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ABSTRACT Detection of chaos in time series is of utmost importance in many scientific fields. Indeed,
the presence of chaos and its significance, especially in multidimensional systems, plays an essential role
in the control and analysis of such systems, and in their practical use in a variety of applications. In this
paper, we demonstrate a new methodology for the detection of chaos in time series using a reservoir
computing (RC) paradigm called conceptor-driven network (ConDN). Case studies on the known chaotic
attractors (i.e. Lorenz, Rossler, Chua) of integer (conventional) and non-integer (fractional-order) orders,
as well as a physically simulated and designed spintronic device (NCVO) are used in this study to validate
the proposed chaos detection approach. The proposed chaos detection approach is tested on clean and noisy
time series of the mentioned attractors. It outperforms the 0-1 chaos detection test and the largest Lyapunov
exponent (LLE) estimation approach especially in the high noise-level conditions. In addition, the proposed
approach is capable of differentiating the time series generated by the systems whose dynamics is at the edge
of chaos. The simplicity of use of the proposed chaos detection approach can be counted, as well, as one of
its main advantages over traditional chaos detection methods.

INDEX TERMS Chaos detection, time series, reservoir computing, conceptors.

I. INTRODUCTION
Chaos is a natural or artificial non-linear behaviour found
in systems. Such a behaviour is seemingly unpredictable
without possibility to converge to a stationary or a periodic
function of time, although it is actually governed by deter-
ministic laws. The main reason behind such unpredictabil-
ity is the high sensitivity a chaotic system shows to initial
conditions. Indeed, an infinitesimal deviation of the system’s
starting point may lead to a massive change of its dynamics.
Accordingly, a chaotic system can be characterized as [1]:
bounded (dynamics stay inside an orbit rather than escaping
off to infinity), deterministic (dynamics can be analytically
described where same initial conditions give same behaviour
over time), and sensitive (small perturbations to the system
are exponentially amplified).

The detection of chaos in time series in the case of
high-dimensional and noisy systems is not a trivial task. The
common approach of detecting chaos in such time series is
the computation of the largest Lyapunov exponent (LLE)
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whose sign informs about the chaotic (or periodic) behaviour.
Although instability mechanisms of chaotic systems are rig-
orously described with the Lyapunov exponent (and vec-
tors), its computation remains very challenging even today
despite the numerous algorithms and methods proposed in
the literature. One way to compute the LLE is to use the
so-called direct methods [2]. These methods, by tracking the
evolution of the distance between neighboring orbits, afford a
graphical feedback whether local exponential divergence due
to different reasons (i.e. measurement noise, length of time-
series) is properly identified or not. On the other hand, the
full spectrum of Lyapunov exponents can be extracted by the
dot products of perturbations vectors and their derivatives.
The n Lyapunov exponents are estimated by the integra-
tion of n − 1 perturbations and by using basic computing
operations such as summation, subtraction, multiplication,
and division. This yields to faster and more efficient results
compared to the methods involving the calculation of pertur-
bations lengths logarithms and Gram-Schmidt orthonormal-
ization, especially in low-dimensional problems [3]. Machine
learning has also been investigated in LLE computation.
An approach is demonstrated in [4], where a single layer
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feed-forward network of given parameters is trained on the
time-series to be inspected. Then, the parameters of the initial
network are varied and the network is retrained. The out-
put signals produced by the two networks are analyzed and
compared for the extraction of the entropy characteristics of
the input time-series. A different methodology, based on the
use of reservoir computing, is shown in [5]. A reservoir of a
recurrent neural network is first built and trained on a given
input time-series. In the testing phase, the reservoir becomes
capable of producing an image of the input time series whose
behaviour can be defined using the parameters of the neural
network. Thus, the Lyapunov exponent estimation can be
calculated using classical ways. The main advantages of the
latter method is that it is applicable even in model-free cases,
where data could be of unknown source or too noisy to be
exploited; besides it is sufficient to be fed by short time-series
where large ones are generated by the network on which
the computation of Lyapunov exponents is done. Analytical
modelling is an additional option for the computation of
Lyapunov exponents [6]. This can be done by identifying a
model for the available data using NARMAX (Non-linear
Autoregressive Models) representation, and then extract the
interval extensions that will be used to calculate the lower
bound error. Eventually, the logarithm of the lower bound
error is fitted by a simple linear function from which the
LLE is extracted. Nevertheless, the poor reliability of these
different methods when applied to noisy time series often
limits their use to clean time series from theoretical systems.

Another approach for chaos detection in time series is the
0-1 test proposed by Gottwald and Melbourne in [7]. The
advantage of this method over the largest Lyapunov exponent
is the possibility to detect chaos even when the knowledge
about state-space variables of the observed system is incom-
plete or unknown, which is the case of many real systems.
The 0-1 test shows its limits in noisy time series, especially
when the gauge-measurements needed for a reliable detection
and corresponding to the regular system behaviour, cannot
be obtained (often in real world systems). Recently, Tempel-
man and Khasawneh presented an enhanced version of the
Gottwald and Melbourne’s 0-1 test where by using topologi-
cal data analysis its reliability for high-noise levels time series
is greatly improved [8]. Another class of chaos detection
approaches is the use of non-linear prediction. This method
is originally established for short-term generation of non
linear time-series. However, by applying a long-term non-
linear prediction technique on a given signal and calculating
the accuracy (error between real and predicted signal), the
differentiation between chaotic and regular dynamics can be
attained. This notion of chaos detection can be achieved using
a variety of approaches found in the literature such as radial
basis function [9], neural networks [10], [11]. In [11], the
authors propose three ANN-based designs (MLP, NARX, and
ESN) with their FPGA implementation for the chaotic time
series prediction. The authors presented optimized hardware
pipeline architectures of the considered models allowing high
speed computation and optimal chaotic time series prediction.

The frequency analysis as well, and particularly Fourrier
transform (FT), could serve for the task of chaos detec-
tion in time-series as presented recently by Tlelo-Cuautle
et al. in [12]. The authors used this FT-based chaos detec-
tion to accelerate the optimization process of fractional-order
chaotic networks driven bymetaheuristics such as differential
evolution and particle swarm optimization. They observed
that chaotic time series are usually related to high ampli-
tude FT presentations whereas regular time series are of
low amplitude presentations. Indeed, chaos detection in time
series is still a widely open research problem, because chaos
can be induced by noise as well as some standard random
processes may have deterministic origin [13].

