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Abstract (149 words): 

Interest is growing in neighborhood effects on health beyond individual’s home locations. However, 

few studies accounted for selective daily mobility bias. Selective mobility of 470 older adults (aged 

67-94) living in urban and suburban areas of Luxembourg, was measured through detour 

percentage between their observed GPS-based paths and their shortest paths. Multilevel negative 

binomial regression tested associations between detour percentage, trips characteristics and 

environmental exposures. Detour percentage was higher for walking trips (28%) than car trips 

(16%). Low-speed areas and connectivity differences between observed and shortest paths vary 

by transport mode, indicating a potential selective daily mobility bias. The positive effects of 

amenities, street connectivity, low-speed areas and greenness on walking detour reinforce the 

existing evidence on older adults' active transportation. Urban planning interventions favoring 

active transportation will also promote walking trips with longer detours, helping older adults to 

increase their physical activity levels and ultimately promote healthy aging. 
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1 Introduction 

Promoting and maintaining good levels of daily mobility in older age are key challenges of healthy 

aging. Research found good mobility levels to be a factor of increased physical activity and reduced 

functional limitations [1]. Moreover, daily mobility allows older people to engage in numerous 

activities and to maintain their social networks thus fostering well-being [2] and quality of life [3].  

Over the past decade, assessing the effects of environmental exposure on older adults’ health has 

evolved from the residence-centered approach as assessed by the life-space concept used in 

environmental gerontology [4], [5] to the activity space concept [6] which acknowledges the 

importance of individuals’ daily mobility [7], [8]. Indeed, in addition to the environmental 

characteristics of their direct residential neighborhood, older adults are exposed to numerous and 

contrasting environments in the course of their daily mobility, which contribute to shaping their 

health. This shift from a static to a more dynamic exposure assessment was accompanied by 

significant methodological evolutions to investigate individual’s daily mobility patterns from travel 

diaries, to map-based questionnaires of visited locations. An increasingly popular method relies on 

trackers such as smartphones or GPS to obtain fine grained spatial and temporal data [9]–[12]. 

However, place and health studies using daily mobility data, and especially real-time data such as 

GPS information, are particularly subject to the selective daily mobility bias, which blurs the 

relationship between the environment and the outcome of interest [8], [13]. In studies looking at the 

environmental correlates of active or motorized transportation, the selective daily mobility bias 

refers to when people choose a specific environment that fits with their preference for a specific 

transport mode [14]: for instance choosing a walking-friendly or car-friendly environment because 

of ones’ willingness to walk or drive. Thus, their preference and attitude towards travel behavior 

may affect their choice for routes exposed to the most fitting environments. As a result of this bias, 

it is not only the environmental attributes that encourage people to use a specific mode of transport, 

but also people's willingness to walk or drive that lead them to seek walking-friendly or car-friendly 

itineraries. This mobility behavior may be “both an outcome of exposure, as well as a driver of 

exposure” [15, p. 11]. In that specific case, identifying the environmental factors that determine 
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transport behavior by accounting for environmental exposure solely along a participant’s observed 

path may result in spurious associations. 

Few studies have developed empirical strategies to mitigate such bias [16]–[19]. Different 

approaches have been proposed [13], [20]. One of them, targeting exclusively GPS studies, 

consists of correcting the measures of environmental exposures by computing measures of spatial 

exposure to environmental attributes along the GIS-modelled shortest path between activity 

locations, instead of the GPS-observed path. Indeed, as argued above, the observed paths and 

associated attributes are expected to reflect individuals' preferences. In an investigation with 

children, Burgoine and colleagues (2015) examined the associations between body mass index 

(BMI) and environmental characteristics (e.g. access to facilities, road safety, land use mix, street 

connectivity) measured in a 100-meters buffer along children’s observed and shortest path from 

home to school. The authors observed no associations between the BMI and observed path 

exposures or shortest path exposures, and concluded the absence of selective daily mobility bias. 

Although it was argued that this absence of selective daily mobility bias might result from the quite 

distal mechanism linking the environmental exposures and the outcome of interest (BMI) [19], this 

result also questions whether and how the GIS-modelled shortest path and GPS-observed 

(preferred) path differ in terms of characteristics. 

To our knowledge, few studies in place and health research focus on the environmental correlates 

of selective daily mobility, or in other words, the detour from a shortest path. Existing studies from 

the body of transportation research focused on commute routes whether to work [21] or school 

[22]–[24]. Other studies investigated the environment correlates of route choice for adult cyclists for 

transport [25]–[27]. However, these conclusions on active transport preferences among youth and 

adults or on commutes trips with more constraint in time and space [28], may not be relevant to 

older adults' mobility behavior or to their travel for other purposes. 

Using precise GPS-based information on trip paths from a population of older adults, in this paper, 

we first examine the relationship between the environmental exposure difference of observed and 

shortest paths and the transport modes, which reflects the selective daily mobility bias. Second, for 

both motorized (car) and active transportation (walk) modes we investigate how observed paths 
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differ from their corresponding shortest path, with a focus on non-work trip purposes. Our approach 

quantifies the trip detour, expressed as the percentage of the distance difference between the 

observed and the shortest path.  

