

Mouse arterial wall imaging and analysis from synchrotron X-ray microtomography

Xiaowen Liang, Aïcha Ben Zemzem, Sébastien Almagro, Jean-Charles Boisson, Luiz Angelo Steffenel, Timm Weitkamp, Laurent Debelle, Nicolas Passat

► To cite this version:

Xiaowen Liang, Aïcha Ben Zemzem, Sébastien Almagro, Jean-Charles Boisson, Luiz Angelo Steffenel, et al.. Mouse arterial wall imaging and analysis from synchrotron X-ray microtomography. Journée Scientifique autour de l'IA (JSIA), Feb 2023, Nancy, France. hal-03981316

HAL Id: hal-03981316 https://hal.science/hal-03981316

Submitted on 4 Apr 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

MOUSE ARTERIAL WALL IMAGING AND ANALYSIS FROM SYNCHROTRON X-RAY MICROTOMOGRAPHY

Xiaowen Liang^{1,2}, Aïcha Ben Zemzem², Sébastien Almagro², Jean-Charles Boisson³, Luiz-Angelo Steffenel³, Timm Weitkamp⁴, Laurent Debelle², Nicolas Passat¹ ¹Université de Reims Champagne-Ardenne, CReSTIC EA 3804, 51100 Reims, France, ²Université de Reims Champagne-Ardenne, CNRS, MEDyC UMR 7369, 51100 Reims, France, ³Université de Reims Champagne-Ardenne, LICIIS / LRC CEA DIGIT, 51100 Reims, France, ⁴Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France

CONTEXT

Cross section of artery *(source: Blausen medical)*

A frame of acquired images

Vascular ageing is characterized by profound modifications of the large elastic arteries (mainly aorta), leading to consequences such as aneurysm formation. Agerelated diseases can be precipitated by metabolic disorders, e.g. diabetes or chronic kidney diseases. Vascular diseases involve morphological changes of the arterial extracellular matrix, particularly remodelling of the elastic lamellae found in the wall. Synchrotron X-ray microtomography (μCT) gives access to images with a micrometric resolution.

A Siamese network is used to distinguish 2 types of textures. The similarity of input patches is measured by that of the output descriptors.

Loss function: $\mathcal{L}(d_{ij}, d_{kl}) = \alpha . \delta_{ik} . \Delta^T . \Delta + \beta . (1 - \delta_{ik}) . [\max\{0, m_p - (\Delta^T . \Delta)^{1/2}\}]^2$, $\Delta = d_{ii} - d_{kl}, \ \alpha = 2, \ \beta = 1, \ m_p = 2$

Training samples are obtained from patches oriented with the help of normal vectors. Each time a pair of sub-patches is an input, with "green-green" labeled as 1,

A 2D FRAGMENT ANALYSIS

Normal mouse

Diabetic mouse

Mice are divided into 2 groups (normal and diabetic). A measurement is proposed to quantify their waviness.

 $\rho = \frac{L_{Euc}}{I}$

each sample

Mann-Whitney U test :

Int. J. Mol. Sci. 2022)

 $p - value = 0.0035 \ll 0.05$

 $L_{geo} = \sum_{0 \le i < k} \|V_{g_{i+1}} - V_{g_i}\|_2, k :$ number of pixels, V_i : vertices of curve

- "green-red" labeled as 0.
- Dataset: 47118 image patches of size 64² generated by 1457 2D slices

Prediction on a patch

A 3D SEGMENTATION

Prediction on an entire image

$$L_{Euc} = \sum_{0 \le j < L_{geo}/\sigma, (j+1)\sigma \le L_{geo}} \|V_{e_{(j+1)\sigma}} - V_{e_{j\sigma}}\|_2, \sigma: \text{ sampling rate of } L_{geo}, j:$$
subsampled indices

A 2D SEGMENTATION

Segmented lumen and normal vectors

21 samples, $2000 \sim 3000$ fragments for

A significant difference between healthy and

waviness. (Ben Zemzem A., Liang X. et al.,

diabetic mice in terms of elastic lamellae

Border of tunica media and adventitia

Extracted elastic lamellae 3D image with agarose

Extracted lumen

- The elastic lamellae and the lumen are extracted by moving spheres
- For elastic lamellae extraction, use a single sphere to count the number of inner pixels

For lumen extraction, use 3 concentric spheres to count the number of pixels between each 2 neighboring spheres

Straighten a stack of 2D images

- Extract the upper space by region growing
- Reject regions that are erroneously spread (green) by comparing their "weights" and their connections to the upper space

<u>ۥ</u>୵୵୶୵ୢୄ୰୶_{୴ଌ}୷୷୴୴ୠୢୄଌ୲ୠୄୄୗୗୠୄୗ୷ୗୢୠୢ୷ଢ଼୶୷୴୶୵୵ଡ଼୰୵୵ଌ*୷*୵୵୵୵୵୵ୡ୵

With the upper space extracted, the first elastic lamella is the boundary between this space and the rest of the background

- The lumen is segmented by a method based on co-occurrence matrix and region growing
- Normal vectors are calculated at each point of the inner contour
- The border between *tunica media* and *adventitia* is not clear

The first elactic lamella in its initial shape

CURRENT WORK

- Extend the 2D segmentation approach to 3D to distinguish *tunica media* and *adventitia* in 3D
- With the segmented region of elastic lamellae in 3D, segment the other 4 layers of them
- Extend the 2D waviness analysis to 3D and apply it to 5 elastic lamellae individually