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Abstract.

The multi-component fluid closure derived by Zhdanov [1] is implemented in the

fluid code SOLEDGE3X-EIRENE to deal with arbitrary edge plasma composition.

The closure assumes no distinction in between species such as light vs heavy species

separation. The work of Zhdanov is rewritten in a matricial form in order to clearly

link friction forces and heat fluxes to the different species velocities and temperature

gradients.

Submitted to: Plasma Phys. Control. Fusion

1. Introduction

In order to interpret experiments and in the perspective of predicting edge plasma

properties for future nuclear fusion devices, a dedicated effort is made to simulate

plasma-wall interaction. Edge plasma collisionality being moderate to high, a fluid

description of the plasma can be considered as a good approximation, at least to estimate

engineering quantities of interest such as heat load on the plasma facing components.
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More precisely, two-dimensional transport codes [2, 3, 4] are used to provide in a few

hours of computation an overall description of the edge plasma, the price of reduced

computation time being a raw ad-hoc description of turbulent cross-field transport.

Conversely, three-dimensional fluid codes [5, 6, 7] can provide a self-consistent first

principle description of the turbulent structures but are much more computational

demanding. The two approaches are complementary and both rely on the same set of

fluid equations describing mass, momentum and energy balance of the various plasma

species.

The most common set of equations is the Braginskii’s equations [8] providing for

the first time in the 1960’s a collisional closure for the pressure tensor, friction forces and

heat fluxes for a highly magnetized plasma. However, the collisional closure presented

by Braginskii is derived for a simple electron-hydrogen plasma. In this contribution, we

worked on the multi-species extension of Braginskii like equations proposed by Zhdanov

[1]. This multicomponent closure based on Grad’s method has already been used in the

communinity [9, 10, 11]. It does not make assumptions on impurity concentration or

mass ratio in between the different species. It is thus of particular interest to simulate

reactor plasmas where a mix of Deuterium, Tritium and Helium ions takes place, the

species having quite similar mass and concentration.

In this contribution we apply Zhdanov closure to the code SOLEDGE3X-EIRENE

that implements a fluid model to describe the plasma either in 2D to make transport

simulations or in 3D to run turbulent or 3D-transport simulations. In a first part,

we present the multi-species SOLEDGE3X-EIRENE equations. In particular, a special

attention is paid to describe the multi-species closure terms. To do so, Zhdanov closure is

rewritten in a matricial form in order to relate the parallel heat fluxes (qαZ) and parallel

friction forces (RαZ) felt by one component of species α at charge state component Z,

because of parallel velocity (wβζ) and parallel temperature gradient (∇Tβζ) of a another

component of species β at charge state ζ. This relation takes the form:(
qαZ
RαZ

)
= MαZ,βζ ·

(
∇Tβζ
wβζ

)
(1)

The matrix M contains in particular parallel heat conductivities as well as coefficient

for thermal and drag forces.

Zhdanov closure is compared to Braginskii closure for a simple electron+hydrogen

plasma. Also, in order to check the consistency of Zhdanov closure, a comparison is

made between two simulations of a pure deuterium plasma: in the first one, deuterons

are considered as a single species (standard treatment); in the second one the deuteron

population is splitted into two different species. The total input power and particle

input being the same, the two simulations should give exactly the same results if the

coupling terms in between the two deuteron species are correct.

Finally, an example of application to a JET D-T fusion plasma is performed and

reported in the last section.
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2. Multi-component plasma SOLEDGE equations

The SOLEDGE3X has been developed in the past few years to address plasma-wall

interaction in tokamak plasmas taking into account the realistic wall geometry as much

as possible. It merges the codes SOLEDGE2D and TOKAM3X previously developed

by the same team. Thanks to immersed boundary condition methods [12], the code can

simulate the plasma up to the first wall while using a magnetic field aligned grid. The

physical model has been improved over the year to include neutrals via coupling the

code to EIRENE [13], drifts [14] and impurities [9] since the code can now handle an

arbitrary number of species. We denote by the subscript αZ the ion species of charged

number Z and of chemical element α. The subscript e is used for electrons.

2.1. Mass balance

For all ion species, the particle balance is given by:

∂tnαZ + ~∇ · (nαZ~vαZ) = SnαZ (2)

where the velocity vector ~vαZ is decomposed as

~vαZ = v‖,αZ~b+ ~vE + ~v?αZ + ~vpαZ + ~vaαZ (3)

where

• v‖,αZ is the parallel velocity along the magnetic field unit vector ~b = ~B/B

• ~vE =
~E× ~B
B2 is the E cross B drift velocity

• ~v?αZ =
~B×~∇pαZ
ZenαZB2 is the diamagnetic drift velocity

• ~vpαZ = − 1
nαZ

{
∂t~ωαZ + ~∇ ·

(
~v

(0)
αZ ⊗ ~ωαZ

)}
is the polarization drift with

~ωαZ =
mα

ZeB2

(
nαZ ~∇⊥φ+

1

Ze
~∇⊥pαZ

)
(4)

φ denoting the electric potential and where the first order velocity ~v
(0)
αZ is the species

velocity ~vαZ without the polarization drift.

• ~vaαZ = −DαZ
~∇⊥nαZ
nαZ

is the anomalous perpendicular velocity that is used to emulate

the turbulent transport when the code is used as a transport code. The diffusion

coefficient DαZ takes value from empirical considerations or reduced turbulence

models [15].

