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One-Shot Federated Conformal Prediction

Pierre Humbert 1 Batiste Le Bars 2 Aurélien Bellet 2 Sylvain Arlot 1

Abstract
In this paper, we introduce a conformal predic-
tion method to construct prediction sets in a one-
shot federated learning setting. More specifically,
we define a quantile-of-quantiles estimator and
prove that for any distribution, it is possible to
output prediction sets with desired coverage in
only one round of communication. To mitigate
privacy issues, we also describe a locally differ-
entially private version of our estimator. Finally,
over a wide range of experiments, we show that
our method returns prediction sets with coverage
and length very similar to those obtained in a
centralized setting. Overall, these results demon-
strate that our method is particularly well-suited
to perform conformal predictions in a one-shot
federated learning setting.

1. Introduction
Federated Learning (FL) is a recent paradigm that allows to
learn from decentralized data sets stored locally by multiple
agents (Kairouz et al., 2021). FL is particularly appealing
when data are highly sensitive and cannot be centralized for
privacy or security reasons. So far, the design of FL algo-
rithms has mainly focused on the training phase of machine
learning: the goal is to fit models on decentralized data sets
while minimizing the amount of communication or optimiz-
ing the privacy-utility trade-off (see e.g. McMahan et al.,
2017; Geyer et al., 2017; Li et al., 2020; Karimireddy et al.,
2020; Noble et al., 2022). However, FL poses further chal-
lenges regarding model evaluation, as this step must also be
done without access to centralized data. In particular, with
the increasing popularity of black-box methods, deploying
machine learning models in real-world applications often
requires to appropriately quantify the uncertainty of their
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predictions. Unfortunately, models trained with the above
supervised FL algorithms only provide point predictions
(e.g., class labels or regression targets). This is not suffi-
cient in high-stakes applications like medicine (Begoli et al.,
2019), where decisions may impact human lives.

In this work, we investigate the task of outputting a pre-
diction set rather than a single point prediction in a FL
setting. Formally, given some data stored by multiple agents
and an additional test point (X,Y ), we want to construct a
marginally valid set which is likely to contain the unknown
response Y . In other words, we want a set ˆ︁C(X) such that

P
(︁
Y ∈ ˆ︁C(X)

)︁
⩾ 1− α , (1)

where α ∈ (0, 1) is a desired miscoverage rate. Although
there exist several methods to construct such a set (Pa-
padopoulos et al., 2002; Vovk et al., 2005; Romano et al.,
2019), they require access to a centralized data set. They
are thus incompatible with the constraints of FL, in which
agents process their data locally and only interact with a
central server by sharing some aggregate statistics. Con-
structing a valid prediction set is even more challenging
in the one-shot FL (Zhang et al., 2012; Guha et al., 2019;
Yurochkin et al., 2019; Li et al., 2021; Dennis et al., 2021;
Salehkaleybar et al., 2021) that we consider in this work,
where the communication between the agents and the server
is further restricted to a single round. One-shot FL is moti-
vated by the fact that the number of communication rounds
is often the main bottleneck in FL (Kairouz et al., 2021).

Contributions. In this paper, we present an intuitive
one-shot FL method based on Conformal Prediction (CP)
(Vovk et al., 2005; Papadopoulos et al., 2002) to construct
distribution-free prediction sets satisfying (1). The key step
of CP methods is the ordering of scores computed for each
calibration data point. In the FL setting, this ordering step
is not possible without exchanging the local data sets or
performing many agent-server communication rounds. To
circumvent this problem, we define a quantile-of-quantiles
estimator: each agent sends to the server a local empirical
quantile and the server aggregates them by computing a
quantile of these quantiles. We describe how to choose the
order of the quantiles (depending on the number of agents
and the size of their local data sets) to obtain a prediction set
that satisfies (1). We also prove that property (1) can be ver-
ified conditionally to the observed data with a modification
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of the selected quantiles. While the previous results rely on
certain data homogeneity assumptions, we further quantify
the impact of heterogeneous (non-identically distributed)
data on the performance of our algorithm. To address use
cases with strong privacy constraints, we derive a version
of our approach that satisfies differential privacy (Dwork
et al., 2014), in which agents run the exponential mecha-
nism to privately select their local quantile. Finally, we
empirically evaluate the performance of our method on stan-
dard CP benchmarks and show that it produces prediction
sets that are very close to the ones obtained when data are
centralized.

2. Background and Related Work
2.1. Split Conformal Prediction

Conformal Prediction (CP) is a framework to construct
distribution-free prediction sets satisfying (1) (Vovk et al.,
2005). One of the most popular methods to perform CP in
a centralized setting is the split conformal (Papadopoulos
et al., 2002) which is at the core of our main contribution
described in Section 3.

To use the split conformal method (split CP), we first need to
choose a score function s : X×Y → R, which measures the
magnitude of a predictor error for a given point. Whether we
are in the regression or classification setting, many different
score functions exist in the literature (see e.g. Angelopou-
los & Bates, 2023). In regression, for instance, a common
choice is the fitted absolute residual Si ≜ s(Xi, Yi) =

|Yi − ˆ︁f(Xi)| where ˆ︁f is some predictor learned on a train-
ing data set. Note that our approach does not assume a
particular choice of score function, so throughout the paper,
we keep the function s abstract. Then, we split the data
Dn+ntr

= {(X1, Y1), . . . , (Xn+ntr
, Yn+ntr

)} into a cali-
bration set Dcal

n = {(X1, Y1), . . . , (Xn, Yn)} and a train-
ing set Dtr

ntr
= {(Xn+1, Yn+1), . . . , (Xn+ntr

, Yn+ntr
)}

with n, ntr ⩾ 1. The predictor ˆ︁f is fitted on Dtr
ntr

and
conformity scores Scal

n ≜ {S1, . . . , Sn} are calculated on
Dcal

n via the previously chosen score function s. Finally,
given a test point X and α ∈ (0, 1), we construct the con-
formal set

ˆ︁C(X) =
{︂
y ∈ R : s(X, y) ⩽ ˆ︁Q(⌈(n+1)(1−α)⌉)(Scal

n )
}︂
,

where ˆ︁Q(·)(·) is defined by

ˆ︁Q(k)(S ′) = ˆ︁Q(k) ≜

{︄
S′
(k) if k ⩽ |S ′|

∞ otherwise ,
(2)

with |S ′| the size of the sample S ′, and S′
(1) ⩽ . . . ⩽ S′

(|S′|)
the order statistics of the scores S′

1, . . . , S
′
|S′| in S ′. In other

words, ˆ︁Q(k) outputs the k-th smallest value in a given set of

scores. The following theorem proves that the set returned
by the split CP method satisfies (1) under mild assumptions.

Theorem 2.1 (Vovk et al., 2005; Lei et al., 2018). For any
n, ntr ⩾ 1, let us consider n+ ntr i.i.d. (or only exchange-
able) random variables (X1, Y1), . . . , (Xn+ntr , Yn+ntr )
from X × Y and an additional test point (X,Y ). For any
score function s and any α ∈ (0, 1), the set returned by the
split CP method satisfies

P
(︂
Y ∈ ˆ︁C(X)

)︂
⩾ 1− α .

Furthermore, if S1, . . . Sn are almost surely distinct, this
probability is upper bounded by 1− α+ 1/(n+ 1).

Although the first CP methods were the split and the re-
lated full methods (Papadopoulos et al., 2002; Vovk et al.,
2005), many extensions based upon them have been pro-
posed recently. In regression, Lei et al. (2018) present a
method called locally weighted CP and provide theoretical
insights for conformal inference. More recently, Romano
et al. (2019) have developed a variant of the split CP called
Conformal Quantile Regression (CQR). Other recent alter-
natives have been proposed (Kivaranovic et al., 2020; Sesia
& Romano, 2021; Gupta et al., 2022; Ndiaye, 2022). We
refer to Vovk et al. (2005), Angelopoulos & Bates (2023)
and Fontana et al. (2023) for in-depth presentations of CP.

2.2. Related Work in Federated Learning

As already mentioned, FL methods are today mostly focused
on the training part of the learning process (i.e., fitting ˆ︁f
to the data). Nevertheless, a few recent works have consid-
ered other types of FL problems that can be related to our
work. The closest related work is the one of Lu & Kalpathy-
Cramer (2021) which, to the best of our knowledge, is the
only paper claiming to perform conformal prediction in
the FL setting. Their idea is to locally calculate the quan-
tiles ˆ︁Q(⌈(n+1)(1−α)⌉) for all agents and to average them in
the central server. Unfortunately, they do not prove that
their prediction set has valid coverage. Furthermore, their
method is non-robust, especially when the size of local data
sets is small, and their experiments (and ours, in Section
5) suggest that this set is generally too large. We show in
the next sections that by considering a quantile-of-quantiles
instead of an average of quantiles, the method we propose
addresses these limitations. Gauraha & Spjuth (2021) pro-
pose an ensemble-based CP approach that can be performed
in a distributed setting. However, they assume that a shared
calibration set is available on the central server, which is
unrealistic in FL. Finally, we can also mention recent works
on federated evaluation of classifiers (Cormode & Markov,
2022), federated quantile computation (Andrew et al., 2021;
Pillutla et al., 2022), and on uncertainty quantification with
Bayesian FL (El Mekkaoui et al., 2021; Kotelevskii et al.,
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2022) which, although related to our work, do not study CP
and do not allow to obtain coverage guarantees.

3. Quantile-of-Quantiles for Federated CP
In this section, we present a method to perform conformal
prediction in a one-shot FL setting (Guha et al., 2019; Zhang
et al., 2012), where only one round of communication from
the agents to the central server is allowed.

3.1. Setup and Objective

Consider a set of m ∈ N∗ agents, with their own local data,
that seek to collaborate in order to compute a valid predic-
tion set. For simplicity, we suppose that each agent has
exactly n calibration data points, and refer to Appendix A.1
for the case where agents have calibration sets of different
sizes. We also assume that the predictor ˆ︁f is given in ad-
vance: for instance, it could be learned on a separate set of
data points using standard FL algorithms such as FedAvg
(McMahan et al., 2017). We therefore only focus on the cal-
ibration of the prediction set and not on the training step. As
a consequence, in the following, all theoretical statements
are made conditionally on ˆ︁f (often implicitly).