In this paper, we propose an alternative reservoir-
computing based approach for chaos detection. By intro-
ducing a time series under investigation as input without
any additional parameters, the insights about the chaotic or
regular behaviour of the time series are produced. Case stud-
ies on the known chaotic attractors (Lorenz, Rossler, Chua,
Chen and Lu), obtained using integer (conventional) and non-
integer (fractional) orders of derivations, as well as a real
world spintronic device, are used in this study to validate its
effectiveness. The simplicity of use of our proposed method
combined with high robustness to noise are its main advan-
tages. The preliminary results of this work has been presented
at ISCAS 2021 in [14]. In this paper, a more in-depth analysis
of the presented approach aswell as an extended experimental
section including real emergent chaotic devices has been
provided.

The rest of the paper is organized as follows: Section II
gives background details about the computation of the
Largest Lyapunov Exponent (LLE), 0-1 test, and conceptor-
driven networks. The proposed chaos detection approach is
presented in Section III. In Sections IV and V we demon-
strate and discuss respectively the effectiveness and robust-
ness of our proposed method on several theoretical and real
worlds systems including fractional order systems. Finally,
Section VI gives concluding remarks and presents some
future perspectives.

II. BACKGROUND
A. LARGEST LYAPUNOV EXPONENT
One way to detect chaos in a time series (or in a system
at its origin) is to calculate its Largest Lyapunov Exponent
(LLE). The LLE measures the exponential rate of divergence
of adjoining trajectories on the system’s attractor. Generally,
the calculation of the LLE passes through two main stages:
(1) constructing an appropriate state space that captures the
system’s dynamics, and (2) measuring the strength of diver-
gence of the points on the state space. For that, two random
neighboring points from the state space are taken as initial
points, and their separating distance is continuously mea-
sured. The common challenge that all LLE’s estimation algo-
rithms face is the influence of noise, especially when dealing
with experimental data where the possibility of choosing false
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neighbors increases. One way to tackle this problem is to con-
sider multiple neighboring points and average their distances
from the reference ones. In addition, other factors making
the computation of the LLE very challenging and which
may lead to its false estimation are inherent noise, system
uncertainties and perturbations as well as the inappropriate
choice of parameters [15].

The Rosenstein’s approach is one of the algorithms for the
estimation of the LLE from small data sets [16]. It starts with
the placement of M groups of neighboring points whose ini-
tial separation dj−ave(0) is taken as the average of Euclidean
distances of all points to the reference one (j ∈ [1,M ]):

dj−ave(0) = E([dj1(0), dj2(0), ..djn(0)]) (1)

where E denotes the mean, and djn is the distance separating
the nth nearest neighbor Xjn from the reference point XĴ :

djn(0) = ||Xjn − XĴ || (2)

where ||.|| is the Euclidean norm. Note that all nearest points
have to be located from the reference point at a distance
at least equal to the mean period of the time-series under
inspection (i.e a nearest point should be located on a trajectory
different from that of the reference point).

The evolution of the average distance between neighbor-
ing points is commonly defined using the Largest Lyapunov
Exponent λmax as follows:

d(t) = dave(0)eλmax t (3)

where dave(0) is the initial separation of the neighboring
points. Using Equation 3, one can write for the jth pair:

dj−ave(i) ≈ dave(0)eλmax (i1t) (4)

Applying a logarithmic function on both sides, we get:

ln[dj−ave(i)] ≈ ln[dave(0)]+ λmax(i1t) (5)

The above equation describes M parallel lines whose slopes
are relatively proportional to λmax . Finally, λmax can be
accurately estimated by applying the least-squares fit on the
averaged line defined as follows:

y(i) =
1
1t

E[dj−ave(i)] (6)

where E[dj−ave(i)] is the average over all pairs of j.

B. 0-1 TEST
The 0-1 test is a chaos detection method firstly introduced
by Gottwald and Melbourne for the analysis of deterministic
dynamical systems [7]. Unlike the LLE methods, the 0-1 test
uses time series to distinguish between regular and chaotic
dynamics with no need to reconstruct the phase space. The
final result of this test is either 1 or 0 indicating the presence
of chaos or its absence respectively. A recipe of the 0-1 test
can be summarized in computing the following quantities:
Translation Variables pc(n) and qc(n), Mean Square Displace-
ment Dc(n), and Asymptotic Growth Rate Kc(n).

Given a discrete time series φ(j) for j ∈ [1,N ], the transla-
tion variables pc(n) and qc(n) are computed as follows:

pc(n) =
n∑
j=1

φ(j) cos(jc) & qc(n) =
n∑
j=1

φ(j) sin(jc) (7)

for n ∈ [1,N ] and c ∈ (0, π). The number of c values taken
in the test, is denoted by Nc. In practice, Nc = 100 seems
to be sufficient [7]. The translation variables are bounded if
the underlying dynamics is regular (periodic or quasiperiodic)
whereas they behave asymptotically like Brownian motion
for mutlidimensional chaotic systems.

The mean square displacement Dc(n), a second quantity
needed for the 0-1 test, describes the diffuseness of a given
behaviour. For regular dynamic systems, Dc(n) is a bounded
function of time, whereas it scales linearly with time for
chaotic systems. Thus, the growth rate of Dc(n) is the main
criterion used for chaos detection.Dc(n) is defined as follows:

Dc(n) = lim
N→∞

1
N

N∑
r=1

{[(pc(j+ n)− pc(j)]2

+ [qc(j+ n)− qc(j)]2}

−Vosc(c, n) (8)

for n ≤ ncut where ncut ≤ N . In practice, ncut = N/10 is
a common choice [7]. The term Vosc(c, n) is added for less
non-linearity during convergence:

Vosc(c, n) = lim
N→∞

1
N

N∑
j=1

φ(j)]2
1− cos nc
1− cos c

(9)

Finally, the asymptotic growth rate Kc, which describes the
strength of the correlation of Dc(n) with the linear growth,
is estimated. This is done by the linear regression of the
log− log plot of Dc(n). Accordingly, one can write:

Kc = lim
n→∞

log D̃c(n)
log(n)

(10)

where D̃c(n) = Dc(n) − min
n
{Dc(n)}

ncut
n=1, is set to eliminate

the negative values. Graphically, the slope of the straight line
fitting the graph of logDc(n) versus log n is an approximation
of Kc.

