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Laboratoire des Signaux et Systèmes, 91190, Gif-sur-Yvette, France
Emails: {mahdi.sharara, sahar.hoteit, veronique.veque}@universite-paris-saclay.fr

Abstract—Open Radio Access Network (O-RAN) is a novel
architecture that enables the disaggregation and the virtualization
of network components. This would provide new ways to mix
and match network components by ”opening up” the interfaces
between them. O-RAN enables driving down the costs of network
deployments and allows the entry of new players into the RAN
market. It enables network operators to maximize resource
utilization and deliver new network edge services at a lower
cost, resulting in higher profits for operators. In this context, we
consider a computing resource allocation problem for maximizing
the operator’s profit. Given that an operator receives subscribers’
payments and pays the infrastructure provider’s costs, we model
the problem using Mixed Integer Linear Programming (MILP).
Then, we propose to solve the problem using Reinforcement
Learning (RL). Our simulation results demonstrate the ability
of the RL agent to increase the operator’s profit while reducing
the algorithmic complexity of the MILP solver.

Index Terms—Open-RAN, Reinforcement Learning, Resource
Allocation, Profit Maximization.

I. INTRODUCTION
With emerging applications such as the metaverse, au-

tonomous vehicles, and factories, among others, the demand
for mobile data is massively increasing. To satisfy the growing
demands, mobile operators are under colossal pressure; an
increased number of base stations is required, which needs
huge capital for their installation and management. To cater
such needs, Cloud Radio Access Network (C-RAN) has started
the movement toward RAN disaggregation by enabling a
distributed deployment of RAN functions. It allows for central-
izing and virtualizing the baseband processing of multiple base
stations. This technology is cost-effective and has enhanced
energy efficiency and centralized network architecture [1]. To
further break down the disaggregation granularity, Open-RAN
(O-RAN) was proposed as a step forward in virtualization and
openness. O-RAN permits disaggregating and softwarizing
network components. Furthermore, it improves competition
allowing more vendors to enter the market while ensuring
interoperability [2]. Additionally, O-RAN paves the way for
the extensive use of Artificial Intelligence (AI) and Machine
Learning (ML) through the non-Real-Time and near-Real-
Time Radio Intelligent Controllers (RIC) [3].

In O-RAN, the BS consists of three disaggregated parts;
Open Radio Unit (O-RU), Open Distributed Unit (O-DU), and
Open Central Unit (O-CU). The O-RU is responsible for the
Radio Frequency (RF) and low-PHY functions. The O-DU
manages high-PHY, MAC, and RLC layers functions, while
the O-CU is responsible for the PDCP and RRC layers. The
O-DU and O-CU components can run as virtual machines

in an Open-Cloud (O-Cloud), which is a cloud computing
platform that is made up of physical infrastructure nodes [4].
The O-Cloud would be owned by an independent infrastructure
provider (InP), and the mobile operator would be just one of
the customers of this InP [5]. As the computing infrastructure
in O-RAN is shared, mobile operators must request computing
resources to meet the demands of their users while maximizing
their own profits.

In this work, we consider a scenario in which the mobile
operator should request computing resources to process its
users’ frames while considering the various service types with
different quality of service (QoS) and deadline requirements.
We consider the two types of services, the enhanced Mobile
BroadBand (eMBB) and the Ultra Reliable Low Latency
(URLLC) service. The main driving motive for operators
is maximizing revenues and minimizing expenses. Operators
spend resources on capital and operational expenditures, in-
cluding telecom equipment and resources they own or rent,
energy, maintenance, etc. On the other hand, they profit from
selling their services to customers. To maximize the operator’s
profit, we formulate a Mixed Integer Linear Programming
(MILP) problem that efficiently allocates computing resources
to users’ frames while considering different services’ priori-
ties. However, solving the MILP problem is highly complex.
Hence, we resort to Reinforcement Learning (RL) techniques,
particularly the Policy-Gradient-based model, to allocate com-
puting resources to users.

RL is widely used because it can autonomously solve prob-
lems and adapt to changing environments. In RL, an agent, in
a given state or observation, interacts with its environment
and receives rewards or penalties. Intending to maximize
rewards, the agent selects actions that maximize its reward.
RL was used in [6] to satisfy the different communication
and computing users’ demands. Q-Learning is used in [7] to
allocate radio resource blocks (RB) and power. Moreover, in
[8], Deep Deterministic Policy Gradient (DDPG) is used to
allocate RBs and power, while a Double Deep Q-Network-
learns the optimal RAN slicing strategies. Additionally, RL
was used in [9] to select the functional split that minimizes the
routing and computational cost. In [10], computing resources
are allocated using Integer Linear Programming (ILP) to
maximize throughput and fairness, while [11] proposes a low-
complexity ML-based alternative for these two objectives. In
[12], the radio and computing resources allocation aims to
minimize power consumption, reducing operators’ OPEX.

