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ABSTRACT In the areas of communications engineering and biomedical engineering, cloud computing for
storing data and running complex algorithms have been steadily increasing due to the increase in internet
of things and connected health. As connected IoT devices such as wearable ECG recorders generally have
less storage and computational capacity, acquired signals get sent to a remote center for storage and possible
analysis on demand. Recently, compressive sensing has been used as a secure, energy-efficient and fast
method of signal sampling in such recorders. In this paper, we propose a secure procedure to shift away the
total recovery of compressively sensed measurement to cloud and introduce a privacy-assured signal recovery
technique in the cloud. We present a fast, and lightweight encryption for secure CS recovery outsourcing that
can be used in wearable devices, such as ECG Holter monitors. In the proposed technique, instead of full
recovery of CS-compressed ECG signal in the cloud, to preserve privacy, an encrypted version of ECG signal
is recovered by using a randomly bipolar permuted measurement matrix. The user with a key, decrypts the
encrypted ECG from the cloud to obtain the original ECG signal at their end. We demonstrate our proposed
method using the ECG signals available in the MIT-BIH Arrhythmia Database. We also demonstrate the
strength of the proposed method against partial exposure of the key. Experimental results on client and cloud
sides show our proposed method has lower complexity and consuming time compared to the recent related
works, while maintaining the quality of outsourcing task in cloud.

INDEX TERMS Compressive sensing, ECG signal, privacy-preserving outsourcing, [oT, connected health.

I. INTRODUCTION

In biomedical area, there are equipment and devices that
produce huge amount of data. As an example, Holter monitor,
a wearable device, is used for continuous monitoring of
the electrical activity of the heart, namely electrocardiogram
(ECG). Holter monitor is used by cardiac patients for several
days to capture events such as cardiac arrhythmia. Even
in cases where physiological signals are recorded only
intermittently, say by devices such as Empatica watch that
have limited on the device storage memory, the amount of
data produced is large that an external storage solution is in
order. The ECG data produced by devices such as a Holter
monitor is large and therefore, need to be stored for analysis
and tracking improvements in the physiology for medical
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interventions to be undertaken. Under such circumstances,
compression can be used for efficient use of communication
channel bandwidth and storage in such devices.

Recently, compressive sensing (CS) has emerged as a fast
and energy-efficient algorithm for simultaneous sampling
and compressing of potentially sparse signals [1], [2].
CS has a wide variety of applications in signal processing
such as biomedical signal compression, enhancement, and
recovery [3]. The applications of CS has also been extended
to ECG signal under the assumption that ECG signals are
compressible signal [4]-[11]. In [4], CS-based compression
was shown to present the best overall energy efficiency due
to its lower complexity and also reduced CPU execution
time. Since compression phase in CS is simple, fast, and
energy efficient, CS has been chosen for compression in many
sensing applications. However, recovery phase which is non-
linear and complex in terms of computations demands the use

VOLUME 10, 2022


https://orcid.org/0000-0002-2465-9374
https://orcid.org/0000-0003-0153-6723
https://orcid.org/0000-0001-6334-3084

H. Zanddizari et al.: Privacy Assured Recovery of Compressively Sensed ECG Signals

IEEE Access

of processors that have speed, large on-board memory and
computational capability. Currently, wearable devices do not
have such capabilities and storage; therefore, recovery need
to be outsourced. In addition, clinics and hospitals, usually
generate enormous amount of data, thereby requiring a place
to store the data. Cloud environments generally provide
“unlimited” resources and facilities. Hence, cloud can be
used for storing CS-based compressed ECG signal, and based
on user request, ECG signal can be recovered. However, the
cloud as a third party between the real user (patient) and the
clinic should not be permitted to have access to the recovered
ECG signal which will be referred to as the plaintext in this
paper. In this case we should consider using edge computing
for recovery.

There are numerous works that have proposed different
procedures for secure CS recovery outsourcing [12]-[14].
There are some research papers that specifically focus
on methods for assuring the secrecy of ECG data in
communication [15]-[17]. Recently, T.Y. Liu et al proposed
a new encryption-then-compression (ETC) method for the
ECG signal [15]. In this work, authors encrypt ECG signal
with a common key. Their proposed key is a square
orthogonal random matrix that changes after sending every
encrypted ECG signal (ciphertext). Hence, their method
can be classified as a one-time-pad cryptosystem. For
compression, they apply a transformation based algorithm
in which singular value decomposition (SVD) technique
is used [18]. However, the cryptosystem just focuses on
compression and does not consider the security of the data.
In [15], a modification has been made on SVD technique to
provide secrecy as well. SVD-based methods bring higher
compression ratio (CR). They are computationally intensive
and may introduce delay in the system. In contrast, at the
expense of having a lower CR, CS-based methods are linear,
faster, and energy efficient [19].

Compression may be used for efficient storage of recorded
ECG signals in ECG recorders. CS can also be used on
edge devices as it requires less computational resources to
acquire and store signals. Recovery of compressed signals
need a lot of computational resources and therefore need
to be outsourced to a cloud. Compression will also help
in the efficient use of communication channel bandwidth
between the edge device (or an ECG recorder) and the
cloud. Compressive sensing is advantageous for IoT devices
because these devices have limited storage and computational
facilities when compared to a remote computing centers or
cloud. However, recovering an ECG signal on the cloud
may compromise the privacy of data. Therefore, this paper
proposes a light-weight privacy-preserving CS recovery
service on cloud environment. The proposed method not only
preserves the privacy, but it also maintains the quality of
recovery.