This process is repeated Nc times, where each time c takes
a new random value in the open set (0, π). Note that this
set could be reduced for the sake of test validity. Conse-
quently, the median of all Kc values is computed to obtain
K : K = 0 signifies regular dynamics, whereas K = 1 indi-
cates the presence of chaos. It should be noted that the
dataset N should be of a sufficient data length so that an
asymptotic behaviour of Dc(n) takes place. Although its few
requirements in application, the 0-1 Test is however not
always reliable. The used data should not be oversampled
nor downsampled, otherwise false results can be obtained.
Furthermore, the parameter c has to be tuned in a convenient
range to avoid resonance that could yield to Kc 6∈ [0, 1].
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FIGURE 1. General structure of conceptor-driven network.

C. CONCEPTOR-DRIVEN NETWORK
Conceptor-Driven Network (ConDN) is a recent Reser-
voir Computing approach, firstly introduced by Jaeger in
2014 [17], [18]. It is based on the principle of long short-term
memories (LTMs) [19], [20] initially established for the
prediction of continuous time-series. Its general structure,
as shown in Figure 1, is an enhanced version of the echo-state
network (ESN) [11], also established for prediction task.
A ConDN consists of four layers: a K -dimensional input
layer, an N × N reservoir, a conceptor layer of dimensions
N × N , and a single-unit output layer. The conceptor layer,
found between the reservoir and the output layer as shown
in Fig. 1, presents the main difference in such networks with
respect to the conventional ESNs.
K time-varying input signals, each of length L, are intro-

duced to the network via the input layer. An input time series,
also called a pattern, is indexed by j ∈ [1,K ] and denoted
by pj(n). The reservoir placed between the two layers, is a
Recurrent Neural Network (RNN) at which, the connections
between nodes are spontaneous and in all directions. The
conceptor layer involves a group of matrices called concep-
tors C j(n), where each represents, if trained, a given input
pattern pj(n).

In the installation phase, an N -neurons RNN is established
by randomly creating a dynamic reservoir described by a
tuple (W in, W ∗, b) where W in is the input N × K weights
matrix; W ∗ is the internal N × N connection matrix; and
b is a bias vector of length N . Afterwards, the readout
weights matrix W out is computed by introducing into the
network, as an input, a random time-varying signal. The
main reason behind this choice is to find an optimal output
matrix that could performwell for any input patterns. For that,
an L-dimensional white noise signal v(n) enters the network
to run the system according to the following state-update
equation:

xv(n+ 1) = tanh(W ∗xv(n)+W inv(n)+ b) (11)

The resultant state vector xv is used then to find the optimal
estimation of W out by minimizing the following quadratic
loss by linear regression:

L∑
n=1

(W outxν(n)− ν(n))2 (12)

The second phase represents the loading phase. In this
phase, the ConDN starts to recognize the input patterns
pj(n). K time varying signals are separately inserted into the
network to compute their corresponding intermediate state
vectors x j(n) using the following state-update equation:

x j(n+ 1) = tanh(W ∗x j(n)+W inpj(n)+ b) (13)

The collected states from Equation 13 hold the dynamical
characteristics of the original input patterns. Thus, it becomes
possible to expel the input drivers pj(n) and build instead one
matrix that involves all the states x j(n). For that, the input
weights matrix W ∗ is replaced by the input internalization
weights matrix W by minimizing the quadratic loss below
after the washout period n0 ends:

K∑
j=1

L∑
n=n0

‖W ∗x j(n)+W inpj(n)−Wx j(n)‖2 (14)

The intermediate states generated from Equation 13 are used
as well for the computation of the conceptor matrices C j.
These matrices guide the system in the testing phase rather
than the input signals pj(n):

x(n+ 1) = C j tanh(Wx(n)+ b) (15)

In mathematical terms, C j works as an identity matrix for
the term f (Wx j(n)+b), whereas it is a null matrix for the terms
holding other states. Accordingly, the optimal values of the
conceptor matrices C j can be computed using the following
quadratic loss:

L(C j) = E‖C jx j(n)− x j(n)‖2 + (γ j)−2‖C j
‖
2
fro (16)

where E is the mathematical mean, ‖.‖2fro is the squared
Frobenius matrix norm, and γ j is the aperture parameter that
specifies the internal structure of C j. A conceptor matrix C j

is close to the identity matrix I if γ j is large. Conversely,
when the aperture is small, the C j is close to the null matrix
O. This mutation can be evidently observed in Equation 16.
When C j

≈ I , the first term converges to its minimal value.
By contrast, the second terms vanishes in the case C j

≈ O.
The minimization of the quadratic loss above leads to the
following optimal solution of C j:

C j
= Rj(Rj + (γ j)−2I )−1 (17)

Rj = E[x j(n)x j(n)T ] being the correlation matrix whose
state vector x j is already collected for the computation of the
internal matrixW (Eqs. 13 and 14).

Finally, in the testing phase, any pattern pj(n) can be
re-estimated by the ConDN by running first the state-update
equation (Eq. 15) followed by the linear output equation
below:

y(n) = W outx(n) ≈ p(n) (18)

Figure 2 summarizes the described main steps of the ConDN
process in flowchart form.
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FIGURE 2. Flowchart of time series prediction process by
conceptor-driven network.