We further explore four hypotheses: First, the environmental exposure differences between the 

observed and the shortest paths vary by the transport mode of the trip (H1), suggesting that while 

walking or driving their car, individuals’ might seek for specific walking-friendly or car-friendly 

environments, which further indicates a selective daily mobility bias. Second, trip characteristics, 

such as transport mode, time spent at the destination, proximity to the place of residence or peak 

hours predict the detour percentage (H2). Third, the exposure difference to environmental 

characteristics measured along the observed path and the shortest path predict the detour 

percentage (H3), thus revealing individuals' preferences for specific environments [22]. Fourth, the 

associations between the environmental exposure differences and detour percentage vary by 

transport mode (H4) thus illustrating the extent to which individuals are prone to deviate from the 

shortest path to select daily paths with environmental characteristics that align with their transport 

mode. In addition to its methodological relevance on the importance of accounting for the selective 

mobility bias, this work sheds light on the environmental factors that support daily and active 

mobility, within a population of older adults for whom short-distance utilitarian walking trips are key 

in maintaining good physical and mental health. 

2 Material and methods 

2.1 Study design 

This study is part of the Contrasted URban setting for Healthy Ageing (CURHA) project, and based 

on a cohort of 471 adults over 65 years of age in Luxembourg [29]. The participants were 

interviewed between April 2015 and January 2016, 80% of them were recruited in June, July, 

September, October or November 2015. The sample was assembled randomly from social security 

files and stratified by age and gender, and along spatially contrasted strata representing different 
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degrees of urbanity [30]. The participants answered questionnaires covering their health, physical 

activity and mobility. They also carried an integrated Global Positioning System (GPS) and 

accelerometer tracker (SenseDoc multisensor, Mobysens Technologies Inc.), during their trips and 

indoor and outdoor activities for 7 days. The CNPD (National Data Protection Center, Luxembourg) 

delivered ethical approval (Decision 408/2014) and all participants provided written informed 

consent. 

2.2 Environmental characteristics 

Hypotheses and expected directions of the associations between environmental characteristics 

and detour percentage are presented in Table 1.   

Environmental exposures were measured within a 100 m buffer along observed and shortest paths 

[16], [31]. Four environmental variables were computed using python scripts: street connectivity, 

amenity count, greenness, and low-speed areas (see Table 2). For each environmental variable, 

we calculated the exposure difference between observed and shortest paths. 

2.3 Observed paths 

Trip detection. We used a kernel density algorithm exploiting raw GPS data where the GPS epoch 

was set to 1 second. From the set of GPS points of each participant, the algorithm built a raster of 

point density. Peak densities were interpreted as visit locations, whereas the dynamic portions are 

identified as trips. A minimum duration threshold of a 5 minutes stay was set to define a visit [32]. 

To exclude inaccurate GPS location, the upper 5% of the position dilution of precision (PDOP) 

values were excluded before the trip detection step. The detection script was run with its default 

parameters and raw data was down sampled to 5 seconds [33]. 

GPS points filtering. The GPS points of a trip had to satisfy different criteria for distance (<67 m) 

and altitude difference (<6.7 m) between two consecutive points (1 s) [34], [35] and speed limit 

(<140 km/h). We discarded every trip with points above these thresholds, as random manual 

checks identified that these criteria reflect a flaw in the trip (see Figure 1). We removed the circular 
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trips for which we were not able to model a shortest path between two different locations because, 

in those cases, no comparison could be made to the observed trip. Trips crossing the national 

borders of Luxembourg were excluded. 

Mode of transport prediction. GPS data and accelerometer data were combined to predict for each 

trip segment the associated transport mode (i.e., car, walk, bus, bike, train). GPS and 

accelerometer data were extracted from the SenseDoc device. The acceleration data for the three 

axes was first converted into activity counts which reflects the level of physical activity at each 

5 second epoch. For GPS variables, raw accelerometer variables, and activity count variables, 

measures of central tendency (e.g., median) and dispersion (e.g., minimum and maximum) were 

derived per trip. A total of 377 measures were then used to predict the transport modes using 

random forest models developed and validated previously [36]. The transport modes retained for 

this study were 'car' and 'walk'. 