The volumic source term SnαZ describes particle sources and sinks due to ionization and

recombination processes. It takes the form

SnαZ = − nenαZ (〈σv〉iz,αZ + 〈σv〉rec,αZ)

+ nenαZ−1〈σv〉iz,αZ−1 + nenαZ+1〈σv〉rec,αZ+1 (5)

For ionization and recombination processes involving neutrals, the source term is

computed by EIRENE.
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No transport equation is solved for electron density. It is computed from plasma

quasineutrality assumption:

ne =
∑
α,Z

ZnαZ (6)

2.2. Parallel momentum balance

For each ion species, the following parallel momentum balance is solved:

∂t
(
mαnαZv‖,αZ

)
+ ~∇ ·

(
mαnαZv‖,αZ~vαZ

)
= −∇‖pαZ + ZenαZE‖

+ ~∇ ·
(
mαnαZναZ ~∇⊥v‖,αZ

)
+RαZ + S

v‖
αZ + Σ

v‖
αZ (7)

where νaαZ is the anomalous viscosity describing turbulent cross-field transport of parallel

momentum in shear layers (set to classical value when the code is used in 3D to solve

turbulence). The term RαZ is the parallel friction force resulting from elastic collisions

in between the different species. It can be decomposed as RαZ =
∑

βζ RαZ,βζ where

one exhibits the different contributions due to binary interactions between ion species

(α,Z) and ion species (β, ζ). The elastic collision processes conserve parallel momentum

giving RαZ,βζ + Rβζ,αZ = 0. Following Zhdanov closure, one can evaluate the friction

forces from different species temperature gradients and parallel velocities. The detail of

the closure is given in section 3. The volumic source term S
v‖
αZ accounts for momentum

exchange in between species in the ionization-recombination processes. It is given by:

S
v‖
αZ

mα

= − nenαZv‖,αZ (〈σv〉iz,αZ + 〈σv〉rec,αZ)

+ nenαZ−1v‖,αZ−1〈σv〉iz,αZ−1 + nenαZ+1v‖,αZ+1〈σv〉rec,αZ+1 (8)

Finally, the source term Σ
v‖
αZ accounts for other momentum exchange processes such as

charge exchange.

Parallel electron velocity is obtained from parallel current definition j‖ = −enev‖,e+∑
αZ ZnαZv‖,αZ where the parallel current is obtained by solving current balance (see

section 2.4. When the charge balance is not solved, one assumes j‖ = 0 (ambipolarity)

hence v‖,e = n−1
e

∑
αZ ZnαZv‖,αZ . We neglect electrons inertia which provides an

expression for the parallel electric field from electron parallel momentum equation:

0 = −∇‖pe − eneE‖ +Re or E‖ = −
∇‖pe
ene

+
Re

ene
(9)

2.3. Energy balance

For all species (including electrons), the “total” energy balance is solved where the

“total” energy is defined by

EαZ =
3

2
kBnαZTαZ +

1

2
mαnαZv

2
‖,αZ (10)

This quantity is not in fact the total energy since one could include in addition

perpendicular kinetic energy and electrostatic potential energy. The consequence of
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not considering these terms on the conservative form of the equation will be discussed

in the next paragraph. Moreover, in practice electron kinetic energy is neglected over

electron internal energy. The “total” energy equation is given by

∂tEαZ + ~∇ ·
(
EαZ~vαZ + pαZv‖,αZ~b+ qαZ~b

)
= ZenαZv‖,αZE‖

+ ~∇ ·
(

1

2
mαnαZναZ ~∇⊥v‖,αZ

)
+ ~∇ ·

(
kBnαZχαZ ~∇⊥TαZ

)
− pαZ ~∇ · ~v⊥,αZ + v‖,αZRαZ +QαZ + SEαZ + ΣEαZ (11)

where ~v⊥,αZ gathers all drifts velocities. The parallel heat flux is denoted qαZ and also

find an expression from Zhdanov closure that generalizes Spitzer-Härm heat conduction

closure. In the RHS, one introduces an anomalous perpendicular heat conductivity

χαZ that takes value from empirical considerations (set to classical value when the

code is used in 3D to solve turbulence). The term QαZ describes energy exchange

in between species due to collisions and is also expressed in the next section about

collisional closure. The volumic source term SEαZ denotes energy source ans sinks due

to ionization/recombination processes and takes the form:

SEαZ = − neEαZ (〈σv〉iz,αZ + 〈σv〉rec,αZ)

+ neEαZ−1〈σv〉iz,αZ−1 + neEαZ+1〈σv〉rec,αZ+1 (12)

Finally, the source term ΣEαZ denotes other volumic energy sources such as radiation

losses (for electrons), charge exchange energy losses or external heating.

2.4. Charge balance

Assuming quasineutrality, the charge balance reduces to

~∇ ·~j = 0 (13)

The current is decomposed as

~j = j‖~b+~j? +~jp (14)

where

• j‖ denotes the parallel current given by the generalized Ohm’s law:

j‖ = σ‖

(
−∇‖φ−

1

ene

(
∇‖pe −RT

e

))
(15)

σ‖ denoting the parallel electric conductivity and RT
e the thermal contribution of

the friction force. The parallel conductivity is a collisional term that requires a

closure. It is not discussed in this contribution.

• ~j? is the diamagnetic current given by ~j? =
∑

e,α,Z ZenαZ~v
?
αZ

• ~jp is the polarization current given by ~jp =
∑

α,Z ZenαZ~v
p
αZ
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Given the expression of the polarization velocity, one can show [14] that the current

balance can be rewritten as a vorticity equation where the vorticity Ω is defined by

Ω = ~∇·
(∑

α,Z Ze~ωαZ

)
where ~ωαZ is given by Equation 4. The vorticity equation takes

the form:

∂tΩ + ~∇ · ~FΩ = ~∇ ·
(
j‖~b+~j? + ζ ~∇⊥Ω

)
(16)

where the flux of vorticity ~FΩ is given by

~FΩ =
∑
α,Z

Ze~∇ · (~vαZ ⊗ ~ωαZ) (17)

A diffusion term is added in the vorticity Equation 16 to take into account anomalous

current and for stability reason. The diffusivity ζ takes either anomalous or classical

values depending whether the code is used as a transport code or as a turbulence code.