III. PROPOSED CHAOS DETECTION APPROACH
The proposed ConDN-based chaos-detection method is sum-
marized in Algorithm 1. The inputs of this method are two
vectors: p - representing a time series whose dynamics should
be analyzed (regular or chaotic); and s - representing an
ordered sampling vector whose elements si, i ∈ [1, |s|] pro-
vide sampling factors to use for the sampling of the initial
time series p. Note that, |s| denotes the length of s.
The first phase of this approach is to build the database

of input signals needed to feed the ConDN network. This
database is built by using the time series p and sampling
factors si (si ∈ s, i ∈ [1, |s|]). The first element of this
ordered sampling vector is always 1 (s1 = 1) meaning that
the initial time series without sampling is always a part of
the database of input signals. The size of the sampling vector
s should be at least 2, i.e |s| ≥ 2. In the case |s| = 2, the
second element of the sampling factor is s2 = 2, meaning
that the initial time series is sampled by a factor of 2. For
|s| > 2, all other values of sampling factors are allowed and
should be in increasing order in the vector s. Let us assume the
size |s| = NS > 2 for the following explanation. The result
of this first phase are NS signals qi, i ∈ s of different size
|q1| > |q2| > · · · > |qNp |. A ConDN network must be fed
with the signals of the same size. Thus, the size equalizing
of the signals qi, i ∈ s from the first phase is mandatory.
The size of the smallest signal qi, i ∈ s corresponding to
the highest sampling factor s|s| = Np must be used for this
operation. As the result of the equalizing operation, we have
NS signals pi, i ∈ s of the same length, which can be
presented in a matrix form P = [p1p2 . . . pNp ] as shown in
Algorithm 1, line 11. In the next phase, the prepared input
signals matrixP is fed to an already installed ConDN network

Algorithm 1: ConDN-Based Chaos Detection Method

1 ConDN-based Chaos Detection (p, s)
inputs : Time series to analyze p;

Ordered sampling vector s = [1, 2, . . . ,Np];
output: Dynamics variation 1 or fitting parameter a

2 // Time series sampling
3 for i ∈ s do
4 qi← Sampling (p, i)

5 ⇒ |q1| > |q2| > · · · > |qNp |
6 // Sampled time series length equalizing
7 for i ∈ s do
8 pi← qi[1:|qNp |]

9 ⇒ |p1| = |p2| = · · · = |pNp |

10 // ConDN input matrix P
11 P = [p1p2 . . . pNp ]
12 // C - overall conceptor matrix
13 C← ConDN (P), where C = [C1C2 . . . CNp ]
14 // conceptor matrix C i corresponding to pi, i ∈ s
15 // S - overall SVD matrix
16 S← SVD (C), where S = [S1S2 . . . SNp ]
17 // SVD matrix Si corresponding to C i, i ∈ s
18 T ← Trace (S), where T = [t1t2 . . . tNp ]
19 t i = tr(Si) =

∑N
j S

i
jj, i ∈ s

20 if (one-shot) then
21 // s = [1, 2]
22 11 = ts2 − ts1 ;
23 1 = [11]
24 return 1;

25 else
26 // s = [1, 2, · · · ,Np]
27 for i ∈ [1, |s| − 1] do
28 1i = tsi+1 − ts1 ;

29 1 = [11,12, · · · ,1|s|−1]
30 (a, τ )← Fitting(1, s)
31 return a;

(see Section II-C for more details). The training phase of
the ConDN networks is carried out on these input signals.
As a result of this training phase, the conceptor matrices
C = [C1C2 . . . CNP ] are generated, where C i, i ∈ s is an
N × N conceptor matrix corresponding to the input signal
pi, i ∈ s. The size of the conceptor matrix is equal to the size
of the ConDN’s reservoir (see Section II-C). Afterwards, each
generated conceptor matrix C j undergoes a singular value
decomposition (SVD) as shown in Algorithm 1, line 16:

C i
= U iSiU iT , i ∈ s (19)

where Si is the diagonal matrix of SVD at which the eigen-
values of C i are arranged on its diagonal in descending order.
The matrices Si, i ∈ s contain the precious information
about the dynamics of the input signals pi, i ∈ s and are
used to determine their either regular or chaotic behaviour.
For each matrix Si, i ∈ s, we compute then the value of
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trace t i = tr(Si), i ∈ s corresponding to the summation of
all eigenvalues on its diagonal, as illustrated in line 19 of
Algorithm 1. Large values of t i, i ∈ s are expected to arise
in the case of chaotic patterns, whereas small values indicate
the absence or the low level of chaos. Moreover, the values
of t i, i ∈ s are expected to increase with higher sampling
factors si, i ∈ s in the case of chaotic patterns, and to remain
stable and low otherwise. In the last phase, by using the
computed trace values from the previous phase, the dynamics
variation vector 1 can be computed. The elements of 1 are
computed from the trace vector T = [t1t2 . . . tNP ] of size NS
by subtracting the value of ts1 = t1 from all other elements
starting from its second element ts2 . Thus, the size of the
vector 1 is NS − 1 where 1j = tsj+1 − t1, j ∈ [1,NS − 1].
The results obtained in the dynamics variation vector 1

can be analyzed in two ways: a quick estimation of the nature
(regular or chaotic) of the input time series called one-shot
sampling method; or a much deeper analysis based on the
fitting results of the relationship 1(s) called multiple-shots
sampling method. In the first method, the sampling vector
s has only two values s = [1, 2], meaning that the initial
time series p is sampled only once with a factor of 2. The two
signals or patterns (the initial time series p1 and sampled by 2
p2) once equalized in length are introduced to the ConDN,
and allow to obtain, after the ConDN training, two conceptor
matrices C1 and C2 corresponding to each input pattern
respectively. By computing the SVD matrices S1 and S2 of
these conceptors as well as their trace values t1 and t2, the
dynamics variation vector1 can be obtained.1 has only one
element11 corresponding to the difference t2− t1, as shown
in line 23 of Algorithm 1. If p (or p1 and p2) is chaotic, two
distinct values of t1 and t2 are expected, and thus a large value
of 11. On the other side, sampling should not largely affect
the value of trace in the non-chaotic case, yielding to a small
value of 11.
In the multiple-shots sampling method, the sampling vec-

tor s has more than two values s = [1, 2, · · · ,Np] and is used
for a much deeper analysis of the evolution of the obtained
dynamics variation vector 1 with sampling s. For NS = |s|
different sampling factors in s, the proposed approach will
generate a dynamics variation vector 1 of size NS − 1,
as shown in line 29 of Algorithm 1. The evolution of 1 with
sampling s should follow a capacitor charging function trend
(see Equation 20) in both, regular and chaotic behaviour case,
with much higher values of fitting parameters a and τ in the
latter case due to the rapid increase in the value of the trace
in correspondence with the increase of the sampling factor.

1 = a(1− e−(s−1)/τ ) (20)

IV. CHAOS DETECTION RESULTS
In this section, the proposed chaos detection approach
has been tested and validated on known chaotic systems
described with differential equations of integer and fractional
orders that can be tuned to generate regular dynamics also,
as well as on an emergent non-linear spintronic device called

Nano-Contact Vortex Oscillator (NCVO), which is still not
fully described with analytical expressions. For some of the
case studies, the proposed approach has been compared with
the 0-1 Test approach detailed in Section II-B.