Map matching of observed paths. The temporally consecutive GPS points of a given trip were 

converted into linear paths. As some observed paths appeared to have shifted off the road network, 

a map matching step was performed [16]. A first attempt to perform a snapping of the points on the 

roads network in a Geographic Information System (GIS) yielded erroneous trajectories as points 

near an intersection were not snapped accurately. We then used a map-matching algorithm, that 

allowed us to find the most plausible snap for each point taking into account the consistency of the 

whole itinerary. This step involved requests to the match service of a local server of Open Source 

Routing Machine [37]. This service matches the GPS points to the road network in the most 

plausible way. The radius parameter, which is used to define the candidates on the GIS roads 

around the GPS points was set to 50 m [27] and yielded consistent tracks. The server used an 

OpenStreetMap (OSM) road network archive. This step was performed on driving and pedestrian 

networks with the predicted mode of transport. It allowed paths cutting through areas such as parks, 

sport fields, etc., to be detected and removed. 
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2.4 Shortest path 

Shortest paths were calculated between the origin and destination of each observed path with the 

routing service of a local Open Route Service (ORS, version 6.0.0) server [38]. The optimization 

criterion was the metrical distance [16], [22], [23], [26]. No other road characteristics, such as speed 

limits or width, were included. The routing used driving and pedestrian networks with the respective 

predicted mode on the OSM road network archive. 

2.5 Trip characteristics 

Trip detour percentage. The length of the shortest path and the observed (snapped) path were 

computed. The detour percentage is expressed as the ratio of the length difference between the 

observed path and the shortest path, divided by the length of the shortest path, and multiplied by 

100. 

Duration at destination was calculated for each trip and expressed in hours, including time spent 

at home between last trip and first trip the next day. 

Trips that overlapped peak hours (6:30 to 8:30 am and 5:00 to 7:00 pm) were identified based on 

the trip timestamps.  

Trip to home (vs. other destinations). The visited location with the maximum summed visit duration 

was assumed to define home. The match was verified with the geolocalized address from the 

questionnaires, except in 4 cases for which the home location had to be corrected manually. A 

variable was set to ‘1’ for trips heading to the home location, ‘0’ for any other destinations. 

Proximity to home was expressed as the part of the 100 m Euclidean buffer along the observed 

path that intersects with a 500 m Euclidian buffer around the home location. 

Hypotheses and expected directions of the associations between trip characteristics and detour 

percentage are presented in Table 1. 
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2.6 Individual covariates 

Age in years was a continuous variable. Being male, living alone and having a valid driving license 

were coded as binary variables: yes or no. Education was divided into three categories: none or 

primary education; secondary education; post-secondary education. A composite score of physical 

and mental health was computed based on the Medical Outcome of the 36-Item Short Form Health 

Survey (SF-36) [39]. Residential self-selection bias [40] was taken into account by questioning 

participants as to whether, when they moved to their current residence, they considered it important 

to live in a neighborhood that was i) pleasant to walk in and ii) convenient for driving. 

2.7 Statistical Analysis 

Analytical sample. From the initial sample of 471 participants from the CURHA study, 10,525 trips 

of 447 participants were detected. Some 1,758 trips occurring at least in part outside Luxembourg 

were discarded as some environmental variables were available for Luxembourg only. We filtered 

out 2,165 trips not satisfying the distance between GPS points, altitude difference, and speed 

criteria. These removed trips mainly include those with gaps after the GPS signal was lost (see 

Figure 1). The 1,315 circular tracks were irrelevant to our study and excluded. Some of them may 

represent recreational trips (e.g. going jogging, walking a dog), or artefacts loops that do not 

correspond to any actual trip. After the transport mode prediction, 557 trips had either undefined 

mode (N=531) or a mode different from car or walking and were therefore excluded. In 188 cases 

the map matching step failed. Especially, the map matching step highlighted paths cutting through 

areas without any roads (such as parks or sport fields), and generated sub-paths that could not be 

compared with a shortest path (see Figure 2). The modeling step of shortest paths failed for 19 

trips that were excluded. The 26 individuals who had not answered all the questions accounted for 

234 trips, which were excluded. Finally, the 99 percentile of the detour percentage was excluded 

representing 44 trips (detour percentage of car > 326%, and for walking >687%) as they mainly 

accounted for outliers and unrealistic values of detour percentage. Notably, 419 trips had shortest 

path longer than the observed path due to the avoidance of some street restrictions (e.g., forbidden 

access). As 90% of these negative detours percentage reflected a difference less than 13 meters 
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between the observed and the shortest paths, these trips were kept in the model with a detour 

percentage value set to zero. The final sample counted 4,245 valid trips made by 357 participants. 

Regression models. Since the difference between each observed participant trip and its associated 

shortest path was the unit of analysis, we modeled the percentage of trip detour. The over-

dispersion of the outcome and the Akaike Information Criteria supported the need to use a 

multilevel negative binomial model rather than a multilevel Poisson or multilevel linear model. The 

negative binomial regression estimates the proportional change in the percentage of trip detour 

associated with one unit increase in the trip characteristics and environmental variables, with 

estimates interpreted as rate ratio (RR). Since each participant performed multiple trips, random 

effects account for within individual correlation in the trip detour. Individual socio-demographics 

were included in all models. All variables were tested for multicollinearity. No multicollinearity was 

detected (Tolerance > 0.48; VIF < 2.08). We opted against model selection. Thus, all individual 

variables, trip characteristics and environmental variables were kept in the model. Lastly, we tested 

separately the multiplicative interaction between the environmental variable and the mode of 

transport. At this stage, we opted for model selection: if the p-value for an interaction was below 

0.05 (Type III test of effect), the interaction term was kept in the model. All analyses were performed 

using SAS 9.4 (SAS Institute Inc., Cary NC).  