3. Zhdanov closure

The remarkable work of Zhdanov [1] consisted in extending the hydrogenic magnetized

plasma collisional closure to multi-component plasmas in the linear transport regime

under weak-field conditions. It provides in particular expressions for the above

mentioned friction forces RαZ , heat fluxes qαZ , energy coupling terms QαZ and plasma

conductivity σ‖. It does not make assumptions of trace impurities and all species are

treated on the same footing. However, it does not provide explicit formulation for each

of these terms. The species being intimately coupled between each other, the closure

takes the form of a linear system of equations linking the different species plasma fields

(in particular diffusion velocities and temperature gradients) to the quantities we want

to express, that is in particular friction forces and heat fluxes.

3.1. Friction forces and heat fluxes

First of all, most of the Zhdanov closure algebra is performed in the frame of the local

center of the mass, the velocity of which is given by

v‖ =

∑
αZmαnαZv‖,αZ∑

αZmαnαZ
(18)

In this frame, the peculiar velocity of the component is denoted wαZ = v‖,αZ − v‖. The

purpose of this section is to express the friction force RαZ and the heat flux qαZ‡ as a

linear combination of the different species parallel velocities and parallel temperature

gradients as already expressed by the matrix product presented in the introduction in

Equation 49. Several steps are required to express the matrix MαZ,βζ . First, physical

‡ Careful: In Zhdanov book [1], the heat flux for each species is denoted hαZ . The notation

qαZ in [1] refers to the heat flux in the centre of mass frame (see Equation 2.2.4 in [1]), that is
5
2pαZv‖ + qαZ = 5

2pαZv‖,αZ +hαZ , hence hαZ = qαZ − 5
2pαZwαZ (Equation 4.2.4 in [1]). In this paper,

we do not use the heat flux in the centre of mass frame and thus use the more common notation qαZ
for the heat flux instead of hαZ .
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quantites are defined for each chemical element, averaging over the different ionization

states:

• density: n̄α =
∑

Z nαZ

• effective kth power of charge (∀k ∈ N): Zk
α = n̄−1

α

∑
Z nαZZ

k

• velocity: w̄α =
∑

Z IαZwαZ where IαZ = nαZZ
2

n̄αZ2
α

• temperature gradient: ∇Tα = (n̄αZ1
α)−1

∑
Z ZnαZ∇TαZ

• pressure : p̄α =
∑

Z kBnαZTαZ

In particular, expressions for velocity and temperature can be re-written in the matrix

form: (
∇Tα
w̄α

)
= M1 ·

(
∇TβZ
wβZ

)
=

(
M11 0

0 M12

)
·

(
∇TβZ
wβZ

)
(19)

where M11 and M12 are Nchem×Nspec rectangular matrices (Nchem denoting the number

of chemical elements and Nspec the number of species considering all ionization states).

More precisely:

M11α,βZ =
nβZZ

n̄β
δαβ (20)

and

M12α,βZ = IβZδαβ. (21)

From the averaged velocities and parallel gradients are computed averaged heat

fluxes and averaged fifth order rank-1 fluid moments denoted r̄α from which the friction

forces will be computed later. The following set of reduced equations is the keystone of

Zhdanov closure:

5

2
n̄αkB∇Tα =

∑
β

[
5

2

µαβ
mα

Ḡ
(2)
αβ (w̄α − w̄β) + Ḡ

(5)
αβ

q̄α
pα

+Ḡ
(6)
αβ

q̄β
pβ

+
µαβ
kBT

(
Ḡ

(9)
αβ

r̄α
pα

+ Ḡ
(10)
αβ

r̄β
pβ

)]
(22)

0 =
∑
β

[
35

2

(
µαβ
mα

)2

Ḡ
(8)
αβ (w̄α − w̄β) + 7

µαβ
mα

(
Ḡ

(9)
αβ

q̄α
pα

+Ḡ
(10)
αβ

q̄β
pβ

)
+

mα

kBT
Ḡ

(11)
αβ

r̄α
pα

+
mβ

kBT
Ḡ

(12)
αβ

r̄β
pβ

]
(23)

It can be re-written in the matrix form as:

M2 ·

(
∇T β
w̄β

)
= M3 ·

(
q̄β
r̄β

)
(24)

where M2 is a square 2Nchem × 2Nchem matrix where the coefficients are given for all

[α, β] ∈ [1, Nchem]× [1, Nchem]:

• M2α,β = 5
2
n̄αkBδαβ
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• M2α+Nchem,β = 0

• M2α,β+Nchem
= −5

2

(∑
β
µαβ
mα
Ḡ

(2)
αβ

)
δαβ + 5

2

µαβ
mα
Ḡ

(2)
αβ

• M2α+Nchem,β+Nchem
= −35

2

(∑
β

(
µαβ
mα

)2

Ḡ
(8)
αβ

)
δαβ + 35

2

(
µαβ
mα

)2

Ḡ
(8)
αβ

The matrix M3 is also a square 2Nchem× 2Nchem matrix where the coefficients are given

for all [α, β] ∈ [1, Nchem]× [1, Nchem]:

• M3α,β =

(∑
β

Ḡ
(5)
αβ

pα

)
δαβ +

Ḡ
(6)
αβ

pβ

• M3α+Nchem,β =

(∑
β 7

µαβ
mα

Ḡ
(9)
αβ

pα

)
δαβ + 7

µαβ
mα

Ḡ
(10)
αβ

pβ

• M3α,β+Nchem
=

(∑
β
µαβ
kBT

Ḡ
(9)
αβ

pα

)
δαβ +

µαβ
kBT

Ḡ
(10)
αβ

pβ

• M3α+Nchem,β+Nchem
=

(∑
β
mα
kBT

Ḡ
(11)
αβ

pα

)
δαβ +

mβ
kBT

Ḡ
(12)
αβ

pβ

A few notations are introduced above. First, the plasma common temperature T is

defined as

T =

∑
αZ nαZTαZ∑
αZ nαZ

(25)

Secondly, the reduced mass µαβ = mαmβ/(mα + mβ). Then, the coefficients Ḡ
(n)
αβ ,

combinations of collision times and species masses, are given in Appendix A.