The paper is arranged in the following manner. In next
section, CS is introduced and presented as a cryptosystem,
and followed by the background research in secure CS
recovery outsourcing. Section III contains the proposed
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method followed by security analysis and experimental
results to verify the secrecy of the method in section IV.
Finally Section V concludes the paper.

Il. BACKGROUND

A. COMPRESSIVE SENSING

Compressive sensing (CS) is a sampling technique for
efficiently sampling a signal by solving under-determined
linear systems [1], [2]. It takes advantage of the signal’s
sparsity, and the signal can be effectively represented by
fewer number of measurements than the Nyquist rate. For
instance, given an ECG signal x € R" and an orthogonal
basis W € RV*N | then one can map the ECG signal to sparse
domain via, x = Ws, where s € RY is sparse vector with
k (k <« N) nonzero entries. In other words, s is a sparse
representation of x under the chosen predefined dictionary.
Compression phase in CS provides the measurement vector
through a linear operation as given below:

y = ®x = ®Vs (1)

where, y € R is the measurement vector and ® € RM*N
is the measurement matrix. For simplicity, let A = &W.
A € RM*N jgq rectangular matrix, sometimes referred to as
“total” dictionary in the CS literature. For exact and stable
recovery of sparse signal, restricted isometry property (RIP)
is a sufficient condition [20]. RIP is satisfied if there exists a
restricted isometry constant (RIC) éx, 0 < g < 1 such that

(1—85)lsll3 < As]3 < (14 8x)lisl3 2)

where dx denotes isometry constant of a matrix A, and its
value belongs to a set of real numbers between zero and one.
But, checking the RIP condition of a matrix or calculating
the value of its isometry constant is difficult to verify.
Hence, conditions that lead to RIP were proposed [21], [22].
Another condition, which is easier to verify in practice, is the
requirement that measurement matrix ® must be incoherent
with the sparsity basis ¥. Mutual coherence y between ® and
W is defined as follow:

(@, W) = +/N max e ¥)1 A3)

i il 1Y 12

where @;c(1, . py and ¥icq; ) respectively represent the
row vectors of ® and the column vectors of W. The coherence
measures the maximum correlation between the two matrices.
Smaller coherence can lead to better signal reconstruction
performance [23]. Since u € [1, VN1, the matrices ® and ¥
are incoherent if u(®, W) is closer to one, which corresponds
to the lower bound of .

A step called the recovery process reconstructs the input
signal x from the measurement vector y by solving the
equation (1). Since A is a rectangular matrix (M < N),
the problem formulated in equation (1) is ill-posed and has
infinite solutions. However, based on the knowledge that x
has a sparse representation with respect to a basis ¥, the
recovery process can be performed in two steps [20]. The
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first step finds the sparse vector § by solving the following
equation:

min ||S]|o such that AS =y. 4)
S

Once the vector § has been obtained, the second step
reconstructs the original signal as follows:

% = WS, 5)

Various methods have been proposed to find an appropriate
solution to equation (4) leading to numerous recovery
algorithms such as Basic Pursuit [24], [25], StOMP [26],
OMP [27], CoSAMP [21], Belief Propagation [28] and
SLO [29].

B. CS AS A CRYPTOSYSTEM

From a different viewpoint, CS can be assumed as a
cryptosystem [30]. Since CS can map every sparse signal
from N dimensional space to M dimensional space, where
M <« N, numerous researchers have considered CS as
a strong cryptosystem [30]-[41]. In [41], it was proved
that under certain conditions, CS can even meet the perfect
secrecy as defined by Shannon. In [42], [43], linear feedback
shift registers have been used to generate CS measurement
matrix as a key. In [44], a low-complexity approach for
privacy-preserving compressive analysis based on subspace-
based representation has been proposed to preserve privacy
from an information theoretic perspective.

After encrypting the signals using any of the techniques in
the previous paragraph, CS-recovery is assumed to be done
by the real user. However, in many contexts, devices at the
user end may not have enough computational resources to
implement the CS recovery. A third party like cloud can be
used for doing the recovery process. When privacy needs to
be preserved during the recovery process, the key should not
be shared with the cloud; therefore the cloud should conduct
the CS recovery on encrypted data. After recovery, the data is
still encrypted.

Privacy-preserving outsourcing techniques can be used to
overcome these concerns when the recovered signal contains
private information of an individual. For example, ECG
signal contains information that enable unique identification
of an individual. Recently, there have been increased interest
on ECG for biometric recognition [45]. Temporal features,
amplitude features and morphological features of an ECG
signal have been used for ECG-based biometric. As ECG
signal contains biometrics of the person, privacy is exposed
when ECG signals are recovered in the cloud. Hence,
a solution that avoids complete recovery to preserve privacy
is in order. Cloud environments can be a good option to store
the compressed data. But on-demand through CS-recovery,
the plaintext should not be exposed in the cloud. This
paper provides a privacy assured CS outsourced recovery.
Researchers have proposed different methods to shift away
the recovery phase of CS in a secure manner [12]-[14]. In this
paper, a fast and lightweight privacy-preserving CS recovery
approach for ECG signal is proposed.
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C. PRIVACY-PRESERVING CS-RECOVERY OUTSOURCING
In privacy-preserving CS-recovery outsourcing, there are
three levels of data namely the ciphertext, the intermediate
ciphertext, and the plaintext to be considered. The ciphertext
is the measurement vector which is compressed or encrypted.
Since cloud should not obtain the plaintext, recovery in the
cloud yields an encrypted signal. This encrypted signal is
called intermediate ciphertext. Intermediate ciphertext is sent
to the real user, and real user (let us say Alice) with a
private key can decrypt this intermediate ciphertext to obtain
the plaintext. Plaintext is the original raw signal that got
compressed initially.