Formally, each agent j ∈ {1, . . . ,m} holds a local calibra-
tion data set S(j) ≜ (S

(j)
1 , . . . , S

(j)
n ) composed of n scores,

where S
(j)
i = s(X

(j)
i , Y

(j)
i ) is the score associated to the

i-th calibration data point of agent j and we want to find
a particular value ˆ︁q such that for a test point (X,Y ), the
set ˆ︁C(X) = {y ∈ R : s(X, y) ⩽ ˆ︁q} contains the unknown
response Y with probability at least 1−α. In the centralized
case, the split CP method presented in Section 2.1 requires to
order all the scores and to choose ˆ︁q as the ⌈(mn+1)(1−α)⌉
smallest score. In one-shot FL, this global ordering step
is only possible if the agents send their whole list of local
scores to the server. This naive implementation of the split
CP method is impractical, due to both privacy concerns and
unacceptable communication costs, requiring us to design
another strategy. As a single round of communication is
allowed, the main difficulty is to choose what should be sent
from the agents to the server, and what kind of aggregation
should be done by the server to yield the desired coverage.

3.2. Main Contribution: FedCP-QQ

Our method is based on the idea that each agent j should
return a quantile of its local scores S(j), in the same way as
for the split CP method described in Section 2.1. The main
questions that then arise are (i) which quantile of the scores
the agents should send, and (ii) how to aggregate them at the
central server level. Lu & Kalpathy-Cramer (2021) propose
to use an empirical average, but this aggregation strategy is
not satisfactory. This is obvious in the extreme case where

n = 1 (a single data point per agent): it amounts to calcu-
lating the average of the local scores, which typically fails
to provide the desired coverage (1). Instead, we propose
to select a quantile of the locally computed quantiles. This
quantile-of-quantiles estimator is defined below.

Definition 3.1 (Quantile-of-quantiles). For any (ℓ, k) in
J1, nK × J1,mK, the Quantile-of-Quantiles (QQ) estimator
is defined by

ˆ︁Q(ℓ,k) ≜ ˆ︁Q(k)

(︂ ˆ︁Q(ℓ)(S(1)), . . . , ˆ︁Q(ℓ)(S(m))
)︂

, (3)

where ˆ︁Q(·)(·) is defined by Equation (2).

In words, QQ takes for each agent the ℓ-th smallest local
score and then takes the k-th smallest value of these scores.
This requires a single round of communication and thus
fits the constraints of one-shot FL. The associated plug-in
prediction set is

ˆ︁Cℓ,k(X) =
{︂
y ∈ R : s(X, y) ⩽ ˆ︁Q(ℓ,k)

}︂
. (4)

Our objective is now to find (ℓ, k) such that P(Y ∈ ˆ︁Cℓ,k(X))
is closest possible to 1 − α while being guaranteed to be
above. To this aim, we derive the following result.

Theorem 3.2. Let {(X(j)
i , Y

(j)
i )}m,n

i,j=1 and (X,Y ) be i.i.d.

random variables (given ˆ︁f ). For any (ℓ, k) ∈ J1, nK ×
J1,mK we have:

P
(︂
Y ∈ ˆ︁Cℓ,k(X)

)︂
⩾ Mℓ,k ≜

1− 1

mn+ 1

m∑︂
j=k

(︃
m

j

)︃ n∑︂
I1,j=ℓ

ℓ−1∑︂
Ic
1,j=0

(︁
n
i1

)︁
· · ·
(︁
n
im

)︁(︁
mn

i1+···+im

)︁ ,
(5)

where I1,j = {i1, . . . , ij} and Ic1,j = {ij+1, . . . , im}.

Moreover, when the associated scores {S(j)
i }n,mi,j=1 and

S ≜ s(X,Y ) have continuous c.d.f, (5) is an equality.

The proof is given in Appendix C.1. This theorem shows
that we can lower bound the probability of coverage of our
quantile-of-quantiles prediction set by a quantity Mℓ,k that
does not depend on the data distribution but only on m, n, ℓ
and k. Furthermore, the lower bound becomes an equality
when scores have a continuous c.d.f. This is the case, for
instance, with the fitted absolute residual when the condi-
tional distribution of Y given X has a continuous c.d.f., i.e.,
when the noise distribution is atomless. Note that although
the theorem requires the data points to be i.i.d., in fact only
the scores need to satisfy this hypothesis (conditionally toˆ︁f ). This is interesting since there are situations where the
scores are i.i.d. even though data distributions are different
across agents. In Section 3.5, we further discuss the impact
of data heterogeneity across agents, an important aspect of
many FL applications.
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Algorithm 1 FedCP-QQ
Input: Local scores {S(j)}mj=1, α,M (see Equation (5))

(ℓ∗, k∗)←− argmin
ℓ,k
{Mℓ,k : Mℓ,k ⩾ 1− α}

for j = 1, . . . ,m do
Agent j sends ˆ︁Q(ℓ∗)(S(j)) to the central server

end for
Central server returns ˆ︁Q(k∗)

(︂ ˆ︁Q(ℓ∗)(S(1)), . . . , ˆ︁Q(ℓ∗)(S(m))
)︂

Based on Theorem 3.2, our algorithm returns ˆ︁Q(ℓ∗,k∗) with

(ℓ∗, k∗) = argmin
ℓ,k

{Mℓ,k : Mℓ,k ⩾ 1− α} . (6)

By construction, the associated set (4) is marginally valid,
in the sense that it satisfies the desired coverage (1). The
full procedure, called Federated Conformal Prediction with
Quantile-of-Quantiles (FedCP-QQ), is summarized in Al-
gorithm 1.

Particular cases. To gain more intuition on our
FedCP-QQ procedure, let us consider the two extreme cases
n = 1 and n → ∞. When n = 1, each agent sends its
unique score to the server. Thus, by Theorem 2.1, it suf-
fices for the server to compute the k-th smallest score with
k = ⌈(m + 1)(1 − α)⌉ to obtain a valid set. In the other
extreme case where n → ∞, if the agents send their ℓ-th
smallest score with ℓ = ⌈(n+1)(1−α)⌉, each agent has in
fact sent the true quantile of order (1−α) of the distribution
of S. The server can therefore choose any of these values
and obtains a valid set. We see that in both cases, if both
the agents and the server compute appropriate quantiles, we
can obtain a valid set. Our method extends this idea to any
values of m and n using Theorem 3.2 and Equation (6). In
Appendix A.3, we study another interesting specific case
where each machine sends its maximum value, i.e., ℓ = n.

Computational optimizations. The brute-force compu-
tation of Mℓ,k in Equation (5) for all (ℓ, k) can be quite
costly in practice. To accelerate this step, we describe in
Appendix A.2 an efficient way to compute Mℓ,k, based on
the calculation of rectangular probabilities of a multivariate
hypergeometric distribution.

We also note that M = (Mℓ,k)(ℓ,k)∈J1,nK×J1,mK or (ℓ∗, k∗)
can be precomputed and reused across multiple executions
of FedCP-QQ. Indeed, as M and (ℓ∗, k∗) are independent
from the distribution of the data (Theorem 3.2), they do not
change as long as m (the number of agents) and n (the size
of local data sets) remain fixed. This is the case for instance
when computing prediction sets for multiple score functions
s, predictors ˆ︁f , and miscoverage rates α on the same data.

Figure 1. Comparison of the exact value of P(Y ∈ ˆ︁Cℓ∗,k∗(X)) =
Mℓ∗,k∗ (blue) with the upper bound either when data are central-
ized (orange) or when there is only one agent (red). Parameters
are α = 0.1,m = {5, 20}, and n = {10, . . . , 100}.

3.3. Upper Bound on the Probability of Coverage

While by construction our probability of coverage is nec-
essarily lower bounded by 1 − α, it is also interesting to
have an upper bound, guaranteeing that the coverage of our
prediction set is not too large. In the centralized case, if
the scores have a continuous c.d.f., the split CP method
with a calibration set of size mn gives P(Y ∈ ˆ︁C(X)) ⩽
1− α+ 1/(mn+ 1) (Theorem 2.1). This means that when
there is only one agent (or when agents do not collaborate),
this probability is upper bounded by 1− α+ 1/(n+ 1).

Assuming that the scores have a continuous c.d.f., in Fig-
ure 1 we compare the two upper bounds with the value
of Mℓ∗,k∗ = P(Y ∈ ˆ︁Cℓ∗,k∗(X)) returned by FedCP-QQ.
Recall that, by Theorem 3.2, Mℓ∗,k∗ is equal to the exact
coverage of ˆ︁Cℓ∗,k∗(X). Figure 1 shows that FedCP-QQ re-
turns prediction sets with coverage (in blue) comparable
to the (tight) upper bound of the centralized case with mn
calibration points (in orange). We also see that the coverage
is much larger if we consider the data of a single agent (in
red), which illustrates the advantage of our method and the
need for collaboration between the agents.

The form of our quantile-of-quantiles estimator does not
allow us to extend the proof techniques of the centralized
framework and obtain a theoretical upper bound similar to
the one of Theorem 2.1. Nevertheless, the results obtained
in Figure 1 make us conjecture that an upper bound could
be of the same order as in the centralized framework, i.e., in
1− α+O(1/(mn+ 1)).

3.4. Conditional Coverage Guarantee

In practice, we are interested in the coverage rate for test
points when the data set is fixed. However, the guarantee
in (1) does not address this as the probability is also taken
over the (calibration) data. In other words, it bounds the
miscoverage rate on average over all possible calibration
data points (and over a training set if ˆ︁f is learned). Instead,
we can define the conditional miscoverage rate as a function
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of the calibration data:

αP (Dmn) = P
(︂
Y /∈ ˆ︁Cℓ,k(X) | ˆ︁f,Dmn

)︂
, (7)

with Dmn the full calibration set without the test point
(Y,X). While, by construction of ˆ︁Cℓ,k(X), the expecta-
tion of αP (Dmn) is smaller than α, the random variable
αP (Dmn) may have a high variance. In particular, it is pos-
sible to construct a scenario where P (αP (Dmn) = 1) =
α and P (αP (Dmn) = 0) = 1− α (Bian & Barber, 2022).