The heat flux qαZ for each ionization state can be computed from q̄α using Equation

26:

qαZ
pαZ
− q̄α
p̄α

= n̄ατατ
−1
αα c

(5)
α

(
Z2
α

Z2
∇TαZ −∇Tα

)
+ c(6)

α (wαZ − w̄α) (26)

The same kind of equation provides an expression for the fourth order moment rαZ :

rαZ
pαZ
− r̄α
p̄α

=
kBT

mαS
(11)
α

[
−7S(9)

α n̄ατατ
−1
αα c

(5)
α

(
Z2
α

Z2
∇TαZ −∇Tα

)
−
(
S(8)
α + 7S(9)

α c(6)
α

)
(wαZ − w̄α)

]
(27)

where the collision times, the coefficients S
(n)
α and c

(n)
α are given in Appendix A. Once

again, the above two equations can be re-written in the matrix form(
qαZ
rαZ

)
= M4 ·

(
q̄β
r̄β

)
+M5 ·

(
∇T β
w̄β

)
+M6 ·

(
∇Tβζ
wβζ

)
(28)

where

• M4 is a 2Nspec × 2Nchem rectangular matrix given by

M4 =

(
M41 0

0 M41

)
(29)

where ∀[αZ, β] ∈ Nspec ×Nchem one has M41αZ,β = pαZ/pβδαβ.
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• M5 is a 2Nspec × 2Nchem rectangular matrix given by

M5 =

(
M51 M52

M53 M54

)
(30)

where ∀[αZ, β] ∈ Nspec ×Nchem one has

M51αZ,β = − pαZ n̄ατατ−1
αα c

(5)
α δαβ (31)

M52αZ,β = − pαZc(6)
α δαβ (32)

M53αZ,β =
kBT

mαS
(11)
α

7S(9)
α pαZ n̄ατατ

−1
αα c

(5)
α δαβ (33)

M54αZ,β =
kBT

mαS
(11)
α

pαZ
(
S(8)
α + 7S(9)

α c(6)
α

)
δαβ (34)

• M6 is a 2Nspec × 2Nspec square matrix given by

M6 =

(
M61 M62

M63 M64

)
(35)

where ∀[αZ, βζ] ∈ Nspec ×Nspec one has

M61αZ,βζ = pαZ n̄ατατ
−1
αα c

(5)
α

Z2
α

Z2
δαZβζ (36)

M62αZ,βζ = pαZc
(6)
α δαZβζ (37)

M63αZ,βζ = − kBT

mαS
(11)
α

7S(9)
α pαZ n̄ατατ

−1
αα c

(5)
α

Z2
α

Z2
δαZβζ (38)

M64αZ,βζ = − kBT

mαS
(11)
α

pαZ
(
S(8)
α + 7S(9)

α c(6)
α

)
δαZβζ (39)

At last, the friction force RαZ is given by Equation (8.1.3) in [1]:

RαZ =
∑
β,ζ

[
Ḡ

(1)
αZβζ (wαZ − wβζ) +

µαβ
kBT

Ḡ
(2)
αZβζ

(
qαZ

mαnαZ
− qβζ
mβnβζ

)

+

(
µαβ
kBT

)2

Ḡ
(8)
αZβζ

(
rαZ

mαnαZ
− rβζ
mβnβζ

)]
(40)

giving in the matrix formulation:(
qαZ
RαZ

)
= M7 ·

(
∇Tβζ
wβζ

)
+M8 ·

(
qβζ
rβζ

)
(41)

where

• M7 is a 2Nspec × 2Nspec square matrix given by

M7 =

(
0 0

0 M71

)
(42)

with ∀[αZ, βζ] ∈ Nspec ×Nspec:

M71αZ,βζ = −Ḡ(1)
αZβζ +

(∑
β,ζ

Ḡ
(1)
αZβζ

)
δαZβζ (43)
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• M8 is a 2Nspec × 2Nspec square matrix given by

M8 =

(
I 0

M81 M82

)
(44)

with ∀[αZ, βζ] ∈ Nspec ×Nspec:

M81αZ,βζ = − µαβ
kBT

Ḡ
(2)
αZβζ

mβnβζ
+

(∑
β,ζ

µαβ
kBT

Ḡ
(2)
αZβζ

mαnαZ

)
δαZβζ (45)

M82αZ,βζ = −
(
µαβ
kBT

)2 Ḡ
(8)
αZβζ

mβnβζ
+

(∑
β,ζ

(
µαβ
kBT

)2 Ḡ
(8)
αZβζ

mαnαZ

)
δαZβζ(46)

Once all the above matrices calculated, that is the eight matrices M1 . . .M8, the

final matrix linking heat fluxes and friction forces to temperature gradients and velocities

can be calculated. From Equation 24, one finds(
q̄β
r̄β

)
= M3−1 ·M2 ·

(
∇T β
w̄β

)
(47)

Reporting in Equation 28 gives(
qαZ
rαZ

)
=
[
M4 ·M3−1 ·M2 +M5

]
·

(
∇T β
w̄β

)
+M6 ·

(
∇Tβζ
wβζ

)
(48)

Combining with Equation 19 and 41 finally gives the desired expression(
qαZ
RαZ

)
= MαZ,βζ ·

(
∇Tβζ
wβζ

)
(49)

where the matrix M is given by

M = M7 +M8 ·
[(
M4 ·M3−1 ·M2 +M5

)
·M1 +M6

]
(50)

Once each individual matrix computed, the final matrix M is quite straightforward to

obtain by matrix product. The only matrix inversion required implies the matrix M3

which is a relatively small 2Nchem × 2Nchem matrix. The direct numerical inversion can

be done easily with a linear solver such as LAPACK. Most of the numerical cost in the

matrix approach relies in fact in computing the different collision times and Zhdanov’s

collision coefficients Ḡ
(n)
αβ , S

(n)
α ...