A. CASE STUDIES
1) KNOWN CHAOTIC ATTRACTORS
Five known chaotic systems of integer orders were considered
in this study: Lorenz, Chua, Rossler, Chen, and Lu [21]–[24].
We also include the two fractional-order (FO) systems: FO
Rossler and FO Chen [25]–[27]. A 3D representation of their
attractors in the chaotic state is shown in Figure 3. They
describe continuous-time dynamics of these systems and are
defined with non-linear ordinary differential equations as
follows:
• Lorenz System:

ẋ = α(y− x)

ẏ = x(β − z)− y

ż = xy− γ z (21)

• Chua System:

ẋ = α(y− x + εx −W (w)x)

ẏ = x − y+ z

ż = −βy− γ z

ẇ = x (22)

whereW (w) = f (δ, ζ,w(t))

• Rossler System:

ẋ = −y− z

ẏ = x + αy

ż = β + z(x − γ ) (23)

• Chen System:

ẋ = α(y− x)

ẏ = εx − xz+ γ y

ż = xy− βz (24)

• Lu System:

ẋ = α(y− x)

ẏ = −xz+ γ y

ż = xy− βz (25)

• FO Rossler System:

dqx
dtq
= −y− z

dqy
dtq
= x + αy

dqz
dtq
= β + z(x − γ ) (26)

where q ∈ [0, 1] is the derivation order.
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FIGURE 3. 3D presentation of the attractor of the conventional chaotic
systems: (a) Lorenz, (b) Chua, (c) Rossler, (d) Chen, (e) Lu, and (f) the
fractional-order systems (FO) Rossler, and (g) FO Chen.

• FO Chen System:

dqx
dtq
= α(y− x)

dqy
dtq
= εx − xz+ γ y

dqz
dtq
= xy− βz (27)

where q ∈ [0, 1] is the derivation order.
The parameters and orders shown in the ordinary differen-
tial equations above affect the shape of an attractor and it
may even vanish at some values. For that, we consider for
each integer-order system two sets of parameters: the first
one reinforces its chaotic dynamics whereas the second one
its regular (or non-chaotic) dynamics. Some parameters are
kept unchanged among the two sets. For the fractional-order
systems, we fix the parameters and vary the order to realize
chaotic and regular dynamics. The values of the parameters
as well as the orders used in our simulation will be shown
later.

2) NANO-CONTACT VORTEX OSCILLATOR
Nano-Contact Vortex Oscillator (NCVO) is a highly
non-linear spintronic device of spin valve structure [14], [28]
(See Fig. 4). The most significant layers at which the physical
phenomenon occurs are: (1) the Permalloy layer at which
the magnetization alters continuously and it is called the free
layer; and (2) the Cobalt layer that shows uniform magneti-
zation so it is called the fixed layer. The two ferromagnetic
layers are separated by a copper band. A metallic portion on
top, called the Nano Contact (NC), allows the passage of the
current into the device.

When the NCVO is subjected to a direct bias current I and
a magnetic field B, a magnetic vortex is formed in the upper
part of the body. This vortex revolves around the center of

FIGURE 4. Multilayer composition of the studied pseudo-spin valve, with
layers’ thickness in nm in parentheses.

the device creating an alternative resistance. With the applied
DC current, an oscillating voltageVGMR at the vortex gyration
frequency appears across the device. Therefore, the NCVO
exhibits different behaviours that can be classified in two
major modes:

• Modulated non-chaotic mode: the vortex is exposed
to a periodic relaxation in its gyration. After fulfilling
a given number of complete cycles, the vortex directs
toward the center and changes its polarity and the sense
of gyration.

• Chaotic mode: the vortex revolves around the
nano-contact with no definite rules. Unlike the former
mode, the gyration relaxation occurs in a non-periodic
way although the vortex shows complete cycles.

In addition, the NCVO device exhibits also a mode called
non-modulated non-chaotic mode at which the vortex
rotates continuously around the nano-contact only in one
direction. The different modes can be studied by visualizing
the time varying signals of both the NCVO’s space averaged
output magnetization of the free layer M (t) and the vortex
position with respect to the NanoContact s(t). These output
signals are composite which makes their evaluation quite
difficult. In the non-modulated mode, these time series are
periodic signals whose fundamental frequency f0 specifies
the gyration speed of the vortex. In the modulation mode, the
time series generated by the NCVO are quasi-periodic. This
mode is also called the locking mode, where f0 is locked to
the modulation frequency fmod . The later frequency specifies
the number of cycles the vortex performs before changing its
polarity. In this case, the fraction fmod/f0 is simply a rational
number. In the chaotic mode, the modulation frequency is
no more locked to the fundamental frequency; this leads
to an irrational value of the fraction fmod/f0. Two types of
data are generated from anNCVO:micro-magnetic simulated
data and real experimental data. In simulation, M (t) and
s(t) are generated using the finite difference micromagnetic
solver Mumax3 [29]. This solver implements a numerical
space and a time integration of the Landau-Lifshitz-Gilbert
equation including the different spin transfer torque terms.
More details concerning the procedure description and the
values of parameters used in simulation can be found in [28],
[30], [31]. The extracted signals Mx(t), My(t), and Mz(t)
represent the projection of M (t) on the three dimensions in
space respectively. Similarly, s(t) has the components: x(t),
y(t), and core polarity z(t) = ±1.

52692 VOLUME 10, 2022



A. R. Ismail et al.: Detection of Chaos Using Reservoir Computing Approach

FIGURE 5. 2D plot of the trajectory of the NCVO’s vortex gyration in the
three different modes: (a) non-modulated, (b) modulated, and (c) chaotic.

FIGURE 6. Artificially reconstructed x(t) signal without jitter effect for the
(a) non-chaotic, (b) half-chaotic, and (c) chaotic cases.