Here, we have E[αP (Dmn)] = α but a non-negligible pro-
portion of calibration data sets might result in a poor con-
ditional coverage even though the average coverage is still
1− α. In practice, we want to have αP (Dmn) ≈ α with a
probability close to 1 to avoid this unfavorable scenario.

In the following theorem, we show that it is possible to
control the conditional miscoverage of FedCP-QQ.

Theorem 3.3. In the framework of Theorem 3.2, if δ ∈
(0, 0.5] and ℓ · k ⩾ (1− α) ·mn, then the conditional mis-
coverage rate—defined by Eq. (7)—is controlled as follows:

P

(︄
αP (Dmn) ⩽ α+

√︃
log(1/δ)

2mn

)︄
⩾ 1− δ . (8)

Theorem 3.3 is proved in Appendix C.2. It states that the
probability that a particular data set results in a conditional
miscoverage rate much higher than α vanishes with the
number of data points used for calibration. A similar bound
is obtained in the centralized setting (Vovk, 2012; Bian &
Barber, 2022) for the split method. However, note that
Theorem 3.3 holds only for couples (ℓ, k) verifying a condi-
tion not necessarily verified by the couple (ℓ∗, k∗) used by
FedCP-QQ. Nevertheless, our experiments suggest that this
could still be true for (ℓ∗, k∗), up to a slight modification of
the bound. However, similarly to the upper bound on the
probability of coverage (see Section 3.3), the proof of this
statement is difficult because it requires to study the rank ofˆ︁Q(ℓ,k) in the full data set which, contrary to the centralized
case, is a random variable. In the proof of Theorem 3.3,
we rely on an almost sure lower bound for this rank, which
is conservative and negatively impacts the final result. In
the centralized case, the rank is almost surely fixed and this
greatly simplifies the theoretical analysis.

3.5. Impact of Heterogeneous Data

An important challenge in FL is to deal with data hetero-
geneity across agents (Li et al., 2020; Kairouz et al., 2021;
Le Bars et al., 2023). This heterogeneity can yield differ-
ent distributions of scores across agents and thus affects
the coverage of the set returned by CP methods. To better
understand these effects, we no longer assume that all the
variables are drawn from the same distribution. Instead, we

only suppose that the local data points of agent j are drawn
i.i.d. from an agent-specific distribution with a test point
also drawn from a potentially different distribution.

As we do not have any information on the underlying dis-
tributions of the scores, we study how data heterogeneity
affects the coverage of the set returned by FedCP-QQ, i.e.,
we quantify how much we lose in coverage if we apply the
same strategy as in the i.i.d. case. Intuitively, the more the
distributions of the scores {S(j)}j are similar and close to
the one of S, the less we lose in coverage. This is made
precise in the following result.

Proposition 3.4. Assume that the calibration data
{(X(j)

i , Y
(j)
i )}m,n

i,j=1 and the test point (X,Y ) are such that,

given ˆ︁f , the corresponding scores {S(j)
i }n,mi,j=1, S are inde-

pendent, and that for every j ∈ J1,mK, {S(j)
i }ni=1 are i.i.d.

Let {˜︁S(j)
i }n,mi,j=1,

˜︁S be i.i.d. random variables (given ˆ︁f ). De-

fine, for every j ∈ J1,mK, p∗j (S) = P(S(j)
(ℓ⋆) ⩽ S|S) and

p̃∗(˜︁S) = P(˜︁S(1)
(ℓ⋆) ⩽

˜︁S|˜︁S). Then, we have

P
(︁
Y ∈ ˆ︁Cℓ⋆,k⋆(X)

)︁
⩾ 1− α

− E
[︃
dTV

(︂
PoisBin

(︁
p∗(S)

)︁
, Bin

(︁
m, p̃∗(˜︁S))︁)︂]︃ ,

where dTV(·, ·) is the total-variation (TV) distance, PoisBin
the Poisson-Binomial distribution and Bin the binomial
distribution.

Proposition 3.4 is proved in Appendix C.3. The general
idea of this result is that when variables are i.i.d., probabil-
ities on order statistics only depend on the c.d.f. of a cer-
tain binomial distribution, whereas when the variables are
independent but with different distributions, the binomial
needs to be replaced by a Poisson-Binomial distribution.
The inequality indicates that, in the heterogeneous case, the
coverage is reduced by the TV distance between the two dis-
tributions. We note that this distance can be upper bounded
in specific cases (see Appendix C.3) and that it is equal to
0 when all the data are i.i.d and S = ˜︁S. We leave to future
work the precise characterization of cases where the TV
distance is negligible in front of 1− α.

4. Differentially Private FedCP-QQ
While FL methods are often informally claimed to mitigate
privacy issues, they still leak information about the local
data sets during the execution of the algorithm. In the case
of FedCP-QQ, it is easy to see how revealing a particular
quantile of the local score distribution may leak sensitive in-
formation. In this section, we propose a privacy-preserving
version of FedCP-QQ based on Differential Privacy (DP)
(Dwork et al., 2014), a mathematical notion of privacy that
essentially requires that the output distribution of a random-
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Algorithm 2 Differentially Private Quantile
Input: Scores (S1, . . . , Sn) ∈ Rn, quantile q ∈ (0, 1), privacy
level ε > 0, bins {I1, . . . , IB}
for i = 1, . . . , n do

Compute the discretized score S̄i = eb such that Si ∈ Ib
end for
for b = 1, . . . , B do

Compute the weight wb = max
{︂

|{i:S̄i<eb}|
q

, |{i:S̄i>eb}|
1−q

}︂
end for
∆q ←− max{ 1

q
, 1
1−q
}

Output: Bin eb with probability e
− εwb

2∆q /
∑︁B

b′=1 e
−

εw
b′

2∆q

Algorithm 3 FedCP2-QQ
Input: Local scores {S(j)}mj=1, miscoverage level α, M (see
Equation (5)), privacy level ε > 0, bins {I1, . . . , IB}, γ ∈
(0, 1)

The server finds (ℓγ , kγ) as in FedCP-QQ (Algorithm 1) with
coverage level 1−α

1−γα

q ←− max
{︂

ℓγ+ℓcor
n

, 1
2

}︂
with ℓcor from Eq. (10)

for j = 1, . . . ,m do
Agent j sends ˆ︁Qε

j , the output of Alg. 2 with S(j), to the
server.
end for
Output: The server orders ˆ︁Qε

1, . . . , ˆ︁Qε
m and outputs the kγ-th

value denoted ˆ︁Qε
(kγ).

ized algorithm is not too sensitive to a small modification
of the input data set. In particular, we consider the strong
Local DP (LDP) model where agents do not trust the central
server and must locally privatize the messages they send.

Formally, for any ε > 0, a randomized algorithm A is said
to be ε-LDP if for any two local data sets S and S ′ that
differ in a single data point (we call them neighboring), and
any set of possible outputs O, we have:

P
(︁
A(S) ∈ O

)︁
⩽ exp (ε)P

(︁
A(S ′) ∈ O

)︁
. (9)

A smaller ε therefore yields a better privacy. In our specific
framework, S and S ′ correspond to two neighboring cali-
bration data sets of an agent j and A(S) to the information
sent by j to the central server.

Our approach builds upon the (centralized) differentially pri-
vate quantile mechanism recently introduced by Angelopou-
los et al. (2022) and summarized in Algorithm 2. The main
idea is to apply the exponential mechanism (McSherry &
Talwar, 2007) to a discretization of the scores into bins and
with an appropriate choice of utility function. It requires
to fix a number of bins B ∈ N, an upper bound on the
scores Smax and a set of points 0 = e0 < e1 < · · · <
eB−1 < eB = Smax defining the bins Ib = (eb−1, eb]. Al-
gorithm 2 is ε-DP by a direct application of the exponential
mechanism with utility function wb and sensitivity ∆q .

FedCP2-QQ method. Our private algorithm, called Fed-
erated Conformal Private Prediction (FedCP2)-QQ, is an
extension of FedCP-QQ (Algorithm 1) with two key modi-
fications: (i) exact local quantile computations are replaced
by calls to DP Quantile (Algorithm 2), and (ii) the orders of
client and server-level quantiles are adjusted to guarantee
the desired coverage. More precisely, if the central server
asks for the ℓ-th smallest score of each agent, then the agents
use Algorithm 2 to return a randomized bin around the true
quantile ˆ︁Q(ℓ)(S(j)). To achieve the desired coverage 1− α
despite the randomness due to privacy, the server computes
(ℓγ , kγ) such that P(S ⩽ ˆ︁Q(ℓγ ,kγ)) is above but close to
1−α
1−γα , where γ ∈ (0, 1) is a free parameter. Because the
agents might return bins smaller than the one of the re-
quested ℓγ-th score, the central server further compensates
by asking agents for their (ℓγ + ℓcor)-th smallest score with

ℓcor =

⌈︃
2

ε
log

(︃
B

1− (1− γα)
1
m

)︃⌉︃
. (10)

Note that the smaller the privacy parameter ε (more privacy),
the bigger the correction ℓcor. At first sight, one could think
that B should be taken small to reduce the correction. In
practice, it should also be taken sufficiently large to avoid
aggressive rounding that could lead to a large final prediction
set. We refer to Angelopoulos et al. (2022, Section 4.2) for
an in-depth discussion on the selection of the number of
bins B. The following theorem ensures that Algorithm 3
preserves privacy and allows to construct prediction sets
that satisfy the desired coverage. The proof is given in
Appendix C.4.

Theorem 4.1. For any ε > 0, Algorithm 3 satisfies ε-LDP.
Moreover, denoting ˆ︁Cε(X) = {y ∈ R : s(X, y) ⩽ ˆ︁Qε}
with ˆ︁Qε the output of the algorithm, we have

P
(︁
Y ∈ ˆ︁Cε(X)

)︁
⩾ 1− α .