4. Boundary conditions

SOLEDGE3X being based on a finite volume numerical scheme, setting the boundary

conditions consists in setting particle, momentum and energy fluxes on faces at the

boundary of the domain, in particular on the wall.
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4.1. Particle fluxes on the wall

Particle fluxes on the wall are given by the Bohm-Chodura boundary condition: the

particle flux on the wall is set to be greater or equal to the particle flux that would

result from a plasma flowing at sound speed in the direction parallel to the magnetic

field. This condition guarantees in particular that whatever the value and the orientation

of the drift velocities, the flux on the wall will always be a net outflux of particle. This

boundary condition can be summarized as

|~φn · ~nwall| ≥ |ncs~b · ~nwall| (51)

where ~φn denotes the particle flux. In the present implementation, every ion species

follows its own sound speed on the wall. For a collisional multi-component plasma,

other expression for the boundary condition exist in the litterature, in particular using

a common sound speed followed by all ion species on the wall [16]. These boundary

conditions will be considered for implementation in the future. In addition, one forces

∇‖n = 0 to set density in ghost cells on the wall.

4.2. Momentum fluxes on the wall

On the flux of momentum, one sets Neumann boundary conditions on parallel

momentum ∇‖v‖ = 0. The flux is not forced, one let the free streaming advected

flux on the wall.

4.3. Energy fluxes on the wall

The energy flux is set according to simplified sheath properties that link energy and

particle fluxes on the wall. The sheath transmission factor γ estimates the average

energy of the particles crossing the sheath electrostatic barrier. The total energy flux

on the wall is thus given by:

~φEα,se =

(
γαTα +

1

2
mαv

2
‖,α

)
~φnα,se (52)

A typical value for electron sheath tranmission factor is γe = 4.5 providing that only

the fast electron in the tail of the distribution can cross the sheath barrier. For ions,

a typical value for the sheath transmission factor is γi = 2.5 which is reminiscent from

the free streaming advected flux, the sheath letting all ions go through. Other values

can be found in the litterature [17] and improved sheath models should be implemented

in the future.

4.4. Current on the wall

In a similar fashion as the energy flux, the current on the wall can be set proportionaly

to the particle flux. The following expression is used:

~jwall = ~jsat

[
1− exp

(
1− φ

ΛTe

)]
(53)
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where the saturation current is given by ion saturation current ~jsat =
∑

α,Z Ze
~φnαZ .

5. Verification of the implementation

5.1. Verification of the operators

SOLEDGE3X is based on a finite-volume, flux surface aligned, multi-domain algorithm

[18]. In order to verify the implementation of the different operators, the method of

manufactured solution (MMS) is used [19]. It consists in comparing numerical solution

with an analytical solution. The method can be summarized as follow. Let us consider

an operator O to test (for instance advection, diffusion...). We consider the equation:

∂tX +O(X) = S (54)

A priori, the analytical steady-state solution X̃ associate to the arbitrary source S of

the system is not obvious since it requires inverting the operator X̃ = O−1(S). The

MMS propose simply to choose an analytical solution X̃MMS and compute to associated

source by a direct analytical computation SMMS = Oanalyt.(X̃MMS). One thus solves

numerically the system:

∂tX +O(X) = SMMS ≡ Oanalyt.(X̃MMS) (55)

which by construction admit X̃ = X̃MMS as a steady-state solution. In practice, we

choose a circular cross-section toroidal domain. We impose a steady-state analytical

solution for density, temperature and velocity fields based on trigonometric fonctions.

One initiates the plasma to the analytical steady-state solution and perform one time

step δt. The numerical departure from steady-state is measured and characterize the

error ε = ‖X−X̃MMS‖/δt. The numerical test is performed for different grid resolutions.

The error is expected to decrease accordingly to the order of the numerical scheme. The

MMS can be used with a regular grid (see Figure 1) or irregular grid to test the ability

of the code to deal with non-constant spatial discretization.

Figure 1. Description of regular and irregular grid used for meshing the circular

cross-section of the domain used for the MMS

The different operators are tested:
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Figure 2. Relative error as a function of grid resolution for advection operators. Left:

regular grid, Right: irregular grid.

• Parallel advection (Figure 2):

One finds a spatial discretization order between 2 and 3.

• Parallel diffusion (Figure 3):

Figure 3. Relative error as a function of grid resolution for parallel diffusion operators.

Left: regular grid, Right: irregular grid.

One finds a spatial discretization order of 2.

• Perpendicular diffusion (Figure 4):

One finds a spatial discretization order of 2.

5.2. Verification of the closure

Veryfing Zhdanov closure is not as simple as the verification of the operators described

in the previous paragraph. Indeed, a method of manufactured solution appear

quite cumbersome since Zhdanov closure does not provide an explicit formulation

for collisional terms. We propose here a “weak verification” of Zhdanov closure

implementation (and behavior). In order to verify the multi-species collisional closure,

a simple numerical test case is proposed. The simulation set-up consists in simulating a

pure Deuterium plasma in a circular limited configuration following three approaches (in

the following, if not explicitly written, all quantities are given in the MKS convention):
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Figure 4. Relative error as a function of grid resolution for perpendicular diffusion

operators. Left: regular grid, Right: irregular grid.

(i) As a reference case, one simulates a two fluids plasma of deuterons and electrons

where standard Braginskii closure is used, that is:

• For the friction force:

Re = −Ri = −mene
(
v‖,e − v‖,i

)
νmomei − 0.71ne∇‖Te (56)

where

νmomei = 1.45× 10−12 ln ΛneT
−3/2
e [s−1] (57)

where ne is expressed in m−3 and Te in eV .

• For the heat fluxes: qe = −κ0
eT

5/2
e ∇‖Te and qi = −κ0

D+T
5/2

D+∇‖TD+ where the

coefficient κ0
e is given by

κ0
e =

30692

ln Λ
≈ 2000

[
Wm−1eV−7/2

]
(58)

and

κ0
D+ =

1249

m
1/2
i ln Λ

≈ 60
[
Wm−1eV−7/2

]
(59)

where mi is expressed in amu and where the Coulomb logarithm is given by

the expression A.18 in the appendice. The expressions above are taken from

[17].