3 Results 

3.1 Final sample characteristics 

The participants in the final sample were on average 75.7 years old and 55% male (Table 3). 

Participants whose highest degree was secondary school constituted 49% of the sample, 28% lived 

alone and 79% had a valid driving license. When they moved to their respective residential 

neighborhood, 53% of the sample found it important to live in a walkable neighborhood and 51% 

to live in a neighborhood that was easy to drive in. 
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The participants made an average of 10.7 valid trips (sd = 7.8). They spent on average 4.0 hours 

(sd = 8.2) at their destination. Overall, 20.1% of their trips took place during peak hours, 30% in 

proximity to home and 35.4% of trips were trips to home. 

3.2 Characteristics of observed path, shortest path and detour percentage  

On average the length of the observed path was 3.4 km (sd = 4.96), with the shortest path being 

2.9 km (sd = 4.28) (Table 4). A comparison by transport modes showed that the length of the 

observed path was, on average significantly longer for car trips, with 5.5 km (sd = 5.82), than for 

walking trips, with 0.72 km (sd = 0.88). The mean detour length varied significantly between car 

driving and walking: about one third of the pedestrians detoured more than 50 m whereas one third 

of the car users detoured more than 450 m. The detour percentage from the shortest path was on 

average 21 % (sd= 55) and varied significantly by transport mode.  

Overall, environmental characteristics measured along the observed path and the shortest path 

varied by transport mode (Table 5). The observed paths, compared to the shortest path, revealed 

a significantly higher exposure to amenities, street connectivity and greenness, and a significantly 

lower exposure to low-speed areas. Moreover, the exposure differences in the street connectivity 

and low-speed areas significantly vary by transport mode. Indeed, for walking trips, the observed 

paths account for more low-speed areas than the shortest path, while the opposite is observed for 

car trips. 

3.3 Associations between trip characteristics, environmental characteristics 

and detour percentage  

After we controlled demographics and residential self-selection variables, walking, as compared to 

driving, is associated with an increase in the detour percentage. Contrastingly, trips realized in 

proximity to home are negatively associated with the percentage of detour (Table 6). We observed 

no association with the length of the shortest path, the number of hours at destination, the trip 

overlaps with peak hours, and the type of the destination (trip to home vs. other).  
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For the associations with environmental characteristics of trips, the detour percentage is 

significantly associated with the amenity and greenness exposure difference between the observed 

and the shortest path: more amenities and greenness along the observed path correlate with 

greater detour percentage.  

We found multiplicative interactions between the transport mode and the environmental exposure 

difference between the observed and the shortest path. A positive amenity count difference 

between the observed and the shortest path (i.e., the observed path has exposure to more 

amenities than the shortest path) correlates with a higher detour percentage among walkers than 

among car drivers (Figure 3). More low-speed areas along the observed path, compared to the 

shortest path, correlates with a greater detour percentage for walking trips, and a lower detour 

percentage for trips made by car (Figure 4). 

4 Discussion 

By analyzing the detour percentage of trips and the environmental exposure difference, we 

investigated the individual environmental and mobility preferences. Examining these preferences 

by transport modes provides valuable insights on the determinants of selective daily mobility for 

non-work trip purposes, among older adults in Luxembourg. 

4.1 Main findings 

Overall, the environmental characteristics of observed and shortest path differs in terms of 

exposure to amenities, street connectivity, greenness, and low-speed areas. The significant 

differences in exposures to street connectivity and low-speed-areas between the observed and the 

shortest path by transport mode support evidence of potential of selective daily mobility bias (H1). 

Our results suggest a potential reverse causality as walkers seek walking-friendly environments 

with more low-speed areas and better connectivity. On the other hand, car users seek car-friendly 

environments by favoring high-speed areas rather than what shortest paths offer. These results 
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further indicate a risk of overlooking potential selective daily mobility bias in studies accounting only 

for the observed path, and not including the shortest path, while investigating the environmental 

correlates of walking, driving, or transportation-related physical activity. More generally, these 

results echo the other few studies that observed evidence of selective daily mobility bias in the 

association between environmental exposures and recreational walking [41], or sport practice [19]. 

The mean trip detour of 21% observed in this study, all modes of transport considered, is consistent 

with the order of magnitude found across different populations in previous studies showing a detour 

percentage of 27% among adult commuters in Cambridge (UK) [21], and 21% among children for 

home-school trips in Norfolk (UK) [23]. Studies on adult cyclists observed a detour of 7.6% on 

average in Graz (Austria) [26] and trips of 13.5% higher length in Columbus, Ohio (USA) [25]. One 

study in Amsterdam region (The Netherlands) noted no significant detour percentage for active 

trips to school among children [22]. 