Choosing γ. Intuitively, in order to be equivalent to the
non-private FedCP-QQ, γ should tend to 0 and the privacy
parameter ε should tend to infinity. To select γ automatically
for any given ε > 0, we propose a grid-search strategy. We
look for the γ that brings the smallest amount of correction,
which we evaluate using the pre-computed table M . More
precisely, for a given γ, we evaluate Mℓγ+ℓcor,kγ

which is
the coverage obtained by the non-private FedCP-QQ esti-
mator ˆ︁Q(ℓγ+ℓcor,kγ). Note that this coverage is not the one of
our private estimator since each agent might return a score
smaller than the (ℓγ+ℓcor)-th smallest. To find the best γ, we
look at the one that brings the smaller coverage Mℓγ+ℓcor,kγ

over the grid. To gain more intuition on the degree of correc-
tion brought by the additional randomness of the private set-
ting, we represent in Figure 2 the quantity Mℓγ+ℓcor,kγ

found
for the best γ and for different values of n and ε. This plot
shows how fast the correction decreases as n and ε increase.
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Figure 2. Degree of compensation Mℓγ+ℓcor,kγ for different values
of α, n and ε when m = 10. We clearly observe that Mℓγ+ℓcor,kγ

tends to the desired coverage 1−α (dashed lines) as n and ε tends
to +∞, which means that the compensation vanishes.

Privacy amplification by shuffling or aggregation. To
achieve better privacy-utility trade-offs, it is common in FL
to relax the LDP model and instead assume that the agents’
messages are sent to a secure computation function whose
output is received by the central server. This is sometimes
referred to as Distributed DP (Kairouz et al., 2021). Two
standard secure computation primitives are compatible with
FedCP2-QQ: secure shuffling (Feldman et al., 2021) and
secure aggregation (Bonawitz et al., 2017). Secure shuffling
outputs a random permutation of the messages, which still
allows the server to compute the desired quantile. For secure
aggregation (which outputs the sum of the messages), each
agent can encode its private quantile as a one-hot vector
of size B indicating the corresponding bin. The sum of
these vectors is then sufficient for the server to find the bin
corresponding to the kγ-th smallest score. In both cases,
ε is reduced by a factor of O(1/

√
m). In other words, if

one of the previous privacy amplification schemes is used,
we can replace ε by ε

√
m (up to a constant) and therefore

reduce the correction ℓcor by a factor O(
√
m), while still

satisfying the same privacy guarantees. Detailed privacy
amplification formulas are provided by Feldman et al. (2021)
and McMillan et al. (2022).

Remark 4.2. FedCP2-QQ provides privacy guarantees
with respect to the calibration data. To provide privacy
guarantees with respect to the data used to train the model,
one should train the model using locally differentially pri-
vate algorithms (see e.g. Geyer et al., 2017; McMahan et al.,
2018; Noble et al., 2022). Note that the training and cal-
ibration data sets are disjoint, and that FedCP2-QQ only
post-processes the private model to compute the calibra-
tion scores. Therefore, if model training satisfies ε1-LDP
and FedCP2-QQ satisfies ε2-LDP, the full pipeline satisfies
max(ε1, ε2)-LDP thanks to parallel composition.

5. Experiments
In this section, we evaluate FedCP-QQ on synthetic and real
regression data sets. Additional experiments on unbalanced
data sets and on FedCP2-QQ are presented in Appendices
A.1 and B.2. The code of our two methods is available at
https://github.com/pierreHmbt/FedCP-QQ.

Figure 3. Prediction intervals on simulated data with
FedCP-QQ (ours), centralized, and FedCP-Avg calibra-
tions. The lower bound of the set returned by FedCP-Avg is
beyond the figure.

Depending on the experiments, we use the split CP method
presented in Section 2 or its popular variant Conformalized
Quantile Regression (CQR) (Romano et al., 2019), which
is directly compatible with our approach. For split CP, ˆ︁f
is a standard regressor, the score function s is s(X,Y ) =

|Y − ˆ︁f(X)|, and the resulting prediction set is an interval
of constant length [ ˆ︁f(X) ± q̂]. In CQR, ˆ︁f is replaced by
a couple ( ˆ︁fα/2, ˆ︁f1−α/2) where ˆ︁fβ is a quantile regressor
of order β (Koenker & Bassett Jr, 1978) and s(X,Y ) =

max( ˆ︁fα/2(X)−Y, Y − ˆ︁f1−α/2(X)). In contrast to split CP,
CQR returns sets of the form [ ˆ︁fα/2(X)− q̂, ˆ︁f1−α/2(X)+ q̂]
which have a size adaptive to heteroscedasticity.

For both split CP and CQR, we use FedCP-QQ to find the
value of ˆ︁q (calibration step). We compare it with the central-
ized baseline (Equation 2) and FedCP-Avg, the federated
approach proposed by Lu & Kalpathy-Cramer (2021). Re-
call that the latter simply averages the m quantiles of order
⌈(n+ 1)(1− α)⌉/n sent by the agents (see Section 2.2).

5.1. Synthetic Data

Data set. We draw 2000 independent, univariate random
variables Xi from a uniform distribution on [1, 5]. Following
Romano et al. (2019), the response variable is sampled as

Yi |Xi ∼ Pois(sin2(Xi) + 0.1) + 0.03 ·Xiε1,i

+ 25 · 1 {Ui < 0.01} ε2,i ,

where Pois(λ) is the Poisson distribution with mean λ, ε1,i
and ε2,i are i.i.d. standard Gaussian variables, and Ui is
uniform on the interval [0, 1]. Note that the last term of
the equation can generate outliers. Then, we split the data
set into two disjoint subsets: one for training and one for
calibration. To simulate a FL scenario, the calibration set
is divided into m = 50 disjoint subsets of size n = 20.
Finally, we generate a test set of size 5000 with the same
properties.

We construct the prediction sets using the CQR approach
where the estimation of the (quantile) regression function
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Figure 4. Empirical coverages of prediction intervals (α = 0.1) constructed by various methods. On the left, when m≫ n. On the right,
when m≪ n. Our method FedCP-QQ is shown in bold font. The white circle represents the mean.

is made with quantile regression forests (Meinshausen &
Ridgeway, 2006). The number of trees in the forest is set
to 1000, the two parameters controlling the coverage rate
on the training data are tuned using cross-validation and
the remaining hyperparameters are set as done by Romano
et al. (2019).

Results. Figure 3 illustrates the performance of the differ-
ent methods when α = 0.1. We see that the set returned
by FedCP-QQ when the data are decentralized is almost
identical to the one obtained when the data are central-
ized. This is not the case for FedCP-Avg which outputs
a larger set. This may be due to the presence of outliers
in the data and because the mean (the server aggregation
strategy for FedCP-Avg) is not robust. On the contrary, by
using a quantile function to aggregate the agents’ quantiles,
FedCP-QQ is robust to outliers and produces smaller yet
valid sets. In the next subsection, we show that the same
behavior is observed on real data sets.

5.2. Real Data

Data sets. We evaluate our method on five public-domain
regression data sets also considered by Romano et al. (2019)
and Sesia & Romano (2021): physicochemical properties
of protein tertiary structure (bio) (Rana, 2013); bike sharing
(bike) (Fanaee-T & Gama, 2013); communities and crimes
(community) (Redmond, 2011); Tennessee’s student teacher
achievement ratio (star) (Achilles et al., 2008); and concrete
compressive strength (concrete) (Yeh, 1998).

In this section, we use (i) split-CP with ridge regression—
the regularization parameter is tuned by cross-validation;
(ii) CQR with quantile Regression Forests (RF)—the hyper-
parameters are the ones used in Section 5.1; and (iii) CQR
with Neural Networks (NN) for quantile regression (Taylor,
2000)—the architecture and the parameters are those used

by Romano et al. (2019).

The prediction sets, with a miscoverage rate fixed to α =
0.1, are either calibrated with CP in the centralized setting
or in a FL setting using FedCP-QQ and FedCP-Avg. For
each experiment, we split the full data set into three parts:
a training set (40%), a calibration set (40%), and a test
set (20%). To simulate a FL scenario, we also split the
calibration set in m disjoint subsets of equal size n. We
consider scenarios where m ≫ n, and m ≪ n. Their
exact values for each data set are given in Appendix B.1.
All features are then standardized to have zero mean and
unit variance. For each method, we compute the empirical
coverage obtained on the test set and the average length of
the conformal set. These two metrics are collected over 20
different training-calibration-test random splits.

Results. Figure 4 displays the boxplots of the empirical
coverages obtained by each method over all the data sets
and all the 20 different random splits (one point represents
the empirical coverage obtained on one random split of one
data set). Results on individual data sets are presented in
Appendix B.1, as well as boxplots of the lengths of the
intervals obtained. The first observation we can make is
that, on average (white circle), FedCP-QQ does return in-
tervals whose coverage is greater than 0.90 (the desired
coverage), without being too far from it. More importantly,
our method returns prediction sets with coverage and length
very similar to those returned by centralized calibration. In
Figure 4 for instance, we see that the mean (white circle)
and standard-deviation (size of the box) of the coverages
obtained with FedCP-QQ and the centralized baseline have
comparable values, with a slightly larger standard-deviation
for FedCP-QQ. The same kind of observation can be made
concerning the length of the prediction sets (see figures
in Appendix B.1). Finally, it is interesting to note that,

8



One-Shot Federated Conformal Prediction

with FedCP-QQ, we obtain similar results for m ≫ n and
m ≪ n. This is in contrast to FedCP-Avg, which yields
sets with higher coverages and lengths on all data sets and
is therefore strictly inferior to our method. Note that Ap-
pendix B.2 provides additional results about our DP algo-
rithm FedCP2-QQ, showing how the coverage varies with
the privacy parameter ε. Overall, these experiments support
the fact that FedCP-QQ is a well-suited method to perform
the calibration step of CP in a decentralized setting, placing
it as the only one adapted to the context of (one-shot) FL.