Recently, “Outsourced Image Recovery Service (OIRS)”
was proposed by Cong Wen et al [12] where a technique to
securely shift away the recovery of CS in cloud environment
was presented. However, the proposed method in [12]
required the cloud to solve linear programing (LP) problem to
reconstruct the CS-encrypted image (the ciphertext). In other
words, OIRS required the cloud to use LP method to convert
ciphertext to an intermediate ciphertext. But, LP is only one
of the CS recovery methods and its order of complexity
is O(N3). There are other efficient and faster algorithms
from the family of greedy algorithms such as OMP with
the order of complexity O(kMN), or SLO with the order
of complexity O(MN) that can be used instead of LP
method. In addition, OIRS uses multiple keys for assuring
privacy. This leads to heavy computation and consumes
large time for processing. Such algorithms may not be
appropriate for simultaneous encryption and compression
of wearable ECG recorders where we have limited power
and computational capability. “Kryptein” is another CS-
based encryption scheme for the internet of things (IoT)
that has been proposed by Xue et al [13]. In this work,
CS has been used as compression and encryption algorithm.
The secrecy of proposed cryptosystem mainly revolves
around the sparsifying dictionary. However, it limits CS
by choosing the adaptive sparsifying dictionaries. In other
words, it uses an adaptive dictionary learning to generate
sparsifying dictionary. Then singular value decomposition of
the learnt dictionary is used to generate the measurement
matrix. This measurement matrix along with a perturbation
matrix are used for designing their secret key. Basically
dictionary learning and singular value decomposition are two
computationally complex and time consuming tasks which
may not be implementable on resource constraint edge-
devices. In [14], a secure reconstruction of image from CS
in cloud was introduced. It assumed CS as a compression
algorithm, and not as a sampling method. The pre-processing
used in this work led to delays in generating compressed and
encrypted signal. This method mapped the initial signal to a
sparse domain and then used a threshold to force negligible
coefficients to be zero. This method, thus, required all the
components of sparse vector to be checked for zeroing,
which may not be an efficient way of utilizing the limited
computational capability and power of the weak devices such
as ECG wearable recorders.
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» Access to the real data

FIGURE 1. Proposed privacy-preserving outsourcing.

In [46], a lightweight privacy-preserving system has been
introduced. However, to assure privacy, the sensors after each
acquisition will need to send the sensing matrix along with the
measurement vector (compressed) to the cloud. This method
although may bring high security, it requires very high
communication bandwidth as one needs to send the sensing
matrix in each acquisition. The gain achieved using CS (that
is reduction of the communication costs) is lost in this case
and in general, is not an efficient approach when it comes to
implementation. In [47], a secure CS recovery service in the
cloud that is verifiable and confidential was proposed. The
sensing matrix was considered as a public key while a secret
orthogonal sparsifying basis was used as a private key. The
proposed cryptosystem in [47] cannot maintain the perfect
CS recovery quality. Although the approach is applicable for
secured image recovery where some degradation in quality
can be tolerated, for several compressible biomedical signals
such as ECG, quality degradation will lead to possible
misdiagnosis. Also, the privacy preserving CS recovery for
image signal introduced in [48] suffers from degradation in
quality of recovered signal when the signal is encrypted. High
quality recovered signal is needed in several areas such as
medical diagnosis to make meaningful decisions and take
actions based on those decisions. This is a further motivation
for our proposed method.

Fig. 1 provides an overall generalized summary of the pro-
posed privacy-preserving outsourcing. Resource-constraint,
low power CS sensor(s) (denoted as low-power sensor
nodes in the Fig. 1) generates CS measurements from the
sparse signal and encrypts the data. The encrypted data
is then transferred to the cloud. Then on demand, the
cloud implements the CS recovery on encrypted data. After
recovery, the recovered data which is still encrypted is sent
to the end user. Then, the end user with the keys decrypt the
encrypted recovered data.

In this paper a light-weight encryption is applied to map
the initial sparse signal to another sparse signal. Considering
the fact that sparsity is a required condition for CS, we are
limited in options as we cannot violate this condition.
In order to maintain sparsity and still achieve light weight
encryption, two keys are used: a random square matrix and a
random bipolar permutation matrix. The former encrypts the
measurement matrix uniquely for each wearable recorder, and
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the latter encrypts signal after reconstruction in the cloud for
secure transmission back to the user.

The contributions of this paper are summarized below:
o A fast and light-weight encryption method that can

be implemented on resource constraint edge devices is
proposed. Our proposed encryption enables any cloud
to do the recovery with the encrypted measurement
data. After recovery, the recovered sparse signal is
still encrypted. Experimental results on client-side show
that our proposed method has lower complexity and
execution time when compared to the related works in
the recent literature.

o In the proposed approach, the cloud can choose any
CS recovery algorithm, and by choosing a fast recovery
algorithm, the complexity and the execution time may
be reduced.

o Itis theoretically shown that the proposed cryptosystem
does not affect the quality of recovery. Quality of recov-
ery using the proposed system and the performance of
the proposed system is verified through experimentation
using MIT physiological signal database.

o The strength of the proposed method against partial
exposure of the key is also demonstrated.

o The proposed method can be used for privacy assured
recovery of any compressible (or sparse) signal.