The gyration of the magnetic vortex around the NanoCon-
tact in the upper layer of the NCVO reflects its operating
mode whether it is non-modulated, modulated, or chaotic
(see Fig. 5). However, this circular movement representing
the polarity reversal of the vortex takes places at slightly
distinct positions in its trajectory. As a result, the time varying
signals corresponding to the NCVO’s output magnetization
(Mx(t), My(t), and My(t)) as well as the vortex position in
space (x(t), y(t), and z(t)) are contaminated with a jitter effect,
an additional slightly chaotic behaviour different to the chaos
obtained due to the polarity reversal frequency.

The NCVO’s output signals are composed of different
patterns. Each pattern represents one cycle of the trajec-
tory of the vortex gyration around the Nano-Contact. Con-
sequently, the shape of a pattern depends on the direction
of gyration of the vortex around the Nano-Contact. Due to
the jitter effect, the patterns are slightly variable in length.
Thus, it seems difficult to determine whether the observed
complex signal arises from a chaotic or stochastic process.
One way to consider only the chaotic behaviour of the NCVO
device and get rid of the jitter effect is to build an artificial
signal having the same patterns (approximated with sine and
cosine functions) as the ones found in the NCVO’s output
signals which evolve in the rhythm of the vortex polarity and
direction of gyration, but have the same length. This artificial
signal is also used as one of the case studies in this evaluation
part (see Figure 6).

B. ONE-SHOT SAMPLING
We first evaluated the one-shot sampling method described
in Algorithm 1 on the seven known attractors detailed in
Section IV-A1. The set of parameters of the integer-order

TABLE 1. One-shot sampling: values of the parameters used in the
ordinary differential equations of the five studied integer-order systems
(Equations 21 to 25) in the chaotic and regular modes.

TABLE 2. One-shot sampling: values of the parameters and derivation
order used in the ordinary differential equations of the two studied
fractional-order systems (Equations 26 and 27) in the chaotic and regular
modes.

systems, as well as the set of parameters and orders of
the fractional-order systems, used to generate signals with
chaotic and regular nature, are presented in Tables 1 and 2
respectively. The first component x(t) of each of the seven
systems, for a given set of parameters and orders correspond-
ing to chaotic or regular nature, is injected beside its sampled
counterpart into a separate ConDN. The reservoir size N of
all networks is arbitrary set to 1000.

Figure 7 presents the variation of the trace values t i, i ∈
s = [1, 2] of the chaotic and regular input patterns as a
function of their data length, where i = 1, 2 denote the raw
p1 and sampled p2 patterns respectively. The trace values of
the two chaotic (initial and sampled) patterns are plotted in
blue, whereas the ones of the non-chaotic (initial and sam-
pled) patterns are in red. Generally speaking, t i of a chaotic
signal is large compared to that of a non-chaotic one. This
could be referred to the high instability that characterizes
chaos and is at the origin of large eigenvalues captured by the
ConDN’s conceptor matrix. Additionally, sampling of these
input patterns mainly impacts chaotic time-series. This can
be noticed for all cases in Figures 7 where the two blue
plots corresponding to the two (initial and sampled by 2)
chaotic signals are separated by a big gap, whereas the two
non-chaotic signals in red are almost stacked. To numerically
express this difference for the two behaviours of each system,
the dynamics vector variation 1 = [11] is calculated. These
results are shown in Figure 8. The non-chaotic signals of any
of the studied conventional systems show a small value of11
(close to 0), whereas in the chaotic case11 is large (between
45 and 95).

C. MULTIPLE-SHOTS SAMPLING
We also evaluated the multiple-shots sampling method
described in Algorithm 1. For this method, three of the five
integer-order known attractors (Rossler, Chen, and Lu) with
the two fractional-order systems (FO Rossler and FO Chen),
all detailed in Section IV-A1, as well as the (simulated and
artificial) signals describing the NCVO’s vortex position in
space (see Section IV-A2 for more details), were used.

For each system, to the two modes (chaotic and non-
chaotic) evaluated in the last section, a half-chaotic one was
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FIGURE 7. One-shot sampling: variation of trace values t i , i ∈ s = [1,2]
versus data length, for the chaotic (blue) and non-chaotic (orange)
behaviours of the systems: (a) FO Rossler, (b) FO Chen, (c) Lorenz,
(d) Chua, (e) Rossler, (f) Chen, and (g) Lu.

added. The half-chaotic mode represents a transient state
between the chaotic and non-chaotic modes. It should be
mentioned that the two remaining integer-order conventional
attractors, Lorenz and Chua, were discarded in this part due
to the difficulties to obtain a half-chaotic behaviour for these
systems (abrupt transitions from regular to chaotic cases).
For the integer-order systems, the three different modes are
obtained by varying the parameters of the differential equa-
tions 23 to 25. The values of these parameters used in the
simulation are shown in Table 3. For the fractional-order
systems, the three different modes are obtained by fixing
the parameters and varying the fractional order of the differ-
ential equations 26 and 27. The values of such parameters
and orders used in the simulation are shown in Table 4.
On the other hand, for the NCVO device, a micromagnetic
simulation is carried out at I = 17mA with different val-
ues of the applied magnetic field. The horizontal magnetic
field is fixed to Bx = 1mT , whereas the vertical magnetic
field takes the values Bz = 10mT (for non-chaotic case),
Bz = 1mT (for half-chaotic case), and Bz = 20mT (for
chaotic case). Similarly, three behavioural modes of x(t) are
obtained, where x(t) denotes the horizontal projection of the
time-varying position of the NCVO’s vortex in space. Note
that, the non-chaotic signal of the NCVO device used in this
evaluation is in the modulated mode. The number of neurons
used for each system is shown in Table 5. It should be noticed

FIGURE 8. One-shot sampling: dynamics vector variation 1 for the
chaotic (blue) and non-chaotic (orange) behaviours of the seven studied
conventional systems.

TABLE 3. Multiple-shots sampling: values of the parameters used in the
ordinary differential equations of the three studied integer-order systems
(Eqns. 23 to 25) in the chaotic, half-chaotic, and non chaotic modes.

TABLE 4. Multiple-shots sampling: values of the parameters and
derivation order used in the ordinary differential equations of the two
studied fractional-order systems (Eqns. 26 and 27) in the chaotic,
half-chaotic, and non chaotic modes.