In line with our second hypothesis (H2), certain trip characteristics predict the detour percentage. 

We found a strong correlation between the detour percentage and the transport mode, with a 

significantly greater detour percentage for walking than for driving. We hypothesized that walking 

allows individuals to deviate more easily from the shortest road dependent on external stimuli (such 

as pollution, noise, traffic incident, etc.) with fewer network restrictions such as no-entry rules [42]. 

A qualitative investigation of older adults’ driving behaviors in a Midwestern state in the USA 

stresses that they are more prone to use direct roads and reject alternative itineraries [43].This 

relationship between the detour percentage and the transport mode was also quantitatively 

investigated by [21], [23]. However, their results show a greater detour for car use than for walking. 

This contradictory finding might be linked to the authors’ observed negative mean detour for 

walkers (i.e., shortest paths are longer than the observed path), indicating their participants used 

paths with roads that were missing in the modelled network. Time constraints linked with the nature 

of their trip purpose (i.e., commuting, travel to school) may also contribute to the explanation of 

such opposing results [21], [23].  

No association was found with the type of destination (trip to home vs. other), although the proximity 

to home was associated with the detour percentage. Previous works found an association with the 
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type of destination and the transport mode [30] or a difference in the overlap between observed 

and shortest routes from home to school as compared to those from school to home [24]. This 

association indicates that the type of destination, and especially the place of residence, may have 

an effect on the route choice and thus the likelihood to take a detour. 

The time spent at destination was not associated with the detour percentage. Another study 

suggested a relation between the time spent at destination and the mobility behavior [44]. Trips 

with mandatory purposes compared to discretionary ones revealed large differences in the ratio 

between travel time and time spent at destination. Our dataset does not distinguish between 

mandatory and discretionary purposes, as detected trips do not specify any purpose at all. (see 

Strengths and Limitations). Finally, we observed no association between peak hours’ trips and the 

detour percentage. Although scarcely investigated as a potential correlate of trip detour, peak hours 

were positively associated with cyclists’ trip detours in a population of adults in Ohio (USA) [25]. 

Older adults might be less subject to peak hours’ constraint, which might explain the lack of 

significant associations with trip detour in our study.  

As expected in our third hypothesis (H3), environmental exposure differences between the 

observed and the shortest path are associated with the detour percentage. Overall, observed paths 

were greener, with greater access to amenities, greater street connectivity and fewer low-speed 

areas. Greater exposure to greenness and street connectivity along the observed path, as 

compared to the shortest path, correlate positively with higher trip detour percentage. In line with 

our findings, aesthetics characteristics reflecting the presence of green (trees, parks) amenities 

have often found to be related to detour [26]. 

Our results confirm our fourth hypothesis (H4) that there is a multiplicative interaction between the 

difference in exposure to environmental characteristics between the observed and the shortest path 

(e.g., number of amenities, low-speed areas) and the transport mode in their association with the 

detour percentage. In our study, an increase in exposure to low-speed areas along the observed 

path, as compared to the shortest path, is associated with an increase in detour percentage among 

walkers, and a decrease in detour percentage among drivers. In other words, walkers are likely to 

make detours to seek safe paths with limited traffic speeds, while drivers make even larger detours 
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to seek environments with fewer low-speed areas. This association is consistent with the findings 

from Mizen and colleagues where the road typology was associated with the detour among 

children’s walks between schools and their homes [24]. Similarly, in the Netherlands, children were 

more likely to walk to school along residential roads where speed was limited to 30 km/h [22]. 

While this study focuses on the determinants of selective daily mobility, our results on the 

environmental correlates of walking trip detour are consistent with existing evidence on older adults' 

active transportation [1], [45]. They reinforce previous conclusions on the positive effects of the 

presence of amenities that provide a diverse spectrum of destinations [46], a good street network 

connectivity [47] and greenness [48]. The low-speed areas were also shown to be positively 

associated with walking since they providing a safe environment to older adults [49]. Urban 

planning interventions aiming at fostering active transportation will then also help promoting walking 

trips with longer detours. Those interventions would in turn help older adults walk longer distance, 

increase their overall physical activity level, and ultimately promote healthy aging. 

4.2 Strengths and Limitations 

The predictors of selective daily mobility have rarely been investigated in place and health research, 

while transportation research has produced more evidence of individual preferences with the 

investigation of “route choice” modelling. However, most studies are focused on specific trip 

purposes such as commuting to work [21] or traveling to school [16], [22], [24], or on specific 

transport modes such as bicycle [25]–[27]. By examining the correlates of selective daily mobility 

for multi-purposes non-work trips, performed by motorized and active transport modes among older 

adults, this study provides a more comprehensive approach to individual preferences in terms of 

daily mobility behaviors in a less studied segment of the population. By testing the interactions 

between the environmental correlates of trip detour and transport modes, this study is one of the 

few attempts to qualify and quantify how individuals’ preferences for walking may be translated in 

terms of exposure to environmental characteristics and detour percentage. The study relied 

exclusively on objectively measured information regarding observed path, trip characteristics, and 

environmental exposure. The chosen methodology of automatically detecting trips and cleaning 
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the observed paths allowed us to make use of a large set of trips without involving manual 

intervention. We believe this systematic approach based exclusively on objectively measured data 

heightens the internal validity of the study. 