Ill. PROPOSED METHOD

Consider a common scenario where an ECG sensor sends
y = ®x = ®W¥s to cloud environment for storage. For
simplicity, let us suppose A = ®W¥. On demand for recovery,
the cloud (or the remote server) can reconstruct the sparse
signal s if it is supplied with both y and A. Cloud can
choose any CS recovery algorithm to solve the following ¢4
minimization problem:

msin IIsll1 s. t. As = y. (6)

Once s is obtained, the initial ECG signal can be
generated using WV, i.e; x = Ws. In order to securely
shift away the full CS-recovery task, the use of two keys
is proposed. The first key is used to encrypt ®. Because,
measurement matrix is a specific information of every
CS-based sensing device, it should not be shared with
the third party. In addition, besides the random class of
measurement matrices that preserve RIP condition, there are
also deterministic approaches to generate a measurement
matrix [49]-[51]. Since such deterministic matrices have
defined structures, if we encode these structures, then we
may increase the secrecy of cryptosystem. To do so, we use
a random measurement matrix Qpsxpy to encrypt initial
measurement matrix. Then, instead of sending A to the cloud,
A = Q(@¥) = QA will be sent. If we multiply Q, the
recovery relation is changed as follows:

min [sl; s.t As=Qy =§. ©)

When A and y are provided to the cloud, the cloud can
reconstruct the sparse vector s. This level of encryption
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just hides the measurement matrix but the secrecy of
reconstructed signal is still not preserved. To further maintain
secrecy, a second key is used in the following manner.
We multiply the encrypted measurement matrix with a
random bipolar permutation matrix P, an invertible matrix
that contains either “a or —a”’ in each row and column at
random positions, where « is a random scalar number. For
example, a 5 x 5 P may be as follows

0 —a 0 0 0
+a 0 0 0 0
Psu.s=1] 0 0 +a 0 0 (8)
0 0 0 0 —a
0 0 0 +a 0

By multiplying A with P, a resultant new matrix
A* = AP results. The effect of P is to map the reconstructed
sparse signal into a random permuted sparse signal and to
randomly change the sign of the sparse components. After
this multiplication, the recovery in cloud becomes:

min [P '] 5.t AP)YP') =A*P7l9) =§. )

By sending A* and y to the cloud, the cloud would be
able to recover the intermediate ciphertext, P~'s. Since the
inverse of a permutation matrix is also a permutation matrix,
the recovered signal from cloud is still sparse. Note that P
has the following two effects on s. It randomly permutes the
components and it randomly multiplies components with .
These two operations do not affect the order of sparsity of
any k-sparse vector. Therefore, we can guarantee that the
sparsity of signal is preserved. Note that sparsity is a required
condition for CS recovery, and without it, recovery cannot
be done accurately. In words, in our proposed method, the
original sparse vector is now mapped into another sparse
vector; this mapping is done in the sparse domain and not
in the domain in which signal is acquired. In the proposed
privacy-assured recovery, the cloud after recovery yields
P~ s, which is a mapped sparse vector or encrypted sparse
vector. Cloud may then send the encrypted sparse vector,
P !s, to the real user, and the user would be able to
reconstruct initial signal by using corresponding key, P as

follows:
PxP ls=s Ws=x (10)

Note that P = «P’ where P’ is an orthonormal matrix.
Multiplication of an orthonormal matrix with a measurement
matrix does not affect the RIP condition. Multiplying A by P
would still preserve the RIP inequality:

(1= 8)lIPs|3 < IAPs|5 < (1 +86)IPsl3. (1)
As P = P, the above equation can be rewritten as follows:
(1= 8)IP's3 < IAP's||3 < (1 +50)[P'slI3 (12

Note that ||s||% = ||P/s||%, that is, P’ does not change the norm
of a sparse vector. In this case, left and right sides of inequality
shown in equation 12 would be same as without encryption
mode which means, P does not affect the RIP condition.
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TABLE 1. Assessment of quality of reconstruction [52].

PRD SNR Quality
0 < PRD < 2% SNR > 33dB "Very Good"
2% < PRD < 9% 20dB < SNR < | "Good"
33dB
PRD > 9% SNR <20dB "Undetermined"
IV. RESULTS

In order to assess the quality of reconstruction, appropriate
metrics need to be considered. There are a few metrics pro-
posed in the literature to measure the quality of reconstructed
signal. Three such metrics that are commonly used for
assessing the quality of recovered ECG signals are percentage
root-mean-square difference (PRD), the normalized version
of PRD namely PRDN, and signal to noise ratio (SNR),

N-1 = 2
PRD[%] = 100 L= (1) = 3(m) . (13)
Yoo x2(n)
N-1 = 2
PRDN[%] = 100 ZnN:_ol(x(m YO 4
Yoo (x(n) — X(n))?
PRD
SNRIAB = —2010g,, (W) (15)

where x(n) is the original signal, X(n) is the recovered signal,
X(n) is the mean of original ECG signal (uncompressed), and
N denotes the length of ECG signal. In [52], Zigel et al.
established a link between the PRD and the diagnostic dis-
tortion. In [52], different values of PRD for the reconstructed
ECG signals were considered and a qualitative assessment
as perceived by the specialist was given. Table 1 shows the
classified quality and corresponding PRD and SNR.