In contrast to all these works, we consider in this paper



Fig. 1: System Architecture
the computing resource allocation problem that maximizes
the mobile operator’s profits. Additionally, we propose a
low-complexity policy-gradient-based RL model to solve the
problem, and we compare its performance with the optimal
MILP solution.

The rest of the paper is organized as follows: The MILP
problem is formulated in Section II, and the RL model is
presented in Section III. The simulation results are discussed
in Section IV, and our work is concluded in Section V.

II. CONTEXT AND PROBLEM FORMULATION

We consider a set R of Open Radio Units (O-RU). The set
of users connected to an O-RU r ∈ R is denoted by Ur; it
combines the sets of both eMBB users UE

r and URLLC users
UU
r . As each service type has different delay tolerance, the

processing deadlines for eMBB users and URLLC users are
expressed by dE and dU , respectively, where dE > dU . For
each O-RU, there exists two O-DUs (Open Distributed Unit)
serving each service type (i.e., eMBB and URLLC), and each
O-DU is connected to an O-CU (Open Central Unit). The O-
DUs and O-CUs run as virtual machines in the Open Cloud
(O-Cloud) and have to share the computing resources available
at this O-Cloud, which is not owned by the operator. [13], [14]
show that achieving high reliability and low latency requires
deploying redundant hardware. However, we are only targeting
the case where computing resources are not enough either due
to bad provisioning or because of some financial restrictions
for the operator. Fig. 1 shows the system architecture. We
consider a set of CPUs C. These CPUs are owned by an
infrastructure provider (InP), and the operator must share the
available computing resources with different users (i.e., other
operators). For each CPU, k ∈ {1, 2} defines the priority
level of a frame. Frames processed with priority k=1 will
force the CPU to preempt what it currently processes and
process these frames immediately. When k=2, the CPU could
process the frames after fully processing the ongoing tasks.
For each CPU core c ∈ C, F c,2 is the amount of the available
computing resources over the next 2ms which is the eMBB
processing deadline (F c,2 <= dE). F c,1 is the portion of F c,2

which could be immediately used for processing user frames
without waiting for the current tasks to finish (i.e., priority
k=1). Each user pays the operator pr,uuser unit of money per
bit. The operator pays for the InP when it processes the users’
frames an amount equal to pc,kop unit of money per second,
depending on which CPU c and priority level k are used.
We define br,u as the number of bits carried by the frame
of user u ∈ Ur, while er,u is the amount of time required to
process the frame. We note that the number of bits and the

processing times depend on the used Modulation and Coding
Scheme (MCS) and the number of RBs [10]. To maximize the
operator’s profits, we formulate the following MILP problem.
The problem uses the binary variable xr,u

c,k which is equal to
1 if user u ∈ Ur is processed on CPU c ∈ C with priority k:

max
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zc ∈ {0, 1}, ∀c ∈ C (12)

The objective (1) maximizes the total operator profit. (2)
ensures the binary nature of the integer variable. (3) ensures
that a frame is processed once. (4) ensures that a CPU is
able to process all the assigned frames, while (5) sets the
limit on the total frames processed with priority k=1. The
total time of processed URLLC frames with priority k=1 can
not exceed the minimum of the available CPU time and the
URLLC deadline as (6) shows. On the other hand, URLLC
frames can only be processed with priority k=2 if there are
enough resources before the deadline, as (7) mandates. The
difference between the eMBB and URLLC deadline indicates
the amount of time that can only be used to process eMBB
users. Hence, the only way to process URLLC users is if the
remaining available resources are bigger than the difference
in deadlines. In this case, the amount of available resources is
tracked by the auxiliary continuous variable vc defined in (8).
However, this difference could be negative; hence vc is equal
to the value explained above if it’s non-negative, and it is
equal to zero otherwise. (8),(9),(10),(11) together enforce this
condition. They use the auxiliary binary variable zc defined
in (12). M is the big-M notation. This MILP problem is NP-
Hard [15]; thus, we propose to solve it using Reinforcement
Learning techniques.