TABLE 5. Multiple-shots sampling: number of neurons of the ConDNs
receiving the first component (x(t)) of the systems: FO Rossler, FO Chen,
Rossler, Chen, and Lu; as well as the non-filtered and filtered signal x(t)
of NCVO, each of three cases: chaotic, half-chaotic, and non-chaotic.

that the difference in number of neurons used for different
case studies is mainly related to the optimization technique
we applied to accelerate simulations. Indeed, for each system
and mode, this technique computes (based on the experimen-
tal trials) the number of non-zero eigenvalues of the ConDN’s
conceptor matrices and based on this reduces the number of
neurons to use. Consequently, significant acceleration of the
overall simulation time without influencing the final result is
obtained.

Figures 9, 10 and 11 present the variation of the dynamics
vector 1(s) with its fitting function (see Equation 20) for
the five known chaotic systems and the NCVO respectively.
From Figures 9 and 10, it can be noticed that the signals
of FO Rossler, FO Chen, Rossler, Chen, and Lu systems
show a quick increase in 1 for the chaotic case, almost
constant for the non-chaotic case, and an intermediate growth
for the half-chaotic case. The same can be noticed for the
NCVO’s results from Figure 11. Indeed, the three modes of
the NCVO can be easily distinguished by the dynamics vector
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FIGURE 9. Multiple-shots sampling: dynamics vector variation 1 as a
function of sampling factor s, with its fitting function, for (a) FO Rossler
and (b) FO Chen.

variation 1(s). The non-chaotic and half-chaotic modes are
close compared to the chaotic one, which is mainly due to
the few pattern distortions that differentiates the half-chaotic
signal from the regular one. The effect of filtrating the jitter
effect (see Section IV-A2) by imposing the same length to all
patterns can be noticed by comparing Figures 11(a) and 11(b).
Each plot, of the three modes, shows now a slower growth as
function of the sampling factor (smaller slope). Moreover, the
half-chaotic mode shows the same evolution of1(s) as that of
the non-chaotic mode after expelling the jitter effect as these
two modes are distinguished by only few pattern distortions.

Using the linear regression, the fitting parameters a and
τ presented in Equation 20 of all studied cases are com-
puted. These values of a are shown in Figure 12. The values
of a can be categorized in three ranges: less than 20 for
a non-chaotic signal; greater than 50 for a chaotic signal;
and in between for half-chaotic signals. It is clear that the
presented chaos detection method shows clear distinction
between these three modes. Moreover, the same case studies
were introduced to the 0-1 Test for comparison. These results
are shown in Figure 13. As it can be noticed, the 0-1 Test
does not provide the same efficiency in chaos detection where
the three behavioural modes can not be defined using the
value of Kmedian. Indeed, a half-chaotic signal is sometimes
recognized as a chaotic (Kmedian ≈ 1) whereas at other times
it is recognized as a non-chaotic signal (Kmedian ≈ 0).

V. ROBUSTNESS TO NOISE
In this section, the robustness to noise of the two pro-
posed chaos detection methods, compared to that of the
0-1 Test and largest Lyapunov exponent approaches (detailed

FIGURE 10. Multiple-shots sampling: dynamics vector variation 1 as a
function of sampling factor s, with its fitting function, for (a) Rossler,
(b) Chen, and (c) Lu.

in Sections II-B and II-A respectively), has been evaluated.
First, the robustness of one-shot sampling method was exam-
ined using additive noise. Each studied time-series, before its
examination was contaminated by an additive white noise of a
Signal-to-Noise Ratio (SNR) between 184dB and 11dB. The
dynamics vector variation 1(s) for sampling factor 2 versus
the SNR of the added noise for the seven conventional sys-
tems is shown in Figure 14. As noticed, the value of1 in the
chaotic case typically decreases with the addition of noise.
In contrast, the value of 1 in the non-chaotic case varies but
stay negative for any SNR value. This reveals the fact that
our proposed one-shot sampling method mainly recognizes
deterministic dynamics. The FO Rossler, FO Chen, Lorenz,
Rossler, and Lu systems (Figures 14 (a), (b), (c), (e) and (g)
respectively), can tolerate a white noise of SNR up to 11dB,
where 1 at any noise level, is always positive in the chaotic
case and negative in the non-chaotic case. The Chua system
can handle a SNR < 14dB (Figure 14(d)), and the Chen sys-
tem can handle a SNR < 11dB (Figure 14(f)). The same seven
systems were evaluated by the 0-1 Test approach. The results
are shown in Figure 15. As noticed, the value of Kmedian
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FIGURE 11. Multiple-shots sampling: dynamics vector variation 1 as a
function of sampling factor s with its fitting function, for (a) simulated
and (b) artificially generated (no jitter effect) signal x(t) (horizontal
position of vortex) of NCVO.

FIGURE 12. Multiple-shots sampling: slope values a (see Eq. 20) for the
Rossler, Chen, and Lu systems, as well as the simulated and artificially
generated (or filtered) signal x(t) of the NCVO, in three cases: chaotic
(blue), half-chaotic (orange), and non-chaotic (green).

FIGURE 13. 0-1 Test: value of Kmedian for the FO Rossler, FO Chen,
Rossler, Chen, and Lu systems, as well as the simulated and artificially
generated (or filtered) signal x(t) of the NCVO, in three cases: chaotic
(blue), half-chaotic (green), and non-chaotic (orange).

for any of the inspected chaotic systems remains constant at
1 for any added white noise level. In contrast, the Kmedian of
a non-chaotic system increases with the addition of noise.
It seems evident that the 0-1 Test, unlike the one-shot sam-
pling method, mixes up between deterministic and stochastic
behaviours. Furthermore, the 0-1 Test does not show a better
robustness against white noise, where the tolerance of the

FIGURE 14. One-shot sampling: dynamics vector variation 1 versus SNR
of added noise (dB), for the chaotic (blue) and non-chaotic (orange)
behaviours of the systems: (a) FO Rossler, (b) FO Chen, (c) Lorenz,
(d) Chua, (e) Rossler, (f) Chen, and (g) Lu.