(ii) A two fluids plasma of deuterons and electrons is simulated with Zhdanov closure.

The purpose here is to see if the collisions between ions and electrons are well

treated by Zhdanov closure

(iii) A three fluids plasma of deuterons+deuterons+electrons where the deuterium ion

population is splitted into two different fluids. The purpose is to test Zhdanov

collisional closure between the two populations of deuterium.

The three cases are simulated on the same circular mesh plotted in Figure 5. The

simulation domain extends from the core flux surface located at r/a = 0.8 up to the

wall. On the core boundary, Dirichlet boundary conditions are used for temperature

(namely Te = TD+ = 50 eV ) as well as for density ne = nD+ = 2 · 1019 m−3.

For the third case where deuteron population is splitted into two fluids, one imposes
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nD+ = 1.2 · 1019 m−3 for the first one, nD+ = 0.8 · 1019 m−3 for the second one in

order to have the same total deuterium density. Homogeneous anomalous diffusivities

are considered: DD+ = 1 m2s−1, νD+ = 1 m2s−1 and χe = χD+ = 2 m2s−1. No

parallel flux limiters are considered. EIRENE is not used in this set of simulations so

sources due to neutrals are set to zero (no recycling). Figure 5 shows radial profiles of

density and temperature for ions and electrons at the outboard midplane. A very good

agreement is found between the three simulations: a maximum relative error of 1.4% is

found comparing the different density and temperature profiles (the error being defined

as ε = ‖X1−X2

X1
‖∞). An almost perfect match between electron density profiles show the

good overall agreement while ion density profiles show the fractionning of deuterium

density over the two fluids for the third case (iii). Concerning temperature, the four

deuterium temperature profiles collapses with each other. In particular, when deuterium

is splitted in two, the two fluids are found to have the same temperature (as could be

expected for any intensive physical quantity).

In the case where deuterium is splitted in two, it is interesting to notice that the

heat flux of a type of deuterium is given by a combination of the temperature gradients of

the two types of deuterium. In that sense, we notice that the matrix linking heat fluxes

and temperature gradient is not diagonal (see Equation B.4 in Appendix Appendix A).

Here is a example of decomposition:

qD+(1) = − 30T
5/2

D+(1)∇‖TD+(1) (60)

− 4.34T
5/2

D+(1)∇‖TD+(2)

qD+(2) = − 18.5T
5/2

D+(2)∇‖TD+(2) (61)

− 4.34T
5/2

D+(2)∇‖TD+(1)

Summing all contributions, one recovers the typical value κ0 = 57.2 for deuterium

when treated as a single species (see Equation B.2 in Appendix Appendix A). If this

decomposition seems quite artificial for this splitting of deuterium in two, it would be

of more interest when considering a mix of hydrogen isotopes, for instance a D-T mix.

In that case, Zhdanov closure gives the coefficients linking the deuterium and tritium

heat fluxes with deuterium temperature gradient and tritium temperature gradient

contributions. If the two species show different temperature profiles, the heat flux

computed by Zhdanov closure then differs from a simple Fourier law.

6. Example of applications: JET D-T plasma

6.1. Simulation setting

In this section, a typical application of multi-component plasma with hydrogen isotope

mixture is presented: a JET D-T plasma. Moreover, we include also Nitrogen which

is injected in the divertor to radiate in the edge and reduce the heat load at the strike

points.
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Figure 5. Inboard mid-plane profiles of electron and ion density and temperature.

The three simulation setups are plotted with different colors.

As a reference magnetic equilibrium, we used JET shot number 97395 which is a

high current (Ip = 3 MA), high power (Padd = PNBI + PICRH = 28 + 6 = 34 MW )

H-mode plasma scenario developped in 2017 in the framework of Eurofusion T17-07

experimental task “DT scenario extrapolation”, experiment M15-01 “Baseline scenario”.

The SOLEDGE3X-EIRENE mesh of the magnetic equilibrium is plotted on Figure 6

where both SOLEDGE (quadrangles) and EIRENE (triangles) grid are shown. The

radial extension in the core stops at r/a = 0.8.

The following settings are used for the simulation. We prescribe midplane
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Figure 6. SOLEDGE3X-EIRENE mesh based on JET #97395 equilibrium at

t = 50 s. Left: SOLEDGE3X mesh based on quadrangles grid extended to the wall.

Right: EIRENE grid based on triangles. Wall types are indentified with different

colors (green for Be, pink for W and dark blue for pumping surfaces, light blue for

subdivertor wall).

profiles for Deuterium density, Deuterium temperature and electron temperature in

the midplane. The code automatically adjust cross-field transport coefficients to match

these input profiles which for our test case come from HRTS data from JET #97395

where half electron density profile has been taken as a proxy for deuterium density

profile, considering in our case a 50/50 D-T mix. Cross-field transport coefficients are

assumed to be homogeneous on the flux surface (no poloidal dependence). Dirichlet

boundary conditions are set at the core boundary to force “experimental” values for

Deuterium and Tritium density as well as for electron temperature. For nitrogen, one

imposes zero flux. Fueling in the edge is performed by Deuterium and Tritium gas puff

near the inner strike point on high field side (HFS) vertical target (GIM 12). The gas

puff rate is set to 1022 e− · s−1 for Deuterium and Tritium. Finally, we inject Nitrogen

in the HFS private flux region (GIM 11) with a fixed puff rate ϕN = 1.4× 1022 e− · s−1.
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The location of gas puffs is plotted on Figure 9. The chamber wall is described by two

different materials: a tungsten area in the divertor with a recycling coefficient set to

1 for Deuterium, Tritium, and Nitrogen, a Beryllium area on the main chamber wall

with a recycling coefficient set to 0.99 for Deuterium, Tritium and Nitrogen. Pumping

surfaces are located in the subdivertor at the location of cryo pumps; their recycling

coefficient is set to 0.5 for Deuterium, Tritium and Nitrogen. The wall configuration is

plotted on Figure 6.

