $\hat{\mathbf{T}}_{\text {in }}$ as follows:

$$
\begin{equation*}
\hat{\mathbf{T}}_{\text {in }}=\exp \left(j \arg \left\{\mathbf{C}_{\text {in }} \times \hat{\mathbf{T}}_{\text {in }}\right\}\right)=\frac{\mathbf{C}_{\text {in }} \times \hat{\mathbf{T}}_{\text {in }}}{\left\|\mathbf{C}_{\text {in }} \times \hat{\mathbf{T}}_{\text {in }}\right\|} \tag{S17}
\end{equation*}
$$

${ }_{218}$ By injecting Eq. S11 into the last expression, $\hat{\mathbf{T}}_{\text {in }}$ can be expressed, at first order, as the sum ${ }_{219}$ of its expected value \mathbf{T}_{in} and a perturbation term $\delta \hat{\mathbf{T}}_{\mathrm{in}}$:

$$
\begin{equation*}
\hat{\mathbf{T}}_{\text {in }}=\underbrace{\frac{\left\langle\mathbf{C}_{\text {in }}\right\rangle \times \mathbf{T}_{\text {in }}}{\left\|\left\langle\mathbf{C}_{\text {in }}\right\rangle \times \mathbf{T}_{\text {in }}\right\|}}_{=\mathbf{T}_{\text {in }}}+\underbrace{\frac{\delta \mathbf{C}_{\text {in }} \times \mathbf{T}_{\text {in }}}{\left\|\left\langle\mathbf{C}_{\text {in }}\right\rangle \times \mathbf{T}_{\text {in }}\right\|}}_{\simeq \delta \hat{\mathbf{T}}_{\text {in }}} . \tag{S18}
\end{equation*}
$$

${ }_{220}$ The bias intensity can be expressed as follows:

$$
\begin{equation*}
\left\|\delta \hat{\mathbf{T}}_{\mathrm{in}}\right\|^{2}=\frac{\mathbf{T}_{\mathrm{in}}^{\dagger} \times \delta \mathbf{C}_{\mathrm{in}}^{\dagger} \times \delta \mathbf{C}_{\mathrm{in}} \times \mathbf{T}_{\mathrm{in}}}{\mathbf{T}_{\mathrm{in}}^{\dagger} \times\left\langle\mathbf{C}_{\mathrm{in}}\right\rangle^{\dagger} \times\left\langle\mathbf{C}_{\mathrm{in}}\right\rangle \times \mathbf{T}_{\mathrm{in}}} \tag{S19}
\end{equation*}
$$

${ }_{221}$ Using Eq. S12, the numerator of the previous equation can be expressed as follows:

$$
\begin{equation*}
\left.\left.\mathbf{T}_{\mathrm{in}}^{\dagger} \times \delta \mathbf{C}_{\mathrm{in}}^{\dagger} \times \delta \mathbf{C}_{\mathrm{in}} \times \mathbf{T}_{\mathrm{in}}=\left.M^{2} \delta u_{0}^{2}\langle | \delta C_{\mathrm{in}}\left(\mathbf{u}, \mathbf{u}^{\prime}\right)\right|^{2}\right\rangle=\left.M^{2} \delta u_{0}^{2}\langle |\left\langle C_{\mathrm{in}}\right\rangle(\mathbf{u}, \mathbf{u})\right|^{2}\right\rangle / N_{L} \tag{S20}
\end{equation*}
$$

${ }_{222}$ with $\delta u_{0} \sim \lambda f / \delta_{R}$, the resolution of the \mathbf{T}-matrix in the pupil plane and δ_{R}, the de-scan ${ }_{223}$ field-of-view. Injecting Eq. S14 into the last equation leads to the following expression for 224 the numerator of Eq. S19.

$$
\begin{equation*}
\mathbf{T}_{\text {in }}^{\dagger} \times \delta \mathbf{C}_{\text {in }}^{\dagger} \times \delta \mathbf{C}_{\text {in }} \times \mathbf{T}_{\text {in }}=M^{2} \delta u_{0}^{2}\left|T_{\text {out }} \stackrel{\mathbf{u}_{\text {out }}}{\circledast} T_{\text {out }}(\mathbf{0})\right|^{2} / N_{\mathrm{L}} \tag{S21}
\end{equation*}
$$

225 The denominator of Eq. S19 can be expressed as follows:

$$
\begin{equation*}
\mathbf{T}_{\text {in }}^{\dagger} \times\left\langle\mathbf{C}_{\text {in }}\right\rangle^{\dagger} \times\left\langle\mathbf{C}_{\text {in }}\right\rangle \times \mathbf{T}_{\text {in }}=M^{2}\left|\sum_{\mathbf{u}} T_{\text {out }}^{\mathbf{u}_{\text {out }}} \circledast T_{\text {out }}(\mathbf{u})\right|^{2} \tag{S22}
\end{equation*}
$$