A. ANALYSIS OF ATTACKS ON INTERMEDIATE CIPHERTEXT
Cloud should have a pair of (A*, §) to conduct the recovery
process. Two scenarios, one obtaining P based on A* and
the other obtaining P based on the recovered signal or
intermediate ciphertext are considered. In the first scenario,
it is statistically impossible to separate P from A*. To prove
this, we consider a simpler condition where there is no first
key. The measurement matrix is assumed to be an i.i.d.
Gaussian matrix with pu; = 0 and o = 1/M, where
wij and oj; are the mean and standard deviation of the i.i.d.
Gaussian matrix entries, respectively. As the distribution
of the linear combination of multiple independent random
variables having a normal distribution is also a normal
distribution, A* = ®WP is also a Gaussian matrix. The
entries of A* and the mean and variance of its entries are
obtained as follows:

N
Aj = (DUP); = ) @y (VP)y, (16)
k=1
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N
EA}) = ) wij(¥P); = 0. (17)
k=1

N
Var(Af) = Yo (WP),
k=1

N
= (@/M)* ) _(¥PY,
k=1

N
(/M)* Y (),
k=1

2

= (;\/1_5’ (18)
where subscript ij refers to the element of ith row and jth
column of the matrix. f is the Euclidean norm of the rows
of sparsifying dictionary, and E(.) and Var(.) are the mean
and variance of random variable. Almost all sparsifying
dictionaries are orthonormal, which makes 8 = 1; therefore,
the resultant matrix in the cloud-side is a Gaussian matrix
with zero mean and variance a?/M?. Also, the covariance
of A* can be calculated as follows:

Cov(A*) = E(®WP)(@VP))
= E(®WYPP W ®7)
= E(®(@’DHo’)
= @’ F(®DT) = a’ Cov(®)

0[2

= ml (19)
where superscript 7 denotes the matrix transpose, and I is
the identity matrix. Since the entries of ® were chosen from
an 1.i.d Gaussian distribution, the covariance matrix of A* is
a diagonal matrix which shows its entries are i.i.d as well.
Therefore, the statistical distance of A* in cloud and any
Gaussian matrix A(0, /M) is zero. In other words, given
A* = ®WVP, cloud cannot reveal any information about P,
and there is no statistical difference between ®¥P and any
random Gaussian matrix N (0, a/M).

In the second scenario, a “curious” cloud or an attacker
tries to discover P based on intermediate ciphertext. Given
the intermediate ciphertext, P~ ls, the initial ECG signal
cannot be obtained by ¥, because x = Ws and not wplg,
Meanwhile, an attacker or curious cloud may try to find
the bipolar matrix and reconstruct the plaintext or initial
uncompressed ECG signal. To do this, attacker should exactly
detect the bipolar permutation key. Any change in original
key will be completely propagated into the actual time
domain values of the signal and corrupt the signal. In other
words, as bipolar permutation matrix is applied in sparse
domain, the position and sign of elements of sparse vector
are changed arbitrarily. After transforming back into the time
domain, the recovered signal will be totally different from
the original signal. Hence, a small change in permutation
matrix can lead to a small change in sparse domain, but
a major change in the domain in which signal acquired
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(generally time domain). To demonstrate the role of bipolar
permutation matrix in maintaining the secrecy, recovery
was tested with a number of estimated bipolar permutation
matrices with different levels of similarity with the original
key. Let the estimated bipolar permutation matrix be E”
which E” contains exactly r% of the columns of the P and
only (100 — r)% of its columns is unclear or unknown for
the attacker. Intermediate ciphertext with different estimated
permutation matrices (estimated key) were decrypted and
the similarity of the estimated key with the actual key, were
measured using Frobenius norm. Given a M x N matrix A,
its Frobenius norm is defined as the square root of the sum of
the absolute squares of its elements and is given below.

IAllF =

M N
DO AR (20)

i=1 j=1

where the Aj; is the element of ith row and jth column of A.
Accordingly, the Frobenius norm of the difference between
the true key and the estimated key can be obtained as follows,

M N
IP—E|p= | D > IP;—Ej? @1

i=1 j=1

where the Pj; and E’; are the elements of ith row and jth
column of P and E”, respectively. Equation 21 was considered
as a metric to show the similarity of the estimated key
to the actual key. Three estimated matrices were generated
by copying 99%, 98% and 97% of the columns of the P
into 3 estimated matrices E®°, E8, and EY7, respectively.
Then, the elements of rest of 1%, 2%, and 3% columns
of these estimated matrices were randomly generated. One
ECG signal, record number 101 was selected from the
MIT Arrhythmia database [53]. First 1000 samples of this
ECG signal was selected as plaintext, x, and the orthogonal
Daubechies wavelets (db 10) was considered as sparsifying
dictionary. Daubechies wavelet (db 10) is the most popular
wavelet basis used in ECG transform-based compression
techniques [54]. A random bipolar permutation matrix of
size P1ooox1000 Was chosen, and the estimated keys were
generated accordingly. The simulation results are available
in Table 2 and it shows that a small difference in permutation
matrix (or a small dissimilarity) leads to a major difference in
decrypted ECG signal. For instance, the E® contained 99%
of the columns of actual key, and just 1% of its columns were
chosen randomly. In other words, 990 columns were the exact
replica of the main key, and just 10 columns were randomly
estimated. The simulation results show that these 10 columns
contributed to a totally different decrypted signal from the
originally considered plain text ECG signal.