Figure 7 shows the radial dependence of transport coefficients on the low field side.

The well in diffusivity profiles near the separatrix implements the transport barrier

Figure 7. Transport coefficients used in JET D-T simulation. radial dependency at

the LFS midplane.

characteristic of H-mode plasmas. One assumes all ion species share the same value for

D and χ. One also assumes ν = D. Drifts are switch-off. Figure 8 shows a comparison

between simulation results and “experimental measurements” for main ions and electron

density and temperatures in the edge plasma for our reference JET shot #97395. The

experimental profile for electron density was assumed to be shared between Deuterium

and Tritium electrons (neglecting electrons from Nitrogen), hence the profile used as

input for Deuterium and Tritium density. The code properly matches the input profile

adjusting the profile for D that is why nD+nT profiles is in good agreeement with HRTS

measurements. However, the ne profile computed by the code is higher to the HRTS

data due to the extra electrons from Nitrogen. The Z effective around the separatrix

is found to be between around 3, see figure 9. The temperature profiles match more or

less the input profiles and remain in the experimental range. Figure 10 shows electron

density and temperature in the divertor. The plasma is partially detached on the high

field side.

6.2. Multi-component plasma analysis

Despite identical fueling properties for Deuterium and Tritium (same rate at same

location), identical recycling coefficient and identical radial transport coefficients, a
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Figure 8. Comparison between simulated electron density and temperature at the LFS

midplane with respect to experimental measurement in JET #97395 (High resolution

Thomson Scattering).

Figure 9. Z effective in the D+T+N H-mode simulation

significant discrepency can be found between the hydrogen isotopes radial profile in the

divertor, see Figure 11. More precisely, a lower abundance of Tritium with respect to

Deuterium is observed near the puff but a higher concentration of Tritium in the main

SOL. One can expect a higher Scrape-off layer width λn for tritium due to a lower sound

speed for this isotop. Hence, the behavior observed in the present simulation could be

very different if one uses a more complex boundary condition for the iosotop mixture (for

example a common sound speed for the mixture). The extra abundance of Deuterium

in the divertor is still under investigation. It must be noticed that the same albedo is

used on the pump for Deuterium and Tritium. A better model could be implemented

to match the different pumping efficiency between the two isotops.
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Figure 10. Left: electron density, right: electron temperature in the divertor.

Figure 11. Relative difference between deuterium and tritium density

Radial profiles of the nitrogen ions density at the LFS midplane are plotted on

Figure 12. One observes the presence of fully ionized Nitrogen N7+ quite far in the

scrape-off layer due to the slow recombination time compared with the radial transport

time.

The SOLEDGE3X-EIRENE code also returns radiation maps from the different

species. Several synthetic diagnostics are being implemented to help future comparison

with experiments such as bolometry or spectroscopy [20].

7. Conclusions

Zhdanov closure has been rewritten in a matrix form and implemented in the

SOLEDGE3X plasma code. It enables simulating complex multi-species plasma without

resorting to the trace impurity assumption. The closure has been tested on simple
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Figure 12. Radial profiles of plasma ion species at the outer midplane.

Figure 13. 2D maps of radiation for the different species.

plasma geometries and proves to be able to properly split a deuterium population in

two. The collisional closure being constistent, the deuterium splitted plasma behaves

the same way as a single deuterium species. The test was performed in 0D and in a

circular 2D plasma. Finally, an example of application to a complex Deuterium+Tritium
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plasma on JET including Nitrogen seeding illustrates the typical application of such a

closure to simulate multi-component plasma.
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Appendix A. Collision coefficients

Appendix A.1. Ḡ
(n)
αβ coefficients

The coefficients Ḡ
(n)
αβ used in Zhdanov system of Equations 22 and 23 are given by:

Ḡ
(n)
αβ =

∑
Z,ζ

Ḡ
(n)
αZβζ (A.1)

with

Ḡ
(1)
αZβζ = − λαZβζ (A.2)

Ḡ
(2)
αZβζ =

3

5
λαZβζ (A.3)

Ḡ
(3)
αZβζ = − 2

(
1 +

3

5

mβ

mα

)
λαZβζ (A.4)

Ḡ
(4)
αZβζ =

4

5
λαZβζ (A.5)

Ḡ
(5)
αZβζ = −

(
13

10

mβ

mα

+
8

5
+ 3

mα

mβ

)
καβλαZβζ (A.6)

Ḡ
(6)
αZβζ =

27

10
καβλαZβζ (A.7)

Ḡ
(8)
αZβζ = − 3

14
λαZβζ (A.8)

Ḡ
(9)
αZβζ =

3

5

(
23

28

mβ

mα

+
8

7
+ 3

mα

mβ

)
καβλαZβζ (A.9)

Ḡ
(10)
αZβζ = − 45

28
καβλαZβζ (A.10)

Ḡ
(11)
αZβζ = −

[
433

280

(
mβ

mα

)2

+
136

35

mβ

mα

+
459

35

+
32

5

mα

mβ

+ 5

(
mα

mβ

)2
]
κ2
αβλαZβζ (A.11)

Ḡ
(12)
αZβζ =

75

8
κ2
αβλαZβζ (A.12)

Ḡ
(13)
αZβζ =

(
18

35

mβ

mα

+
6

5

)
λαZβζ (A.13)
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Ḡ
(14)
αZβζ = − 24

35
λαZβζ (A.14)

Ḡ
(15)
αZβζ = −

(
51

35

(
mβ

mα

)2

+
37

7

mβ

mα

+
22

5
+ 4

mα

mβ

)
καβλαZβζ (A.15)

Ḡ
(16)
αZβζ =

24

7

mβ

mα

καβλαZβζ (A.16)

where

λαZβζ =
1

3
(2π)−3/2 nαZnβζe

4Z2ζ2µ
1/2
αβ

ln Λαβ

(kBT )3/2ε2
0

(A.17)

the Coulomb coefficient being given by

Λαβ =
12πε

3/2
0 kT

Zeffe2

[
kBT

nee2(1 + Zeff)

]1/2

(A.18)

Also

µαβ =
mαmβ

mα +mβ

(A.19)

καβ =
mαmβ

(mα +mβ)2
. (A.20)

Notice the differences in the coefficients for Ḡ
(14)
αZβζ and Ḡ

(16)
αZβζ , also mentioned in Ref. [21].