III. REINFORCEMENT LEARNING MODEL
We consider a policy gradient-based RL model where each

Transmission Time Interval (TTI) is an episode composed of
steps. Resources are scheduled to users for a duration of one



Fig. 2: Neural Network Architecture
TTI. Each (user, CPU, priority) tuple is represented by δi,c,kr,u .
In policy gradient algorithms, the agent learns the optimal
probability distribution of actions that maximizes its rewards.
We use a flexible Neural Network that scales with the number
of users and CPUs. Each δi,c,kr,u is fed into the same neural
network and outputs a value. Hyperbolic tangent tanh is used
as an activation function in the neural network, given it scales
its values between -1 and 1, which could aid convergence. The
outputted values from all δi,c,kr,u are fed into a softmax function
that outputs a probability distribution. The agent selects a tuple
according to this probability distribution. At each step, a tuple
is selected, assigning a user to a CPU and a priority level. It
would have been possible to use a static NN architecture with
a defined max number of users. However, the non-occupied
tuples should be zero-padded. This will make the size of the
NN huge and penalize the convergence time. As in [16] and
[17], we use the dynamic architecture shown in Fig.2. The
Markov Decision Process (MDP) model is defined as follows:
A. State

In each episode (i.e., TTI), one user will be selected in
step i. The state includes the execution time er,u, number of
bits br,u, servicer,u that indicates if the service is eMBB
or URLLC, the payment of the user br,upr,uuser, the cost
of processing er,upc,kop , and the profit of the operator (i.e.,
payment minus cost). Then:

δi,c,kr,u =

{
er,u, br,u, servicer,u, br,upr,uuser, e

r,upc,kop , (b
r,upr,uuser − er,upc,kop )

}
Given that F c,k is the available computing resources of CPU

c at step i and that aj is the action at step j, the state at step
i of a TTI is defined as

si =

{
δi,c,kr,u : ∀r ∈ R, u ∈ Ur, c ∈ C, k ∈ {1, 2}, u ̸∈ aj ,∀j < i, er,u ≤ F c,k

}
In each step, users have two priority choices and a set of CPUs
to be assigned to. Once selected, the user can not be reselected
and is omitted from the state and action space. Hence, the
user and all the corresponding CPUs c and priorities k tuples
are removed from the state representation. Moreover, the state
only includes feasible choices; if there are no more resources
to assign a user to a specific CPU and a priority, this tuple
will be excluded from the state.
B. Action

At each step i of one TTI, the action ai assigns a user
u ∈ Ur, r ∈ R to CPU c and priority k, hence the action is
the tuple:

ai = (u, c, k), u ∈ Ur, r ∈ R, c ∈ C, k ∈ {1, 2}

C. Reward
The goal is to optimize the profit. The reward of action

ai = (u, c, k) at step i being in state si is:

ri(si, ai) =
2

π
arctan(br,upr,uuser − er,upc,kop )

Using arctan in the reward function allows us to finally scale
the reward to be between -1 and 1, which aids convergence.

D. RL algorithm

The RL algorithm is based on REINFORCE algorithm with
a baseline [18]. The weights θ of the Neural Network are
initialized. For each TTI, the δi,c,kr,u and state si should be
initialized. Then the agent executes action ai, gets ri, and
moves to si+1. This will be repeated until the terminal state is
reached (i.e., no more resources or no users to be allocated).
The weights θ should be updated using the following formula:

θ ←− θ + αvi∇log(P (si, ai))

where α is the learning rate, P (si, ai) is the probability value
yielded by the NN, and vi is the discounted reward, normalized
by subtracting the mean of the rewards in an episode and
divided by the standard deviation of the rewards.

IV. PERFORMANCE EVALUATION

To test our simulation, we consider a scenario where the
number of O-RUs competing for computing resources in the
O-Cloud varies from 5 to 10. In each O-RU, 90 RBs are
reserved for eMBB users, while 10 RBs for URLLC users.
The number of RBs of an eMBB user follows a uniform
distribution between 20 and 40, while it is between 1 to 5
for a URLLC user. The eMBB and URLLC deadlines dE and
dU are 2ms and 0.25 ms [17], respectively. We use the real
traffic distribution in [10] to sample the MCS index for each
user. Users are resampled at each TTI. To calculate the number
of transmitted bits, the 3GPP specifications [19] provide the
Transport Block Size (TBS) as a function of the number of
RBs and MCS. We use a processing time model as a function
of the MCS, the number of RBs, and the CPU frequency [20].
We set the CPU frequency to 2.6 GHz. The total available
CPU time F c,2 is a uniform random variable between 0.001ms
and 2ms. The percentage of the amount of total computing
resources F c,2 available for prioritized processing is a uniform
random variable between 0 and 100% (i.e., this percentage
indicates how much F c,1 is out of F c,2, where F c,1 is a partial
amount of F c,2). The cost of the non-prioritized processing
per CPU per µs is a uniform random variable between 0.01
and 0.05 monetary units. The cost of prioritized processing, in
which ongoing tasks are preempted to immediately schedule
frames with priority k=1, is uniformly random, between 1 to
3 times more than the cost of the non-prioritized one. A user
pays a uniformly distributed value from 0.2 to 3.6 monetary
units per Kilobit. The reason for this extreme randomness is
that we wanted to ensure the RL agent could adapt to diverse
scenarios. For the RL agent, 8 neurons represent the input to
the NN, which has 1 hidden layer with 10 neurons, and an
output layer with 1 neuron. The learning rate for the agent
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Fig. 3: Performance Figures
is 0.01, while the rewards discount factor is 0.999. We use
MATLAB for the simulation, the Deep Learning toolbox for
training the RL agent, and CPLEX to solve the MILP problem.
In the graphs, we plot the 95% confidence intervals.