This study has the following limitations. Measurement of environmental exposure along the 

observed and the shortest path used buffers of 100 m along the paths, as observed in other studies 

[16], [21], [31]. Other studies have used smaller buffer sizes, 15m [25], 25m [22], [26], 50m [27]. 

Using a 100 m buffer might have led to an inaccurate exposure during trips [22]. Moreover, 

environmental conditions beyond 100 m around each trip origin and destination were disregarded, 

although we cannot exclude their potential role in predicting the detour percentage. As observed 

by Dalton and colleagues (2015), some GPS paths were shorter than their theoretically associated 

GIS-based shortest path. This issue arose when participants used shortcuts or paths not 

referenced in the road network. To overcome this issue, we computed the shortest paths by 

transport mode, using a pedestrian network for walking trips, and the road network for driving trips. 

This process prevented the inclusion of restricted roads for a specific transport mode, such as a 

pedestrian path across a park for drivers, or the use of highways for pedestrians. Also, trips were 

detected with their origins and destinations based on a kernel-density algorithm [32]. Therefore, we 

cannot rule out that the algorithm may have overseen some trips, or that origins or trip destinations 

might be part of larger trip chains, with multiple destinations. We excluded from this study public 

transport and cycling. Two reasons grounded this decision: First, the public transport routes are 

highly constrained by time schedule and fixed by the operator. These constraints limit individuals' 

route choices. Second, mode detection revealed a small proportion of public transport  (0.4%) and 

cycling use (0.06%). Given the sample size of trips relying on cycling and public transport, statistical 

analyses and especially interaction analyses would have been underpowered in our study. Circular 

trips were excluded as their shortest path would be of zero length. This choice meant excluding a 

range of trips varying from loops artifacts generated by the trip detection step to recreational trips 

(e.g., walking a dog) or very specific transport trips (e.g., accompanying or dropping off car 

passengers). The seasons and weather could also influence the older adults’ mobility, as shown in 

other studies [50], [51], and should be tested as correlates of trip detour in further modeling. Futures 
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studies could also consider additional individual correlates of trip detour, such as traveling alone or 

accompanied. 

Finally, the strength of the association between the environmental characteristics and the 

percentage of detour may be age-specific. As such, replication studies on other age categories are 

needed to assess the consistency of the results for different age categories. 

5 Conclusion 

This study is one of the very few empirical investigations to account for the selective daily mobility 

bias in place and health research, and goes a step further by determining to what extent older 

adults engage in selective mobility behaviors and the determinants of those behaviors. By 

identifying the trip characteristics and environmental correlates of trip detours from the shortest 

path, this study shed light on older adults’ preferences during their daily mobility. Differences in 

environmental exposures between the observed and shortest path by transport mode support the 

evidence of selective daily mobility bias, and invite caution in studies linking accessibility to specific 

environmental conditions along participants GPS tracks for specific transport modes. In addition, 

greater access to green environment, the presence of amenities, roads with greater connectivity, 

seem to entice older adults into making greater detours. Interestingly, low-speed areas seem to 

foster greater detours among walkers and reduced detours among drivers. Integrating the 

environmental correlates of walking detours into broader urban planning strategies to promote 

walking could contribute to enhancing walking among older adults while increasing the walking time 

by providing supportive environment for walking detours. The increase in walking time through 

walking detours may also help people to spend more time in the corresponding neighborhood 

environment, which in turn could help people develop a stronger sense of belonging and familiarity 

to this environment [52].This increased familiarity with a place could help compensate functional 

loss when physical and psychological changes will occur and ultimately favor aging well in place 

[53]. This study also strengthens current policy recommendation to promote walking among older 

adults and provide supporting elements to favor aging in place policies [54]. 
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7 Tables 

Table 1: Hypothesis of effects of trips variables and environmental exposure difference 
between the observed and the shortest path. 

Variable Expected 
direction Hypotheses 

Trips variables     

Shortest path length negative The detour percentage is expected to decrease with increasing shortest 
path length as suggested in one study about cyclists [25, p. 1] 

Walk (vs. Car) positive 

Walking offers more flexibility in the route choice due to fewer 
constraints as compared with driving which should follow traffic 
regulations (one-way, restricted access) and thus is associated with 
increased detour percentage. Older drivers prefer routes that are direct 
[43]   

Proximity to home 
positive 

As individuals spend a large share of their time in their residential 
neighborhood they are expected to have a better spatial knowledge of 
this neighborhood (as compared to more distant areas) thus giving them 
the propensity to make greater detour. The elderly travels short distance 
typically within the immediate neighborhood [55]” 

Number of hours at 
destination positive 

A greater time spent at destination is expected to be associated with 
greater detour percentage as such destinations are unlikely in the 
middle of larger trip chains.  