Appendix A.2. Collision times

The collision time between species (α,Z) and (β, ζ) is given by:

τ−1
αZβζ =

16π1/2

3
nβ

(γαZβζ
2

)3/2
(

Zζe2

4πε0µαβ

)2

ln Λαβ (A.21)

where

γαZβζ =
γαZγβζ
γαZ + γβζ

(A.22)

with

γαZ =
mα

kBTαZ
(A.23)

The collision time averaged over ionization states:

τ−1
αβ =

∑
Z,ζ

nαZτ
−1
αZβζ

nα
(A.24)

At last, the averaged collision time of species α:

τ−1
α =

∑
β

µαβ
mα

τ−1
αβ (A.25)
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Appendix A.3. The S
(n)
α and c

(n)
α coefficients

The coefficients denoted S
(n)
α by Zhdanov in [1] are given by

S(2)
α =

5

2

∑
β

µαβ
mα

Ḡ
(2)
αβ (A.26)

S(5)
α =

∑
β

Ḡ
(5)
αβ (A.27)

S(8)
α =

35

2

∑
β

(
µαβ
mα

)2

Ḡ
(8)
αβ (A.28)

S(9)
α =

∑
β

µαβ
mα

Ḡ
(9)
αβ (A.29)

S(11)
α =

∑
β

Ḡ
(11)
αβ (A.30)

c(5)
α =

5

2

τατ
−1
ααS

(11)
α

Dα

(A.31)

c(6)
α =

S
(2)
α S

(11)
α − S(8)

α S
(9)
α

Dα

(A.32)

where

Dα = S(5)
α S(11)

α − 7
(
S(9)
α

)2
(A.33)

Appendix B. Comparison between Deuterium+electrons and

Deuterium+Deuterium+electrons plasma

We report here the numerical value found applying Zhdanov closure to either a simple

deuterons + electrons plasma or the same plasma where the deuteron population is

splitted into two “classes” to make a deuterons (type 1) +deuterons (type 2) + electrons

plasma. The properties of the populations are summarized in table B1.

case ne[m
−3] nD1[m−3] nD2[m−3] Te[eV ] TD1[eV ] TD2[eV ]

1 2e19 2e19 50 50

2 2e19 1.2e19 0.8e19 50 50 50

Table B1. Properties of the two plasmas considered for comparison. The two plasmas

are virtually identical.

For the first case, the matrix linking heat fluxes, friction forces with temperature

gradients and velocities takes the numerical values given by Equations B.1 and B.2 .
q‖,e
q‖,D
R‖,e
R‖,D

 = MDe ·


∇‖Te
∇‖TD
v‖,e
v‖,D

 (B.1)
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where

MDe =


−2237T

5/2
e 0 3.22eneTe −0.71eneTe

0 −57.2T
5/2
D 0 2.5enDTD

−0.71ene 0 −0.51meneνe 0.51meneνe
0.71ene 0 0.51meneνe −0.51meneνe

 (B.2)

One recovers the typical values of the Braginskii’s closure.

For the second case, the matrix linking heat fluxes, friction forces with temperature

gradients and velocities takes the numerical values given by Equation B.3 and B.4.

q‖,e
q‖,D1

q‖,D2

R‖,e
R‖,D1

R‖,D2


= MDDe ·



∇‖Te
∇‖TD1

∇‖TD2

v‖,e
v‖,D1

v‖,D2


(B.3)

where

MDDe =



−2237T
5/2
e 0 0 3.22eneTe −0.43eneTe −0.28eneTe

0 −30.0T
5/2
D1 −4.34T

5/2
D1 0 2.72enD1TD1 −0.22enD1TD1

0 −4.34T
5/2
D2 −18.5T

5/2
D2 0 −0.33enD2TD1 2.83enD2TD2

−0.71ene 0 0 −0.51meneνe 0.31meneνe 0.2meneνe
0.43ene −0.13ene 0.13ene 0.31meneνe −9.2meneνe 8.9meneνe
0.28ene 0.13ene −0.13ene 0.21meneνe 8.9meneνe −9.1meneνe


(B.4)

In order to compare the two cases, if the plasma where deuterons are splitted into

two populations behave the same as the single deuteron case, one has for all intensive

quantities:

∇‖,D = ∇‖,D1 = ∇‖,D2 (B.5)

v‖,D = v‖,D1 = v‖,D2 (B.6)

and for all extensive quantities:

q‖,D = q‖,D1 + q‖,D2 (B.7)

R‖,D = R‖,D1 +R‖,D2 (B.8)

The matrix P given by

P =


1 0 0 0 0 0

0 1 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1

 (B.9)
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makes the link between the two cases following


q‖,e
q‖,D
R‖,e
R‖,D

 = P ·



q‖,e
q‖,D1

q‖,D2

R‖,e
R‖,D1

R‖,D2


and



∇‖Te
∇‖TD1

∇‖TD2

v‖,e
v‖,D1

v‖,D2


= P t·


∇‖Te
∇‖TD
v‖,e
v‖,D

(B.10)

If Zhdanov closure is consistent, a reduction of the “splitted deuterons” case into a

“single deuteron” case can be computed as

M̃De = P ·MDDe · P t (B.11)

The two approaches are compared computing the relative difference between the two

matrices:

ε = max
i,j

∣∣∣∣∣M̃De

ij
−M ij

De

M ij
De

∣∣∣∣∣ (B.12)

In our case, we found ε ≈ 10−11 which indicates a almost perfect agreement between

the two cases.