Table 2 shows that the permutation key is very sensitive
and a small change in its elements can fail to provide exact
decryption. Also, consider the scenario that, for instance E*°,
99% of its columns are truly estimated. However, in practice
such estimation demands heavy computational resources
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TABLE 2. The strength of bipolar permutation key.

Key | |P —E|z PDRN(%)
P 0 30
E% 4.47 249
E%® 6.32 370
E%7 7.73 450

and time. Because, there are 2V x N! bipolar permutation
matrices of size N, where ! represents the factorial operation,
need to be tried. For the case of N = 1000, 512, 256,
or 128, the number of permutation matrices is a very huge
number,! and the probability of estimating actual key is
negligible. However, while considering a systematic attack
scenario, an unfaithful cloud or eavesdropper may try to
employ the order of sparsity (k) as a side information and
then attempt to estimate the initial sparse vector. Also,
if the cloud uses a greedy recovery algorithm such as OMP,
it would require the knowledge of the order of sparsity.
Although employing the order of sparsity might decrease
the search space for an attacker, but the attacker still face
the issue of searching for a solution. This search for a
solution is infeasible as for a large N and for a certain
given k, the search requires non-polynomial (NP) time to
solve. To estimate the initial sparse vector, an attacker will
have to perform 2¢ (IZ) exhaustive searches. To clarify the
complexity of breaking the ciphertext, if the recovered sparse
signal has 1024 components, and if the sparse vector has
at least 64 nonzero elements (our experiments show more
than 64) then 264(1214) = 4.8 x 10'2 trials are required for
the attacker to guess the plaintext. Moreover, the diagnostic
information of an ECG signal is very sensitive, and a small
change in recovered signal can disturb the real information
within the signal. The ultimate goal of the proposed method
was to provide a simple and secure outsourcing method
that is robust to the aforementioned issues. In comparison
to one of the strongest outsourced CS-recovery service
proposed in [12], this method of encryption demands less
computational resources. In [12], cloud had to do CS-
recovery based on LP method, however, in the proposed
method cloud is free to choose any CS-recovery algorithm.
For instance, through faster and simpler algorithms such
as SLO, cloud can recover intermediate ciphertext three
times faster than LP method [29]. Also, in [12], five keys
were used which led to a further computational burden
in ECG recorders. In comparison with the very recent
work, “Kryptein”, in which adaptive dictionary learning was
used for generating sparsifying dictionary, in the current
proposed work, any dictionary either fixed or adaptive
dictionaries can be used. By selecting fixed dictionaries,
such as wavelet transform family or discrete cosine trans-
form (DCT), the heavy task of training dictionary can be
removed [13].

110001 = 4 x 102567, 1281 = 3.8 x 10215
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B. EXPERIMENTAL RESULTS

ECG signals from MIT-BIH Arrhythmia Database [53] were
used. This is a two-channel database of 47 ECG signals
obtained from 22 women and 25 men, representing different
age groups. All recordings have been digitized at 360 samples
per second per channel with 11-bit resolution over a 10 mV
range. As ECG signal is used for diagnosis, the morphology
and relative time positions of the various morphological
features are important. We considered the diagnostic needs
and proposed our method of encryption. Figure 2 shows the
initial ECG signal (record number 105), recovered in cloud
and then decrypted with and without the actual key. In this
simulation, 2000 samples of data record 105 were chosen.
Also, the deterministic binary block diagonal (DBBD)
sensing matrix of size Aj23x512 as suggested in [49] was used.
DCT was used as sparsifying basis, and the first key Q was
randomly chosen from a normal distribution N(0, 1/128)
to encrypt the measurement matrix. The second key P was
randomly selected as a bipolar permutation key. According
to the size of measurement matrix, the CR is M/N = 1/4.
The important portion of diagnostic information of an ECG
signal lies between its two consecutive QRS complexes,
Fig. 2 shows that bipolar permutation conceals the diagnostic
information, and without having the actual key, the decrypted
signal is totally wrong.

To evaluate the effectiveness of this approach from the
attacks perspective, the process of estimating the bipolar
permutation key was simulated. Four keys were chosen: one
of them was the actual key and the others were 90%, 80%,
and 70% replica of actual key, i.e. P, E? E30 and EO.
For instance, for the case of 90%, 90% of the actual key’s
components were copied into another matrix as estimated
key and the remaining 10% columns were randomly guessed.
The simulation results verify that the bipolar permutation
is strong enough for assuring privacy in the recovery of
compressed ECG signals. The proposed approach was tested
with DCT and orthogonal Daubechies wavelets (db10)
dictionaries as these two are the fixed sparsifying dictionaries
commonly used in the CS studies using ECG signals. In this
simulation, 1024 ECG samples of five different signals and
CR = M/N = 1/8 were chosen. The results are shown
in Table 3.

In the aforementioned simulations, the fixed sparsifying
dictionary was assumed to be available on the cloud-side.
On the other hand, if we employ adaptive dictionary learning,
beside bipolar permutation matrix, sparsifying dictionary will
also be unknown for the “curious” cloud or attacker. Hence,
if adaptive dictionary learning were used, the secrecy of
the system can be increased. Adaptive dictionaries usually
yield higher quality in reconstruction at the expense of
computational burden to the system. Since, the learning
process needs to be executed only once for a subject,
this complexity may be conveniently ignored. There are
numerous adaptive dictionary learning methods such as
method of optimal direction MOD [55], and K-singular
value decomposition (K-SVD) [56]. In order to demonstrate
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FIGURE 2. Recovery of ECG signal via DCT dictionary with and without
actual key. (a) Initial ECG signal (plaintext).(b) Recovery of ECG Signal on
client-side with the actual key (PRD = 0.29%, SNR = 50.6dB).