Trip overlaps peak hours positive 

Independently of the transport mode, we expect trips during peak hours 
correlate positively with detour percentage. Indeed, drivers may choose 
longer itineraries involving secondary roads to avoid traffic congestion. 
Pedestrian may as well avoid heavily congested main roads to escape 
negative externalities (air and noise pollution, collisions). Older drivers 
preferred to avoid school zones in the morning and downtown in the 
evening” [43] 

Trip to home (vs. other 
destinations) positive Trips to home are less likely to be constrained by time and thus allowing 

more flexibility to make detour 

Environmental exposure difference between the observed and the shortest path 

Amenity count difference positive 

A large set of amenities provide attractive environment to travel even 
without purchase intention. A positive difference is associated with 
longer detours. Such association might be stronger among walker as 
compared to drivers. Walking is associated with the access to amenities 
[30] 

Street connectivity 
difference positive 

A denser network provides more alternative itineraries and detour 
possibilities. A positive difference is expected to correlate positively with 
detour percentage 

Greenness index difference positive 

A greener environment provides more pleasant landscape with 
restorative qualities. We expect that a positive difference in greenness 
exposure is associated with high detour percentage. Such association 
might be stronger among walker as compared to drivers.  

Low-speed areas difference  

Positive for 
walkers & 
negative 
for drivers 

A low traffic intensity and a high traffic safety related positively with 
transportation walking. We expect that a positive difference in the share 
of roads ≤ 30 km/h relate positively with the detour percentage among 
walkers. A negative association among drivers is expected.   
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Table 2: Description of environmental variables, and data sources 

Variable Description Source 
Street 
connectivity 

Count of intersections (above three-ways) within the observed and 
shortest path buffers 

Base de données topo-
cartographique coming from 
Administration du Cadastre et de la 
Topographie (2008), and 
OpenStreetMap (2014) 

Number of 
amenities 

The amenity count within each buffer reflects a variety of 
categories of shops and services of daily and weekly resorts [30]. 
This includes restaurants and cafes, medical and dental offices, 
pharmacies, markets, bakeries, butcher shops, sports facilities, 
cultural venues, tobacco and newspaper offices. 

LISER (2013)  

Greenness 
index 

Index ranking from 0 to 1, based on a formula from. It is composed 
of a 4- weighted classes Soil Adjusted Vegetation Index (SAVI) 
using radiometric data from Red and Near Infrared bands [30], [56]  

Landsat 8 reflectance data from 
June 2014, provided by the U.S. 
Geological Survey. The imagery is 
free of clouds 

Low-speed 

areas 

Ratio of the length of the roads limited to 30 km/h on the total length 
of the road network in a buffer of 100 m of the observed and 
shortest path. For roads without a speed attribute, we considered 
a default speed limit of 30 km/h for roads described as: footway, 
living_street, pedestrian, residential_link, road, service or track. 
 

OpenStreetMap network (January 
2016) 
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Table 3: Socio-demographic characteristics of the participants (N=357) 

Variables  Category % Mean SD Min Median Max 

Sex (being a man) 
no 45%      
yes 55%      

Age   75.7 6.0 67.0 75.0 94.0 

Living alone 
no 72%      
yes 28%      

Education 
none or primary 29%      
secondary 51%      
post-secondary 20%      

Valid driving license 
no 21%      
yes 79%      

SF-36 Physical Health composite score   56.6 10.6 26.0 60.0 70.0 
SF-36 Mental Health composite score   62.1 9.8 22.0 64.0 78.0 

Importance of the ease to walk in the 
neighborhood in the choice of moving in 
the current dwelling 

not important 47%      

important 53%      

Importance of the ease to drive in the 
neighborhood in the choice of moving in 
the current dwelling 

not important 49%      

important 51%           
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Table 4: Distances of observed and shortest path and detour percentage (N = 4,245), by car (N 
= 2,356) or walk (N = 1,889) 

 

  Mean (SD) Min 10th 
percentile 

90th 
percentile Max T-test p-value 

Observed path length (km)      
all 3.34 (4.96) 0.01 0.15 9.04 57.46  
car 5.45 (5.82) 0.01 0.69 12.79 57.46 

<.0001 walk 0.72 (0.88) 0.01 0.09 1.71 7.99 
Shortest path length (km)      
all 2.88 (4.28) 0.00 0.14 8.23 49.71  
car 4.74 (4.99) 0.01 0.65 11.38 49.71 

<.0001 walk 0.56 (0.60) 0.00 0.08 1.30 5.18 
Detour (in km)      
all 0.46 (1.19) -0.66 0.00 1.30 19.61  
car 0.71 (1.50) -0.66 0.00 2.14 19.61 