6. Discussion
This paper introduces the method Federated Conformal Pre-
diction with Quantile-of-Quantiles (FedCP-QQ) to output
valid distribution-free prediction sets in a one-shot Federated
Learning context. In addition to the analysis and discussion
about the different properties of our method, we also intro-
duce FedCP2-QQ, a private version of FedCP-QQ based on
Local Differential Privacy. Multiple experiments highlight
that our method returns prediction sets with coverage and
length close to those returned in a centralized setting, sup-
porting the fact that FedCP-QQ is a well-suited method for
(one-shot) FL scenarios.

This work brings many important future research directions.
Among them, we expect that new proof techniques could
lead to better theoretical guarantees, notably regarding con-
ditional coverage and the private estimator. Our paper fo-
cuses on the calibration step, making it particularly suited
for split-based conformal methods. However, it would be in-
teresting to study how our FL approach could be extended to
the full conformal or the nested conformal methods (Gupta
et al., 2022). Finally, an interesting line of research is the
derivation of specific estimators for cases where local data
sets are not identically distributed.
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Appendix

A. Supplementary Discussions
A.1. FedCP-QQ with Different ni

In the main article, we assumed for simplicity that all agents had the same amount of data n. Our method is in fact
generalizable to the case where the agents have data sets of different sizes n1, . . . , nm. In this case, the random variables
( ˆ︁Q(ℓ)(S(1)), . . . , ˆ︁Q(ℓ)(S(m))) are no longer identically distributed as they are computed on data sets of different sizes.
Hence, we need to use the cdf of INID data—see (Balakrishnan, 2007, Equation (16)). The right-hand side of Equation (5)
becomes

Mℓ1,...,ℓm,k = 1− 1

n1 + · · ·+ nm + 1

m∑︂
j=k

∑︂
A∈Pj

na1∑︂
i1=ℓa1

· · ·
naj∑︂

ij=ℓaj

ℓaj+1
−1∑︂

ij+1=0

· · ·
ℓam−1∑︂
im=0

(︁na1
i1

)︁
· · ·
(︁
nam
im

)︁(︁
n1+···+nm

i1+···+im

)︁ ,

where Pj is the set of subsets of {1, . . . ,m} of size j, A = {a1, . . . , aj} ∈ Pj , and Ac = {aj+1, . . . , am} such that
a1 < a2 < . . . < aj and aj+1 < aj+2 < . . . < am. It can be computed in the same way as for the case where
n1 = · · · = nm = n (see Appendix A.2). An important difference that appears if we want to apply the methodology of
FedCP-QQ presented in the paper is that we now have to find different values for ℓ1, . . . , ℓm since the local sample sizes are
different. Although possible, computing Mℓ1,...,ℓm,k for all possible values of (ℓ1, . . . , ℓm, k) to find the smallest one above
1− α can be very time-consuming.

In practice, we propose to directly fix ℓj = ⌈(1−α)(nj +1)⌉ as it would be similarly done in the classical (centralized) split
methodology. Hence, the previous probability function only needs to be computed for the different values of k = 1, . . . ,m,
thereby reducing significantly the computation at the cost of being slightly less close to 1− α. Note that this strategy can
also be used in the context of the main paper, i.e., when nj = n and ℓj = ℓ.

We made an additional experiment with such unbalanced data sets using the setting of the synthetic experiments but with
different sizes for each local data set. We set ℓj = ⌈(1 − α)(nj + 1)⌉ and find the value of k such that the coverage is
greater than 0.9. Results are displayed in Figure 5 and, as expected, the coverage is respected.

Figure 5. Prediction intervals on simulated data (unbalanced case) with FedCP-QQ (ours), centralized, and FedCP-Avg calibrations. The
lower bound of the set returned by FedCP-Avg is beyond the figure.

A.2. Computation of Equation (5)

Let us recall that the right-hand side of Equation (5) is

Mℓ,k = 1− 1

mn+ 1

m∑︂
j=k

(︃
m

j

)︃ n∑︂
i1=ℓ

· · ·
n∑︂

ij=ℓ

ℓ−1∑︂
ij+1=0

· · ·
ℓ−1∑︂
im=0

(︁
n
i1

)︁
· · ·
(︁
n
im

)︁(︁
mn

i1+···+im

)︁ = 1− 1

mn+ 1

m∑︂
j=k

(︃
m

j

)︃ n∑︂
I1,j=ℓ

ℓ−1∑︂
Ic
1,j=0

(︁
n
i1

)︁
· · ·
(︁
n
im

)︁(︁
mn

i1+···+im

)︁ ,

where I1,j = {i1, . . . , ij} and Ic1,j = {ij+1, . . . , im}. The time complexity of its brute-force computation is too high. In
this section, we therefore provide an efficient algorithm to compute it. In the first step, we rewrite the summations to bring
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Figure 6. Heat-map representation of (Mℓ,k)1⩽ℓ⩽n,1⩽k⩽m for m = 10 and n = 20.

out the mass function of a multivariate hypergeometric distribution:

n∑︂
I1,j=ℓ

ℓ−1∑︂
Ic
1,j=0

(︁
n
i1

)︁
· · ·
(︁
n
im

)︁(︁
mn

i1+···+im

)︁ =
∑︂
r∈R̃j

n∑︂
I1,j=ℓ

ℓ−1∑︂
Ic
1,j=0

(︁
n
i1

)︁
· · ·
(︁
n
im

)︁(︁
mn

i1+···+im

)︁ 1{i1 + · · ·+ im = r}⏞ ⏟⏟ ⏞
mass of a multivariate hypergeometric distribution

, (11)

with R̃j = {jℓ, . . . , jn+ (m− j)(ℓ− 1)}. The summation in I1,j , and Ic1,j therefore computes rectangular probabilities
and can be rewritten as follows

pr(a,b) ≜ P(a1 ⩽ H1 ⩽ b1, · · · , am ⩽ Hm ⩽ bm) ,

where (ai, bi) =

{︄
(ℓ, n) if i ∈ {1, . . . , j}
(0, ℓ− 1) if i ∈ {j + 1, . . . ,m} ,

and (H1, . . . ,Hm) follows a multivariate hypergeometric distribution with parameters ({n, . . . , n}, r). By a direct applica-
tion of Bayes’ theorem we obtain (Lebrun, 2013, Equations (2) and (5)):

pr(a,b) = P

(︄
m∑︂
i=1

Ti = r

)︄ ∏︁m
i=1 P(ai ⩽ Wi ⩽ bi)

P(
∑︁m

i=1 Wi = r)
,

where for any t ∈ (0, 1) and for all 1 ⩽ i ⩽ m, the random variables Wi follow a binomial distribution B(n, t) and
Ti = (Wi | ai ⩽ Wi ⩽ bi) follows a truncated binomial distribution.

As there exists efficient algorithms to compute both P(ai ⩽ Wi ⩽ bi) and P(
∑︁m

i=1 Wi = r), the only difficulty remains the
evaluation of P(

∑︁m
i=1 Ti = r). One approach is to multiply the generating probability functions of the Ti and then extract

the coefficient of degree r. This algorithm has a time complexity of O(mr log(r)) if the multiplications are done using an
FFT based algorithm. This strategy still remains costly for large values of m or r, and more advanced algorithms have been
proposed by Lebrun (2013).

Note finally that since Mℓ,k is a non-decreasing function of both ℓ and k, one can find (ℓ∗, k∗) without computing Mℓ,k for
all values of (ℓ, k). Figures 6 and 7 illustrate that Mℓ,k actually needs to be computed for only a few values of (ℓ, k).

A.3. Reporting the Maximum of Each Agent

Another particular case of interest is when ℓ = n, i.e., agents send their maximum value. Using the fact that the c.d.f. of the
maximal value of n i.i.d random variables with common c.d.f. F is Fn, it is possible to give a simpler formula for Mn,k.

Proposition A.1. For every m,n ⩾ 1 and k ∈ J1,mK, we have

Mn,k =
Γ(k + 1/n)

Γ(k)
· Γ(m+ 1)

Γ(m+ 1/n+ 1)
,

where Mn,k is defined by Eq. (5) and Γ is the Gamma function: for any complex number z such that ℜ(z) > 0, Γ(z) =∫︁ +∞
0

tz−1e−tdt.
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Figure 7. Values of (Mℓ,k)1⩽ℓ⩽n,1⩽k⩽m when (m,n) = (5, 10) (Left panel) and (10, 20) (Right panel). One color per value of k.

Furthermore, when k = km ≜ ⌈m(1− α)n⌉, we have

lim
m→∞

P
(︂
Y ∈ ˆ︁Cn,km

(X)
)︂
⩾ 1− α .

Proposition A.1 is proved in Appendix C.5. It shows that when each agent sends the maximum to the central server, by
taking the km-th smallest value of these maximums with km ⩾ m(1− α)n, the server obtains a valid coverage of (1− α).
Note that for a fixed m, km decreases to 0 when n grows to infinity. This is expected since, intuitively, if the number of
points per agent increases, the maximums also increase, and the server must compensate by taking a very small quantile of
these values to obtain a coverage close to (1− α).

B. Additional Experimental Results
B.1. Results on Individual Data Sets

We present in Figures 8 to 17 the results of the experiments of Section 5.2 on individual data sets.
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Figure 8. Coverage (left) and average length (right) of prediction intervals for 20 random training-calibration-test splits. The miscoverage
is α = 0.1, and the calibration set is split into m = 100 disjoint subsets of equal size n = 10. The white circle represents the mean and
the name of the data set is located at the top of each plot.
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Figure 9. Coverage (left) and average length (right) of prediction intervals for 20 random training-calibration-test splits. The miscoverage
is α = 0.1, and the calibration set is split into m = 10 disjoint subsets of equal size n = 100. The white circle represents the mean and
the name of the data set is located at the top of each plot.
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Figure 10. Same as Figure 8 (see its caption) with m = 100 and n = 10.
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Figure 11. Same as Figure 9 (see its caption) with m = 10 and n = 100.
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Figure 12. Same as Figure 8 (see its caption) with m = 80 and n = 10.
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Figure 13. Same as Figure 9 (see its caption) with m = 10 and n = 80.
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Figure 14. Same as Figure 8 (see its caption) with m = 80 and n = 10.
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Figure 15. Same as Figure 9 (see its caption) with m = 10 and n = 80.
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Figure 16. Same as Figure 8 (see its caption) with m = 40 and n = 10.
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Figure 17. Same as Figure 9 (see its caption) with m = 10 and n = 40.
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B.2. Experiments with Differential Privacy

For the sake of completeness, we also evaluate the quality of our private algorithm FedCP2-QQ described in Section 4 on
the bio and bike data sets with m = 5 and n = 200. The predictor is a quantile RF, the number of bins is set to B = 100,
Smax is fixed to the largest score (no clipping), and ε = 10, 5, 1.