${ }_{226}$ The bias intensity is thus given by:
thus exhibits the following scaling law,

$$
\begin{equation*}
\left\|\delta \hat{\mathbf{T}}_{\mathrm{in}}\right\|^{2} \sim \frac{D_{\mathrm{out}}}{M N_{\mathrm{L}}} \tag{S24}
\end{equation*}
$$ 256 misleading since the contrast also depends on the sample reflectivity distribution. 260 spatial window of $3 \times 3 \mu \mathrm{~m}^{2}$ leads to a fully spatially incoherent estimator $\hat{\mathbf{T}}$ (see inset of ${ }_{261}$ Fig. S3k). This observable clearly shows whether the estimator $\hat{\mathbf{T}}$ leads to a coherent (i.e 262 physical) or incoherent (i.e bucket-like) compensation of multiple scattering. The number of ${ }_{263}$ iterations in the phase reversal algorithm has thus been based on this T-matrix correlation 264 criterion.

FIG. S3. Confocal images at several steps of the multi-scale analysis. a Initial en-face image of the cornea at depth $z \sim 100 \mu \mathrm{~m}$. b RMI image based on a T-matrix estimator of spatial resolution $L=6 \mu \mathrm{~m}$. c RMI image based on a T-matrix estimator of spatial resolution $L=3 \mu \mathrm{~m}$. The spatial correlation of $\hat{\mathbf{T}}$ with respect to one reference location (white arrow) is displayed in insets of panels b and c. Scale bars : $50 \mu \mathrm{~m}$.

S6. QUANTIFYING THE CONTRAST ENHANCEMENT

FIG. S4. Confocal gain provided by the matrix imaging process. ab. Transverse crosssection of the confocal gain observed for the en-face images displayed in Fig. 3b at depths $50 \mu \mathrm{~m}$ and $250 \mu \mathrm{~m}$ within the cornea [scale bar: $50 \mu \mathrm{~m}$]. c. Longitudinal cross-section of the confocal gain observed by comparing the B-scan displayed in Fig.3f with its original version shown in Fig. 3c. In each panel, the color scale is in dB .

Figure $\$ 4$ shows the enhancement of the confocal peak before and after RMI. It reaches a ${ }_{267}$ maximal value of 30 . This gain should scale, in amplitude, as the number P_{c} of independent ${ }_{268}$ coherence grains exhibited by the \mathbf{T}-matrix in the pupil plane (see, for instance, Figs. 4e and 269 f) and that RMI tends to realign in phase by means of a digital optical phase conjugation. ${ }_{270}$ Figure S4b clearly shows that the confocal gain increases with depth z. Indeed, multiple ${ }_{271}$ scattering becomes predominant in depth and the transmission phase laws become more and ${ }_{272}$ more complex. Note, however, that given the complexity of phase laws displayed in Figs. 4e ${ }_{273}$ and f, we could have expected a larger confocal intensity enhancement. This moderate gain

274 in contrast is explained by the fact that a part of the multiple scattering background is not 275 addressed by RMI.

277 [2] A. Badon, D. Li, G. Lerosey, A. Claude Boccara, M. Fink, and A. Aubry, Optica 3, 1160 (2016).

289 [10] W. Lambert, L. A. Cobus, J. Robin, M. Fink, and A. Aubry, IEEE Trans. Med. Imag. 41, 3921 (2022)

291 [11] J.-L. Robert and M. Fink, J. Acoust. Soc. Am. 123, 866 (2008).
292 [12] C. Prada and M. Fink, Wave Motion 20, 151 (1994).
293 [13] C. Prada, S. Manneville, D. Spoliansky, and M. Fink, J. Acoust. Soc. Am. 99, 2067 (1996).

[^0]: [1] B. Gérardin, J. Laurent, A. Derode, C. Prada, and A. Aubry, Phys. Rev. Lett. 113, 173901 (2014).
 [2] M. Horodynski, M. Kühmayer, C. Ferise, S. Rotter, and M. Davy, Nature 607, 281 (2022).
 [3] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, Nature 453, 891 (2008).
 [4] H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, Nat. Phys. 4, 945 (2008).
 [5] V. Ntziachristos, Nat. Methods 7, 603 (2010).
 [6] J. Bertolotti and O. Katz, Nat. Phys. 18, 1008 (2022).
 [7] A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat. Photonics 6, 283 (2012).
 [8] S. Rotter and S. Gigan, Rev. Mod. Phys. 89, 015005 (2017).
 [9] H. Cao, A. P. Mosk, and S. Rotter, Nat. Phys. 18, 994 (2022).