FIGURE 15. 0-1 Test: Variation of Kmedian versus SNR of added noise
(dB), for the chaotic (blue) and non-chaotic (orange) behaviours of the
systems: (a) FO Rossler, (b) FO Chen, (c) Lorenz, (d) Chua, (e) Rossler,
(f) Chen, and (g) Lu.

inspected systems ranges between SNR = 30dB and 14dB.
Note that, we assume the 0-1 Test is still robust if Kmedian >
0.5 in the chaotic case and Kmedian < 0.5 in the regular case.
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The robustness of the multiple-shots sampling method was
studied using highly noisy experimental traces of NCVO.
For the sake of comparison, the same data was tested using
one-shot sampling method as well as the 0-1 Test and largest
Lyapunov exponent approaches. Wherefore, a real NCVO
was experimentally run using a DC bias current I = 17mA
and subjected to different magnetic field quantities. Conse-
quently, five packages containing recorded horizontal time
varying position x(t) were analyzed: A, B, C, D, and N. In the
packages A and C, a synchronized gyration of the vortex
around the nano-contact was established during recording
resulting in that x(t) behaves as a quasi-periodic signal (reg-
ular nature). In the package B, a chaotic movement of the
vortex is detected, which normally gives rise for a chaotic
signal x(t). In the package N, the vortex is either hidden or
static. In such case, x(t) is described as pure white noise
signal. In the package D, the vortex starts gyration chaot-
ically, and then it stabilizes with a synchronized rotation.
A signal x(t) from any package does not show clean shape
due to the high contamination of the recorded signals with
the experimental noise. From each package (except for the
package D) two samples of x(t) of the same nature (regu-
lar or chaotic) were considered. The two samples from the
package D were recorded at different behavioural modes.
For all tests, a ConDN with a 100-neurons reservoir was
considered.

Starting with the multiple-shots sampling, the different
plots of 1(s), as well as their fitting plots are all shown
in Figure 16(a). As it can be noticed, the three plots corre-
sponding to the three chaotic samples (the two samples of the
package B and the first one from the package D) show a very
quick growth compared to the plots of the other non-chaotic
samples. The values of the slope a of the fitting function for
all plots are shown in Figure 16(b). As noticed, the dynamics
vector variation1 of the three chaotic samples can be fitted to
a charging capacitor function having a slope a ≥ 60. On the
contrary, the non-chaotic samples are fitted with a slope a ≤
20. These results are in agreement with the results obtained
in Section IV-C, where a chaotic signal was characterized by
a slope a ≥ 50, a regular signal by a slope a ≤ 20, and any
signal with a slope 20 < a < 50 was related to a transitional
mode between chaos and regular nature.

We also evaluated the one-samplingmethod using the same
NCVO experimental data. Figure 17 shows the values of
the dynamic variation vector 1 of the two samples of each
package after applying one-shot samplingmethod. As shown,
1 of the three chaotic samples (the two samples of package B
and the first sample of package D) is between 17 and 20.
The remaining non-chaotic samples have lower percentage
variation that ranges between 2 and 14. Although the value
of1 is larger in the chaotic case than in the non-chaotic case,
but the values still close to each other. Thus, the percentage
variation1 derived by one-shot sampling does not show clear
differentiation between chaotic and non-chaotic experimental
samples. Moreover, these findings are incompatible with con-
clusion drawn in Section IV-B, where a chaotic system is

FIGURE 16. Multiple-shots sampling: (a) dynamics vector variation 1 as a
function of the sampling factor and its fitting function, as well as (b) its
corresponding slope for the five experimental packages of the NCVO.

FIGURE 17. One-shot sampling: dynamic vector variation (1) for the
samples of the five experimental packages of NCVO.

characterized by 1 > 45 whereas a non-chaotic system is
characterized by 1 ≈ 0.
In addition, the same samples were tested using the 0-1

Test and the largest Lyapunov exponent (LLE) approach.
For the 0-1 Test, the results are shown in Figure 18. As it
can be noticed, the 0-1 Test is not capable to differentiate
between chaotic and regular experimental data, whereKmedian
ranges between 0.5 and 1 regardless of the tested sample. For
the LLE, the same experimental samples were evaluated by
T. Devolder et al. in [32] using two LLE methods: Wolf [33]
and Ronsentein (detailed in Section II-A). The results are pre-
sented in Figure 19. As shown, the packages are distributed
irregularly along the axis of the applied magnetic field µ0H
(x-axis). Each of the packages C, D, and N are partitioned
into two parts. As a reminder, the samples of the first part of

VOLUME 10, 2022 52697



A. R. Ismail et al.: Detection of Chaos Using Reservoir Computing Approach

FIGURE 18. 0-1 Test: value of Kmedian of the five experimental packages
of the NCVO device.

FIGURE 19. Largest Lyapunov exponent: value of λ(GHz) of the samples
of the five experimental packages of NCVO [32].

package D is non-chaotic whereas those in the second part
are chaotic. The value of the LLE (λ) is large for the samples
of package B and the second part of package D, due to their
chaotic nature. However the value of λ is always positive even
for the non-chaotic samples due to the jitter effect. Moreover,
the value of λ is high for the samples of package N compared
to other non-chaotic samples even that in package N the sam-
ples are simply white noise signals (the vortex is either hidden
or static). Consequently, the LLE method is not reliable in
distinguishing between the chaotic and regular experimental
data. To summarize, the multiple-shots sampling ConDN-
based method surpasses the 0-1 Test, the LLE, and the single-
shot ConDN-based methods in terms of robustness. The later
methods do not afford a decisive differentiation between the
chaotic and non-chaotic modes of a real NCVO device.

VI. CONCLUSION
In this paper, we investigated a novel methodology for
chaos detection in time series using a reservoir comput-
ing (RC) paradigm called concept-driven network (ConDN).
This chaos detection approach, that involves the sampling of
the input series before being injected to the network, can be
applied in two ways: (1) one-shot sampling, and (2)multiple-
shots sampling. The proposed approach has been validated
on known chaos attractors driven by ordinary differential
equations (i. e. Lorenz, Rossler, Chen) of both integer and
fractional order, as well as on a highly non-linear spintronic
oscillator called NCVO whose data are collected by micro-
magnetic simulation. All considered case studies involve
chaotic and regular behaviors, whereas some of them involve
additionally a transient behavior between them. The robust-
ness of the proposed ConDN-based chaos detection method
is also evaluated, using data contaminated by additive noise
as well as highly noisy experimental data (for the NCVO).

The multiple-shots sampling method has shown to be outper-
forming the 0-1 Test, the largest Lyapunov exponent method,
and the one-shot sampling methods in terms of efficiency and
robustness to noise.
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