Figure 18 displays the empirical coverages obtained over 20 different random splits. As expected from Theorem 4.1, we
observe that on average the desired coverage at 0.90 is well satisfied. However, we also see that the coverages become quickly
conservative as the privacy parameter ε decreases. This suggests that the different corrections introduced to compensate
for the extra randomness due to privacy may be overly strong. Finally, we note that these results would be significantly
improved with the privacy amplification strategies discussed in Section 4.
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bio
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Figure 18. Empirical coverages of prediction intervals (α = 0.1) constructed by FedCP-QQ and its private version FedCP2-QQ for
ε = 10, 5, 1. On top, coverages for the bio data set, and, on the bottom for the bike data sets. The white circle represents the mean.

C. Proofs
C.1. Proof of Theorem 3.2

The proof of our results heavily relies on order statistics. We refer to David & Nagaraja (2004) for an in-depth presentation.
We begin by recalling the following important result.
Lemma C.1. Let X1, . . . , Xn be some i.i.d. sample drawn from a continuous distribution with c.d.f. FX and density fX . If
we denote by X(1) ⩽ · · · ⩽ X(n) the corresponding ordered sample, for every ℓ ∈ J1, nK, the c.d.f. and density of X(ℓ) are
respectively given by

FX(ℓ)
(x) =

n∑︂
i=ℓ

(︃
n

i

)︃
FX(x)i

[︁
1− FX(x)

]︁n−i
,

fX(ℓ)
(x) =

n!

(ℓ− 1)!(n− ℓ)!
fX(x)FX(x)ℓ−1

[︁
1− FX(x)

]︁n−ℓ
.

We can now prove Theorem 3.2.

First, remark that if, conditionally to ˆ︁f , (X(1)
1 , Y

(1)
1 ), . . . , (X

(m)
n , Y

(m)
n ), (X,Y ) are i.i.d., then, conditionally to ˆ︁f , the

associated scores S(1)
1 , . . . , S

(m)
n , S are i.i.d. We denote by FS their c.d.f. (given ˆ︁f ), and make the proof conditionally to ˆ︁f .

We know that F−1
S is non-decreasing and that if U ∼ U[0,1], F

−1
S (U) has the same distribution as S (given ˆ︁f ). Therefore, if

U
(1)
1 , . . . , U

(m)
n , U are independent with a uniform distribution over [0, 1], and independent from the data, and if

U(ℓ,k) ≜ ˆ︁Q(k)

(︂ ˆ︁Q(ℓ)

(︂
{U (1)

i , i = 1, . . . , n}
)︂
, . . . , ˆ︁Q(ℓ)

(︂
{U (m)

i , i = 1, . . . , n}
)︂)︂

denotes the corresponding QQ estimator, then F−1
S (U(ℓ,k)) has the same distribution as ˆ︁Q(ℓ,k) (given ˆ︁f ). We obtain that

P
(︂
Y ∈ ˆ︁C(X) | ˆ︁f)︂ = P

(︂
S ⩽ ˆ︁Q(ℓ,k) | ˆ︁f)︂ = P

(︂
F−1
S (U) ⩽ F−1

S (U(ℓ,k)) | ˆ︁f)︂ ⩾ P
(︂
U ⩽ U(ℓ,k) | ˆ︁f)︂ . (12)

Furthermore, if FS is continuous, F−1
S is increasing, and

P
(︂
F−1
S (U) ⩽ F−1

S (U(ℓ,k)) | ˆ︁f)︂ = P
(︂
U ⩽ U(ℓ,k) | ˆ︁f)︂ . (13)
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Therefore, it remains to treat the uniform case. By Lemma C.1, we have

FU(ℓ,k)
(t) =

m∑︂
j=k

(︃
m

j

)︃
FU(ℓ)

(t)j
[︁
1− FU(ℓ)

(t)
]︁m−j

=

m∑︂
j=k

(︃
m

j

)︃[︄ n∑︂
i=ℓ

(︃
n

i

)︃
ti(1− t)n−i

]︄j [︄
1−

n∑︂
i=ℓ

(︃
n

i

)︃
ti(1− t)n−i

]︄m−j

=

m∑︂
j=k

(︃
m

j

)︃[︄ n∑︂
i=ℓ

(︃
n

i

)︃
ti(1− t)n−i

]︄j [︄ℓ−1∑︂
i=0

(︃
n

i

)︃
ti(1− t)n−i

]︄m−j

since 1 =

n∑︂
i=0

(︃
n

i

)︃
ti(1− t)n−i =

ℓ−1∑︂
i=0

(︃
n

i

)︃
ti(1− t)n−i +

n∑︂
i=ℓ

(︃
n

i

)︃
ti(1− t)n−i ,

hence we get that

FU(ℓ,k)
(t) =

m∑︂
j=k

(︃
m

j

)︃ n∑︂
i1=ℓ

· · ·
n∑︂

ij=ℓ

ℓ−1∑︂
ij+1=0

· · ·
ℓ−1∑︂
im=0

(︃
n

i1

)︃
· · ·
(︃
n

im

)︃
ti1+···+im(1− t)mn−(i1+···+im) .

As a consequence, we obtain

P
(︁
U(ℓ,k) ⩽ U

)︁
= E

[︁
FU(ℓ,k)

(U)
]︁

=

∫︂ 1

0

FU(ℓ,k)
(t)dt

=

∫︂ 1

0

m∑︂
j=k

(︃
m

j

)︃ n∑︂
i1=ℓ

· · ·
n∑︂

ij=ℓ

ℓ−1∑︂
ij+1=0

· · ·
ℓ−1∑︂
im=0

(︃
n

i1

)︃
· · ·
(︃
n

im

)︃
ti1+···+im(1− t)mn−(i1+···+im)dt

=

m∑︂
j=k

(︃
m

j

)︃ n∑︂
i1=ℓ

· · ·
n∑︂

ij=ℓ

ℓ−1∑︂
ij+1=0

· · ·
ℓ−1∑︂
im=0

(︃
n

i1

)︃
· · ·
(︃
n

im

)︃
B (i1 + · · ·+ im + 1,mn− (i1 + · · ·+ im) + 1) ,

where

B : (a, b) ∈ (0,+∞)2 ↦→
∫︂ 1

0

ta−1(1− t)b−1dt

denotes the Beta function. The identity
(︃
a

b

)︃
=

1

(a+ 1)B(b+ 1, a− b+ 1)
, with a = mn and b = (i1+ · · ·+ im), implies

that P
(︁
U(ℓ,k) ⩽ U

)︁
= 1−Mn,k, hence

P
(︁
U ⩽ U(ℓ,k)

)︁
= Mn,k . (14)

By Eq. (12), we obtain that
P
(︂
Y ∈ ˆ︁Cℓ,k(X) | ˆ︁f)︂ ⩾ Mn,k

almost surely, hence Eq. (5) by integrating this inequality. When FS is continuous, Eq. (13) and (14) show that

P
(︂
Y ∈ ˆ︁Cℓ,k(X) | ˆ︁f)︂ = Mn,k ,

hence the result.

C.2. Proof of Theorem 3.3

First, let us remark that
∑︁m

j=1

∑︁n
i=1 1

{︂
S
(j)
i ⩽ ˆ︁Q(ℓ,k)

}︂
is almost surely greater or equal to ℓ · k by definition of ˆ︁Q(ℓ,k).

Now, following the proof of Bian & Barber (2022, Theorem 1), by definition of the FedCP-QQ method, we have{︁
Y ∈ ˆ︁Ck,ℓ(X)

}︁
=
{︂
S ⩽ ˆ︁Q(ℓ,k)

}︂
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⊇

⎧⎨⎩
m∑︂
j=1

n∑︂
i=1

1
{︂
S
(j)
i < S

}︂
<

m∑︂
j=1

n∑︂
i=1

1
{︂
S
(j)
i ⩽ ˆ︁Q(ℓ,k)

}︂⎫⎬⎭
⊇

⎧⎨⎩
m∑︂
j=1

n∑︂
i=1

1
{︂
S
(j)
i < S

}︂
< ℓ · k

⎫⎬⎭
=

⎧⎨⎩
m∑︂
j=1

n∑︂
i=1

1
{︂
S
(j)
i ⩾ S

}︂
⩾ mn− ℓ · k

⎫⎬⎭
=

{︃
F̄mn(S) ⩾

mn− ℓ · k
mn

}︃
,

where F̄mn(S) is the right-tail empirical c.d.f of the {S(j)
i }n,mi,j=1 at S. Note that this is a random variable in both the data

set and S. We now have

αP (Dmn) = P
(︂
Y /∈ ˆ︁Cℓ,k(X)

⃓⃓ ˆ︁f,Dmn

)︂
⩽ P

(︃
F̄mn(S) < 1− ℓ · k

mn

⃓⃓⃓⃓ ˆ︁f,Dmn

)︃
= P

(︃
F̄mn(S) + F̄S(S)− F̄S(S) < 1− ℓ · k

mn

⃓⃓⃓⃓ ˆ︁f,Dmn

)︃
⩽ P

(︃
F̄S(S) ⩽ 1− ℓ · k

mn
+ sup

s∈R

{︁
F̄S(s)− F̄mn(s)

}︁ ⃓⃓⃓⃓ ˆ︁f,Dmn

)︃
.