<.0001 walk 0.16 (0.45) -0.48 0.00 0.47 6.90 
Detour percentage (%)      
all 21.2 (54.9) 0.00 0.00 52.7 687.1  
car 16.2 (35.3) 0.00 0.00 41.4 326.2 

<.0001 walk 27.5 (71.7) 0.00 0.00 69.5 687.1 
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Table 5: Environmental characteristics along the observed and shortest paths (N = 4,245), by car (N = 2,356) or walk (N = 1,889) 

 
Observed path exposure Shortest path exposure Exposure difference Observed path - Shortest 

path a 

 mean (sd) min max 
T-test 

p-value mean (sd) min max 
T-test 

p-value 

mean 
difference  

(sd) 95% CI 
T-test 

p-value 

Number of amenities            
all  24.3 (31.3) 1.0 306.0  22.4 (27.3) 1.0 244.0  1.9 (16.8) 1.38 2.39  
car  27.2 (33.0) 1.0 306.0 

<.0001 
25.6 (29.2) 1.0 244.0 

<.0001 
1.7 (20.3) 0.84 2.48 

0.30 
walk  20.5 (28.7) 1.0 205.0 18.4 (24.0) 1.0 164.0 2.2 (10.8) 1.68 2.65 

Street connectivity            

all  6.2 (7.1) 1.0 60.0  5.6 (6.2) 1.0 50.0  0.6 (3.5) 0.49 0.70  
car  8.4 (8.3) 1.0 60.0 

<.0001 
7.6 (7.1) 1.0 50.0 

<.0001 
0.8 (4.4) 0.61 0.97 <.0001 

walk  3.4 (3.9) 1.0 31.0 3.0 (3.2) 1.0 24.0 0.4 (1.8) 0.28 0.44 

Greenness index (%)            

all  24.3 (18.4) 0.0 100.0  24.1 (18.5) 0.0 100.0  0.2 (3.9) 0.12 0.36  
car  27.0 (14.5) 0.0 70.2 

<.0001 
26.7 (14.8) 0.0 70.8 

<.0001 
0.3 (4.7) 0.12 0.50 

0.19 
walk  20.9 (21.9) 0.0 100.0 20.8 (21.8) 0.0 100.0 0.2 (2.6) 0.04 0.27 

Low-speed areas (%)            

all  49.9 (22.2) 0.0 100.0  50.6 (22.4) 0.0 100.0  -0.7 (6.4) -0.88 -0.50  
car  45.1 (17.2) 0.0 100.0 <.0001 46.5 (17.3) 0.0 100.0 <.0001 -1.4 (7.1) -1.68 -1.10 <.0001 
walk  55.9 (26.0) 0.0 100.0 55.7 (26.6) 0.0 100.0 0.2 (5.1) -0.05 0.42 

a Exposure differences tested using a paired sample t-tests  
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Table 6: Associations between trip characteristics, environmental exposure difference 
between the observed and the shortest path, and detour percentage (N = 4,245) 

 RR CI 95% 

Trips variables   

Shortest path length (vs. low)   

middle low 0.94 [0.76 - 1.17] 

middle high 0.93 [0.71 - 1.2] 

high 0.85 [0.62 - 1.15] 

Walk (vs. Car) 1.63 [1.33 - 2] 

Proximity to home (1 unit increase) 0.66 [0.51 - 0.86] 

Number of hours at destination (1 hour increase) 1.00 [0.99 - 1.01] 

Trip overlaps peak hours (vs. no overlap) 0.94 [0.8 - 1.12] 

Trip to home (vs. other destinations) 0.94 [0.8 - 1.12] 

Environmental exposure difference between the observed and the 
shortest path   

Amenity count difference (1 unit increase) 1.00 [1.00 - 1.01] 

Street connectivity difference (1 unit increase) 1.09 [1.07 - 1.11] 

Greenness index difference (1% increase) 1.04 [1.03 - 1.05] 

Low-speed areas difference (1 % increase) 0.98 [0.97 - 0.99] 

Interaction terms   

Amenity count difference * walk 1.02 [1.01 - 1.04] 

Low-speed areas difference * walk 1.03 [1.02 - 1.04] 

Abbreviations: RR: rate ratio; CI: Confidence interval  

Note: Model adjusted for sex, age, marital status, physical health, mental health, individual 
education, having a valid driving license and residential self-selection for walking and driving.  

Note 2: The exposure to one more unit in low-speed areas difference is associated with a lesser 
detour percentage of 0.98 percentage point.   
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Figures 

Figure 1. Trip filtering based on their GPS points attributes.  

 

Note: In this example, either some of the GPS points (in red) exceed the thresholds for distance 

or altitude difference with their temporally previous points or their measured speed is too high. 

We therefore excluded the whole trip (in blue). 
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Figure 2. Example of one of the 188 excluded observations after the map-matching step 

resulted in two sub-paths. 
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Figure 3: Interaction between amenity count difference and detour percentage by mode of 

transport. 
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Figure 4: Interaction between low-speed areas exposure difference and detour percentage by 

mode of transport. 
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