A. Simulation Results

Fig.3a shows the average cumulative reward. The RL agent
converges after 1250 TTI. The agent is initially trained by
varying the number of O-RUs, which varies the number of
users and the total demand, from 5 to 10. This justifies why
we initially have some fluctuations in the curve because the
profit is affected by the number of existing users, strongly
varying the total reward from one TTI to another. Fig. 3b
compares the value of the objective function when the MILP
solver is used versus when the RL model is used. Additionally,
an algorithm named ”Random” is used for benchmarking;
it randomly allocates users to a CPU with random priority.
Results show that the MILP can perfectly pick the user-CPU-
priority tuples that maximize the operator’s profit. The RL
model achieves at least 73% of the optimal MILP solution and
reaches 80% when the number of O-RUs is 10. In comparison,
the random allocation algorithm does not exceed 44% of the
MILP solution and drops to 26% of the optimal solution.
Fig. 3c shows the execution time of the MILP solver versus
the RL algorithm. The RL can reduce the execution time by up
to 85% compared with the MILP. We note that the study was
done on a core i9-9880H, and the GPU used for RL is Nvidia
Quadro P620. Given that scheduling decisions are made every
TTI equal to 1ms, running the MILP problem in a real
scenario is impossible. The RL model has been tested on the
mentioned GPU, which is not optimized for Machine Learning
computation. However, the RL model execution speed could
be accelerated by using powerful GPUs that can parallelize
the solution and output results in the required amount of time.
Additionally, using MATLAB will add overhead, increasing
the execution time.

B. Improvement Perspectives

The MILP algorithm can perfectly pick the optimal solution
at the cost of high complexity. In contrast, random allocation is
a simple algorithm that curbs potential profits. The RL model
presents a trade-off between lower complexity and optimality.
However, there are a lot of potential paths for improvement. In
addition to improving the hardware, as stated above, tweaking

the Neural Network architecture and the activation function
could have potential benefits in improving the performance
of the RL model. Moreover, the MILP problem and the RL
models assumed perfect processing time and cost knowledge.
Even the infrastructure provider may refuse to provide detailed
information regarding the availability of resources for opera-
tional and security reasons. If the information is missing, it
is impossible to run the MILP problem. However, it would
be possible to tune the state representation of the RL model
to exclude the missing information. The RL would still learn
the policy by receiving rewards from the environment. This is
an important advantage for the RL versus the MILP problem.
Moreover, we have heavily randomized the cost models to
account for diverse scenarios. The payment and cost model
would be more deterministic in the real world. This would
allow the RL model to converge faster and probably improves
its performance, given that it will have less to learn.

V. CONCLUSION

In this paper, we have considered computing resource
allocation for maximizing the operator’s profit in O-RAN. O-
RAN enables the virtualization of RAN components. Instead
of owning infrastructure that is not always needed and would
increase the CAPEX and OPEX, the operator can request
computing resources from InPs when required. However, this
mechanism must be profitable for the operator. We have
formulated a Mixed Integer Linear Programming Problem
that allocates computing resources to process users’ frames
to maximize the operator’s profits. We have also proposed an
RL model with the same objective but lower complexity. The
simulation results highlight the ability of the RL model to
score high profits while having lower complexity. In the future,
we plan to test this model in a real O-RAN-compliant system
to validate its performance and adapt it to the different service
types in 6G. Also, we intend to investigate various Neural
Network architectures in order to bring the RL’s performance
closer to that of the MILP, and explore different parameters in
the state representation to help the RL agent better learn and
converge. We also intend to adapt the model to multi-operator
scenarios in which operators share infrastructure, compete, and
collaborate with one another.
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