Fixing any ∆ > 0, let us consider the event{︃
sup
s∈R

{︁
F̄S(s)− F̄mn(s)

}︁
⩽ ∆

}︃
.

Note that it depends of the data Dmn. On this event, we have

αP (Dmn) ⩽ P
(︃
F̄S(S) ⩽ 1− ℓ · k

mn
+∆

⃓⃓⃓⃓ ˆ︁f,Dmn

)︃
⩽ 1− ℓ · k

mn
+∆

since F̄S(S) is a valid p-value (Bian & Barber, 2022, Lemma 1). As a consequence,

P
(︃
αP (Dmn) > 1− ℓ · k

mn
+∆

)︃
⩽ P

(︃
sup
s∈R

{︁
F̄S(s)− F̄mn(s)

}︁
> ∆

)︃
.

Applying the Dworetzky-Kiefer-Wolfowitz inequality (Dvoretzky et al., 1956; Massart, 1990), the last term is upper-bounded

by δ ∈ (0, 0.5] when we choose ∆ =
√︂

log(1/δ)
2mn . Finally, for ℓ · k ⩾ (1− α) ·mn, we have

P

(︄
αP (Dmn) ⩽ α+

√︃
log(1/δ)

2mn

)︄
⩾ P

(︄
αP (Dmn) ⩽ 1− ℓ · k

mn
+

√︃
log(1/δ)

2mn

)︄
⩾ 1− δ .

C.3. Proof of Proposition 3.4

All the proof is made conditionally to the predictor ˆ︁f , which means that we prove below that

P
(︁
Y ∈ ˆ︁Cℓ⋆,k⋆(X) | ˆ︁f )︁ ⩾ 1− α− E

[︃
dTV

(︂
PoisBin

(︁
p∗(S)

)︁
, Bin

(︁
m, p̃∗(˜︁S))︁)︂ ⃓⃓⃓ ˆ︁f ]︃ . (15)

The result follows by taking an expectation. In the remainder of the proof, for simplicity, we write P(·) and E[·] instead of
P(· | ˆ︁f ) and E[· | ˆ︁f ], respectively.
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First, for every k ∈ J1,mK and ℓ ∈ J1, nK, by definition of ˆ︁Cℓ,k, we have

P
(︁
Y /∈ ˆ︁Cℓ,k(X)

)︁
= P

(︂ ˆ︁Q(ℓ,k) < S
)︂
= P

(︃ m∑︂
j=1

1
{︂ ˆ︁Q(ℓ)(S(j)) < S

}︂
⏞ ⏟⏟ ⏞

≜W

⩾ k

)︃
. (16)

Similarly,

P
(︂ ˆ︁Q(ℓ,k)

(︂ ˜︁S(1), . . . , ˜︁S(m)
)︂
< ˜︁S)︂ = P

(︃ m∑︂
j=1

1
{︂ ˆ︁Q(ℓ)( ˜︁S(j)) < ˜︁S}︂⏞ ⏟⏟ ⏞

≜˜︂W
⩾ k

)︃
. (17)

Given S (and ˆ︁f ), the random variables 1{ ˆ︁Q(ℓ)(S(j)) < S}, j = 1, . . . ,m, are independent Bernoulli random variables
with respective parameters pj(S, ℓ) ≜ P(S(j)

(ℓ) ⩽ S|S), so their sum W follows the PoisBin(p(S, ℓ)) distribution, where

p(S, ℓ) ≜ (p1(S, ℓ), . . . , pm(S, ℓ)). Given S̃ (and ˆ︁f ), the random variables 1{ ˆ︁Q(ℓ)( ˜︁S(j)) < ˜︁S}, j = 1, . . . ,m, are i.i.d.
Bernoulli random variables with common parameter p̃(˜︁S, ℓ) ≜ P(˜︁S(1)

(ℓ) ⩽ ˜︁S|˜︁S), so their sum ˜︂W follows the Bin(m, ˜︁p(S, ℓ))
distribution. As a consequence, we have

P(W ⩾ k |S)− P(˜︂W ⩾ k | ˜︁S) = PoisBin
(︁
p(S, ℓ)

)︁(︁
[k,+∞)

)︁
− Bin

(︁
m, p̃(˜︁S, ℓ))︁(︁[k,+∞)

)︁
⩽ dTV

(︂
PoisBin

(︁
p(S, ℓ)

)︁
, Bin

(︁
m, p̃(˜︁S, ℓ))︁)︂ ,

by definition of the total-variation (TV) distance dTV(µ, ν) = supA measurable

{︁
µ(A)−ν(A)

}︁
for any probability distributions

µ and ν.
Taking an expectation and using Eq. (16) and (17), we get that

P
(︁
Y /∈ ˆ︁Cℓ,k(X)

)︁
= P(˜︂W ⩾ k) + P(W ⩾ k)− P(˜︂W ⩾ k)

⩽ P
(︂ ˆ︁Q(ℓ,k)

(︂ ˜︁S(1), . . . , ˜︁S(m)
)︂
< ˜︁S)︂+ E

[︃
dTV

(︂
PoisBin

(︁
p(S, ℓ)

)︁
, Bin

(︁
m, p̃(˜︁S, ℓ))︁)︂]︃

⩽ 1−Mℓ,k + E
[︃
dTV

(︂
PoisBin

(︁
p(S, ℓ)

)︁
, Bin

(︁
m, p̃(˜︁S, ℓ))︁)︂]︃ ,

by Theorem 3.2, which applies here since ˜︁S(1)
1 , . . . , ˜︁S(m)

n , ˜︁S are i.i.d., conditionally to ˆ︁f . Therefore,

P
(︁
Y ∈ ˆ︁Cℓ,k(X)

)︁
⩾ Mℓ,k − E

[︃
dTV

(︂
PoisBin

(︁
p(S, ℓ)

)︁
, Bin

(︁
m, p̃(˜︁S, ℓ))︁)︂]︃ , (18)

which implies the result by taking (ℓ, k) = (ℓ∗, k∗) since Mℓ∗,k∗ ⩾ 1− α.

Remark C.2. In Proposition 3.4, let us emphasize that the auxiliary random variables {˜︁S(j)
i }n,mi,j=1,

˜︁S can be dependent

on the scores {S(j)
i }n,mi,j=1, S, as long as they satisfy the only assumption required: {˜︁S(j)

i }n,mi,j=1,
˜︁S must be i.i.d. given ˆ︁f .

One also can choose the common distribution of the {˜︁S(j)
i }n,mi,j=1,

˜︁S. Here, the best choice is the one that maximizes the

right-hand side of Eq. (15). We conjecture that a good choice is to take ˜︁S = S, and to define the ˜︁S(j)
i as independent copies

of S (given ˆ︁f ).

Finally, let us recall a result from Ehm (1991, Theorem 1) which can be useful to control the right-hand side of Eq. (15).
Theorem C.3. Let m ⩾ 1 be an integer, p1, . . . , pm ∈ [0, 1] and p̃ = 1

m

∑︁m
j=1 pj . Let Bin(m, p̃) denote the binomial

distribution and PoisBin(m, (p1, · · · , pm)) denote the Poisson-binomial distribution. The following inequalities hold true:

C
[︁
1− p̃m+1 − (1− p̃)m+1

]︁
·
[︃
1−

∑︁m
i=1 pi(1− pi)

mp̃(1− p̃)

]︃
⩽ dTV

(︂
PoisBin(p1, · · · , pm) , Bin(m, p̃)

)︂
⩽

m

m+ 1

[︁
1− p̃m+1 − (1− p̃)m+1

]︁
·
[︃
1−

∑︁m
i=1 pi(1− pi)

mp̃(1− p̃)

]︃
,

where dTV(·, ·) is the total-variation distance, and C is a universal constant.
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C.4. Proof of Theorem 4.1

The privacy guarantee is a direct consequence of the fact that Algorithm 2 is ε-DP (exponential mechanism). Indeed, each
agent calls this algorithm only one time during FedCP2-QQ, making it ε-DP with respect to its local data set (ε-LDP).

It remains to prove that the desired coverage is achieved. To do so, recall the following utility lemma related to the output of
Algorithm 2 (Angelopoulos et al., 2022).
Lemma C.4. (Utility of Algorithm 2). For any δ ∈ (0, 1), scores S1, . . . , Sn and q ∈ [0.5, 1), the output of Algorithm 2,
denoted ˆ︁Qε

1, satisfies:

P

(︄
|{i : S̄i ⩽ ˆ︁Qε

1}|
n

⩾ q − 2 log (B/δ)

nε

⃓⃓⃓⃓
⃓S1, . . . , Sn

)︄
⩾ 1− δ . (19)

Proof. The proof, provided by Angelopoulos et al. (2022, Lemma 1), is a direct application of the utility guarantee of the
general exponential mechanism (see Dwork et al., 2014, Corollary 3.12). Note that Angelopoulos et al. (2022, Lemma 1)
state the above result on average over S1, . . . , Sn, but their proof is actually valid conditionally to S1, . . . , Sn since the
original result by Dwork et al. (2014, Corollary 3.12) is valid conditionally to S1, . . . , Sn.

We can now prove our main result. Let us first define the event E = { ˆ︁Qε ⩾ ˆ︁Q(ℓγ ,kγ)}, i.e., when the private estima-
tor ˆ︁Qε = ˆ︁Qε

(kγ)
returned by FedCP2-QQ is greater than the non-private estimator ˆ︁Q(ℓγ ,kγ) that would be returned by

FedCP-QQ (Algorithm 1) with coverage 1−α
1−γα . Denoting by S(1...m) the full data set containing all local data sets of scores

S(1), . . . ,S(m), we have:

P
(︁
Y ∈ ˆ︁Cε(X)

)︁
= P

(︁
S ⩽ ˆ︁Qε

)︁
= E

[︂
P
(︁
S ⩽ ˆ︁Qε

⃓⃓
S(1...m)

)︁]︂
⩾ E

[︂
P
(︁
S ⩽ ˆ︁Qε and E

⃓⃓
S(1...m)

)︁]︂
⩾ E

[︂
P
(︁
S ⩽ ˆ︁Q(ℓγ ,kγ) and E

⃓⃓
S(1...m)

)︁]︂
= E

[︂
P
(︁
S ⩽ ˆ︁Q(ℓγ ,kγ)

⃓⃓
S(1...m)

)︁
· P
(︁
E | S(1...m)

)︁]︂
, (20)

where the last equality is obtained by the fact that knowing S(1...m), the random variable ˆ︁Q(ℓγ ,kγ) is deterministic, hence
the events E = { ˆ︁Qε ⩾ ˆ︁Q(ℓγ ,kγ)} and {S ⩽ ˆ︁Q(ℓγ ,kγ)} are independent.