(c) Recovery of the ECG signal in cloud-side with the wrong key

(PRD = 105%, SNR = —30.22dB).

the proposed method with the adaptive dictionary learning,
MOD, which is one of the fastest method to learn sparsifying
dictionary, was chosen. Figure 3 shows the result obtained
using the adaptive sparsifying dictionary while using the ECG
signal (record number 101) from the MIT-BIH Arrhythmia
database. It is evident that recovery without key, or recovery
of encrypted signal leads to totally wrong recovery. The
recovered signal has no features of the original ECG signal.

Proposed method does not affect the quality of the
reconstruction. In Section III it was shown that after recovery
in cloud, an end user should be able to exactly recover
the initial signal at their end. This aspect of the proposed
method was also tested for a number of ECG signals from the
database, (records no. 100 — 109). Table 4 shows that there is
no difference in the quality of the reconstructed signal with
and without the proposed encryption system.
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TABLE 3. Recovery by different keys and sparsifying basis (PRD%).

'g DCT Wavelet
r;.3 P EO g0 g7 | p E9 RS0 R70
100 1.8 30.3 542 972 1.6 548 77.1 89.9

101 | 1.4 302 680 105 1.3 540 763 93.6
102 | 12 21 168 366 | 1.2 517 736 904
103 | 23 75 416 610 | 23 527 763 902
104 | 1.3 168 587 687 | 1.3 567 766 932
105 | 06 72 549 840 | 0.6 553 758 916
106 | 26 1.7 41.1 649 | 1.8 494 722 880
107 | 1.5 212 558 953 | 22 533 718 87.6
108 | 04 154 593 637 | 04 550 736 888
109 | 06 17.6 420 845 | 0.8 521 719 86.0

TABLE 4. Impact of proposed security approach on the quality of
reconstruction. The quality of recovery with and without proposed
security approach are exactly the same.

3 SNR(dB)

3 CR=1/2 CR=1/4 CR=1/8

& Ordinary ~ Secure | Ordinary  Secure | Ordinary  Secure
100 | 57.02 57.02 45.56 45.56 35.28 35.28
101 | 58.35 58.35 47.14 47.14 35.81 35.81
102 | 56.21 56.21 44.16 44.16 38.24 38.24
103 | 60.08 60.08 49.44 49.44 33.23 33.23
104 | 52.15 52.15 42.44 42.44 37.31 37.31
105 | 60.30 60.30 52.13 52.13 45.48 45.48
106 | 52.95 52.95 43.02 43.02 33.14 33.14
107 | 45.09 45.09 39.98 39.98 34.23 34.23
108 | 59.02 59.02 50.40 50.40 46.81 46.81
109 | 54.05 54.05 48.02 48.02 42.62 42.62

Also, any change in mutual coherence can be reflected
to the quality of reconstruction [10], [23], [49]. With this
regard, we checked the effect of proposed method on the
mutual coherence. Figure 4 shows this effect for random and
deterministic measurement matrices as a function of number
of measurements. For the class of random measurement
matrices, we generated by a zero-mean and variance 1/M
i.i.d. Gaussian process, denoted by ®Gayssian. For the class of
deterministic measurement matrices, DBBD matrix ®pgpp
was used. DCT matrix Wpcr and encrypted DCT matrix
W per x P were used as sparsifying and encrypted sparsifying
dictionary, respectively. In this simulation, N = 500 and the
number of measurements was changed to check the effect of
mutual coherence on different sizes of matrices. The results
show the bipolar permutation matrix does not affect the
mutual coherence.

To the best of knowledge of the authors, there has been
no specific work on secure CS recovery outsourcing for
the ECG signal. However, there are two methods in the
literature, namely OIRS and Kryptein, that are related to the
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FIGURE 3. Recovery via adaptive dictionary learning (MOD) with and
without actual key. (a) Initial ECG signal (plaintext). (b) Recovery of ECG
Signal on user-side with the true key PRD = 0.09%, SNR = 60.4dB.

(c) Recovery of the ECG signal in cloud-side with the wrong key

PRD = 150%, SNR = —3dB.

proposed method for secure CS recovery outsourcing. The
proposed work was compared with these related methods
under the following considerations: recovery algorithms,
sparsifying bases and computational complexity. Table 5
shows comparison of the proposed method with the ORIS
and Kryptein. The proposed method can be applied for any
CS recovery algorithm and has low overload both on the user-
side and the cloud.

A comprehensive experiment to evaluate the time required
to perform encryption and recovery on the client and cloud,
respectively was performed. 10 ECG records (#100, #101
#102, #103, #104, #105, #1006, #107, #108, #109) were
considered, and 5120 samples were selected from each of
these signals to conduct the experiment. The length of the
window to set to 1024 and CR = 256/1024 = 1/4, i.e.,
every 1024 samples was compressed to 256 measurements.
The experiments were repeated 10 times and the average
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TABLE 5. Comparison of functionality.