We first show that P(E | S(1...m)) ⩾ 1− γα. Notice that a sufficient condition for the event E to be satisfied is that each
agent j outputs a value ˆ︁Qε

j greater that the ℓγ-th ordered score S
(j)
(ℓγ)

of the local data set S(j). Indeed, in that case the kγ-th

ordered value of ˆ︁Qε
1, . . . ,

ˆ︁Qε
m, i.e., ˆ︁Qε, is necessarily bigger than the kγ-th ordered value of S(1)

(ℓγ)
, . . . , S

(m)
(ℓγ)

, i.e., ˆ︁Q(ℓγ ,kγ).

In the end, we have E ⊃
m
∩

j=1
{ ˆ︁Qε

j ⩾ S
(j)
(ℓγ)

}, which allows us to obtain a lower bound for P(E | S(1...m)):

P(E | S(1...m)) ⩾ P
(︂ m⋂︂
j=1

{︁ ˆ︁Qε
j ⩾ S

(j)
(ℓγ)

}︁ ⃓⃓
S(1...m)

)︂
=

m∏︂
j=1

P
(︁ ˆ︁Qε

j ⩾ S
(j)
(ℓγ)

⃓⃓
S(1...m)

)︁
=

m∏︂
j=1

P
(︁ ˆ︁Qε

j ⩾ S
(j)
(ℓγ)

⃓⃓
S(j)

)︁
⩾

m∏︂
j=1

P
(︁ ˆ︁Qε

j ⩾ S̄
(j)
(ℓγ)

⃓⃓
S(j)

)︁
, (21)

where the first equality comes from the fact that the events { ˆ︁Qε
j ⩾ S

(j)
(ℓγ)

} are independent given S(1...m). The last inequality

comes from the fact that, for all j = 1, . . . ,m, the discretized score S̄
(j)
(ℓγ)

is larger than (or equal to) the non-discretized

score S
(j)
(ℓγ)

. Moreover, for every j ∈ {1, . . . ,m}, we have:

P
(︂ ˆ︁Qε

j ⩾ S̄
(j)
(ℓγ)

⃓⃓
S(j)

)︂
= P

(︂⃓⃓
{i : S̄(j)

i ⩽ ˆ︁Qε
j}
⃓⃓
⩾ ℓγ

⃓⃓
S(j)

)︂
= P

(︂⃓⃓
{i : S̄(j)

i ⩽ ˆ︁Qε
j}
⃓⃓
⩾ ℓγ + ℓ cor − ℓ cor

⃓⃓
S(j)

)︂
⩾ P

(︄⃓⃓
{i : S̄(j)

i ⩽ ˆ︁Qε
j}
⃓⃓

n
⩾

ℓγ + ℓ cor

n
− 2

nε
log

(︃
B

1− (1− γα)
1
m

)︃ ⃓⃓⃓⃓
S(j)

)︄
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⩾ P

(︄⃓⃓
{i : S̄(j)

i ⩽ ˆ︁Qε
j}
⃓⃓

n
⩾ max

{︃
ℓγ + ℓ cor

n
,
1

2

}︃
− 2

nε
log

(︃
B

1− (1− γα)
1
m

)︃ ⃓⃓⃓⃓
S(j)

)︄
⩾ (1− γα)

1
m ,

where the last inequality is obtained by applying Lemma C.4 with {S1, . . . , Sn} = S(j), q = max{ ℓγ+ℓ cor
n , 1

2} and
δ = 1− (1− γα)

1
m .

Plugging this result into Eq. (21), we get P(E | S(1...m)) ⩾ 1− γα, which can then be plugged into Eq. (20) and leads to

P
(︁
Y ∈ ˆ︁Cε(X)

)︁
⩾ E

[︂
P
(︁
S ⩽ ˆ︁Q(ℓγ ,kγ)

⃓⃓
S(1...m)

)︁
· P
(︁
E | S(1...m)

)︁]︂
⩾ E

[︂
P
(︁
S ⩽ ˆ︁Q(ℓγ ,kγ)

⃓⃓
S(1...m)

)︁]︂
· (1− γα)

= P
(︁
S ⩽ ˆ︁Q(ℓγ ,kγ)

)︁
· (1− γα)

⩾ 1− α ,

where the last inequality comes from the fact that ˆ︁Q(ℓγ ,kγ) is the output of FedCP-QQ (Algorithm 1) with coverage
1−α
1−γα .

C.5. Proof of Proposition A.1

We start by proving the following lemma.

Lemma C.5. The following equality holds true for every integer k ⩾ 1:

k−1∑︂
j=0

Γ(j + 1/n)

Γ(j + 1)
=

n · k · Γ(k + 1/n)

Γ(k + 1)
.

Proof. Throughout the proof, we use that for any x > 0, Γ(x) =
Γ(x+ 1)

x
, according to Davis (1959).

We proceed by induction on k. First, for k = 1,

k−1∑︂
j=0

Γ(j + 1/n)

Γ(j + 1)
=

Γ(1/n)

Γ(1)
= Γ(1/n) = n · Γ(1/n+ 1) =

nΓ(1/n+ 1)

Γ(2)
.

Then, assume that the result holds true for some k ⩾ 1, that is,

k−1∑︂
j=0

Γ(j + 1/n)

Γ(j + 1)
=

n · k · Γ(k + 1/n)

Γ(k + 1)
,

and let us prove that it holds true for k + 1:

k∑︂
j=0

Γ(j + 1/n)

Γ(j + 1)
=

k−1∑︂
j=0

Γ(j + 1/n)

Γ(j + 1)
+

Γ(k + 1/n)

Γ(k + 1)

=
n · k · Γ(k + 1/n)

Γ(k + 1)
+

Γ(k + 1/n)

Γ(k + 1)

=
(n · k + 1)Γ(k + 1/n)

Γ(k + 1)

=
(k + 1)

Γ(k + 2)
· (n · k + 1)Γ(k + 1/n)

=
(k + 1)

Γ(k + 2)
· (n · k + 1)

Γ(k + 1/n+ 1)

k + 1/n
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=
(k + 1)

Γ(k + 2)
· (n · k + 1)

Γ(k + 1/n+ 1)

(n · k + 1)/n

=
n · (k + 1) · Γ(k + 1 + 1/n)

Γ(k + 2)
.

We can now prove Proposition A.1. Let us assume that {U (j)
i }m,n

i,j=1, U are i.i.d. uniform on [0, 1] and use the notation of the
proof of Theorem 3.2. We have Mn,k = P(U ⩽ U(n,k)) by Theorem 3.2 and by Lemma C.1, for every t ∈ [0, 1]:

FU(n,k)
(t) =

m∑︂
j=k

(︃
m

j

)︃
FU(n)

(t)j
[︁
1− FU(n)

(t)
]︁m−j

=

m∑︂
j=k

(︃
m

j

)︃
[tn]

j
[1− tn]

m−j
.

Therefore,

1−Mn,k = P
(︁
U(n,k) ⩽ U

)︁
=

∫︂ 1

0

FU(n,k)
(t)dt

=

∫︂ 1

0

m∑︂
j=k

(︃
m

j

)︃
(tn)j(1− tn)m−jdt

=
1

n

m∑︂
j=k

(︃
m

j

)︃∫︂ 1

0

uj(1− u)m−ju1/n−1du ( change of variable u = tn)

=
1

n

m∑︂
j=k

(︃
m

j

)︃∫︂ 1

0

uj+1/n−1(1− u)m−jdu

=
1

n

m∑︂
j=k

(︃
m

j

)︃
B(j + 1/n,m− j + 1) ,

where

B : (a, b) ∈ (0,+∞)2 ↦→
∫︂ 1

0

ua−1(1− u)b−1du =
Γ(a)Γ(b)

Γ(a+ b)

denotes the Beta function. We obtain that

1−Mn,k =
1

n

m∑︂
j=k

Γ(j + 1/n)

Γ(j + 1)
· Γ(m+ 1)

Γ(m+ 1/n+ 1)

=
1

n
· Γ(m+ 1)

Γ(m+ 1/n+ 1)

m∑︂
j=k

Γ(j + 1/n)

Γ(j + 1)

=
1

n
· Γ(m+ 1)

Γ(m+ 1/n+ 1)

⎛⎝ m∑︂
j=0

Γ(j + 1/n)

Γ(j + 1)
−

k−1∑︂
j=0

Γ(j + 1/n)

Γ(j + 1)

⎞⎠ .

Using Lemma C.5, we get that

1−Mn,k =
1

n
· Γ(m+ 1)

Γ(m+ 1/n+ 1)

(︃
n(m+ 1)Γ(m+ 1/n+ 1)

Γ(m+ 2)
− n · k · Γ(k + 1/n)

Γ(k + 1)

)︃
= Γ(m+ 1)

(︃
m+ 1

Γ(m+ 2)
− k · Γ(k + 1/n)

Γ(k + 1)Γ(m+ 1/n+ 1)

)︃
= 1− Γ(k + 1/n)

Γ(k)
· Γ(m+ 1)

Γ(m+ 1/n+ 1)
,

which proves the first formula.
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Now, using Stirling’s formula, when k,m → +∞, we have

Γ(k + 1/n)

Γ(k)
· Γ(m+ 1)

Γ(m+ 1/n+ 1)
∼ Γ(k)k1/n

Γ(k)
· Γ(m)m

Γ(m)m1/n+1
=

k1/n

m1/n
.

By setting k = km ⩾ m(1− α)n, we obtain the second result.
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