Functionality OIRS [12]  Kryptein [13]  Proposed
Recovery based on LP Yes Yes Yes
methods

Recovery based on Match- No Yes Yes

ing pursuit, Belief Propa-
gation, and SLO

Using DCT/Wavelet spar- Yes No Yes
sifying dictionaries

Using adaptive sparsifying Yes Yes Yes
dictionary
Complexity in User end 4N? N2 N2

(multiplication operation)

of the elapsed times was calculated. Our experiment on the
client-side was run on MATLAB environment, with Intel(R)
Core(TM) i7-8550U CPU @ 1.80GHz processor with 16G
RAM. Experiment on the cloud-side was implemented on
MATLAB environment provided in the MathWorks Cloud.
The required time to encrypt the data on the client-side
was compared with two other techniques proposed in the
literature. As shown in Table. 6, the proposed method requires
lower time to encrypt the data. Kryptein takes much longer
time since it implements two tasks on client-side: dictionary
learning and singular value decomposition. Also, since the
OIRS uses five keys to encrypt the data, it takes longer
time than our proposed method. Furthermore, the time taken
for recovery of ECG on the cloud was also compared. The
proposed and Kryptein methods can choose any CS recovery
algorithm. For example, SLO which is one of the fastest
and most accurate recovery algorithms can be considered.
In contrast, the OIRS cryptosystem requires running a linear
programming (LP) algorithm which takes longer time than
the SLO. To run the LP problem, the ¢1-magic algorithm that
is based on the standard interior-point method [57] was used.
As shown in Table. 1, the proposed method and Kryptein
needed the same recovery time for recovery, however, while
OIRS needed longer time to recover.
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TABLE 6. Comparison of the execution time (milliseconds).

Client-Side (Encryption)
#100 | #101 | #102 | #103 | #104 | #105 | #106 | #107 | #108 | #109 | Avg
Kryptein [13] | 1786 | 1766 | 1794 | 1807 | 1845 | 1753 | 1838 | 1839 | 1870 | 1815 | 1811
OIRS [12] 319 320 330 319 341 317 325 341 345 341 329
Proposed 16 17 16 18 16 17 17 16 21 17 17
Cloud-Side (Recovery)
#100 | #101 | #102 | #103 | #104 | #105 | #106 | #107 | #108 | #109 | Avg
Kryptein [13] | 86 75 73 71 72 71 75 82 79 80 76
OIRS [12] 457 437 453 449 447 467 458 480 466 466 458
Proposed 86 75 73 71 72 71 75 82 79 80 76

C. COMPLEXITY OF THE PROPOSED METHOD

The proposed method can be categorized as a fast and energy
efficient method of encryption. Proposed method requires
two keys; arandom square matrix as the first key and a bipolar
permutation matrix as the second key. The first key is used
to encrypt the measurement matrix. As sensors might use
deterministic or structured measurement matrices in certain
applications, attacker may use the structure in measurement
matrix and consequently detect the bipolar permutation
matrix. When using deterministic measurement matrices for
the recovery service, cloud has A*, where A* = AP
QAP Q®WYP. For the case where ® is deterministic,
without the first key, an attacker can separate WP from
PWP. Since W are known, say a DCT or wavelet dictionary,
then the permutation matrix may be revealed. But, if the
first key is applied in addition, this attack can be avoided.
Let the first key be chosen from Gaussian distribution as it
has maximum entropy that causes maximum diffusion. The
overload of the first key is just M x M multiplications and
M x (M — 1) addition operations for sending each measure-
ment vector. The measurement matrix that is shared with the
cloud would be Q®WVP instead of Q®W. This leads to N
random shift in the columns of Q@ W and its components are
randomly multiplied by —a or +a. The matrix Q@ WP must
be available in cloud to do the recovery process. To further
enhance privacy, every individual user would have a unique
key. Also, after certain number of queries, to prevent potential
known plaintext attack (KPA), the key can be updated.

V. CONCLUSION

For doing CS-recovery service in cloud environment, the
secrecy of information should be preserved. When ECG
measurements are transmitted to the cloud, the cloud with its
strong resources can do the CS recovery for the client.

A fast and light-weight encryption method that can
be implemented on resource constraint edge devices was
proposed in this paper. The experimental results on client-
side and cloud-side showed that this method has lower
complexity and execution time compared to the related
works. Through the proposed method, not only does the
cloud conduct the CS-recovery, but after recovery it also
delivers an encrypted version of signal, thereby preserving
the privacy of client information during the entire process.
The proposed encryption is carried out in the sparse domain.
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Through a bipolar permutation matrix, the initial sparse
vector (plaintext) is mapped into to another sparse vector
(ciphertext). The cloud after recovery presents a permuted
sparse vector to the user and without knowing the key,
it would be very difficult to guess the original signal as the
degree of freedom for this guess is small. In other words, with
respect to the ECG signal where small changes might distort
the signal, it is practically very hard to guess the information
contained in the signal for “curious” cloud or semi-trusted
cloud or an eavesdropper. The role of the sparsifying basis
in improving the secrecy of information is also demonstrated
in this study. Appropriate choice of adaptive sparsifying basis
can also provide additional secrecy. In this paper, ECG signals
were considered. However, CS has been applied for other
biomedical signals like the electro-encephelogram (EEG)
signals and heart rate signals that are compressible in some
domain as well. The proposed method can be used with such
biomedical signals. Further, this research is not restricted to
biomedical signals. For instance, one may apply the proposed
method to sparse signals such as seismic signals or images.
Thus this proposed method opens avenue for investigating
the privacy-preserving recovery of sparse and compressible
signals while maintaining the quality of recovery.
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